| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eugeni Dodonov <eugeni.dodonov@intel.com> |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <drm/drm_atomic_helper.h> |
| #include <drm/drm_fourcc.h> |
| #include <drm/drm_plane_helper.h> |
| |
| #include "display/intel_atomic.h" |
| #include "display/intel_atomic_plane.h" |
| #include "display/intel_bw.h" |
| #include "display/intel_de.h" |
| #include "display/intel_display_trace.h" |
| #include "display/intel_display_types.h" |
| #include "display/intel_fb.h" |
| #include "display/intel_fbc.h" |
| #include "display/intel_sprite.h" |
| #include "display/skl_universal_plane.h" |
| |
| #include "gt/intel_llc.h" |
| |
| #include "i915_drv.h" |
| #include "i915_fixed.h" |
| #include "i915_irq.h" |
| #include "intel_pcode.h" |
| #include "intel_pm.h" |
| #include "vlv_sideband.h" |
| #include "../../../platform/x86/intel_ips.h" |
| |
| /* Stores plane specific WM parameters */ |
| struct skl_wm_params { |
| bool x_tiled, y_tiled; |
| bool rc_surface; |
| bool is_planar; |
| u32 width; |
| u8 cpp; |
| u32 plane_pixel_rate; |
| u32 y_min_scanlines; |
| u32 plane_bytes_per_line; |
| uint_fixed_16_16_t plane_blocks_per_line; |
| uint_fixed_16_16_t y_tile_minimum; |
| u32 linetime_us; |
| u32 dbuf_block_size; |
| }; |
| |
| /* used in computing the new watermarks state */ |
| struct intel_wm_config { |
| unsigned int num_pipes_active; |
| bool sprites_enabled; |
| bool sprites_scaled; |
| }; |
| |
| static void gen9_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| enum pipe pipe; |
| |
| if (HAS_LLC(dev_priv)) { |
| /* |
| * WaCompressedResourceDisplayNewHashMode:skl,kbl |
| * Display WA #0390: skl,kbl |
| * |
| * Must match Sampler, Pixel Back End, and Media. See |
| * WaCompressedResourceSamplerPbeMediaNewHashMode. |
| */ |
| intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1, |
| intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | |
| SKL_DE_COMPRESSED_HASH_MODE); |
| } |
| |
| for_each_pipe(dev_priv, pipe) { |
| /* |
| * "Plane N strech max must be programmed to 11b (x1) |
| * when Async flips are enabled on that plane." |
| */ |
| if (!IS_GEMINILAKE(dev_priv) && intel_vtd_active(dev_priv)) |
| intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe), |
| SKL_PLANE1_STRETCH_MAX_MASK, SKL_PLANE1_STRETCH_MAX_X1); |
| } |
| |
| /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */ |
| intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1, |
| intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP); |
| |
| /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */ |
| intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1, |
| intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); |
| |
| /* |
| * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl |
| * Display WA #0859: skl,bxt,kbl,glk,cfl |
| */ |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | |
| DISP_FBC_MEMORY_WAKE); |
| } |
| |
| static void bxt_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WaDisableSDEUnitClockGating:bxt */ |
| intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * FIXME: |
| * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only. |
| */ |
| intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | |
| GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ); |
| |
| /* |
| * Wa: Backlight PWM may stop in the asserted state, causing backlight |
| * to stay fully on. |
| */ |
| intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) | |
| PWM1_GATING_DIS | PWM2_GATING_DIS); |
| |
| /* |
| * Lower the display internal timeout. |
| * This is needed to avoid any hard hangs when DSI port PLL |
| * is off and a MMIO access is attempted by any privilege |
| * application, using batch buffers or any other means. |
| */ |
| intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950)); |
| |
| /* |
| * WaFbcTurnOffFbcWatermark:bxt |
| * Display WA #0562: bxt |
| */ |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS); |
| |
| /* |
| * WaFbcHighMemBwCorruptionAvoidance:bxt |
| * Display WA #0883: bxt |
| */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) | |
| DPFC_DISABLE_DUMMY0); |
| } |
| |
| static void glk_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* |
| * WaDisablePWMClockGating:glk |
| * Backlight PWM may stop in the asserted state, causing backlight |
| * to stay fully on. |
| */ |
| intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) | |
| PWM1_GATING_DIS | PWM2_GATING_DIS); |
| } |
| |
| static void pnv_get_mem_freq(struct drm_i915_private *dev_priv) |
| { |
| u32 tmp; |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG); |
| |
| switch (tmp & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_533: |
| dev_priv->fsb_freq = 533; /* 133*4 */ |
| break; |
| case CLKCFG_FSB_800: |
| dev_priv->fsb_freq = 800; /* 200*4 */ |
| break; |
| case CLKCFG_FSB_667: |
| dev_priv->fsb_freq = 667; /* 167*4 */ |
| break; |
| case CLKCFG_FSB_400: |
| dev_priv->fsb_freq = 400; /* 100*4 */ |
| break; |
| } |
| |
| switch (tmp & CLKCFG_MEM_MASK) { |
| case CLKCFG_MEM_533: |
| dev_priv->mem_freq = 533; |
| break; |
| case CLKCFG_MEM_667: |
| dev_priv->mem_freq = 667; |
| break; |
| case CLKCFG_MEM_800: |
| dev_priv->mem_freq = 800; |
| break; |
| } |
| |
| /* detect pineview DDR3 setting */ |
| tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL); |
| dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; |
| } |
| |
| static void ilk_get_mem_freq(struct drm_i915_private *dev_priv) |
| { |
| u16 ddrpll, csipll; |
| |
| ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1); |
| csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0); |
| |
| switch (ddrpll & 0xff) { |
| case 0xc: |
| dev_priv->mem_freq = 800; |
| break; |
| case 0x10: |
| dev_priv->mem_freq = 1066; |
| break; |
| case 0x14: |
| dev_priv->mem_freq = 1333; |
| break; |
| case 0x18: |
| dev_priv->mem_freq = 1600; |
| break; |
| default: |
| drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n", |
| ddrpll & 0xff); |
| dev_priv->mem_freq = 0; |
| break; |
| } |
| |
| switch (csipll & 0x3ff) { |
| case 0x00c: |
| dev_priv->fsb_freq = 3200; |
| break; |
| case 0x00e: |
| dev_priv->fsb_freq = 3733; |
| break; |
| case 0x010: |
| dev_priv->fsb_freq = 4266; |
| break; |
| case 0x012: |
| dev_priv->fsb_freq = 4800; |
| break; |
| case 0x014: |
| dev_priv->fsb_freq = 5333; |
| break; |
| case 0x016: |
| dev_priv->fsb_freq = 5866; |
| break; |
| case 0x018: |
| dev_priv->fsb_freq = 6400; |
| break; |
| default: |
| drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n", |
| csipll & 0x3ff); |
| dev_priv->fsb_freq = 0; |
| break; |
| } |
| } |
| |
| static const struct cxsr_latency cxsr_latency_table[] = { |
| {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ |
| {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ |
| {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ |
| {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ |
| {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ |
| |
| {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ |
| {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ |
| {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ |
| {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ |
| {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ |
| |
| {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ |
| {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ |
| {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ |
| {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ |
| {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ |
| |
| {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ |
| {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ |
| {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ |
| {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ |
| {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ |
| |
| {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ |
| {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ |
| {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ |
| {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ |
| {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ |
| |
| {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ |
| {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ |
| {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ |
| {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ |
| {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ |
| }; |
| |
| static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, |
| bool is_ddr3, |
| int fsb, |
| int mem) |
| { |
| const struct cxsr_latency *latency; |
| int i; |
| |
| if (fsb == 0 || mem == 0) |
| return NULL; |
| |
| for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { |
| latency = &cxsr_latency_table[i]; |
| if (is_desktop == latency->is_desktop && |
| is_ddr3 == latency->is_ddr3 && |
| fsb == latency->fsb_freq && mem == latency->mem_freq) |
| return latency; |
| } |
| |
| DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); |
| |
| return NULL; |
| } |
| |
| static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) |
| { |
| u32 val; |
| |
| vlv_punit_get(dev_priv); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); |
| if (enable) |
| val &= ~FORCE_DDR_HIGH_FREQ; |
| else |
| val |= FORCE_DDR_HIGH_FREQ; |
| val &= ~FORCE_DDR_LOW_FREQ; |
| val |= FORCE_DDR_FREQ_REQ_ACK; |
| vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); |
| |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & |
| FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) |
| drm_err(&dev_priv->drm, |
| "timed out waiting for Punit DDR DVFS request\n"); |
| |
| vlv_punit_put(dev_priv); |
| } |
| |
| static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) |
| { |
| u32 val; |
| |
| vlv_punit_get(dev_priv); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); |
| if (enable) |
| val |= DSP_MAXFIFO_PM5_ENABLE; |
| else |
| val &= ~DSP_MAXFIFO_PM5_ENABLE; |
| vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); |
| |
| vlv_punit_put(dev_priv); |
| } |
| |
| #define FW_WM(value, plane) \ |
| (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) |
| |
| static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) |
| { |
| bool was_enabled; |
| u32 val; |
| |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; |
| intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); |
| intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV); |
| } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { |
| was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; |
| intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); |
| intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); |
| } else if (IS_PINEVIEW(dev_priv)) { |
| val = intel_uncore_read(&dev_priv->uncore, DSPFW3); |
| was_enabled = val & PINEVIEW_SELF_REFRESH_EN; |
| if (enable) |
| val |= PINEVIEW_SELF_REFRESH_EN; |
| else |
| val &= ~PINEVIEW_SELF_REFRESH_EN; |
| intel_uncore_write(&dev_priv->uncore, DSPFW3, val); |
| intel_uncore_posting_read(&dev_priv->uncore, DSPFW3); |
| } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { |
| was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; |
| val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : |
| _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); |
| intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val); |
| intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); |
| } else if (IS_I915GM(dev_priv)) { |
| /* |
| * FIXME can't find a bit like this for 915G, and |
| * and yet it does have the related watermark in |
| * FW_BLC_SELF. What's going on? |
| */ |
| was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN; |
| val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : |
| _MASKED_BIT_DISABLE(INSTPM_SELF_EN); |
| intel_uncore_write(&dev_priv->uncore, INSTPM, val); |
| intel_uncore_posting_read(&dev_priv->uncore, INSTPM); |
| } else { |
| return false; |
| } |
| |
| trace_intel_memory_cxsr(dev_priv, was_enabled, enable); |
| |
| drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n", |
| enableddisabled(enable), |
| enableddisabled(was_enabled)); |
| |
| return was_enabled; |
| } |
| |
| /** |
| * intel_set_memory_cxsr - Configure CxSR state |
| * @dev_priv: i915 device |
| * @enable: Allow vs. disallow CxSR |
| * |
| * Allow or disallow the system to enter a special CxSR |
| * (C-state self refresh) state. What typically happens in CxSR mode |
| * is that several display FIFOs may get combined into a single larger |
| * FIFO for a particular plane (so called max FIFO mode) to allow the |
| * system to defer memory fetches longer, and the memory will enter |
| * self refresh. |
| * |
| * Note that enabling CxSR does not guarantee that the system enter |
| * this special mode, nor does it guarantee that the system stays |
| * in that mode once entered. So this just allows/disallows the system |
| * to autonomously utilize the CxSR mode. Other factors such as core |
| * C-states will affect when/if the system actually enters/exits the |
| * CxSR mode. |
| * |
| * Note that on VLV/CHV this actually only controls the max FIFO mode, |
| * and the system is free to enter/exit memory self refresh at any time |
| * even when the use of CxSR has been disallowed. |
| * |
| * While the system is actually in the CxSR/max FIFO mode, some plane |
| * control registers will not get latched on vblank. Thus in order to |
| * guarantee the system will respond to changes in the plane registers |
| * we must always disallow CxSR prior to making changes to those registers. |
| * Unfortunately the system will re-evaluate the CxSR conditions at |
| * frame start which happens after vblank start (which is when the plane |
| * registers would get latched), so we can't proceed with the plane update |
| * during the same frame where we disallowed CxSR. |
| * |
| * Certain platforms also have a deeper HPLL SR mode. Fortunately the |
| * HPLL SR mode depends on CxSR itself, so we don't have to hand hold |
| * the hardware w.r.t. HPLL SR when writing to plane registers. |
| * Disallowing just CxSR is sufficient. |
| */ |
| bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) |
| { |
| bool ret; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| ret = _intel_set_memory_cxsr(dev_priv, enable); |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| dev_priv->wm.vlv.cxsr = enable; |
| else if (IS_G4X(dev_priv)) |
| dev_priv->wm.g4x.cxsr = enable; |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * Latency for FIFO fetches is dependent on several factors: |
| * - memory configuration (speed, channels) |
| * - chipset |
| * - current MCH state |
| * It can be fairly high in some situations, so here we assume a fairly |
| * pessimal value. It's a tradeoff between extra memory fetches (if we |
| * set this value too high, the FIFO will fetch frequently to stay full) |
| * and power consumption (set it too low to save power and we might see |
| * FIFO underruns and display "flicker"). |
| * |
| * A value of 5us seems to be a good balance; safe for very low end |
| * platforms but not overly aggressive on lower latency configs. |
| */ |
| static const int pessimal_latency_ns = 5000; |
| |
| #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ |
| ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) |
| |
| static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; |
| enum pipe pipe = crtc->pipe; |
| int sprite0_start, sprite1_start; |
| u32 dsparb, dsparb2, dsparb3; |
| |
| switch (pipe) { |
| case PIPE_A: |
| dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); |
| dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); |
| sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); |
| sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); |
| break; |
| case PIPE_B: |
| dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); |
| dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); |
| sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); |
| sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); |
| break; |
| case PIPE_C: |
| dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); |
| dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3); |
| sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); |
| sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); |
| break; |
| default: |
| MISSING_CASE(pipe); |
| return; |
| } |
| |
| fifo_state->plane[PLANE_PRIMARY] = sprite0_start; |
| fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; |
| fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; |
| fifo_state->plane[PLANE_CURSOR] = 63; |
| } |
| |
| static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, |
| enum i9xx_plane_id i9xx_plane) |
| { |
| u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| if (i9xx_plane == PLANE_B) |
| size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; |
| |
| drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", |
| dsparb, plane_name(i9xx_plane), size); |
| |
| return size; |
| } |
| |
| static int i830_get_fifo_size(struct drm_i915_private *dev_priv, |
| enum i9xx_plane_id i9xx_plane) |
| { |
| u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); |
| int size; |
| |
| size = dsparb & 0x1ff; |
| if (i9xx_plane == PLANE_B) |
| size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; |
| size >>= 1; /* Convert to cachelines */ |
| |
| drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", |
| dsparb, plane_name(i9xx_plane), size); |
| |
| return size; |
| } |
| |
| static int i845_get_fifo_size(struct drm_i915_private *dev_priv, |
| enum i9xx_plane_id i9xx_plane) |
| { |
| u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); |
| int size; |
| |
| size = dsparb & 0x7f; |
| size >>= 2; /* Convert to cachelines */ |
| |
| drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", |
| dsparb, plane_name(i9xx_plane), size); |
| |
| return size; |
| } |
| |
| /* Pineview has different values for various configs */ |
| static const struct intel_watermark_params pnv_display_wm = { |
| .fifo_size = PINEVIEW_DISPLAY_FIFO, |
| .max_wm = PINEVIEW_MAX_WM, |
| .default_wm = PINEVIEW_DFT_WM, |
| .guard_size = PINEVIEW_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params pnv_display_hplloff_wm = { |
| .fifo_size = PINEVIEW_DISPLAY_FIFO, |
| .max_wm = PINEVIEW_MAX_WM, |
| .default_wm = PINEVIEW_DFT_HPLLOFF_WM, |
| .guard_size = PINEVIEW_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params pnv_cursor_wm = { |
| .fifo_size = PINEVIEW_CURSOR_FIFO, |
| .max_wm = PINEVIEW_CURSOR_MAX_WM, |
| .default_wm = PINEVIEW_CURSOR_DFT_WM, |
| .guard_size = PINEVIEW_CURSOR_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params pnv_cursor_hplloff_wm = { |
| .fifo_size = PINEVIEW_CURSOR_FIFO, |
| .max_wm = PINEVIEW_CURSOR_MAX_WM, |
| .default_wm = PINEVIEW_CURSOR_DFT_WM, |
| .guard_size = PINEVIEW_CURSOR_GUARD_WM, |
| .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params i965_cursor_wm_info = { |
| .fifo_size = I965_CURSOR_FIFO, |
| .max_wm = I965_CURSOR_MAX_WM, |
| .default_wm = I965_CURSOR_DFT_WM, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params i945_wm_info = { |
| .fifo_size = I945_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params i915_wm_info = { |
| .fifo_size = I915_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I915_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params i830_a_wm_info = { |
| .fifo_size = I855GM_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params i830_bc_wm_info = { |
| .fifo_size = I855GM_FIFO_SIZE, |
| .max_wm = I915_MAX_WM/2, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| |
| static const struct intel_watermark_params i845_wm_info = { |
| .fifo_size = I830_FIFO_SIZE, |
| .max_wm = I915_MAX_WM, |
| .default_wm = 1, |
| .guard_size = 2, |
| .cacheline_size = I830_FIFO_LINE_SIZE, |
| }; |
| |
| /** |
| * intel_wm_method1 - Method 1 / "small buffer" watermark formula |
| * @pixel_rate: Pipe pixel rate in kHz |
| * @cpp: Plane bytes per pixel |
| * @latency: Memory wakeup latency in 0.1us units |
| * |
| * Compute the watermark using the method 1 or "small buffer" |
| * formula. The caller may additonally add extra cachelines |
| * to account for TLB misses and clock crossings. |
| * |
| * This method is concerned with the short term drain rate |
| * of the FIFO, ie. it does not account for blanking periods |
| * which would effectively reduce the average drain rate across |
| * a longer period. The name "small" refers to the fact the |
| * FIFO is relatively small compared to the amount of data |
| * fetched. |
| * |
| * The FIFO level vs. time graph might look something like: |
| * |
| * |\ |\ |
| * | \ | \ |
| * __---__---__ (- plane active, _ blanking) |
| * -> time |
| * |
| * or perhaps like this: |
| * |
| * |\|\ |\|\ |
| * __----__----__ (- plane active, _ blanking) |
| * -> time |
| * |
| * Returns: |
| * The watermark in bytes |
| */ |
| static unsigned int intel_wm_method1(unsigned int pixel_rate, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| u64 ret; |
| |
| ret = mul_u32_u32(pixel_rate, cpp * latency); |
| ret = DIV_ROUND_UP_ULL(ret, 10000); |
| |
| return ret; |
| } |
| |
| /** |
| * intel_wm_method2 - Method 2 / "large buffer" watermark formula |
| * @pixel_rate: Pipe pixel rate in kHz |
| * @htotal: Pipe horizontal total |
| * @width: Plane width in pixels |
| * @cpp: Plane bytes per pixel |
| * @latency: Memory wakeup latency in 0.1us units |
| * |
| * Compute the watermark using the method 2 or "large buffer" |
| * formula. The caller may additonally add extra cachelines |
| * to account for TLB misses and clock crossings. |
| * |
| * This method is concerned with the long term drain rate |
| * of the FIFO, ie. it does account for blanking periods |
| * which effectively reduce the average drain rate across |
| * a longer period. The name "large" refers to the fact the |
| * FIFO is relatively large compared to the amount of data |
| * fetched. |
| * |
| * The FIFO level vs. time graph might look something like: |
| * |
| * |\___ |\___ |
| * | \___ | \___ |
| * | \ | \ |
| * __ --__--__--__--__--__--__ (- plane active, _ blanking) |
| * -> time |
| * |
| * Returns: |
| * The watermark in bytes |
| */ |
| static unsigned int intel_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| /* |
| * FIXME remove once all users are computing |
| * watermarks in the correct place. |
| */ |
| if (WARN_ON_ONCE(htotal == 0)) |
| htotal = 1; |
| |
| ret = (latency * pixel_rate) / (htotal * 10000); |
| ret = (ret + 1) * width * cpp; |
| |
| return ret; |
| } |
| |
| /** |
| * intel_calculate_wm - calculate watermark level |
| * @pixel_rate: pixel clock |
| * @wm: chip FIFO params |
| * @fifo_size: size of the FIFO buffer |
| * @cpp: bytes per pixel |
| * @latency_ns: memory latency for the platform |
| * |
| * Calculate the watermark level (the level at which the display plane will |
| * start fetching from memory again). Each chip has a different display |
| * FIFO size and allocation, so the caller needs to figure that out and pass |
| * in the correct intel_watermark_params structure. |
| * |
| * As the pixel clock runs, the FIFO will be drained at a rate that depends |
| * on the pixel size. When it reaches the watermark level, it'll start |
| * fetching FIFO line sized based chunks from memory until the FIFO fills |
| * past the watermark point. If the FIFO drains completely, a FIFO underrun |
| * will occur, and a display engine hang could result. |
| */ |
| static unsigned int intel_calculate_wm(int pixel_rate, |
| const struct intel_watermark_params *wm, |
| int fifo_size, int cpp, |
| unsigned int latency_ns) |
| { |
| int entries, wm_size; |
| |
| /* |
| * Note: we need to make sure we don't overflow for various clock & |
| * latency values. |
| * clocks go from a few thousand to several hundred thousand. |
| * latency is usually a few thousand |
| */ |
| entries = intel_wm_method1(pixel_rate, cpp, |
| latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, wm->cacheline_size) + |
| wm->guard_size; |
| DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); |
| |
| wm_size = fifo_size - entries; |
| DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); |
| |
| /* Don't promote wm_size to unsigned... */ |
| if (wm_size > wm->max_wm) |
| wm_size = wm->max_wm; |
| if (wm_size <= 0) |
| wm_size = wm->default_wm; |
| |
| /* |
| * Bspec seems to indicate that the value shouldn't be lower than |
| * 'burst size + 1'. Certainly 830 is quite unhappy with low values. |
| * Lets go for 8 which is the burst size since certain platforms |
| * already use a hardcoded 8 (which is what the spec says should be |
| * done). |
| */ |
| if (wm_size <= 8) |
| wm_size = 8; |
| |
| return wm_size; |
| } |
| |
| static bool is_disabling(int old, int new, int threshold) |
| { |
| return old >= threshold && new < threshold; |
| } |
| |
| static bool is_enabling(int old, int new, int threshold) |
| { |
| return old < threshold && new >= threshold; |
| } |
| |
| static int intel_wm_num_levels(struct drm_i915_private *dev_priv) |
| { |
| return dev_priv->wm.max_level + 1; |
| } |
| |
| static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| |
| /* FIXME check the 'enable' instead */ |
| if (!crtc_state->hw.active) |
| return false; |
| |
| /* |
| * Treat cursor with fb as always visible since cursor updates |
| * can happen faster than the vrefresh rate, and the current |
| * watermark code doesn't handle that correctly. Cursor updates |
| * which set/clear the fb or change the cursor size are going |
| * to get throttled by intel_legacy_cursor_update() to work |
| * around this problem with the watermark code. |
| */ |
| if (plane->id == PLANE_CURSOR) |
| return plane_state->hw.fb != NULL; |
| else |
| return plane_state->uapi.visible; |
| } |
| |
| static bool intel_crtc_active(struct intel_crtc *crtc) |
| { |
| /* Be paranoid as we can arrive here with only partial |
| * state retrieved from the hardware during setup. |
| * |
| * We can ditch the adjusted_mode.crtc_clock check as soon |
| * as Haswell has gained clock readout/fastboot support. |
| * |
| * We can ditch the crtc->primary->state->fb check as soon as we can |
| * properly reconstruct framebuffers. |
| * |
| * FIXME: The intel_crtc->active here should be switched to |
| * crtc->state->active once we have proper CRTC states wired up |
| * for atomic. |
| */ |
| return crtc->active && crtc->base.primary->state->fb && |
| crtc->config->hw.adjusted_mode.crtc_clock; |
| } |
| |
| static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) |
| { |
| struct intel_crtc *crtc, *enabled = NULL; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| if (intel_crtc_active(crtc)) { |
| if (enabled) |
| return NULL; |
| enabled = crtc; |
| } |
| } |
| |
| return enabled; |
| } |
| |
| static void pnv_update_wm(struct drm_i915_private *dev_priv) |
| { |
| struct intel_crtc *crtc; |
| const struct cxsr_latency *latency; |
| u32 reg; |
| unsigned int wm; |
| |
| latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv), |
| dev_priv->is_ddr3, |
| dev_priv->fsb_freq, |
| dev_priv->mem_freq); |
| if (!latency) { |
| drm_dbg_kms(&dev_priv->drm, |
| "Unknown FSB/MEM found, disable CxSR\n"); |
| intel_set_memory_cxsr(dev_priv, false); |
| return; |
| } |
| |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc) { |
| const struct drm_display_mode *pipe_mode = |
| &crtc->config->hw.pipe_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp = fb->format->cpp[0]; |
| int clock = pipe_mode->crtc_clock; |
| |
| /* Display SR */ |
| wm = intel_calculate_wm(clock, &pnv_display_wm, |
| pnv_display_wm.fifo_size, |
| cpp, latency->display_sr); |
| reg = intel_uncore_read(&dev_priv->uncore, DSPFW1); |
| reg &= ~DSPFW_SR_MASK; |
| reg |= FW_WM(wm, SR); |
| intel_uncore_write(&dev_priv->uncore, DSPFW1, reg); |
| drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg); |
| |
| /* cursor SR */ |
| wm = intel_calculate_wm(clock, &pnv_cursor_wm, |
| pnv_display_wm.fifo_size, |
| 4, latency->cursor_sr); |
| reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); |
| reg &= ~DSPFW_CURSOR_SR_MASK; |
| reg |= FW_WM(wm, CURSOR_SR); |
| intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); |
| |
| /* Display HPLL off SR */ |
| wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm, |
| pnv_display_hplloff_wm.fifo_size, |
| cpp, latency->display_hpll_disable); |
| reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); |
| reg &= ~DSPFW_HPLL_SR_MASK; |
| reg |= FW_WM(wm, HPLL_SR); |
| intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); |
| |
| /* cursor HPLL off SR */ |
| wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm, |
| pnv_display_hplloff_wm.fifo_size, |
| 4, latency->cursor_hpll_disable); |
| reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); |
| reg &= ~DSPFW_HPLL_CURSOR_MASK; |
| reg |= FW_WM(wm, HPLL_CURSOR); |
| intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); |
| drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg); |
| |
| intel_set_memory_cxsr(dev_priv, true); |
| } else { |
| intel_set_memory_cxsr(dev_priv, false); |
| } |
| } |
| |
| /* |
| * Documentation says: |
| * "If the line size is small, the TLB fetches can get in the way of the |
| * data fetches, causing some lag in the pixel data return which is not |
| * accounted for in the above formulas. The following adjustment only |
| * needs to be applied if eight whole lines fit in the buffer at once. |
| * The WM is adjusted upwards by the difference between the FIFO size |
| * and the size of 8 whole lines. This adjustment is always performed |
| * in the actual pixel depth regardless of whether FBC is enabled or not." |
| */ |
| static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) |
| { |
| int tlb_miss = fifo_size * 64 - width * cpp * 8; |
| |
| return max(0, tlb_miss); |
| } |
| |
| static void g4x_write_wm_values(struct drm_i915_private *dev_priv, |
| const struct g4x_wm_values *wm) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) |
| trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); |
| |
| intel_uncore_write(&dev_priv->uncore, DSPFW1, |
| FW_WM(wm->sr.plane, SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); |
| intel_uncore_write(&dev_priv->uncore, DSPFW2, |
| (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | |
| FW_WM(wm->sr.fbc, FBC_SR) | |
| FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); |
| intel_uncore_write(&dev_priv->uncore, DSPFW3, |
| (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | |
| FW_WM(wm->sr.cursor, CURSOR_SR) | |
| FW_WM(wm->hpll.cursor, HPLL_CURSOR) | |
| FW_WM(wm->hpll.plane, HPLL_SR)); |
| |
| intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); |
| } |
| |
| #define FW_WM_VLV(value, plane) \ |
| (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) |
| |
| static void vlv_write_wm_values(struct drm_i915_private *dev_priv, |
| const struct vlv_wm_values *wm) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) { |
| trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); |
| |
| intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe), |
| (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | |
| (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | |
| (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | |
| (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); |
| } |
| |
| /* |
| * Zero the (unused) WM1 watermarks, and also clear all the |
| * high order bits so that there are no out of bounds values |
| * present in the registers during the reprogramming. |
| */ |
| intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0); |
| intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0); |
| intel_uncore_write(&dev_priv->uncore, DSPFW4, 0); |
| intel_uncore_write(&dev_priv->uncore, DSPFW5, 0); |
| intel_uncore_write(&dev_priv->uncore, DSPFW6, 0); |
| |
| intel_uncore_write(&dev_priv->uncore, DSPFW1, |
| FW_WM(wm->sr.plane, SR) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); |
| intel_uncore_write(&dev_priv->uncore, DSPFW2, |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | |
| FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); |
| intel_uncore_write(&dev_priv->uncore, DSPFW3, |
| FW_WM(wm->sr.cursor, CURSOR_SR)); |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); |
| intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); |
| intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV, |
| FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); |
| intel_uncore_write(&dev_priv->uncore, DSPHOWM, |
| FW_WM(wm->sr.plane >> 9, SR_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | |
| FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); |
| } else { |
| intel_uncore_write(&dev_priv->uncore, DSPFW7, |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | |
| FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); |
| intel_uncore_write(&dev_priv->uncore, DSPHOWM, |
| FW_WM(wm->sr.plane >> 9, SR_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | |
| FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | |
| FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); |
| } |
| |
| intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); |
| } |
| |
| #undef FW_WM_VLV |
| |
| static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| /* all latencies in usec */ |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; |
| dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; |
| |
| dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL; |
| } |
| |
| static int g4x_plane_fifo_size(enum plane_id plane_id, int level) |
| { |
| /* |
| * DSPCNTR[13] supposedly controls whether the |
| * primary plane can use the FIFO space otherwise |
| * reserved for the sprite plane. It's not 100% clear |
| * what the actual FIFO size is, but it looks like we |
| * can happily set both primary and sprite watermarks |
| * up to 127 cachelines. So that would seem to mean |
| * that either DSPCNTR[13] doesn't do anything, or that |
| * the total FIFO is >= 256 cachelines in size. Either |
| * way, we don't seem to have to worry about this |
| * repartitioning as the maximum watermark value the |
| * register can hold for each plane is lower than the |
| * minimum FIFO size. |
| */ |
| switch (plane_id) { |
| case PLANE_CURSOR: |
| return 63; |
| case PLANE_PRIMARY: |
| return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; |
| case PLANE_SPRITE0: |
| return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; |
| default: |
| MISSING_CASE(plane_id); |
| return 0; |
| } |
| } |
| |
| static int g4x_fbc_fifo_size(int level) |
| { |
| switch (level) { |
| case G4X_WM_LEVEL_SR: |
| return 7; |
| case G4X_WM_LEVEL_HPLL: |
| return 15; |
| default: |
| MISSING_CASE(level); |
| return 0; |
| } |
| } |
| |
| static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| int level) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| const struct drm_display_mode *pipe_mode = |
| &crtc_state->hw.pipe_mode; |
| unsigned int latency = dev_priv->wm.pri_latency[level] * 10; |
| unsigned int clock, htotal, cpp, width, wm; |
| |
| if (latency == 0) |
| return USHRT_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->hw.fb->format->cpp[0]; |
| |
| /* |
| * WaUse32BppForSRWM:ctg,elk |
| * |
| * The spec fails to list this restriction for the |
| * HPLL watermark, which seems a little strange. |
| * Let's use 32bpp for the HPLL watermark as well. |
| */ |
| if (plane->id == PLANE_PRIMARY && |
| level != G4X_WM_LEVEL_NORMAL) |
| cpp = max(cpp, 4u); |
| |
| clock = pipe_mode->crtc_clock; |
| htotal = pipe_mode->crtc_htotal; |
| |
| width = drm_rect_width(&plane_state->uapi.dst); |
| |
| if (plane->id == PLANE_CURSOR) { |
| wm = intel_wm_method2(clock, htotal, width, cpp, latency); |
| } else if (plane->id == PLANE_PRIMARY && |
| level == G4X_WM_LEVEL_NORMAL) { |
| wm = intel_wm_method1(clock, cpp, latency); |
| } else { |
| unsigned int small, large; |
| |
| small = intel_wm_method1(clock, cpp, latency); |
| large = intel_wm_method2(clock, htotal, width, cpp, latency); |
| |
| wm = min(small, large); |
| } |
| |
| wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), |
| width, cpp); |
| |
| wm = DIV_ROUND_UP(wm, 64) + 2; |
| |
| return min_t(unsigned int, wm, USHRT_MAX); |
| } |
| |
| static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, |
| int level, enum plane_id plane_id, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| bool dirty = false; |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| dirty |= raw->plane[plane_id] != value; |
| raw->plane[plane_id] = value; |
| } |
| |
| return dirty; |
| } |
| |
| static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, |
| int level, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| bool dirty = false; |
| |
| /* NORMAL level doesn't have an FBC watermark */ |
| level = max(level, G4X_WM_LEVEL_SR); |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| dirty |= raw->fbc != value; |
| raw->fbc = value; |
| } |
| |
| return dirty; |
| } |
| |
| static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| u32 pri_val); |
| |
| static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); |
| enum plane_id plane_id = plane->id; |
| bool dirty = false; |
| int level; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) { |
| dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); |
| if (plane_id == PLANE_PRIMARY) |
| dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); |
| goto out; |
| } |
| |
| for (level = 0; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| int wm, max_wm; |
| |
| wm = g4x_compute_wm(crtc_state, plane_state, level); |
| max_wm = g4x_plane_fifo_size(plane_id, level); |
| |
| if (wm > max_wm) |
| break; |
| |
| dirty |= raw->plane[plane_id] != wm; |
| raw->plane[plane_id] = wm; |
| |
| if (plane_id != PLANE_PRIMARY || |
| level == G4X_WM_LEVEL_NORMAL) |
| continue; |
| |
| wm = ilk_compute_fbc_wm(crtc_state, plane_state, |
| raw->plane[plane_id]); |
| max_wm = g4x_fbc_fifo_size(level); |
| |
| /* |
| * FBC wm is not mandatory as we |
| * can always just disable its use. |
| */ |
| if (wm > max_wm) |
| wm = USHRT_MAX; |
| |
| dirty |= raw->fbc != wm; |
| raw->fbc = wm; |
| } |
| |
| /* mark watermarks as invalid */ |
| dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); |
| |
| if (plane_id == PLANE_PRIMARY) |
| dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); |
| |
| out: |
| if (dirty) { |
| drm_dbg_kms(&dev_priv->drm, |
| "%s watermarks: normal=%d, SR=%d, HPLL=%d\n", |
| plane->base.name, |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); |
| |
| if (plane_id == PLANE_PRIMARY) |
| drm_dbg_kms(&dev_priv->drm, |
| "FBC watermarks: SR=%d, HPLL=%d\n", |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, |
| crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); |
| } |
| |
| return dirty; |
| } |
| |
| static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| enum plane_id plane_id, int level) |
| { |
| const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; |
| |
| return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); |
| } |
| |
| static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| int level) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| |
| if (level > dev_priv->wm.max_level) |
| return false; |
| |
| return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && |
| g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && |
| g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); |
| } |
| |
| /* mark all levels starting from 'level' as invalid */ |
| static void g4x_invalidate_wms(struct intel_crtc *crtc, |
| struct g4x_wm_state *wm_state, int level) |
| { |
| if (level <= G4X_WM_LEVEL_NORMAL) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm.plane[plane_id] = USHRT_MAX; |
| } |
| |
| if (level <= G4X_WM_LEVEL_SR) { |
| wm_state->cxsr = false; |
| wm_state->sr.cursor = USHRT_MAX; |
| wm_state->sr.plane = USHRT_MAX; |
| wm_state->sr.fbc = USHRT_MAX; |
| } |
| |
| if (level <= G4X_WM_LEVEL_HPLL) { |
| wm_state->hpll_en = false; |
| wm_state->hpll.cursor = USHRT_MAX; |
| wm_state->hpll.plane = USHRT_MAX; |
| wm_state->hpll.fbc = USHRT_MAX; |
| } |
| } |
| |
| static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state, |
| int level) |
| { |
| if (level < G4X_WM_LEVEL_SR) |
| return false; |
| |
| if (level >= G4X_WM_LEVEL_SR && |
| wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) |
| return false; |
| |
| if (level >= G4X_WM_LEVEL_HPLL && |
| wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) |
| return false; |
| |
| return true; |
| } |
| |
| static int g4x_compute_pipe_wm(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; |
| u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); |
| const struct g4x_pipe_wm *raw; |
| const struct intel_plane_state *old_plane_state; |
| const struct intel_plane_state *new_plane_state; |
| struct intel_plane *plane; |
| enum plane_id plane_id; |
| int i, level; |
| unsigned int dirty = 0; |
| |
| for_each_oldnew_intel_plane_in_state(state, plane, |
| old_plane_state, |
| new_plane_state, i) { |
| if (new_plane_state->hw.crtc != &crtc->base && |
| old_plane_state->hw.crtc != &crtc->base) |
| continue; |
| |
| if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state)) |
| dirty |= BIT(plane->id); |
| } |
| |
| if (!dirty) |
| return 0; |
| |
| level = G4X_WM_LEVEL_NORMAL; |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm.plane[plane_id] = raw->plane[plane_id]; |
| |
| level = G4X_WM_LEVEL_SR; |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; |
| wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; |
| wm_state->sr.fbc = raw->fbc; |
| |
| wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY); |
| |
| level = G4X_WM_LEVEL_HPLL; |
| if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; |
| wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; |
| wm_state->hpll.fbc = raw->fbc; |
| |
| wm_state->hpll_en = wm_state->cxsr; |
| |
| level++; |
| |
| out: |
| if (level == G4X_WM_LEVEL_NORMAL) |
| return -EINVAL; |
| |
| /* invalidate the higher levels */ |
| g4x_invalidate_wms(crtc, wm_state, level); |
| |
| /* |
| * Determine if the FBC watermark(s) can be used. IF |
| * this isn't the case we prefer to disable the FBC |
| * watermark(s) rather than disable the SR/HPLL |
| * level(s) entirely. 'level-1' is the highest valid |
| * level here. |
| */ |
| wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1); |
| |
| return 0; |
| } |
| |
| static int g4x_compute_intermediate_wm(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_crtc_state *new_crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_crtc_state *old_crtc_state = |
| intel_atomic_get_old_crtc_state(state, crtc); |
| struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate; |
| const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal; |
| const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal; |
| enum plane_id plane_id; |
| |
| if (!new_crtc_state->hw.active || |
| drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) { |
| *intermediate = *optimal; |
| |
| intermediate->cxsr = false; |
| intermediate->hpll_en = false; |
| goto out; |
| } |
| |
| intermediate->cxsr = optimal->cxsr && active->cxsr && |
| !new_crtc_state->disable_cxsr; |
| intermediate->hpll_en = optimal->hpll_en && active->hpll_en && |
| !new_crtc_state->disable_cxsr; |
| intermediate->fbc_en = optimal->fbc_en && active->fbc_en; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| intermediate->wm.plane[plane_id] = |
| max(optimal->wm.plane[plane_id], |
| active->wm.plane[plane_id]); |
| |
| drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] > |
| g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); |
| } |
| |
| intermediate->sr.plane = max(optimal->sr.plane, |
| active->sr.plane); |
| intermediate->sr.cursor = max(optimal->sr.cursor, |
| active->sr.cursor); |
| intermediate->sr.fbc = max(optimal->sr.fbc, |
| active->sr.fbc); |
| |
| intermediate->hpll.plane = max(optimal->hpll.plane, |
| active->hpll.plane); |
| intermediate->hpll.cursor = max(optimal->hpll.cursor, |
| active->hpll.cursor); |
| intermediate->hpll.fbc = max(optimal->hpll.fbc, |
| active->hpll.fbc); |
| |
| drm_WARN_ON(&dev_priv->drm, |
| (intermediate->sr.plane > |
| g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || |
| intermediate->sr.cursor > |
| g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && |
| intermediate->cxsr); |
| drm_WARN_ON(&dev_priv->drm, |
| (intermediate->sr.plane > |
| g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || |
| intermediate->sr.cursor > |
| g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && |
| intermediate->hpll_en); |
| |
| drm_WARN_ON(&dev_priv->drm, |
| intermediate->sr.fbc > g4x_fbc_fifo_size(1) && |
| intermediate->fbc_en && intermediate->cxsr); |
| drm_WARN_ON(&dev_priv->drm, |
| intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && |
| intermediate->fbc_en && intermediate->hpll_en); |
| |
| out: |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) |
| new_crtc_state->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| static void g4x_merge_wm(struct drm_i915_private *dev_priv, |
| struct g4x_wm_values *wm) |
| { |
| struct intel_crtc *crtc; |
| int num_active_pipes = 0; |
| |
| wm->cxsr = true; |
| wm->hpll_en = true; |
| wm->fbc_en = true; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; |
| |
| if (!crtc->active) |
| continue; |
| |
| if (!wm_state->cxsr) |
| wm->cxsr = false; |
| if (!wm_state->hpll_en) |
| wm->hpll_en = false; |
| if (!wm_state->fbc_en) |
| wm->fbc_en = false; |
| |
| num_active_pipes++; |
| } |
| |
| if (num_active_pipes != 1) { |
| wm->cxsr = false; |
| wm->hpll_en = false; |
| wm->fbc_en = false; |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; |
| enum pipe pipe = crtc->pipe; |
| |
| wm->pipe[pipe] = wm_state->wm; |
| if (crtc->active && wm->cxsr) |
| wm->sr = wm_state->sr; |
| if (crtc->active && wm->hpll_en) |
| wm->hpll = wm_state->hpll; |
| } |
| } |
| |
| static void g4x_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct g4x_wm_values *old_wm = &dev_priv->wm.g4x; |
| struct g4x_wm_values new_wm = {}; |
| |
| g4x_merge_wm(dev_priv, &new_wm); |
| |
| if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) |
| return; |
| |
| if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, false); |
| |
| g4x_write_wm_values(dev_priv, &new_wm); |
| |
| if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, true); |
| |
| *old_wm = new_wm; |
| } |
| |
| static void g4x_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; |
| g4x_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void g4x_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| if (!crtc_state->wm.need_postvbl_update) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; |
| g4x_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int vlv_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method2(pixel_rate, htotal, |
| width, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64); |
| |
| return ret; |
| } |
| |
| static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| /* all latencies in usec */ |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; |
| |
| dev_priv->wm.max_level = VLV_WM_LEVEL_PM2; |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; |
| dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; |
| |
| dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS; |
| } |
| } |
| |
| static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| int level) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| const struct drm_display_mode *pipe_mode = |
| &crtc_state->hw.pipe_mode; |
| unsigned int clock, htotal, cpp, width, wm; |
| |
| if (dev_priv->wm.pri_latency[level] == 0) |
| return USHRT_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->hw.fb->format->cpp[0]; |
| clock = pipe_mode->crtc_clock; |
| htotal = pipe_mode->crtc_htotal; |
| width = crtc_state->pipe_src_w; |
| |
| if (plane->id == PLANE_CURSOR) { |
| /* |
| * FIXME the formula gives values that are |
| * too big for the cursor FIFO, and hence we |
| * would never be able to use cursors. For |
| * now just hardcode the watermark. |
| */ |
| wm = 63; |
| } else { |
| wm = vlv_wm_method2(clock, htotal, width, cpp, |
| dev_priv->wm.pri_latency[level] * 10); |
| } |
| |
| return min_t(unsigned int, wm, USHRT_MAX); |
| } |
| |
| static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) |
| { |
| return (active_planes & (BIT(PLANE_SPRITE0) | |
| BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); |
| } |
| |
| static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; |
| struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; |
| u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); |
| int num_active_planes = hweight8(active_planes); |
| const int fifo_size = 511; |
| int fifo_extra, fifo_left = fifo_size; |
| int sprite0_fifo_extra = 0; |
| unsigned int total_rate; |
| enum plane_id plane_id; |
| |
| /* |
| * When enabling sprite0 after sprite1 has already been enabled |
| * we tend to get an underrun unless sprite0 already has some |
| * FIFO space allcoated. Hence we always allocate at least one |
| * cacheline for sprite0 whenever sprite1 is enabled. |
| * |
| * All other plane enable sequences appear immune to this problem. |
| */ |
| if (vlv_need_sprite0_fifo_workaround(active_planes)) |
| sprite0_fifo_extra = 1; |
| |
| total_rate = raw->plane[PLANE_PRIMARY] + |
| raw->plane[PLANE_SPRITE0] + |
| raw->plane[PLANE_SPRITE1] + |
| sprite0_fifo_extra; |
| |
| if (total_rate > fifo_size) |
| return -EINVAL; |
| |
| if (total_rate == 0) |
| total_rate = 1; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| unsigned int rate; |
| |
| if ((active_planes & BIT(plane_id)) == 0) { |
| fifo_state->plane[plane_id] = 0; |
| continue; |
| } |
| |
| rate = raw->plane[plane_id]; |
| fifo_state->plane[plane_id] = fifo_size * rate / total_rate; |
| fifo_left -= fifo_state->plane[plane_id]; |
| } |
| |
| fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; |
| fifo_left -= sprite0_fifo_extra; |
| |
| fifo_state->plane[PLANE_CURSOR] = 63; |
| |
| fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); |
| |
| /* spread the remainder evenly */ |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| int plane_extra; |
| |
| if (fifo_left == 0) |
| break; |
| |
| if ((active_planes & BIT(plane_id)) == 0) |
| continue; |
| |
| plane_extra = min(fifo_extra, fifo_left); |
| fifo_state->plane[plane_id] += plane_extra; |
| fifo_left -= plane_extra; |
| } |
| |
| drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0); |
| |
| /* give it all to the first plane if none are active */ |
| if (active_planes == 0) { |
| drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size); |
| fifo_state->plane[PLANE_PRIMARY] = fifo_left; |
| } |
| |
| return 0; |
| } |
| |
| /* mark all levels starting from 'level' as invalid */ |
| static void vlv_invalidate_wms(struct intel_crtc *crtc, |
| struct vlv_wm_state *wm_state, int level) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| for (; level < intel_wm_num_levels(dev_priv); level++) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| wm_state->wm[level].plane[plane_id] = USHRT_MAX; |
| |
| wm_state->sr[level].cursor = USHRT_MAX; |
| wm_state->sr[level].plane = USHRT_MAX; |
| } |
| } |
| |
| static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) |
| { |
| if (wm > fifo_size) |
| return USHRT_MAX; |
| else |
| return fifo_size - wm; |
| } |
| |
| /* |
| * Starting from 'level' set all higher |
| * levels to 'value' in the "raw" watermarks. |
| */ |
| static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, |
| int level, enum plane_id plane_id, u16 value) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| int num_levels = intel_wm_num_levels(dev_priv); |
| bool dirty = false; |
| |
| for (; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| |
| dirty |= raw->plane[plane_id] != value; |
| raw->plane[plane_id] = value; |
| } |
| |
| return dirty; |
| } |
| |
| static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| enum plane_id plane_id = plane->id; |
| int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); |
| int level; |
| bool dirty = false; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) { |
| dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); |
| goto out; |
| } |
| |
| for (level = 0; level < num_levels; level++) { |
| struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| int wm = vlv_compute_wm_level(crtc_state, plane_state, level); |
| int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; |
| |
| if (wm > max_wm) |
| break; |
| |
| dirty |= raw->plane[plane_id] != wm; |
| raw->plane[plane_id] = wm; |
| } |
| |
| /* mark all higher levels as invalid */ |
| dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); |
| |
| out: |
| if (dirty) |
| drm_dbg_kms(&dev_priv->drm, |
| "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", |
| plane->base.name, |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], |
| crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); |
| |
| return dirty; |
| } |
| |
| static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, |
| enum plane_id plane_id, int level) |
| { |
| const struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[level]; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| |
| return raw->plane[plane_id] <= fifo_state->plane[plane_id]; |
| } |
| |
| static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) |
| { |
| return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && |
| vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); |
| } |
| |
| static int vlv_compute_pipe_wm(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); |
| int num_active_planes = hweight8(active_planes); |
| bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi); |
| const struct intel_plane_state *old_plane_state; |
| const struct intel_plane_state *new_plane_state; |
| struct intel_plane *plane; |
| enum plane_id plane_id; |
| int level, ret, i; |
| unsigned int dirty = 0; |
| |
| for_each_oldnew_intel_plane_in_state(state, plane, |
| old_plane_state, |
| new_plane_state, i) { |
| if (new_plane_state->hw.crtc != &crtc->base && |
| old_plane_state->hw.crtc != &crtc->base) |
| continue; |
| |
| if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state)) |
| dirty |= BIT(plane->id); |
| } |
| |
| /* |
| * DSPARB registers may have been reset due to the |
| * power well being turned off. Make sure we restore |
| * them to a consistent state even if no primary/sprite |
| * planes are initially active. |
| */ |
| if (needs_modeset) |
| crtc_state->fifo_changed = true; |
| |
| if (!dirty) |
| return 0; |
| |
| /* cursor changes don't warrant a FIFO recompute */ |
| if (dirty & ~BIT(PLANE_CURSOR)) { |
| const struct intel_crtc_state *old_crtc_state = |
| intel_atomic_get_old_crtc_state(state, crtc); |
| const struct vlv_fifo_state *old_fifo_state = |
| &old_crtc_state->wm.vlv.fifo_state; |
| |
| ret = vlv_compute_fifo(crtc_state); |
| if (ret) |
| return ret; |
| |
| if (needs_modeset || |
| memcmp(old_fifo_state, fifo_state, |
| sizeof(*fifo_state)) != 0) |
| crtc_state->fifo_changed = true; |
| } |
| |
| /* initially allow all levels */ |
| wm_state->num_levels = intel_wm_num_levels(dev_priv); |
| /* |
| * Note that enabling cxsr with no primary/sprite planes |
| * enabled can wedge the pipe. Hence we only allow cxsr |
| * with exactly one enabled primary/sprite plane. |
| */ |
| wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; |
| |
| for (level = 0; level < wm_state->num_levels; level++) { |
| const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; |
| const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1; |
| |
| if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) |
| break; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| wm_state->wm[level].plane[plane_id] = |
| vlv_invert_wm_value(raw->plane[plane_id], |
| fifo_state->plane[plane_id]); |
| } |
| |
| wm_state->sr[level].plane = |
| vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], |
| raw->plane[PLANE_SPRITE0], |
| raw->plane[PLANE_SPRITE1]), |
| sr_fifo_size); |
| |
| wm_state->sr[level].cursor = |
| vlv_invert_wm_value(raw->plane[PLANE_CURSOR], |
| 63); |
| } |
| |
| if (level == 0) |
| return -EINVAL; |
| |
| /* limit to only levels we can actually handle */ |
| wm_state->num_levels = level; |
| |
| /* invalidate the higher levels */ |
| vlv_invalidate_wms(crtc, wm_state, level); |
| |
| return 0; |
| } |
| |
| #define VLV_FIFO(plane, value) \ |
| (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) |
| |
| static void vlv_atomic_update_fifo(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_uncore *uncore = &dev_priv->uncore; |
| const struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| int sprite0_start, sprite1_start, fifo_size; |
| u32 dsparb, dsparb2, dsparb3; |
| |
| if (!crtc_state->fifo_changed) |
| return; |
| |
| sprite0_start = fifo_state->plane[PLANE_PRIMARY]; |
| sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; |
| fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; |
| |
| drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63); |
| drm_WARN_ON(&dev_priv->drm, fifo_size != 511); |
| |
| trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); |
| |
| /* |
| * uncore.lock serves a double purpose here. It allows us to |
| * use the less expensive I915_{READ,WRITE}_FW() functions, and |
| * it protects the DSPARB registers from getting clobbered by |
| * parallel updates from multiple pipes. |
| * |
| * intel_pipe_update_start() has already disabled interrupts |
| * for us, so a plain spin_lock() is sufficient here. |
| */ |
| spin_lock(&uncore->lock); |
| |
| switch (crtc->pipe) { |
| case PIPE_A: |
| dsparb = intel_uncore_read_fw(uncore, DSPARB); |
| dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); |
| |
| dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | |
| VLV_FIFO(SPRITEB, 0xff)); |
| dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | |
| VLV_FIFO(SPRITEB, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | |
| VLV_FIFO(SPRITEB_HI, 0x1)); |
| dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); |
| |
| intel_uncore_write_fw(uncore, DSPARB, dsparb); |
| intel_uncore_write_fw(uncore, DSPARB2, dsparb2); |
| break; |
| case PIPE_B: |
| dsparb = intel_uncore_read_fw(uncore, DSPARB); |
| dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); |
| |
| dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | |
| VLV_FIFO(SPRITED, 0xff)); |
| dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | |
| VLV_FIFO(SPRITED, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | |
| VLV_FIFO(SPRITED_HI, 0xff)); |
| dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); |
| |
| intel_uncore_write_fw(uncore, DSPARB, dsparb); |
| intel_uncore_write_fw(uncore, DSPARB2, dsparb2); |
| break; |
| case PIPE_C: |
| dsparb3 = intel_uncore_read_fw(uncore, DSPARB3); |
| dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); |
| |
| dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | |
| VLV_FIFO(SPRITEF, 0xff)); |
| dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | |
| VLV_FIFO(SPRITEF, sprite1_start)); |
| |
| dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | |
| VLV_FIFO(SPRITEF_HI, 0xff)); |
| dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | |
| VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); |
| |
| intel_uncore_write_fw(uncore, DSPARB3, dsparb3); |
| intel_uncore_write_fw(uncore, DSPARB2, dsparb2); |
| break; |
| default: |
| break; |
| } |
| |
| intel_uncore_posting_read_fw(uncore, DSPARB); |
| |
| spin_unlock(&uncore->lock); |
| } |
| |
| #undef VLV_FIFO |
| |
| static int vlv_compute_intermediate_wm(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *new_crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_crtc_state *old_crtc_state = |
| intel_atomic_get_old_crtc_state(state, crtc); |
| struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate; |
| const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal; |
| const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal; |
| int level; |
| |
| if (!new_crtc_state->hw.active || |
| drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) { |
| *intermediate = *optimal; |
| |
| intermediate->cxsr = false; |
| goto out; |
| } |
| |
| intermediate->num_levels = min(optimal->num_levels, active->num_levels); |
| intermediate->cxsr = optimal->cxsr && active->cxsr && |
| !new_crtc_state->disable_cxsr; |
| |
| for (level = 0; level < intermediate->num_levels; level++) { |
| enum plane_id plane_id; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| intermediate->wm[level].plane[plane_id] = |
| min(optimal->wm[level].plane[plane_id], |
| active->wm[level].plane[plane_id]); |
| } |
| |
| intermediate->sr[level].plane = min(optimal->sr[level].plane, |
| active->sr[level].plane); |
| intermediate->sr[level].cursor = min(optimal->sr[level].cursor, |
| active->sr[level].cursor); |
| } |
| |
| vlv_invalidate_wms(crtc, intermediate, level); |
| |
| out: |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) |
| new_crtc_state->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| static void vlv_merge_wm(struct drm_i915_private *dev_priv, |
| struct vlv_wm_values *wm) |
| { |
| struct intel_crtc *crtc; |
| int num_active_pipes = 0; |
| |
| wm->level = dev_priv->wm.max_level; |
| wm->cxsr = true; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; |
| |
| if (!crtc->active) |
| continue; |
| |
| if (!wm_state->cxsr) |
| wm->cxsr = false; |
| |
| num_active_pipes++; |
| wm->level = min_t(int, wm->level, wm_state->num_levels - 1); |
| } |
| |
| if (num_active_pipes != 1) |
| wm->cxsr = false; |
| |
| if (num_active_pipes > 1) |
| wm->level = VLV_WM_LEVEL_PM2; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; |
| enum pipe pipe = crtc->pipe; |
| |
| wm->pipe[pipe] = wm_state->wm[wm->level]; |
| if (crtc->active && wm->cxsr) |
| wm->sr = wm_state->sr[wm->level]; |
| |
| wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; |
| wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; |
| } |
| } |
| |
| static void vlv_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct vlv_wm_values *old_wm = &dev_priv->wm.vlv; |
| struct vlv_wm_values new_wm = {}; |
| |
| vlv_merge_wm(dev_priv, &new_wm); |
| |
| if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) |
| return; |
| |
| if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) |
| chv_set_memory_dvfs(dev_priv, false); |
| |
| if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) |
| chv_set_memory_pm5(dev_priv, false); |
| |
| if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, false); |
| |
| vlv_write_wm_values(dev_priv, &new_wm); |
| |
| if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) |
| _intel_set_memory_cxsr(dev_priv, true); |
| |
| if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) |
| chv_set_memory_pm5(dev_priv, true); |
| |
| if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) |
| chv_set_memory_dvfs(dev_priv, true); |
| |
| *old_wm = new_wm; |
| } |
| |
| static void vlv_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; |
| vlv_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void vlv_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| if (!crtc_state->wm.need_postvbl_update) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; |
| vlv_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void i965_update_wm(struct drm_i915_private *dev_priv) |
| { |
| struct intel_crtc *crtc; |
| int srwm = 1; |
| int cursor_sr = 16; |
| bool cxsr_enabled; |
| |
| /* Calc sr entries for one plane configs */ |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 12000; |
| const struct drm_display_mode *pipe_mode = |
| &crtc->config->hw.pipe_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int clock = pipe_mode->crtc_clock; |
| int htotal = pipe_mode->crtc_htotal; |
| int hdisplay = crtc->config->pipe_src_w; |
| int cpp = fb->format->cpp[0]; |
| int entries; |
| |
| entries = intel_wm_method2(clock, htotal, |
| hdisplay, cpp, sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); |
| srwm = I965_FIFO_SIZE - entries; |
| if (srwm < 0) |
| srwm = 1; |
| srwm &= 0x1ff; |
| drm_dbg_kms(&dev_priv->drm, |
| "self-refresh entries: %d, wm: %d\n", |
| entries, srwm); |
| |
| entries = intel_wm_method2(clock, htotal, |
| crtc->base.cursor->state->crtc_w, 4, |
| sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, |
| i965_cursor_wm_info.cacheline_size) + |
| i965_cursor_wm_info.guard_size; |
| |
| cursor_sr = i965_cursor_wm_info.fifo_size - entries; |
| if (cursor_sr > i965_cursor_wm_info.max_wm) |
| cursor_sr = i965_cursor_wm_info.max_wm; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "self-refresh watermark: display plane %d " |
| "cursor %d\n", srwm, cursor_sr); |
| |
| cxsr_enabled = true; |
| } else { |
| cxsr_enabled = false; |
| /* Turn off self refresh if both pipes are enabled */ |
| intel_set_memory_cxsr(dev_priv, false); |
| } |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", |
| srwm); |
| |
| /* 965 has limitations... */ |
| intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) | |
| FW_WM(8, CURSORB) | |
| FW_WM(8, PLANEB) | |
| FW_WM(8, PLANEA)); |
| intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) | |
| FW_WM(8, PLANEC_OLD)); |
| /* update cursor SR watermark */ |
| intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); |
| |
| if (cxsr_enabled) |
| intel_set_memory_cxsr(dev_priv, true); |
| } |
| |
| #undef FW_WM |
| |
| static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915, |
| enum i9xx_plane_id i9xx_plane) |
| { |
| struct intel_plane *plane; |
| |
| for_each_intel_plane(&i915->drm, plane) { |
| if (plane->id == PLANE_PRIMARY && |
| plane->i9xx_plane == i9xx_plane) |
| return intel_crtc_for_pipe(i915, plane->pipe); |
| } |
| |
| return NULL; |
| } |
| |
| static void i9xx_update_wm(struct drm_i915_private *dev_priv) |
| { |
| const struct intel_watermark_params *wm_info; |
| u32 fwater_lo; |
| u32 fwater_hi; |
| int cwm, srwm = 1; |
| int fifo_size; |
| int planea_wm, planeb_wm; |
| struct intel_crtc *crtc, *enabled = NULL; |
| |
| if (IS_I945GM(dev_priv)) |
| wm_info = &i945_wm_info; |
| else if (DISPLAY_VER(dev_priv) != 2) |
| wm_info = &i915_wm_info; |
| else |
| wm_info = &i830_a_wm_info; |
| |
| if (DISPLAY_VER(dev_priv) == 2) |
| fifo_size = i830_get_fifo_size(dev_priv, PLANE_A); |
| else |
| fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A); |
| crtc = intel_crtc_for_plane(dev_priv, PLANE_A); |
| if (intel_crtc_active(crtc)) { |
| const struct drm_display_mode *pipe_mode = |
| &crtc->config->hw.pipe_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp; |
| |
| if (DISPLAY_VER(dev_priv) == 2) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| planea_wm = intel_calculate_wm(pipe_mode->crtc_clock, |
| wm_info, fifo_size, cpp, |
| pessimal_latency_ns); |
| enabled = crtc; |
| } else { |
| planea_wm = fifo_size - wm_info->guard_size; |
| if (planea_wm > (long)wm_info->max_wm) |
| planea_wm = wm_info->max_wm; |
| } |
| |
| if (DISPLAY_VER(dev_priv) == 2) |
| wm_info = &i830_bc_wm_info; |
| |
| if (DISPLAY_VER(dev_priv) == 2) |
| fifo_size = i830_get_fifo_size(dev_priv, PLANE_B); |
| else |
| fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B); |
| crtc = intel_crtc_for_plane(dev_priv, PLANE_B); |
| if (intel_crtc_active(crtc)) { |
| const struct drm_display_mode *pipe_mode = |
| &crtc->config->hw.pipe_mode; |
| const struct drm_framebuffer *fb = |
| crtc->base.primary->state->fb; |
| int cpp; |
| |
| if (DISPLAY_VER(dev_priv) == 2) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock, |
| wm_info, fifo_size, cpp, |
| pessimal_latency_ns); |
| if (enabled == NULL) |
| enabled = crtc; |
| else |
| enabled = NULL; |
| } else { |
| planeb_wm = fifo_size - wm_info->guard_size; |
| if (planeb_wm > (long)wm_info->max_wm) |
| planeb_wm = wm_info->max_wm; |
| } |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); |
| |
| if (IS_I915GM(dev_priv) && enabled) { |
| struct drm_i915_gem_object *obj; |
| |
| obj = intel_fb_obj(enabled->base.primary->state->fb); |
| |
| /* self-refresh seems busted with untiled */ |
| if (!i915_gem_object_is_tiled(obj)) |
| enabled = NULL; |
| } |
| |
| /* |
| * Overlay gets an aggressive default since video jitter is bad. |
| */ |
| cwm = 2; |
| |
| /* Play safe and disable self-refresh before adjusting watermarks. */ |
| intel_set_memory_cxsr(dev_priv, false); |
| |
| /* Calc sr entries for one plane configs */ |
| if (HAS_FW_BLC(dev_priv) && enabled) { |
| /* self-refresh has much higher latency */ |
| static const int sr_latency_ns = 6000; |
| const struct drm_display_mode *pipe_mode = |
| &enabled->config->hw.pipe_mode; |
| const struct drm_framebuffer *fb = |
| enabled->base.primary->state->fb; |
| int clock = pipe_mode->crtc_clock; |
| int htotal = pipe_mode->crtc_htotal; |
| int hdisplay = enabled->config->pipe_src_w; |
| int cpp; |
| int entries; |
| |
| if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) |
| cpp = 4; |
| else |
| cpp = fb->format->cpp[0]; |
| |
| entries = intel_wm_method2(clock, htotal, hdisplay, cpp, |
| sr_latency_ns / 100); |
| entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); |
| drm_dbg_kms(&dev_priv->drm, |
| "self-refresh entries: %d\n", entries); |
| srwm = wm_info->fifo_size - entries; |
| if (srwm < 0) |
| srwm = 1; |
| |
| if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) |
| intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, |
| FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); |
| else |
| intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f); |
| } |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", |
| planea_wm, planeb_wm, cwm, srwm); |
| |
| fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); |
| fwater_hi = (cwm & 0x1f); |
| |
| /* Set request length to 8 cachelines per fetch */ |
| fwater_lo = fwater_lo | (1 << 24) | (1 << 8); |
| fwater_hi = fwater_hi | (1 << 8); |
| |
| intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); |
| intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi); |
| |
| if (enabled) |
| intel_set_memory_cxsr(dev_priv, true); |
| } |
| |
| static void i845_update_wm(struct drm_i915_private *dev_priv) |
| { |
| struct intel_crtc *crtc; |
| const struct drm_display_mode *pipe_mode; |
| u32 fwater_lo; |
| int planea_wm; |
| |
| crtc = single_enabled_crtc(dev_priv); |
| if (crtc == NULL) |
| return; |
| |
| pipe_mode = &crtc->config->hw.pipe_mode; |
| planea_wm = intel_calculate_wm(pipe_mode->crtc_clock, |
| &i845_wm_info, |
| i845_get_fifo_size(dev_priv, PLANE_A), |
| 4, pessimal_latency_ns); |
| fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff; |
| fwater_lo |= (3<<8) | planea_wm; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Setting FIFO watermarks - A: %d\n", planea_wm); |
| |
| intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int ilk_wm_method1(unsigned int pixel_rate, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method1(pixel_rate, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64) + 2; |
| |
| return ret; |
| } |
| |
| /* latency must be in 0.1us units. */ |
| static unsigned int ilk_wm_method2(unsigned int pixel_rate, |
| unsigned int htotal, |
| unsigned int width, |
| unsigned int cpp, |
| unsigned int latency) |
| { |
| unsigned int ret; |
| |
| ret = intel_wm_method2(pixel_rate, htotal, |
| width, cpp, latency); |
| ret = DIV_ROUND_UP(ret, 64) + 2; |
| |
| return ret; |
| } |
| |
| static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp) |
| { |
| /* |
| * Neither of these should be possible since this function shouldn't be |
| * called if the CRTC is off or the plane is invisible. But let's be |
| * extra paranoid to avoid a potential divide-by-zero if we screw up |
| * elsewhere in the driver. |
| */ |
| if (WARN_ON(!cpp)) |
| return 0; |
| if (WARN_ON(!horiz_pixels)) |
| return 0; |
| |
| return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; |
| } |
| |
| struct ilk_wm_maximums { |
| u16 pri; |
| u16 spr; |
| u16 cur; |
| u16 fbc; |
| }; |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| u32 mem_value, bool is_lp) |
| { |
| u32 method1, method2; |
| int cpp; |
| |
| if (mem_value == 0) |
| return U32_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->hw.fb->format->cpp[0]; |
| |
| method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); |
| |
| if (!is_lp) |
| return method1; |
| |
| method2 = ilk_wm_method2(crtc_state->pixel_rate, |
| crtc_state->hw.pipe_mode.crtc_htotal, |
| drm_rect_width(&plane_state->uapi.dst), |
| cpp, mem_value); |
| |
| return min(method1, method2); |
| } |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| u32 mem_value) |
| { |
| u32 method1, method2; |
| int cpp; |
| |
| if (mem_value == 0) |
| return U32_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->hw.fb->format->cpp[0]; |
| |
| method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); |
| method2 = ilk_wm_method2(crtc_state->pixel_rate, |
| crtc_state->hw.pipe_mode.crtc_htotal, |
| drm_rect_width(&plane_state->uapi.dst), |
| cpp, mem_value); |
| return min(method1, method2); |
| } |
| |
| /* |
| * For both WM_PIPE and WM_LP. |
| * mem_value must be in 0.1us units. |
| */ |
| static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| u32 mem_value) |
| { |
| int cpp; |
| |
| if (mem_value == 0) |
| return U32_MAX; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->hw.fb->format->cpp[0]; |
| |
| return ilk_wm_method2(crtc_state->pixel_rate, |
| crtc_state->hw.pipe_mode.crtc_htotal, |
| drm_rect_width(&plane_state->uapi.dst), |
| cpp, mem_value); |
| } |
| |
| /* Only for WM_LP. */ |
| static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| u32 pri_val) |
| { |
| int cpp; |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| cpp = plane_state->hw.fb->format->cpp[0]; |
| |
| return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst), |
| cpp); |
| } |
| |
| static unsigned int |
| ilk_display_fifo_size(const struct drm_i915_private *dev_priv) |
| { |
| if (DISPLAY_VER(dev_priv) >= 8) |
| return 3072; |
| else if (DISPLAY_VER(dev_priv) >= 7) |
| return 768; |
| else |
| return 512; |
| } |
| |
| static unsigned int |
| ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, |
| int level, bool is_sprite) |
| { |
| if (DISPLAY_VER(dev_priv) >= 8) |
| /* BDW primary/sprite plane watermarks */ |
| return level == 0 ? 255 : 2047; |
| else if (DISPLAY_VER(dev_priv) >= 7) |
| /* IVB/HSW primary/sprite plane watermarks */ |
| return level == 0 ? 127 : 1023; |
| else if (!is_sprite) |
| /* ILK/SNB primary plane watermarks */ |
| return level == 0 ? 127 : 511; |
| else |
| /* ILK/SNB sprite plane watermarks */ |
| return level == 0 ? 63 : 255; |
| } |
| |
| static unsigned int |
| ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) |
| { |
| if (DISPLAY_VER(dev_priv) >= 7) |
| return level == 0 ? 63 : 255; |
| else |
| return level == 0 ? 31 : 63; |
| } |
| |
| static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) |
| { |
| if (DISPLAY_VER(dev_priv) >= 8) |
| return 31; |
| else |
| return 15; |
| } |
| |
| /* Calculate the maximum primary/sprite plane watermark */ |
| static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv, |
| int level, |
| const struct intel_wm_config *config, |
| enum intel_ddb_partitioning ddb_partitioning, |
| bool is_sprite) |
| { |
| unsigned int fifo_size = ilk_display_fifo_size(dev_priv); |
| |
| /* if sprites aren't enabled, sprites get nothing */ |
| if (is_sprite && !config->sprites_enabled) |
| return 0; |
| |
| /* HSW allows LP1+ watermarks even with multiple pipes */ |
| if (level == 0 || config->num_pipes_active > 1) { |
| fifo_size /= INTEL_NUM_PIPES(dev_priv); |
| |
| /* |
| * For some reason the non self refresh |
| * FIFO size is only half of the self |
| * refresh FIFO size on ILK/SNB. |
| */ |
| if (DISPLAY_VER(dev_priv) <= 6) |
| fifo_size /= 2; |
| } |
| |
| if (config->sprites_enabled) { |
| /* level 0 is always calculated with 1:1 split */ |
| if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { |
| if (is_sprite) |
| fifo_size *= 5; |
| fifo_size /= 6; |
| } else { |
| fifo_size /= 2; |
| } |
| } |
| |
| /* clamp to max that the registers can hold */ |
| return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); |
| } |
| |
| /* Calculate the maximum cursor plane watermark */ |
| static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv, |
| int level, |
| const struct intel_wm_config *config) |
| { |
| /* HSW LP1+ watermarks w/ multiple pipes */ |
| if (level > 0 && config->num_pipes_active > 1) |
| return 64; |
| |
| /* otherwise just report max that registers can hold */ |
| return ilk_cursor_wm_reg_max(dev_priv, level); |
| } |
| |
| static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv, |
| int level, |
| const struct intel_wm_config *config, |
| enum intel_ddb_partitioning ddb_partitioning, |
| struct ilk_wm_maximums *max) |
| { |
| max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false); |
| max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true); |
| max->cur = ilk_cursor_wm_max(dev_priv, level, config); |
| max->fbc = ilk_fbc_wm_reg_max(dev_priv); |
| } |
| |
| static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, |
| int level, |
| struct ilk_wm_maximums *max) |
| { |
| max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); |
| max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); |
| max->cur = ilk_cursor_wm_reg_max(dev_priv, level); |
| max->fbc = ilk_fbc_wm_reg_max(dev_priv); |
| } |
| |
| static bool ilk_validate_wm_level(int level, |
| const struct ilk_wm_maximums *max, |
| struct intel_wm_level *result) |
| { |
| bool ret; |
| |
| /* already determined to be invalid? */ |
| if (!result->enable) |
| return false; |
| |
| result->enable = result->pri_val <= max->pri && |
| result->spr_val <= max->spr && |
| result->cur_val <= max->cur; |
| |
| ret = result->enable; |
| |
| /* |
| * HACK until we can pre-compute everything, |
| * and thus fail gracefully if LP0 watermarks |
| * are exceeded... |
| */ |
| if (level == 0 && !result->enable) { |
| if (result->pri_val > max->pri) |
| DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", |
| level, result->pri_val, max->pri); |
| if (result->spr_val > max->spr) |
| DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", |
| level, result->spr_val, max->spr); |
| if (result->cur_val > max->cur) |
| DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", |
| level, result->cur_val, max->cur); |
| |
| result->pri_val = min_t(u32, result->pri_val, max->pri); |
| result->spr_val = min_t(u32, result->spr_val, max->spr); |
| result->cur_val = min_t(u32, result->cur_val, max->cur); |
| result->enable = true; |
| } |
| |
| return ret; |
| } |
| |
| static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, |
| const struct intel_crtc *crtc, |
| int level, |
| struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *pristate, |
| const struct intel_plane_state *sprstate, |
| const struct intel_plane_state *curstate, |
| struct intel_wm_level *result) |
| { |
| u16 pri_latency = dev_priv->wm.pri_latency[level]; |
| u16 spr_latency = dev_priv->wm.spr_latency[level]; |
| u16 cur_latency = dev_priv->wm.cur_latency[level]; |
| |
| /* WM1+ latency values stored in 0.5us units */ |
| if (level > 0) { |
| pri_latency *= 5; |
| spr_latency *= 5; |
| cur_latency *= 5; |
| } |
| |
| if (pristate) { |
| result->pri_val = ilk_compute_pri_wm(crtc_state, pristate, |
| pri_latency, level); |
| result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val); |
| } |
| |
| if (sprstate) |
| result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency); |
| |
| if (curstate) |
| result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency); |
| |
| result->enable = true; |
| } |
| |
| static void intel_read_wm_latency(struct drm_i915_private *dev_priv, |
| u16 wm[8]) |
| { |
| struct intel_uncore *uncore = &dev_priv->uncore; |
| |
| if (DISPLAY_VER(dev_priv) >= 9) { |
| u32 val; |
| int ret, i; |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| int mult = IS_DG2(dev_priv) ? 2 : 1; |
| |
| /* read the first set of memory latencies[0:3] */ |
| val = 0; /* data0 to be programmed to 0 for first set */ |
| ret = sandybridge_pcode_read(dev_priv, |
| GEN9_PCODE_READ_MEM_LATENCY, |
| &val, NULL); |
| |
| if (ret) { |
| drm_err(&dev_priv->drm, |
| "SKL Mailbox read error = %d\n", ret); |
| return; |
| } |
| |
| wm[0] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| wm[1] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| wm[2] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| wm[3] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| |
| /* read the second set of memory latencies[4:7] */ |
| val = 1; /* data0 to be programmed to 1 for second set */ |
| ret = sandybridge_pcode_read(dev_priv, |
| GEN9_PCODE_READ_MEM_LATENCY, |
| &val, NULL); |
| if (ret) { |
| drm_err(&dev_priv->drm, |
| "SKL Mailbox read error = %d\n", ret); |
| return; |
| } |
| |
| wm[4] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| wm[5] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| wm[6] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| wm[7] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & |
| GEN9_MEM_LATENCY_LEVEL_MASK) * mult; |
| |
| /* |
| * If a level n (n > 1) has a 0us latency, all levels m (m >= n) |
| * need to be disabled. We make sure to sanitize the values out |
| * of the punit to satisfy this requirement. |
| */ |
| for (level = 1; level <= max_level; level++) { |
| if (wm[level] == 0) { |
| for (i = level + 1; i <= max_level; i++) |
| wm[i] = 0; |
| |
| max_level = level - 1; |
| |
| break; |
| } |
| } |
| |
| /* |
| * WaWmMemoryReadLatency |
| * |
| * punit doesn't take into account the read latency so we need |
| * to add proper adjustement to each valid level we retrieve |
| * from the punit when level 0 response data is 0us. |
| */ |
| if (wm[0] == 0) { |
| u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2; |
| |
| for (level = 0; level <= max_level; level++) |
| wm[level] += adjust; |
| } |
| |
| /* |
| * WA Level-0 adjustment for 16GB DIMMs: SKL+ |
| * If we could not get dimm info enable this WA to prevent from |
| * any underrun. If not able to get Dimm info assume 16GB dimm |
| * to avoid any underrun. |
| */ |
| if (dev_priv->dram_info.wm_lv_0_adjust_needed) |
| wm[0] += 1; |
| } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { |
| u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD); |
| |
| wm[0] = (sskpd >> 56) & 0xFF; |
| if (wm[0] == 0) |
| wm[0] = sskpd & 0xF; |
| wm[1] = (sskpd >> 4) & 0xFF; |
| wm[2] = (sskpd >> 12) & 0xFF; |
| wm[3] = (sskpd >> 20) & 0x1FF; |
| wm[4] = (sskpd >> 32) & 0x1FF; |
| } else if (DISPLAY_VER(dev_priv) >= 6) { |
| u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD); |
| |
| wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK; |
| wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK; |
| wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK; |
| wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK; |
| } else if (DISPLAY_VER(dev_priv) >= 5) { |
| u32 mltr = intel_uncore_read(uncore, MLTR_ILK); |
| |
| /* ILK primary LP0 latency is 700 ns */ |
| wm[0] = 7; |
| wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK; |
| wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK; |
| } else { |
| MISSING_CASE(INTEL_DEVID(dev_priv)); |
| } |
| } |
| |
| static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, |
| u16 wm[5]) |
| { |
| /* ILK sprite LP0 latency is 1300 ns */ |
| if (DISPLAY_VER(dev_priv) == 5) |
| wm[0] = 13; |
| } |
| |
| static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, |
| u16 wm[5]) |
| { |
| /* ILK cursor LP0 latency is 1300 ns */ |
| if (DISPLAY_VER(dev_priv) == 5) |
| wm[0] = 13; |
| } |
| |
| int ilk_wm_max_level(const struct drm_i915_private *dev_priv) |
| { |
| /* how many WM levels are we expecting */ |
| if (HAS_HW_SAGV_WM(dev_priv)) |
| return 5; |
| else if (DISPLAY_VER(dev_priv) >= 9) |
| return 7; |
| else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| return 4; |
| else if (DISPLAY_VER(dev_priv) >= 6) |
| return 3; |
| else |
| return 2; |
| } |
| |
| static void intel_print_wm_latency(struct drm_i915_private *dev_priv, |
| const char *name, |
| const u16 wm[]) |
| { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| for (level = 0; level <= max_level; level++) { |
| unsigned int latency = wm[level]; |
| |
| if (latency == 0) { |
| drm_dbg_kms(&dev_priv->drm, |
| "%s WM%d latency not provided\n", |
| name, level); |
| continue; |
| } |
| |
| /* |
| * - latencies are in us on gen9. |
| * - before then, WM1+ latency values are in 0.5us units |
| */ |
| if (DISPLAY_VER(dev_priv) >= 9) |
| latency *= 10; |
| else if (level > 0) |
| latency *= 5; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "%s WM%d latency %u (%u.%u usec)\n", name, level, |
| wm[level], latency / 10, latency % 10); |
| } |
| } |
| |
| static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, |
| u16 wm[5], u16 min) |
| { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| if (wm[0] >= min) |
| return false; |
| |
| wm[0] = max(wm[0], min); |
| for (level = 1; level <= max_level; level++) |
| wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5)); |
| |
| return true; |
| } |
| |
| static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) |
| { |
| bool changed; |
| |
| /* |
| * The BIOS provided WM memory latency values are often |
| * inadequate for high resolution displays. Adjust them. |
| */ |
| changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12); |
| changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12); |
| changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12); |
| |
| if (!changed) |
| return; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "WM latency values increased to avoid potential underruns\n"); |
| intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); |
| intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); |
| intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); |
| } |
| |
| static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv) |
| { |
| /* |
| * On some SNB machines (Thinkpad X220 Tablet at least) |
| * LP3 usage can cause vblank interrupts to be lost. |
| * The DEIIR bit will go high but it looks like the CPU |
| * never gets interrupted. |
| * |
| * It's not clear whether other interrupt source could |
| * be affected or if this is somehow limited to vblank |
| * interrupts only. To play it safe we disable LP3 |
| * watermarks entirely. |
| */ |
| if (dev_priv->wm.pri_latency[3] == 0 && |
| dev_priv->wm.spr_latency[3] == 0 && |
| dev_priv->wm.cur_latency[3] == 0) |
| return; |
| |
| dev_priv->wm.pri_latency[3] = 0; |
| dev_priv->wm.spr_latency[3] = 0; |
| dev_priv->wm.cur_latency[3] = 0; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "LP3 watermarks disabled due to potential for lost interrupts\n"); |
| intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); |
| intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); |
| intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); |
| } |
| |
| static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency); |
| |
| memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency, |
| sizeof(dev_priv->wm.pri_latency)); |
| memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency, |
| sizeof(dev_priv->wm.pri_latency)); |
| |
| intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency); |
| intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency); |
| |
| intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); |
| intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); |
| intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); |
| |
| if (DISPLAY_VER(dev_priv) == 6) { |
| snb_wm_latency_quirk(dev_priv); |
| snb_wm_lp3_irq_quirk(dev_priv); |
| } |
| } |
| |
| static void skl_setup_wm_latency(struct drm_i915_private *dev_priv) |
| { |
| intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency); |
| intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency); |
| } |
| |
| static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv, |
| struct intel_pipe_wm *pipe_wm) |
| { |
| /* LP0 watermark maximums depend on this pipe alone */ |
| const struct intel_wm_config config = { |
| .num_pipes_active = 1, |
| .sprites_enabled = pipe_wm->sprites_enabled, |
| .sprites_scaled = pipe_wm->sprites_scaled, |
| }; |
| struct ilk_wm_maximums max; |
| |
| /* LP0 watermarks always use 1/2 DDB partitioning */ |
| ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max); |
| |
| /* At least LP0 must be valid */ |
| if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) { |
| drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Compute new watermarks for the pipe */ |
| static int ilk_compute_pipe_wm(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct intel_pipe_wm *pipe_wm; |
| struct intel_plane *plane; |
| const struct intel_plane_state *plane_state; |
| const struct intel_plane_state *pristate = NULL; |
| const struct intel_plane_state *sprstate = NULL; |
| const struct intel_plane_state *curstate = NULL; |
| int level, max_level = ilk_wm_max_level(dev_priv), usable_level; |
| struct ilk_wm_maximums max; |
| |
| pipe_wm = &crtc_state->wm.ilk.optimal; |
| |
| intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { |
| if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) |
| pristate = plane_state; |
| else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY) |
| sprstate = plane_state; |
| else if (plane->base.type == DRM_PLANE_TYPE_CURSOR) |
| curstate = plane_state; |
| } |
| |
| pipe_wm->pipe_enabled = crtc_state->hw.active; |
| if (sprstate) { |
| pipe_wm->sprites_enabled = sprstate->uapi.visible; |
| pipe_wm->sprites_scaled = sprstate->uapi.visible && |
| (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 || |
| drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16); |
| } |
| |
| usable_level = max_level; |
| |
| /* ILK/SNB: LP2+ watermarks only w/o sprites */ |
| if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled) |
| usable_level = 1; |
| |
| /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ |
| if (pipe_wm->sprites_scaled) |
| usable_level = 0; |
| |
| memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); |
| ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state, |
| pristate, sprstate, curstate, &pipe_wm->wm[0]); |
| |
| if (!ilk_validate_pipe_wm(dev_priv, pipe_wm)) |
| return -EINVAL; |
| |
| ilk_compute_wm_reg_maximums(dev_priv, 1, &max); |
| |
| for (level = 1; level <= usable_level; level++) { |
| struct intel_wm_level *wm = &pipe_wm->wm[level]; |
| |
| ilk_compute_wm_level(dev_priv, crtc, level, crtc_state, |
| pristate, sprstate, curstate, wm); |
| |
| /* |
| * Disable any watermark level that exceeds the |
| * register maximums since such watermarks are |
| * always invalid. |
| */ |
| if (!ilk_validate_wm_level(level, &max, wm)) { |
| memset(wm, 0, sizeof(*wm)); |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Build a set of 'intermediate' watermark values that satisfy both the old |
| * state and the new state. These can be programmed to the hardware |
| * immediately. |
| */ |
| static int ilk_compute_intermediate_wm(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_crtc_state *new_crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_crtc_state *old_crtc_state = |
| intel_atomic_get_old_crtc_state(state, crtc); |
| struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate; |
| const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal; |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| /* |
| * Start with the final, target watermarks, then combine with the |
| * currently active watermarks to get values that are safe both before |
| * and after the vblank. |
| */ |
| *a = new_crtc_state->wm.ilk.optimal; |
| if (!new_crtc_state->hw.active || |
| drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) || |
| state->skip_intermediate_wm) |
| return 0; |
| |
| a->pipe_enabled |= b->pipe_enabled; |
| a->sprites_enabled |= b->sprites_enabled; |
| a->sprites_scaled |= b->sprites_scaled; |
| |
| for (level = 0; level <= max_level; level++) { |
| struct intel_wm_level *a_wm = &a->wm[level]; |
| const struct intel_wm_level *b_wm = &b->wm[level]; |
| |
| a_wm->enable &= b_wm->enable; |
| a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); |
| a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); |
| a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); |
| a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); |
| } |
| |
| /* |
| * We need to make sure that these merged watermark values are |
| * actually a valid configuration themselves. If they're not, |
| * there's no safe way to transition from the old state to |
| * the new state, so we need to fail the atomic transaction. |
| */ |
| if (!ilk_validate_pipe_wm(dev_priv, a)) |
| return -EINVAL; |
| |
| /* |
| * If our intermediate WM are identical to the final WM, then we can |
| * omit the post-vblank programming; only update if it's different. |
| */ |
| if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0) |
| new_crtc_state->wm.need_postvbl_update = true; |
| |
| return 0; |
| } |
| |
| /* |
| * Merge the watermarks from all active pipes for a specific level. |
| */ |
| static void ilk_merge_wm_level(struct drm_i915_private *dev_priv, |
| int level, |
| struct intel_wm_level *ret_wm) |
| { |
| const struct intel_crtc *crtc; |
| |
| ret_wm->enable = true; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct intel_pipe_wm *active = &crtc->wm.active.ilk; |
| const struct intel_wm_level *wm = &active->wm[level]; |
| |
| if (!active->pipe_enabled) |
| continue; |
| |
| /* |
| * The watermark values may have been used in the past, |
| * so we must maintain them in the registers for some |
| * time even if the level is now disabled. |
| */ |
| if (!wm->enable) |
| ret_wm->enable = false; |
| |
| ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); |
| ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); |
| ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); |
| ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); |
| } |
| } |
| |
| /* |
| * Merge all low power watermarks for all active pipes. |
| */ |
| static void ilk_wm_merge(struct drm_i915_private *dev_priv, |
| const struct intel_wm_config *config, |
| const struct ilk_wm_maximums *max, |
| struct intel_pipe_wm *merged) |
| { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| int last_enabled_level = max_level; |
| |
| /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ |
| if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) && |
| config->num_pipes_active > 1) |
| last_enabled_level = 0; |
| |
| /* ILK: FBC WM must be disabled always */ |
| merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6; |
| |
| /* merge each WM1+ level */ |
| for (level = 1; level <= max_level; level++) { |
| struct intel_wm_level *wm = &merged->wm[level]; |
| |
| ilk_merge_wm_level(dev_priv, level, wm); |
| |
| if (level > last_enabled_level) |
| wm->enable = false; |
| else if (!ilk_validate_wm_level(level, max, wm)) |
| /* make sure all following levels get disabled */ |
| last_enabled_level = level - 1; |
| |
| /* |
| * The spec says it is preferred to disable |
| * FBC WMs instead of disabling a WM level. |
| */ |
| if (wm->fbc_val > max->fbc) { |
| if (wm->enable) |
| merged->fbc_wm_enabled = false; |
| wm->fbc_val = 0; |
| } |
| } |
| |
| /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ |
| if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) && |
| dev_priv->params.enable_fbc && !merged->fbc_wm_enabled) { |
| for (level = 2; level <= max_level; level++) { |
| struct intel_wm_level *wm = &merged->wm[level]; |
| |
| wm->enable = false; |
| } |
| } |
| } |
| |
| static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) |
| { |
| /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ |
| return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); |
| } |
| |
| /* The value we need to program into the WM_LPx latency field */ |
| static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv, |
| int level) |
| { |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| return 2 * level; |
| else |
| return dev_priv->wm.pri_latency[level]; |
| } |
| |
| static void ilk_compute_wm_results(struct drm_i915_private *dev_priv, |
| const struct intel_pipe_wm *merged, |
| enum intel_ddb_partitioning partitioning, |
| struct ilk_wm_values *results) |
| { |
| struct intel_crtc *crtc; |
| int level, wm_lp; |
| |
| results->enable_fbc_wm = merged->fbc_wm_enabled; |
| results->partitioning = partitioning; |
| |
| /* LP1+ register values */ |
| for (wm_lp = 1; wm_lp <= 3; wm_lp++) { |
| const struct intel_wm_level *r; |
| |
| level = ilk_wm_lp_to_level(wm_lp, merged); |
| |
| r = &merged->wm[level]; |
| |
| /* |
| * Maintain the watermark values even if the level is |
| * disabled. Doing otherwise could cause underruns. |
| */ |
| results->wm_lp[wm_lp - 1] = |
| (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) | |
| (r->pri_val << WM1_LP_SR_SHIFT) | |
| r->cur_val; |
| |
| if (r->enable) |
| results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN; |
| |
| if (DISPLAY_VER(dev_priv) >= 8) |
| results->wm_lp[wm_lp - 1] |= |
| r->fbc_val << WM1_LP_FBC_SHIFT_BDW; |
| else |
| results->wm_lp[wm_lp - 1] |= |
| r->fbc_val << WM1_LP_FBC_SHIFT; |
| |
| /* |
| * Always set WM1S_LP_EN when spr_val != 0, even if the |
| * level is disabled. Doing otherwise could cause underruns. |
| */ |
| if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) { |
| drm_WARN_ON(&dev_priv->drm, wm_lp != 1); |
| results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val; |
| } else |
| results->wm_lp_spr[wm_lp - 1] = r->spr_val; |
| } |
| |
| /* LP0 register values */ |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| enum pipe pipe = crtc->pipe; |
| const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk; |
| const struct intel_wm_level *r = &pipe_wm->wm[0]; |
| |
| if (drm_WARN_ON(&dev_priv->drm, !r->enable)) |
| continue; |
| |
| results->wm_pipe[pipe] = |
| (r->pri_val << WM0_PIPE_PLANE_SHIFT) | |
| (r->spr_val << WM0_PIPE_SPRITE_SHIFT) | |
| r->cur_val; |
| } |
| } |
| |
| /* Find the result with the highest level enabled. Check for enable_fbc_wm in |
| * case both are at the same level. Prefer r1 in case they're the same. */ |
| static struct intel_pipe_wm * |
| ilk_find_best_result(struct drm_i915_private *dev_priv, |
| struct intel_pipe_wm *r1, |
| struct intel_pipe_wm *r2) |
| { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| int level1 = 0, level2 = 0; |
| |
| for (level = 1; level <= max_level; level++) { |
| if (r1->wm[level].enable) |
| level1 = level; |
| if (r2->wm[level].enable) |
| level2 = level; |
| } |
| |
| if (level1 == level2) { |
| if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) |
| return r2; |
| else |
| return r1; |
| } else if (level1 > level2) { |
| return r1; |
| } else { |
| return r2; |
| } |
| } |
| |
| /* dirty bits used to track which watermarks need changes */ |
| #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) |
| #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) |
| #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) |
| #define WM_DIRTY_FBC (1 << 24) |
| #define WM_DIRTY_DDB (1 << 25) |
| |
| static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, |
| const struct ilk_wm_values *old, |
| const struct ilk_wm_values *new) |
| { |
| unsigned int dirty = 0; |
| enum pipe pipe; |
| int wm_lp; |
| |
| for_each_pipe(dev_priv, pipe) { |
| if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { |
| dirty |= WM_DIRTY_PIPE(pipe); |
| /* Must disable LP1+ watermarks too */ |
| dirty |= WM_DIRTY_LP_ALL; |
| } |
| } |
| |
| if (old->enable_fbc_wm != new->enable_fbc_wm) { |
| dirty |= WM_DIRTY_FBC; |
| /* Must disable LP1+ watermarks too */ |
| dirty |= WM_DIRTY_LP_ALL; |
| } |
| |
| if (old->partitioning != new->partitioning) { |
| dirty |= WM_DIRTY_DDB; |
| /* Must disable LP1+ watermarks too */ |
| dirty |= WM_DIRTY_LP_ALL; |
| } |
| |
| /* LP1+ watermarks already deemed dirty, no need to continue */ |
| if (dirty & WM_DIRTY_LP_ALL) |
| return dirty; |
| |
| /* Find the lowest numbered LP1+ watermark in need of an update... */ |
| for (wm_lp = 1; wm_lp <= 3; wm_lp++) { |
| if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || |
| old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) |
| break; |
| } |
| |
| /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ |
| for (; wm_lp <= 3; wm_lp++) |
| dirty |= WM_DIRTY_LP(wm_lp); |
| |
| return dirty; |
| } |
| |
| static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, |
| unsigned int dirty) |
| { |
| struct ilk_wm_values *previous = &dev_priv->wm.hw; |
| bool changed = false; |
| |
| if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) { |
| previous->wm_lp[2] &= ~WM1_LP_SR_EN; |
| intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]); |
| changed = true; |
| } |
| if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) { |
| previous->wm_lp[1] &= ~WM1_LP_SR_EN; |
| intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]); |
| changed = true; |
| } |
| if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) { |
| previous->wm_lp[0] &= ~WM1_LP_SR_EN; |
| intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]); |
| changed = true; |
| } |
| |
| /* |
| * Don't touch WM1S_LP_EN here. |
| * Doing so could cause underruns. |
| */ |
| |
| return changed; |
| } |
| |
| /* |
| * The spec says we shouldn't write when we don't need, because every write |
| * causes WMs to be re-evaluated, expending some power. |
| */ |
| static void ilk_write_wm_values(struct drm_i915_private *dev_priv, |
| struct ilk_wm_values *results) |
| { |
| struct ilk_wm_values *previous = &dev_priv->wm.hw; |
| unsigned int dirty; |
| u32 val; |
| |
| dirty = ilk_compute_wm_dirty(dev_priv, previous, results); |
| if (!dirty) |
| return; |
| |
| _ilk_disable_lp_wm(dev_priv, dirty); |
| |
| if (dirty & WM_DIRTY_PIPE(PIPE_A)) |
| intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]); |
| if (dirty & WM_DIRTY_PIPE(PIPE_B)) |
| intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]); |
| if (dirty & WM_DIRTY_PIPE(PIPE_C)) |
| intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]); |
| |
| if (dirty & WM_DIRTY_DDB) { |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { |
| val = intel_uncore_read(&dev_priv->uncore, WM_MISC); |
| if (results->partitioning == INTEL_DDB_PART_1_2) |
| val &= ~WM_MISC_DATA_PARTITION_5_6; |
| else |
| val |= WM_MISC_DATA_PARTITION_5_6; |
| intel_uncore_write(&dev_priv->uncore, WM_MISC, val); |
| } else { |
| val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2); |
| if (results->partitioning == INTEL_DDB_PART_1_2) |
| val &= ~DISP_DATA_PARTITION_5_6; |
| else |
| val |= DISP_DATA_PARTITION_5_6; |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val); |
| } |
| } |
| |
| if (dirty & WM_DIRTY_FBC) { |
| val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL); |
| if (results->enable_fbc_wm) |
| val &= ~DISP_FBC_WM_DIS; |
| else |
| val |= DISP_FBC_WM_DIS; |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val); |
| } |
| |
| if (dirty & WM_DIRTY_LP(1) && |
| previous->wm_lp_spr[0] != results->wm_lp_spr[0]) |
| intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]); |
| |
| if (DISPLAY_VER(dev_priv) >= 7) { |
| if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) |
| intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]); |
| if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) |
| intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]); |
| } |
| |
| if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) |
| intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]); |
| if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) |
| intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]); |
| if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) |
| intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]); |
| |
| dev_priv->wm.hw = *results; |
| } |
| |
| bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv) |
| { |
| return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); |
| } |
| |
| u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv) |
| { |
| u8 enabled_slices = 0; |
| enum dbuf_slice slice; |
| |
| for_each_dbuf_slice(dev_priv, slice) { |
| if (intel_uncore_read(&dev_priv->uncore, |
| DBUF_CTL_S(slice)) & DBUF_POWER_STATE) |
| enabled_slices |= BIT(slice); |
| } |
| |
| return enabled_slices; |
| } |
| |
| /* |
| * FIXME: We still don't have the proper code detect if we need to apply the WA, |
| * so assume we'll always need it in order to avoid underruns. |
| */ |
| static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv) |
| { |
| return DISPLAY_VER(dev_priv) == 9; |
| } |
| |
| static bool |
| intel_has_sagv(struct drm_i915_private *dev_priv) |
| { |
| return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) && |
| dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED; |
| } |
| |
| static void |
| skl_setup_sagv_block_time(struct drm_i915_private *dev_priv) |
| { |
| if (DISPLAY_VER(dev_priv) >= 12) { |
| u32 val = 0; |
| int ret; |
| |
| ret = sandybridge_pcode_read(dev_priv, |
| GEN12_PCODE_READ_SAGV_BLOCK_TIME_US, |
| &val, NULL); |
| if (!ret) { |
| dev_priv->sagv_block_time_us = val; |
| return; |
| } |
| |
| drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n"); |
| } else if (DISPLAY_VER(dev_priv) == 11) { |
| dev_priv->sagv_block_time_us = 10; |
| return; |
| } else if (DISPLAY_VER(dev_priv) == 10) { |
| dev_priv->sagv_block_time_us = 20; |
| return; |
| } else if (DISPLAY_VER(dev_priv) == 9) { |
| dev_priv->sagv_block_time_us = 30; |
| return; |
| } else { |
| MISSING_CASE(DISPLAY_VER(dev_priv)); |
| } |
| |
| /* Default to an unusable block time */ |
| dev_priv->sagv_block_time_us = -1; |
| } |
| |
| /* |
| * SAGV dynamically adjusts the system agent voltage and clock frequencies |
| * depending on power and performance requirements. The display engine access |
| * to system memory is blocked during the adjustment time. Because of the |
| * blocking time, having this enabled can cause full system hangs and/or pipe |
| * underruns if we don't meet all of the following requirements: |
| * |
| * - <= 1 pipe enabled |
| * - All planes can enable watermarks for latencies >= SAGV engine block time |
| * - We're not using an interlaced display configuration |
| */ |
| static int |
| intel_enable_sagv(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| if (!intel_has_sagv(dev_priv)) |
| return 0; |
| |
| if (dev_priv->sagv_status == I915_SAGV_ENABLED) |
| return 0; |
| |
| drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n"); |
| ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL, |
| GEN9_SAGV_ENABLE); |
| |
| /* We don't need to wait for SAGV when enabling */ |
| |
| /* |
| * Some skl systems, pre-release machines in particular, |
| * don't actually have SAGV. |
| */ |
| if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { |
| drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n"); |
| dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; |
| return 0; |
| } else if (ret < 0) { |
| drm_err(&dev_priv->drm, "Failed to enable SAGV\n"); |
| return ret; |
| } |
| |
| dev_priv->sagv_status = I915_SAGV_ENABLED; |
| return 0; |
| } |
| |
| static int |
| intel_disable_sagv(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| if (!intel_has_sagv(dev_priv)) |
| return 0; |
| |
| if (dev_priv->sagv_status == I915_SAGV_DISABLED) |
| return 0; |
| |
| drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n"); |
| /* bspec says to keep retrying for at least 1 ms */ |
| ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL, |
| GEN9_SAGV_DISABLE, |
| GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, |
| 1); |
| /* |
| * Some skl systems, pre-release machines in particular, |
| * don't actually have SAGV. |
| */ |
| if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { |
| drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n"); |
| dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; |
| return 0; |
| } else if (ret < 0) { |
| drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret); |
| return ret; |
| } |
| |
| dev_priv->sagv_status = I915_SAGV_DISABLED; |
| return 0; |
| } |
| |
| void intel_sagv_pre_plane_update(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| const struct intel_bw_state *new_bw_state; |
| const struct intel_bw_state *old_bw_state; |
| u32 new_mask = 0; |
| |
| /* |
| * Just return if we can't control SAGV or don't have it. |
| * This is different from situation when we have SAGV but just can't |
| * afford it due to DBuf limitation - in case if SAGV is completely |
| * disabled in a BIOS, we are not even allowed to send a PCode request, |
| * as it will throw an error. So have to check it here. |
| */ |
| if (!intel_has_sagv(dev_priv)) |
| return; |
| |
| new_bw_state = intel_atomic_get_new_bw_state(state); |
| if (!new_bw_state) |
| return; |
| |
| if (DISPLAY_VER(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) { |
| intel_disable_sagv(dev_priv); |
| return; |
| } |
| |
| old_bw_state = intel_atomic_get_old_bw_state(state); |
| /* |
| * Nothing to mask |
| */ |
| if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask) |
| return; |
| |
| new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; |
| |
| /* |
| * If new mask is zero - means there is nothing to mask, |
| * we can only unmask, which should be done in unmask. |
| */ |
| if (!new_mask) |
| return; |
| |
| /* |
| * Restrict required qgv points before updating the configuration. |
| * According to BSpec we can't mask and unmask qgv points at the same |
| * time. Also masking should be done before updating the configuration |
| * and unmasking afterwards. |
| */ |
| icl_pcode_restrict_qgv_points(dev_priv, new_mask); |
| } |
| |
| void intel_sagv_post_plane_update(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| const struct intel_bw_state *new_bw_state; |
| const struct intel_bw_state *old_bw_state; |
| u32 new_mask = 0; |
| |
| /* |
| * Just return if we can't control SAGV or don't have it. |
| * This is different from situation when we have SAGV but just can't |
| * afford it due to DBuf limitation - in case if SAGV is completely |
| * disabled in a BIOS, we are not even allowed to send a PCode request, |
| * as it will throw an error. So have to check it here. |
| */ |
| if (!intel_has_sagv(dev_priv)) |
| return; |
| |
| new_bw_state = intel_atomic_get_new_bw_state(state); |
| if (!new_bw_state) |
| return; |
| |
| if (DISPLAY_VER(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) { |
| intel_enable_sagv(dev_priv); |
| return; |
| } |
| |
| old_bw_state = intel_atomic_get_old_bw_state(state); |
| /* |
| * Nothing to unmask |
| */ |
| if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask) |
| return; |
| |
| new_mask = new_bw_state->qgv_points_mask; |
| |
| /* |
| * Allow required qgv points after updating the configuration. |
| * According to BSpec we can't mask and unmask qgv points at the same |
| * time. Also masking should be done before updating the configuration |
| * and unmasking afterwards. |
| */ |
| icl_pcode_restrict_qgv_points(dev_priv, new_mask); |
| } |
| |
| static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum plane_id plane_id; |
| int max_level = INT_MAX; |
| |
| if (!intel_has_sagv(dev_priv)) |
| return false; |
| |
| if (!crtc_state->hw.active) |
| return true; |
| |
| if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE) |
| return false; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| const struct skl_plane_wm *wm = |
| &crtc_state->wm.skl.optimal.planes[plane_id]; |
| int level; |
| |
| /* Skip this plane if it's not enabled */ |
| if (!wm->wm[0].enable) |
| continue; |
| |
| /* Find the highest enabled wm level for this plane */ |
| for (level = ilk_wm_max_level(dev_priv); |
| !wm->wm[level].enable; --level) |
| { } |
| |
| /* Highest common enabled wm level for all planes */ |
| max_level = min(level, max_level); |
| } |
| |
| /* No enabled planes? */ |
| if (max_level == INT_MAX) |
| return true; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| const struct skl_plane_wm *wm = |
| &crtc_state->wm.skl.optimal.planes[plane_id]; |
| |
| /* |
| * All enabled planes must have enabled a common wm level that |
| * can tolerate memory latencies higher than sagv_block_time_us |
| */ |
| if (wm->wm[0].enable && !wm->wm[max_level].can_sagv) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| enum plane_id plane_id; |
| |
| if (!crtc_state->hw.active) |
| return true; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| const struct skl_plane_wm *wm = |
| &crtc_state->wm.skl.optimal.planes[plane_id]; |
| |
| if (wm->wm[0].enable && !wm->sagv.wm0.enable) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| |
| if (DISPLAY_VER(dev_priv) >= 12) |
| return tgl_crtc_can_enable_sagv(crtc_state); |
| else |
| return skl_crtc_can_enable_sagv(crtc_state); |
| } |
| |
| bool intel_can_enable_sagv(struct drm_i915_private *dev_priv, |
| const struct intel_bw_state *bw_state) |
| { |
| if (DISPLAY_VER(dev_priv) < 11 && |
| bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) |
| return false; |
| |
| return bw_state->pipe_sagv_reject == 0; |
| } |
| |
| static int intel_compute_sagv_mask(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| int ret; |
| struct intel_crtc *crtc; |
| struct intel_crtc_state *new_crtc_state; |
| struct intel_bw_state *new_bw_state = NULL; |
| const struct intel_bw_state *old_bw_state = NULL; |
| int i; |
| |
| for_each_new_intel_crtc_in_state(state, crtc, |
| new_crtc_state, i) { |
| new_bw_state = intel_atomic_get_bw_state(state); |
| if (IS_ERR(new_bw_state)) |
| return PTR_ERR(new_bw_state); |
| |
| old_bw_state = intel_atomic_get_old_bw_state(state); |
| |
| if (intel_crtc_can_enable_sagv(new_crtc_state)) |
| new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); |
| else |
| new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); |
| } |
| |
| if (!new_bw_state) |
| return 0; |
| |
| new_bw_state->active_pipes = |
| intel_calc_active_pipes(state, old_bw_state->active_pipes); |
| |
| if (new_bw_state->active_pipes != old_bw_state->active_pipes) { |
| ret = intel_atomic_lock_global_state(&new_bw_state->base); |
| if (ret) |
| return ret; |
| } |
| |
| for_each_new_intel_crtc_in_state(state, crtc, |
| new_crtc_state, i) { |
| struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal; |
| |
| /* |
| * We store use_sagv_wm in the crtc state rather than relying on |
| * that bw state since we have no convenient way to get at the |
| * latter from the plane commit hooks (especially in the legacy |
| * cursor case) |
| */ |
| pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) && |
| DISPLAY_VER(dev_priv) >= 12 && |
| intel_can_enable_sagv(dev_priv, new_bw_state); |
| } |
| |
| if (intel_can_enable_sagv(dev_priv, new_bw_state) != |
| intel_can_enable_sagv(dev_priv, old_bw_state)) { |
| ret = intel_atomic_serialize_global_state(&new_bw_state->base); |
| if (ret) |
| return ret; |
| } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { |
| ret = intel_atomic_lock_global_state(&new_bw_state->base); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv) |
| { |
| return INTEL_INFO(dev_priv)->dbuf.size / |
| hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask); |
| } |
| |
| static void |
| skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask, |
| struct skl_ddb_entry *ddb) |
| { |
| int slice_size = intel_dbuf_slice_size(dev_priv); |
| |
| if (!slice_mask) { |
| ddb->start = 0; |
| ddb->end = 0; |
| return; |
| } |
| |
| ddb->start = (ffs(slice_mask) - 1) * slice_size; |
| ddb->end = fls(slice_mask) * slice_size; |
| |
| WARN_ON(ddb->start >= ddb->end); |
| WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size); |
| } |
| |
| static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask) |
| { |
| struct skl_ddb_entry ddb; |
| |
| if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2))) |
| slice_mask = BIT(DBUF_S1); |
| else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4))) |
| slice_mask = BIT(DBUF_S3); |
| |
| skl_ddb_entry_for_slices(i915, slice_mask, &ddb); |
| |
| return ddb.start; |
| } |
| |
| u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv, |
| const struct skl_ddb_entry *entry) |
| { |
| int slice_size = intel_dbuf_slice_size(dev_priv); |
| enum dbuf_slice start_slice, end_slice; |
| u8 slice_mask = 0; |
| |
| if (!skl_ddb_entry_size(entry)) |
| return 0; |
| |
| start_slice = entry->start / slice_size; |
| end_slice = (entry->end - 1) / slice_size; |
| |
| /* |
| * Per plane DDB entry can in a really worst case be on multiple slices |
| * but single entry is anyway contigious. |
| */ |
| while (start_slice <= end_slice) { |
| slice_mask |= BIT(start_slice); |
| start_slice++; |
| } |
| |
| return slice_mask; |
| } |
| |
| static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state) |
| { |
| const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; |
| int hdisplay, vdisplay; |
| |
| if (!crtc_state->hw.active) |
| return 0; |
| |
| /* |
| * Watermark/ddb requirement highly depends upon width of the |
| * framebuffer, So instead of allocating DDB equally among pipes |
| * distribute DDB based on resolution/width of the display. |
| */ |
| drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay); |
| |
| return hdisplay; |
| } |
| |
| static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state, |
| enum pipe for_pipe, |
| unsigned int *weight_start, |
| unsigned int *weight_end, |
| unsigned int *weight_total) |
| { |
| struct drm_i915_private *dev_priv = |
| to_i915(dbuf_state->base.state->base.dev); |
| enum pipe pipe; |
| |
| *weight_start = 0; |
| *weight_end = 0; |
| *weight_total = 0; |
| |
| for_each_pipe(dev_priv, pipe) { |
| int weight = dbuf_state->weight[pipe]; |
| |
| /* |
| * Do not account pipes using other slice sets |
| * luckily as of current BSpec slice sets do not partially |
| * intersect(pipes share either same one slice or same slice set |
| * i.e no partial intersection), so it is enough to check for |
| * equality for now. |
| */ |
| if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe]) |
| continue; |
| |
| *weight_total += weight; |
| if (pipe < for_pipe) { |
| *weight_start += weight; |
| *weight_end += weight; |
| } else if (pipe == for_pipe) { |
| *weight_end += weight; |
| } |
| } |
| } |
| |
| static int |
| skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| unsigned int weight_total, weight_start, weight_end; |
| const struct intel_dbuf_state *old_dbuf_state = |
| intel_atomic_get_old_dbuf_state(state); |
| struct intel_dbuf_state *new_dbuf_state = |
| intel_atomic_get_new_dbuf_state(state); |
| struct intel_crtc_state *crtc_state; |
| struct skl_ddb_entry ddb_slices; |
| enum pipe pipe = crtc->pipe; |
| unsigned int mbus_offset = 0; |
| u32 ddb_range_size; |
| u32 dbuf_slice_mask; |
| u32 start, end; |
| int ret; |
| |
| if (new_dbuf_state->weight[pipe] == 0) { |
| new_dbuf_state->ddb[pipe].start = 0; |
| new_dbuf_state->ddb[pipe].end = 0; |
| goto out; |
| } |
| |
| dbuf_slice_mask = new_dbuf_state->slices[pipe]; |
| |
| skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices); |
| mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask); |
| ddb_range_size = skl_ddb_entry_size(&ddb_slices); |
| |
| intel_crtc_dbuf_weights(new_dbuf_state, pipe, |
| &weight_start, &weight_end, &weight_total); |
| |
| start = ddb_range_size * weight_start / weight_total; |
| end = ddb_range_size * weight_end / weight_total; |
| |
| new_dbuf_state->ddb[pipe].start = ddb_slices.start - mbus_offset + start; |
| new_dbuf_state->ddb[pipe].end = ddb_slices.start - mbus_offset + end; |
| out: |
| if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] && |
| skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe], |
| &new_dbuf_state->ddb[pipe])) |
| return 0; |
| |
| ret = intel_atomic_lock_global_state(&new_dbuf_state->base); |
| if (ret) |
| return ret; |
| |
| crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); |
| if (IS_ERR(crtc_state)) |
| return PTR_ERR(crtc_state); |
| |
| /* |
| * Used for checking overlaps, so we need absolute |
| * offsets instead of MBUS relative offsets. |
| */ |
| crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start; |
| crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n", |
| crtc->base.base.id, crtc->base.name, |
| old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe], |
| old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end, |
| new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end, |
| old_dbuf_state->active_pipes, new_dbuf_state->active_pipes); |
| |
| return 0; |
| } |
| |
| static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, |
| int width, const struct drm_format_info *format, |
| u64 modifier, unsigned int rotation, |
| u32 plane_pixel_rate, struct skl_wm_params *wp, |
| int color_plane); |
| static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, |
| int level, |
| unsigned int latency, |
| const struct skl_wm_params *wp, |
| const struct skl_wm_level *result_prev, |
| struct skl_wm_level *result /* out */); |
| |
| static unsigned int |
| skl_cursor_allocation(const struct intel_crtc_state *crtc_state, |
| int num_active) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| struct skl_wm_level wm = {}; |
| int ret, min_ddb_alloc = 0; |
| struct skl_wm_params wp; |
| |
| ret = skl_compute_wm_params(crtc_state, 256, |
| drm_format_info(DRM_FORMAT_ARGB8888), |
| DRM_FORMAT_MOD_LINEAR, |
| DRM_MODE_ROTATE_0, |
| crtc_state->pixel_rate, &wp, 0); |
| drm_WARN_ON(&dev_priv->drm, ret); |
| |
| for (level = 0; level <= max_level; level++) { |
| unsigned int latency = dev_priv->wm.skl_latency[level]; |
| |
| skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm); |
| if (wm.min_ddb_alloc == U16_MAX) |
| break; |
| |
| min_ddb_alloc = wm.min_ddb_alloc; |
| } |
| |
| return max(num_active == 1 ? 32 : 8, min_ddb_alloc); |
| } |
| |
| static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv, |
| struct skl_ddb_entry *entry, u32 reg) |
| { |
| entry->start = reg & DDB_ENTRY_MASK; |
| entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK; |
| |
| if (entry->end) |
| entry->end += 1; |
| } |
| |
| static void |
| skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv, |
| const enum pipe pipe, |
| const enum plane_id plane_id, |
| struct skl_ddb_entry *ddb_y, |
| struct skl_ddb_entry *ddb_uv) |
| { |
| u32 val, val2; |
| u32 fourcc = 0; |
| |
| /* Cursor doesn't support NV12/planar, so no extra calculation needed */ |
| if (plane_id == PLANE_CURSOR) { |
| val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe)); |
| skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val); |
| return; |
| } |
| |
| val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id)); |
| |
| /* No DDB allocated for disabled planes */ |
| if (val & PLANE_CTL_ENABLE) |
| fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK, |
| val & PLANE_CTL_ORDER_RGBX, |
| val & PLANE_CTL_ALPHA_MASK); |
| |
| if (DISPLAY_VER(dev_priv) >= 11) { |
| val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id)); |
| skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val); |
| } else { |
| val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id)); |
| val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id)); |
| |
| if (fourcc && |
| drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc))) |
| swap(val, val2); |
| |
| skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val); |
| skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2); |
| } |
| } |
| |
| void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc, |
| struct skl_ddb_entry *ddb_y, |
| struct skl_ddb_entry *ddb_uv) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum intel_display_power_domain power_domain; |
| enum pipe pipe = crtc->pipe; |
| intel_wakeref_t wakeref; |
| enum plane_id plane_id; |
| |
| power_domain = POWER_DOMAIN_PIPE(pipe); |
| wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); |
| if (!wakeref) |
| return; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| skl_ddb_get_hw_plane_state(dev_priv, pipe, |
| plane_id, |
| &ddb_y[plane_id], |
| &ddb_uv[plane_id]); |
| |
| intel_display_power_put(dev_priv, power_domain, wakeref); |
| } |
| |
| /* |
| * Determines the downscale amount of a plane for the purposes of watermark calculations. |
| * The bspec defines downscale amount as: |
| * |
| * """ |
| * Horizontal down scale amount = maximum[1, Horizontal source size / |
| * Horizontal destination size] |
| * Vertical down scale amount = maximum[1, Vertical source size / |
| * Vertical destination size] |
| * Total down scale amount = Horizontal down scale amount * |
| * Vertical down scale amount |
| * """ |
| * |
| * Return value is provided in 16.16 fixed point form to retain fractional part. |
| * Caller should take care of dividing & rounding off the value. |
| */ |
| static uint_fixed_16_16_t |
| skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| u32 src_w, src_h, dst_w, dst_h; |
| uint_fixed_16_16_t fp_w_ratio, fp_h_ratio; |
| uint_fixed_16_16_t downscale_h, downscale_w; |
| |
| if (drm_WARN_ON(&dev_priv->drm, |
| !intel_wm_plane_visible(crtc_state, plane_state))) |
| return u32_to_fixed16(0); |
| |
| /* |
| * Src coordinates are already rotated by 270 degrees for |
| * the 90/270 degree plane rotation cases (to match the |
| * GTT mapping), hence no need to account for rotation here. |
| * |
| * n.b., src is 16.16 fixed point, dst is whole integer. |
| */ |
| src_w = drm_rect_width(&plane_state->uapi.src) >> 16; |
| src_h = drm_rect_height(&plane_state->uapi.src) >> 16; |
| dst_w = drm_rect_width(&plane_state->uapi.dst); |
| dst_h = drm_rect_height(&plane_state->uapi.dst); |
| |
| fp_w_ratio = div_fixed16(src_w, dst_w); |
| fp_h_ratio = div_fixed16(src_h, dst_h); |
| downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1)); |
| downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1)); |
| |
| return mul_fixed16(downscale_w, downscale_h); |
| } |
| |
| struct dbuf_slice_conf_entry { |
| u8 active_pipes; |
| u8 dbuf_mask[I915_MAX_PIPES]; |
| bool join_mbus; |
| }; |
| |
| /* |
| * Table taken from Bspec 12716 |
| * Pipes do have some preferred DBuf slice affinity, |
| * plus there are some hardcoded requirements on how |
| * those should be distributed for multipipe scenarios. |
| * For more DBuf slices algorithm can get even more messy |
| * and less readable, so decided to use a table almost |
| * as is from BSpec itself - that way it is at least easier |
| * to compare, change and check. |
| */ |
| static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] = |
| /* Autogenerated with igt/tools/intel_dbuf_map tool: */ |
| { |
| { |
| .active_pipes = BIT(PIPE_A), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_C] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| }, |
| }, |
| {} |
| }; |
| |
| /* |
| * Table taken from Bspec 49255 |
| * Pipes do have some preferred DBuf slice affinity, |
| * plus there are some hardcoded requirements on how |
| * those should be distributed for multipipe scenarios. |
| * For more DBuf slices algorithm can get even more messy |
| * and less readable, so decided to use a table almost |
| * as is from BSpec itself - that way it is at least easier |
| * to compare, change and check. |
| */ |
| static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] = |
| /* Autogenerated with igt/tools/intel_dbuf_map tool: */ |
| { |
| { |
| .active_pipes = BIT(PIPE_A), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S2), |
| [PIPE_B] = BIT(DBUF_S1), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_D] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_D] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_D] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_C] = BIT(DBUF_S1), |
| [PIPE_D] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| [PIPE_D] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| [PIPE_D] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S1), |
| [PIPE_C] = BIT(DBUF_S2), |
| [PIPE_D] = BIT(DBUF_S2), |
| }, |
| }, |
| {} |
| }; |
| |
| static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = { |
| { |
| .active_pipes = BIT(PIPE_A), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S2), |
| [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_C] = BIT(DBUF_S3), |
| [PIPE_D] = BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3), |
| [PIPE_D] = BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3), |
| [PIPE_D] = BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1), |
| [PIPE_B] = BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3), |
| [PIPE_D] = BIT(DBUF_S4), |
| }, |
| }, |
| {} |
| }; |
| |
| static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = { |
| /* |
| * Keep the join_mbus cases first so check_mbus_joined() |
| * will prefer them over the !join_mbus cases. |
| */ |
| { |
| .active_pipes = BIT(PIPE_A), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| .join_mbus = true, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| .join_mbus = true, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| .join_mbus = false, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| .join_mbus = false, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| { |
| .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), |
| .dbuf_mask = { |
| [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), |
| [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), |
| }, |
| }, |
| {} |
| |
| }; |
| |
| static bool check_mbus_joined(u8 active_pipes, |
| const struct dbuf_slice_conf_entry *dbuf_slices) |
| { |
| int i; |
| |
| for (i = 0; i < dbuf_slices[i].active_pipes; i++) { |
| if (dbuf_slices[i].active_pipes == active_pipes) |
| return dbuf_slices[i].join_mbus; |
| } |
| return false; |
| } |
| |
| static bool adlp_check_mbus_joined(u8 active_pipes) |
| { |
| return check_mbus_joined(active_pipes, adlp_allowed_dbufs); |
| } |
| |
| static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus, |
| const struct dbuf_slice_conf_entry *dbuf_slices) |
| { |
| int i; |
| |
| for (i = 0; i < dbuf_slices[i].active_pipes; i++) { |
| if (dbuf_slices[i].active_pipes == active_pipes && |
| dbuf_slices[i].join_mbus == join_mbus) |
| return dbuf_slices[i].dbuf_mask[pipe]; |
| } |
| return 0; |
| } |
| |
| /* |
| * This function finds an entry with same enabled pipe configuration and |
| * returns correspondent DBuf slice mask as stated in BSpec for particular |
| * platform. |
| */ |
| static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) |
| { |
| /* |
| * FIXME: For ICL this is still a bit unclear as prev BSpec revision |
| * required calculating "pipe ratio" in order to determine |
| * if one or two slices can be used for single pipe configurations |
| * as additional constraint to the existing table. |
| * However based on recent info, it should be not "pipe ratio" |
| * but rather ratio between pixel_rate and cdclk with additional |
| * constants, so for now we are using only table until this is |
| * clarified. Also this is the reason why crtc_state param is |
| * still here - we will need it once those additional constraints |
| * pop up. |
| */ |
| return compute_dbuf_slices(pipe, active_pipes, join_mbus, |
| icl_allowed_dbufs); |
| } |
| |
| static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) |
| { |
| return compute_dbuf_slices(pipe, active_pipes, join_mbus, |
| tgl_allowed_dbufs); |
| } |
| |
| static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) |
| { |
| return compute_dbuf_slices(pipe, active_pipes, join_mbus, |
| adlp_allowed_dbufs); |
| } |
| |
| static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) |
| { |
| return compute_dbuf_slices(pipe, active_pipes, join_mbus, |
| dg2_allowed_dbufs); |
| } |
| |
| static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| if (IS_DG2(dev_priv)) |
| return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus); |
| else if (IS_ALDERLAKE_P(dev_priv)) |
| return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus); |
| else if (DISPLAY_VER(dev_priv) == 12) |
| return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus); |
| else if (DISPLAY_VER(dev_priv) == 11) |
| return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus); |
| /* |
| * For anything else just return one slice yet. |
| * Should be extended for other platforms. |
| */ |
| return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0; |
| } |
| |
| static u64 |
| skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| int color_plane) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| const struct drm_framebuffer *fb = plane_state->hw.fb; |
| u32 data_rate; |
| u32 width = 0, height = 0; |
| uint_fixed_16_16_t down_scale_amount; |
| u64 rate; |
| |
| if (!plane_state->uapi.visible) |
| return 0; |
| |
| if (plane->id == PLANE_CURSOR) |
| return 0; |
| |
| if (color_plane == 1 && |
| !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) |
| return 0; |
| |
| /* |
| * Src coordinates are already rotated by 270 degrees for |
| * the 90/270 degree plane rotation cases (to match the |
| * GTT mapping), hence no need to account for rotation here. |
| */ |
| width = drm_rect_width(&plane_state->uapi.src) >> 16; |
| height = drm_rect_height(&plane_state->uapi.src) >> 16; |
| |
| /* UV plane does 1/2 pixel sub-sampling */ |
| if (color_plane == 1) { |
| width /= 2; |
| height /= 2; |
| } |
| |
| data_rate = width * height; |
| |
| down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state); |
| |
| rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount); |
| |
| rate *= fb->format->cpp[color_plane]; |
| return rate; |
| } |
| |
| static u64 |
| skl_get_total_relative_data_rate(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_plane_state *plane_state; |
| struct intel_plane *plane; |
| u64 total_data_rate = 0; |
| enum plane_id plane_id; |
| int i; |
| |
| /* Calculate and cache data rate for each plane */ |
| for_each_new_intel_plane_in_state(state, plane, plane_state, i) { |
| if (plane->pipe != crtc->pipe) |
| continue; |
| |
| plane_id = plane->id; |
| |
| /* packed/y */ |
| crtc_state->plane_data_rate[plane_id] = |
| skl_plane_relative_data_rate(crtc_state, plane_state, 0); |
| |
| /* uv-plane */ |
| crtc_state->uv_plane_data_rate[plane_id] = |
| skl_plane_relative_data_rate(crtc_state, plane_state, 1); |
| } |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| total_data_rate += crtc_state->plane_data_rate[plane_id]; |
| total_data_rate += crtc_state->uv_plane_data_rate[plane_id]; |
| } |
| |
| return total_data_rate; |
| } |
| |
| static u64 |
| icl_get_total_relative_data_rate(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_plane_state *plane_state; |
| struct intel_plane *plane; |
| u64 total_data_rate = 0; |
| enum plane_id plane_id; |
| int i; |
| |
| /* Calculate and cache data rate for each plane */ |
| for_each_new_intel_plane_in_state(state, plane, plane_state, i) { |
| if (plane->pipe != crtc->pipe) |
| continue; |
| |
| plane_id = plane->id; |
| |
| if (!plane_state->planar_linked_plane) { |
| crtc_state->plane_data_rate[plane_id] = |
| skl_plane_relative_data_rate(crtc_state, plane_state, 0); |
| } else { |
| enum plane_id y_plane_id; |
| |
| /* |
| * The slave plane might not iterate in |
| * intel_atomic_crtc_state_for_each_plane_state(), |
| * and needs the master plane state which may be |
| * NULL if we try get_new_plane_state(), so we |
| * always calculate from the master. |
| */ |
| if (plane_state->planar_slave) |
| continue; |
| |
| /* Y plane rate is calculated on the slave */ |
| y_plane_id = plane_state->planar_linked_plane->id; |
| crtc_state->plane_data_rate[y_plane_id] = |
| skl_plane_relative_data_rate(crtc_state, plane_state, 0); |
| |
| crtc_state->plane_data_rate[plane_id] = |
| skl_plane_relative_data_rate(crtc_state, plane_state, 1); |
| } |
| } |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| total_data_rate += crtc_state->plane_data_rate[plane_id]; |
| |
| return total_data_rate; |
| } |
| |
| const struct skl_wm_level * |
| skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm, |
| enum plane_id plane_id, |
| int level) |
| { |
| const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; |
| |
| if (level == 0 && pipe_wm->use_sagv_wm) |
| return &wm->sagv.wm0; |
| |
| return &wm->wm[level]; |
| } |
| |
| const struct skl_wm_level * |
| skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm, |
| enum plane_id plane_id) |
| { |
| const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; |
| |
| if (pipe_wm->use_sagv_wm) |
| return &wm->sagv.trans_wm; |
| |
| return &wm->trans_wm; |
| } |
| |
| /* |
| * We only disable the watermarks for each plane if |
| * they exceed the ddb allocation of said plane. This |
| * is done so that we don't end up touching cursor |
| * watermarks needlessly when some other plane reduces |
| * our max possible watermark level. |
| * |
| * Bspec has this to say about the PLANE_WM enable bit: |
| * "All the watermarks at this level for all enabled |
| * planes must be enabled before the level will be used." |
| * So this is actually safe to do. |
| */ |
| static void |
| skl_check_wm_level(struct skl_wm_level *wm, u64 total) |
| { |
| if (wm->min_ddb_alloc > total) |
| memset(wm, 0, sizeof(*wm)); |
| } |
| |
| static void |
| skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm, |
| u64 total, u64 uv_total) |
| { |
| if (wm->min_ddb_alloc > total || |
| uv_wm->min_ddb_alloc > uv_total) { |
| memset(wm, 0, sizeof(*wm)); |
| memset(uv_wm, 0, sizeof(*uv_wm)); |
| } |
| } |
| |
| static bool icl_need_wm1_wa(struct drm_i915_private *i915, |
| enum plane_id plane_id) |
| { |
| /* |
| * Wa_1408961008:icl, ehl |
| * Wa_14012656716:tgl, adl |
| * Underruns with WM1+ disabled |
| */ |
| return DISPLAY_VER(i915) == 11 || |
| (IS_DISPLAY_VER(i915, 12, 13) && plane_id == PLANE_CURSOR); |
| } |
| |
| static int |
| skl_allocate_plane_ddb(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_dbuf_state *dbuf_state = |
| intel_atomic_get_new_dbuf_state(state); |
| const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe]; |
| int num_active = hweight8(dbuf_state->active_pipes); |
| u16 alloc_size, start = 0; |
| u16 total[I915_MAX_PLANES] = {}; |
| u16 uv_total[I915_MAX_PLANES] = {}; |
| u64 total_data_rate; |
| enum plane_id plane_id; |
| u32 blocks; |
| int level; |
| |
| /* Clear the partitioning for disabled planes. */ |
| memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y)); |
| memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv)); |
| |
| if (!crtc_state->hw.active) |
| return 0; |
| |
| if (DISPLAY_VER(dev_priv) >= 11) |
| total_data_rate = |
| icl_get_total_relative_data_rate(state, crtc); |
| else |
| total_data_rate = |
| skl_get_total_relative_data_rate(state, crtc); |
| |
| alloc_size = skl_ddb_entry_size(alloc); |
| if (alloc_size == 0) |
| return 0; |
| |
| /* Allocate fixed number of blocks for cursor. */ |
| total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active); |
| alloc_size -= total[PLANE_CURSOR]; |
| crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start = |
| alloc->end - total[PLANE_CURSOR]; |
| crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end; |
| |
| if (total_data_rate == 0) |
| return 0; |
| |
| /* |
| * Find the highest watermark level for which we can satisfy the block |
| * requirement of active planes. |
| */ |
| for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) { |
| blocks = 0; |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| const struct skl_plane_wm *wm = |
| &crtc_state->wm.skl.optimal.planes[plane_id]; |
| |
| if (plane_id == PLANE_CURSOR) { |
| if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) { |
| drm_WARN_ON(&dev_priv->drm, |
| wm->wm[level].min_ddb_alloc != U16_MAX); |
| blocks = U32_MAX; |
| break; |
| } |
| continue; |
| } |
| |
| blocks += wm->wm[level].min_ddb_alloc; |
| blocks += wm->uv_wm[level].min_ddb_alloc; |
| } |
| |
| if (blocks <= alloc_size) { |
| alloc_size -= blocks; |
| break; |
| } |
| } |
| |
| if (level < 0) { |
| drm_dbg_kms(&dev_priv->drm, |
| "Requested display configuration exceeds system DDB limitations"); |
| drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n", |
| blocks, alloc_size); |
| return -EINVAL; |
| } |
| |
| /* |
| * Grant each plane the blocks it requires at the highest achievable |
| * watermark level, plus an extra share of the leftover blocks |
| * proportional to its relative data rate. |
| */ |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| const struct skl_plane_wm *wm = |
| &crtc_state->wm.skl.optimal.planes[plane_id]; |
| u64 rate; |
| u16 extra; |
| |
| if (plane_id == PLANE_CURSOR) |
| continue; |
| |
| /* |
| * We've accounted for all active planes; remaining planes are |
| * all disabled. |
| */ |
| if (total_data_rate == 0) |
| break; |
| |
| rate = crtc_state->plane_data_rate[plane_id]; |
| extra = min_t(u16, alloc_size, |
| DIV64_U64_ROUND_UP(alloc_size * rate, |
| total_data_rate)); |
| total[plane_id] = wm->wm[level].min_ddb_alloc + extra; |
| alloc_size -= extra; |
| total_data_rate -= rate; |
| |
| if (total_data_rate == 0) |
| break; |
| |
| rate = crtc_state->uv_plane_data_rate[plane_id]; |
| extra = min_t(u16, alloc_size, |
| DIV64_U64_ROUND_UP(alloc_size * rate, |
| total_data_rate)); |
| uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra; |
| alloc_size -= extra; |
| total_data_rate -= rate; |
| } |
| drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0); |
| |
| /* Set the actual DDB start/end points for each plane */ |
| start = alloc->start; |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| struct skl_ddb_entry *plane_alloc = |
| &crtc_state->wm.skl.plane_ddb_y[plane_id]; |
| struct skl_ddb_entry *uv_plane_alloc = |
| &crtc_state->wm.skl.plane_ddb_uv[plane_id]; |
| |
| if (plane_id == PLANE_CURSOR) |
| continue; |
| |
| /* Gen11+ uses a separate plane for UV watermarks */ |
| drm_WARN_ON(&dev_priv->drm, |
| DISPLAY_VER(dev_priv) >= 11 && uv_total[plane_id]); |
| |
| /* Leave disabled planes at (0,0) */ |
| if (total[plane_id]) { |
| plane_alloc->start = start; |
| start += total[plane_id]; |
| plane_alloc->end = start; |
| } |
| |
| if (uv_total[plane_id]) { |
| uv_plane_alloc->start = start; |
| start += uv_total[plane_id]; |
| uv_plane_alloc->end = start; |
| } |
| } |
| |
| /* |
| * When we calculated watermark values we didn't know how high |
| * of a level we'd actually be able to hit, so we just marked |
| * all levels as "enabled." Go back now and disable the ones |
| * that aren't actually possible. |
| */ |
| for (level++; level <= ilk_wm_max_level(dev_priv); level++) { |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| struct skl_plane_wm *wm = |
| &crtc_state->wm.skl.optimal.planes[plane_id]; |
| |
| skl_check_nv12_wm_level(&wm->wm[level], &wm->uv_wm[level], |
| total[plane_id], uv_total[plane_id]); |
| |
| if (icl_need_wm1_wa(dev_priv, plane_id) && |
| level == 1 && wm->wm[0].enable) { |
| wm->wm[level].blocks = wm->wm[0].blocks; |
| wm->wm[level].lines = wm->wm[0].lines; |
| wm->wm[level].ignore_lines = wm->wm[0].ignore_lines; |
| } |
| } |
| } |
| |
| /* |
| * Go back and disable the transition and SAGV watermarks |
| * if it turns out we don't have enough DDB blocks for them. |
| */ |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| struct skl_plane_wm *wm = |
| &crtc_state->wm.skl.optimal.planes[plane_id]; |
| |
| skl_check_wm_level(&wm->trans_wm, total[plane_id]); |
| skl_check_wm_level(&wm->sagv.wm0, total[plane_id]); |
| skl_check_wm_level(&wm->sagv.trans_wm, total[plane_id]); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The max latency should be 257 (max the punit can code is 255 and we add 2us |
| * for the read latency) and cpp should always be <= 8, so that |
| * should allow pixel_rate up to ~2 GHz which seems sufficient since max |
| * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. |
| */ |
| static uint_fixed_16_16_t |
| skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate, |
| u8 cpp, u32 latency, u32 dbuf_block_size) |
| { |
| u32 wm_intermediate_val; |
| uint_fixed_16_16_t ret; |
| |
| if (latency == 0) |
| return FP_16_16_MAX; |
| |
| wm_intermediate_val = latency * pixel_rate * cpp; |
| ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size); |
| |
| if (DISPLAY_VER(dev_priv) >= 10) |
| ret = add_fixed16_u32(ret, 1); |
| |
| return ret; |
| } |
| |
| static uint_fixed_16_16_t |
| skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency, |
| uint_fixed_16_16_t plane_blocks_per_line) |
| { |
| u32 wm_intermediate_val; |
| uint_fixed_16_16_t ret; |
| |
| if (latency == 0) |
| return FP_16_16_MAX; |
| |
| wm_intermediate_val = latency * pixel_rate; |
| wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, |
| pipe_htotal * 1000); |
| ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); |
| return ret; |
| } |
| |
| static uint_fixed_16_16_t |
| intel_get_linetime_us(const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| u32 pixel_rate; |
| u32 crtc_htotal; |
| uint_fixed_16_16_t linetime_us; |
| |
| if (!crtc_state->hw.active) |
| return u32_to_fixed16(0); |
| |
| pixel_rate = crtc_state->pixel_rate; |
| |
| if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0)) |
| return u32_to_fixed16(0); |
| |
| crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal; |
| linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); |
| |
| return linetime_us; |
| } |
| |
| static int |
| skl_compute_wm_params(const struct intel_crtc_state *crtc_state, |
| int width, const struct drm_format_info *format, |
| u64 modifier, unsigned int rotation, |
| u32 plane_pixel_rate, struct skl_wm_params *wp, |
| int color_plane) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| u32 interm_pbpl; |
| |
| /* only planar format has two planes */ |
| if (color_plane == 1 && |
| !intel_format_info_is_yuv_semiplanar(format, modifier)) { |
| drm_dbg_kms(&dev_priv->drm, |
| "Non planar format have single plane\n"); |
| return -EINVAL; |
| } |
| |
| wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED || |
| modifier == I915_FORMAT_MOD_Yf_TILED || |
| modifier == I915_FORMAT_MOD_Y_TILED_CCS || |
| modifier == I915_FORMAT_MOD_Yf_TILED_CCS; |
| wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED; |
| wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS || |
| modifier == I915_FORMAT_MOD_Yf_TILED_CCS; |
| wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier); |
| |
| wp->width = width; |
| if (color_plane == 1 && wp->is_planar) |
| wp->width /= 2; |
| |
| wp->cpp = format->cpp[color_plane]; |
| wp->plane_pixel_rate = plane_pixel_rate; |
| |
| if (DISPLAY_VER(dev_priv) >= 11 && |
| modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1) |
| wp->dbuf_block_size = 256; |
| else |
| wp->dbuf_block_size = 512; |
| |
| if (drm_rotation_90_or_270(rotation)) { |
| switch (wp->cpp) { |
| case 1: |
| wp->y_min_scanlines = 16; |
| break; |
| case 2: |
| wp->y_min_scanlines = 8; |
| break; |
| case 4: |
| wp->y_min_scanlines = 4; |
| break; |
| default: |
| MISSING_CASE(wp->cpp); |
| return -EINVAL; |
| } |
| } else { |
| wp->y_min_scanlines = 4; |
| } |
| |
| if (skl_needs_memory_bw_wa(dev_priv)) |
| wp->y_min_scanlines *= 2; |
| |
| wp->plane_bytes_per_line = wp->width * wp->cpp; |
| if (wp->y_tiled) { |
| interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line * |
| wp->y_min_scanlines, |
| wp->dbuf_block_size); |
| |
| if (DISPLAY_VER(dev_priv) >= 10) |
| interm_pbpl++; |
| |
| wp->plane_blocks_per_line = div_fixed16(interm_pbpl, |
| wp->y_min_scanlines); |
| } else { |
| interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, |
| wp->dbuf_block_size); |
| |
| if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10) |
| interm_pbpl++; |
| |
| wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); |
| } |
| |
| wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines, |
| wp->plane_blocks_per_line); |
| |
| wp->linetime_us = fixed16_to_u32_round_up( |
| intel_get_linetime_us(crtc_state)); |
| |
| return 0; |
| } |
| |
| static int |
| skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| struct skl_wm_params *wp, int color_plane) |
| { |
| const struct drm_framebuffer *fb = plane_state->hw.fb; |
| int width; |
| |
| /* |
| * Src coordinates are already rotated by 270 degrees for |
| * the 90/270 degree plane rotation cases (to match the |
| * GTT mapping), hence no need to account for rotation here. |
| */ |
| width = drm_rect_width(&plane_state->uapi.src) >> 16; |
| |
| return skl_compute_wm_params(crtc_state, width, |
| fb->format, fb->modifier, |
| plane_state->hw.rotation, |
| intel_plane_pixel_rate(crtc_state, plane_state), |
| wp, color_plane); |
| } |
| |
| static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level) |
| { |
| if (DISPLAY_VER(dev_priv) >= 10) |
| return true; |
| |
| /* The number of lines are ignored for the level 0 watermark. */ |
| return level > 0; |
| } |
| |
| static int skl_wm_max_lines(struct drm_i915_private *dev_priv) |
| { |
| if (DISPLAY_VER(dev_priv) >= 13) |
| return 255; |
| else |
| return 31; |
| } |
| |
| static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, |
| int level, |
| unsigned int latency, |
| const struct skl_wm_params *wp, |
| const struct skl_wm_level *result_prev, |
| struct skl_wm_level *result /* out */) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| uint_fixed_16_16_t method1, method2; |
| uint_fixed_16_16_t selected_result; |
| u32 blocks, lines, min_ddb_alloc = 0; |
| |
| if (latency == 0) { |
| /* reject it */ |
| result->min_ddb_alloc = U16_MAX; |
| return; |
| } |
| |
| /* |
| * WaIncreaseLatencyIPCEnabled: kbl,cfl |
| * Display WA #1141: kbl,cfl |
| */ |
| if ((IS_KABYLAKE(dev_priv) || |
| IS_COFFEELAKE(dev_priv) || |
| IS_COMETLAKE(dev_priv)) && |
| dev_priv->ipc_enabled) |
| latency += 4; |
| |
| if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled) |
| latency += 15; |
| |
| method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate, |
| wp->cpp, latency, wp->dbuf_block_size); |
| method2 = skl_wm_method2(wp->plane_pixel_rate, |
| crtc_state->hw.pipe_mode.crtc_htotal, |
| latency, |
| wp->plane_blocks_per_line); |
| |
| if (wp->y_tiled) { |
| selected_result = max_fixed16(method2, wp->y_tile_minimum); |
| } else { |
| if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal / |
| wp->dbuf_block_size < 1) && |
| (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) { |
| selected_result = method2; |
| } else if (latency >= wp->linetime_us) { |
| if (DISPLAY_VER(dev_priv) == 9) |
| selected_result = min_fixed16(method1, method2); |
| else |
| selected_result = method2; |
| } else { |
| selected_result = method1; |
| } |
| } |
| |
| blocks = fixed16_to_u32_round_up(selected_result) + 1; |
| lines = div_round_up_fixed16(selected_result, |
| wp->plane_blocks_per_line); |
| |
| if (DISPLAY_VER(dev_priv) == 9) { |
| /* Display WA #1125: skl,bxt,kbl */ |
| if (level == 0 && wp->rc_surface) |
| blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); |
| |
| /* Display WA #1126: skl,bxt,kbl */ |
| if (level >= 1 && level <= 7) { |
| if (wp->y_tiled) { |
| blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); |
| lines += wp->y_min_scanlines; |
| } else { |
| blocks++; |
| } |
| |
| /* |
| * Make sure result blocks for higher latency levels are |
| * atleast as high as level below the current level. |
| * Assumption in DDB algorithm optimization for special |
| * cases. Also covers Display WA #1125 for RC. |
| */ |
| if (result_prev->blocks > blocks) |
| blocks = result_prev->blocks; |
| } |
| } |
| |
| if (DISPLAY_VER(dev_priv) >= 11) { |
| if (wp->y_tiled) { |
| int extra_lines; |
| |
| if (lines % wp->y_min_scanlines == 0) |
| extra_lines = wp->y_min_scanlines; |
| else |
| extra_lines = wp->y_min_scanlines * 2 - |
| lines % wp->y_min_scanlines; |
| |
| min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines, |
| wp->plane_blocks_per_line); |
| } else { |
| min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10); |
| } |
| } |
| |
| if (!skl_wm_has_lines(dev_priv, level)) |
| lines = 0; |
| |
| if (lines > skl_wm_max_lines(dev_priv)) { |
| /* reject it */ |
| result->min_ddb_alloc = U16_MAX; |
| return; |
| } |
| |
| /* |
| * If lines is valid, assume we can use this watermark level |
| * for now. We'll come back and disable it after we calculate the |
| * DDB allocation if it turns out we don't actually have enough |
| * blocks to satisfy it. |
| */ |
| result->blocks = blocks; |
| result->lines = lines; |
| /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */ |
| result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1; |
| result->enable = true; |
| |
| if (DISPLAY_VER(dev_priv) < 12) |
| result->can_sagv = latency >= dev_priv->sagv_block_time_us; |
| } |
| |
| static void |
| skl_compute_wm_levels(const struct intel_crtc_state *crtc_state, |
| const struct skl_wm_params *wm_params, |
| struct skl_wm_level *levels) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| struct skl_wm_level *result_prev = &levels[0]; |
| |
| for (level = 0; level <= max_level; level++) { |
| struct skl_wm_level *result = &levels[level]; |
| unsigned int latency = dev_priv->wm.skl_latency[level]; |
| |
| skl_compute_plane_wm(crtc_state, level, latency, |
| wm_params, result_prev, result); |
| |
| result_prev = result; |
| } |
| } |
| |
| static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state, |
| const struct skl_wm_params *wm_params, |
| struct skl_plane_wm *plane_wm) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); |
| struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0; |
| struct skl_wm_level *levels = plane_wm->wm; |
| unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us; |
| |
| skl_compute_plane_wm(crtc_state, 0, latency, |
| wm_params, &levels[0], |
| sagv_wm); |
| } |
| |
| static void skl_compute_transition_wm(struct drm_i915_private *dev_priv, |
| struct skl_wm_level *trans_wm, |
| const struct skl_wm_level *wm0, |
| const struct skl_wm_params *wp) |
| { |
| u16 trans_min, trans_amount, trans_y_tile_min; |
| u16 wm0_blocks, trans_offset, blocks; |
| |
| /* Transition WM don't make any sense if ipc is disabled */ |
| if (!dev_priv->ipc_enabled) |
| return; |
| |
| /* |
| * WaDisableTWM:skl,kbl,cfl,bxt |
| * Transition WM are not recommended by HW team for GEN9 |
| */ |
| if (DISPLAY_VER(dev_priv) == 9) |
| return; |
| |
| if (DISPLAY_VER(dev_priv) >= 11) |
| trans_min = 4; |
| else |
| trans_min = 14; |
| |
| /* Display WA #1140: glk,cnl */ |
| if (DISPLAY_VER(dev_priv) == 10) |
| trans_amount = 0; |
| else |
| trans_amount = 10; /* This is configurable amount */ |
| |
| trans_offset = trans_min + trans_amount; |
| |
| /* |
| * The spec asks for Selected Result Blocks for wm0 (the real value), |
| * not Result Blocks (the integer value). Pay attention to the capital |
| * letters. The value wm_l0->blocks is actually Result Blocks, but |
| * since Result Blocks is the ceiling of Selected Result Blocks plus 1, |
| * and since we later will have to get the ceiling of the sum in the |
| * transition watermarks calculation, we can just pretend Selected |
| * Result Blocks is Result Blocks minus 1 and it should work for the |
| * current platforms. |
| */ |
| wm0_blocks = wm0->blocks - 1; |
| |
| if (wp->y_tiled) { |
| trans_y_tile_min = |
| (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum); |
| blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset; |
| } else { |
| blocks = wm0_blocks + trans_offset; |
| } |
| blocks++; |
| |
| /* |
| * Just assume we can enable the transition watermark. After |
| * computing the DDB we'll come back and disable it if that |
| * assumption turns out to be false. |
| */ |
| trans_wm->blocks = blocks; |
| trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1); |
| trans_wm->enable = true; |
| } |
| |
| static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| enum plane_id plane_id, int color_plane) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; |
| struct skl_wm_params wm_params; |
| int ret; |
| |
| ret = skl_compute_plane_wm_params(crtc_state, plane_state, |
| &wm_params, color_plane); |
| if (ret) |
| return ret; |
| |
| skl_compute_wm_levels(crtc_state, &wm_params, wm->wm); |
| |
| skl_compute_transition_wm(dev_priv, &wm->trans_wm, |
| &wm->wm[0], &wm_params); |
| |
| if (DISPLAY_VER(dev_priv) >= 12) { |
| tgl_compute_sagv_wm(crtc_state, &wm_params, wm); |
| |
| skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm, |
| &wm->sagv.wm0, &wm_params); |
| } |
| |
| return 0; |
| } |
| |
| static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state, |
| enum plane_id plane_id) |
| { |
| struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; |
| struct skl_wm_params wm_params; |
| int ret; |
| |
| wm->is_planar = true; |
| |
| /* uv plane watermarks must also be validated for NV12/Planar */ |
| ret = skl_compute_plane_wm_params(crtc_state, plane_state, |
| &wm_params, 1); |
| if (ret) |
| return ret; |
| |
| skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm); |
| |
| return 0; |
| } |
| |
| static int skl_build_plane_wm(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| enum plane_id plane_id = plane->id; |
| struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; |
| const struct drm_framebuffer *fb = plane_state->hw.fb; |
| int ret; |
| |
| memset(wm, 0, sizeof(*wm)); |
| |
| if (!intel_wm_plane_visible(crtc_state, plane_state)) |
| return 0; |
| |
| ret = skl_build_plane_wm_single(crtc_state, plane_state, |
| plane_id, 0); |
| if (ret) |
| return ret; |
| |
| if (fb->format->is_yuv && fb->format->num_planes > 1) { |
| ret = skl_build_plane_wm_uv(crtc_state, plane_state, |
| plane_id); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int icl_build_plane_wm(struct intel_crtc_state *crtc_state, |
| const struct intel_plane_state *plane_state) |
| { |
| struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| enum plane_id plane_id = plane->id; |
| struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; |
| int ret; |
| |
| /* Watermarks calculated in master */ |
| if (plane_state->planar_slave) |
| return 0; |
| |
| memset(wm, 0, sizeof(*wm)); |
| |
| if (plane_state->planar_linked_plane) { |
| const struct drm_framebuffer *fb = plane_state->hw.fb; |
| enum plane_id y_plane_id = plane_state->planar_linked_plane->id; |
| |
| drm_WARN_ON(&dev_priv->drm, |
| !intel_wm_plane_visible(crtc_state, plane_state)); |
| drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv || |
| fb->format->num_planes == 1); |
| |
| ret = skl_build_plane_wm_single(crtc_state, plane_state, |
| y_plane_id, 0); |
| if (ret) |
| return ret; |
| |
| ret = skl_build_plane_wm_single(crtc_state, plane_state, |
| plane_id, 1); |
| if (ret) |
| return ret; |
| } else if (intel_wm_plane_visible(crtc_state, plane_state)) { |
| ret = skl_build_plane_wm_single(crtc_state, plane_state, |
| plane_id, 0); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int skl_build_pipe_wm(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| const struct intel_plane_state *plane_state; |
| struct intel_plane *plane; |
| int ret, i; |
| |
| for_each_new_intel_plane_in_state(state, plane, plane_state, i) { |
| /* |
| * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc |
| * instead but we don't populate that correctly for NV12 Y |
| * planes so for now hack this. |
| */ |
| if (plane->pipe != crtc->pipe) |
| continue; |
| |
| if (DISPLAY_VER(dev_priv) >= 11) |
| ret = icl_build_plane_wm(crtc_state, plane_state); |
| else |
| ret = skl_build_plane_wm(crtc_state, plane_state); |
| if (ret) |
| return ret; |
| } |
| |
| crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw; |
| |
| return 0; |
| } |
| |
| static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, |
| i915_reg_t reg, |
| const struct skl_ddb_entry *entry) |
| { |
| if (entry->end) |
| intel_de_write_fw(dev_priv, reg, |
| (entry->end - 1) << 16 | entry->start); |
| else |
| intel_de_write_fw(dev_priv, reg, 0); |
| } |
| |
| static void skl_write_wm_level(struct drm_i915_private *dev_priv, |
| i915_reg_t reg, |
| const struct skl_wm_level *level) |
| { |
| u32 val = 0; |
| |
| if (level->enable) |
| val |= PLANE_WM_EN; |
| if (level->ignore_lines) |
| val |= PLANE_WM_IGNORE_LINES; |
| val |= level->blocks; |
| val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines); |
| |
| intel_de_write_fw(dev_priv, reg, val); |
| } |
| |
| void skl_write_plane_wm(struct intel_plane *plane, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| enum plane_id plane_id = plane->id; |
| enum pipe pipe = plane->pipe; |
| const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; |
| const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; |
| const struct skl_ddb_entry *ddb_y = |
| &crtc_state->wm.skl.plane_ddb_y[plane_id]; |
| const struct skl_ddb_entry *ddb_uv = |
| &crtc_state->wm.skl.plane_ddb_uv[plane_id]; |
| |
| for (level = 0; level <= max_level; level++) |
| skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level), |
| skl_plane_wm_level(pipe_wm, plane_id, level)); |
| |
| skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id), |
| skl_plane_trans_wm(pipe_wm, plane_id)); |
| |
| if (HAS_HW_SAGV_WM(dev_priv)) { |
| skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id), |
| &wm->sagv.wm0); |
| skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id), |
| &wm->sagv.trans_wm); |
| } |
| |
| if (DISPLAY_VER(dev_priv) >= 11) { |
| skl_ddb_entry_write(dev_priv, |
| PLANE_BUF_CFG(pipe, plane_id), ddb_y); |
| return; |
| } |
| |
| if (wm->is_planar) |
| swap(ddb_y, ddb_uv); |
| |
| skl_ddb_entry_write(dev_priv, |
| PLANE_BUF_CFG(pipe, plane_id), ddb_y); |
| skl_ddb_entry_write(dev_priv, |
| PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv); |
| } |
| |
| void skl_write_cursor_wm(struct intel_plane *plane, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(plane->base.dev); |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| enum plane_id plane_id = plane->id; |
| enum pipe pipe = plane->pipe; |
| const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; |
| const struct skl_ddb_entry *ddb = |
| &crtc_state->wm.skl.plane_ddb_y[plane_id]; |
| |
| for (level = 0; level <= max_level; level++) |
| skl_write_wm_level(dev_priv, CUR_WM(pipe, level), |
| skl_plane_wm_level(pipe_wm, plane_id, level)); |
| |
| skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), |
| skl_plane_trans_wm(pipe_wm, plane_id)); |
| |
| if (HAS_HW_SAGV_WM(dev_priv)) { |
| const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; |
| |
| skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe), |
| &wm->sagv.wm0); |
| skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe), |
| &wm->sagv.trans_wm); |
| } |
| |
| skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb); |
| } |
| |
| bool skl_wm_level_equals(const struct skl_wm_level *l1, |
| const struct skl_wm_level *l2) |
| { |
| return l1->enable == l2->enable && |
| l1->ignore_lines == l2->ignore_lines && |
| l1->lines == l2->lines && |
| l1->blocks == l2->blocks; |
| } |
| |
| static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv, |
| const struct skl_plane_wm *wm1, |
| const struct skl_plane_wm *wm2) |
| { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| for (level = 0; level <= max_level; level++) { |
| /* |
| * We don't check uv_wm as the hardware doesn't actually |
| * use it. It only gets used for calculating the required |
| * ddb allocation. |
| */ |
| if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level])) |
| return false; |
| } |
| |
| return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) && |
| skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) && |
| skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm); |
| } |
| |
| static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, |
| const struct skl_ddb_entry *b) |
| { |
| return a->start < b->end && b->start < a->end; |
| } |
| |
| static void skl_ddb_entry_union(struct skl_ddb_entry *a, |
| const struct skl_ddb_entry *b) |
| { |
| if (a->end && b->end) { |
| a->start = min(a->start, b->start); |
| a->end = max(a->end, b->end); |
| } else if (b->end) { |
| a->start = b->start; |
| a->end = b->end; |
| } |
| } |
| |
| bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb, |
| const struct skl_ddb_entry *entries, |
| int num_entries, int ignore_idx) |
| { |
| int i; |
| |
| for (i = 0; i < num_entries; i++) { |
| if (i != ignore_idx && |
| skl_ddb_entries_overlap(ddb, &entries[i])) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int |
| skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state, |
| struct intel_crtc_state *new_crtc_state) |
| { |
| struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); |
| struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct intel_plane *plane; |
| |
| for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { |
| struct intel_plane_state *plane_state; |
| enum plane_id plane_id = plane->id; |
| |
| if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id], |
| &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) && |
| skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id], |
| &new_crtc_state->wm.skl.plane_ddb_uv[plane_id])) |
| continue; |
| |
| plane_state = intel_atomic_get_plane_state(state, plane); |
| if (IS_ERR(plane_state)) |
| return PTR_ERR(plane_state); |
| |
| new_crtc_state->update_planes |= BIT(plane_id); |
| } |
| |
| return 0; |
| } |
| |
| static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev); |
| u8 enabled_slices; |
| enum pipe pipe; |
| |
| /* |
| * FIXME: For now we always enable slice S1 as per |
| * the Bspec display initialization sequence. |
| */ |
| enabled_slices = BIT(DBUF_S1); |
| |
| for_each_pipe(dev_priv, pipe) |
| enabled_slices |= dbuf_state->slices[pipe]; |
| |
| return enabled_slices; |
| } |
| |
| static int |
| skl_compute_ddb(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| const struct intel_dbuf_state *old_dbuf_state; |
| struct intel_dbuf_state *new_dbuf_state = NULL; |
| const struct intel_crtc_state *old_crtc_state; |
| struct intel_crtc_state *new_crtc_state; |
| struct intel_crtc *crtc; |
| int ret, i; |
| |
| for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { |
| new_dbuf_state = intel_atomic_get_dbuf_state(state); |
| if (IS_ERR(new_dbuf_state)) |
| return PTR_ERR(new_dbuf_state); |
| |
| old_dbuf_state = intel_atomic_get_old_dbuf_state(state); |
| break; |
| } |
| |
| if (!new_dbuf_state) |
| return 0; |
| |
| new_dbuf_state->active_pipes = |
| intel_calc_active_pipes(state, old_dbuf_state->active_pipes); |
| |
| if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) { |
| ret = intel_atomic_lock_global_state(&new_dbuf_state->base); |
| if (ret) |
| return ret; |
| } |
| |
| if (IS_ALDERLAKE_P(dev_priv)) |
| new_dbuf_state->joined_mbus = |
| adlp_check_mbus_joined(new_dbuf_state->active_pipes); |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| enum pipe pipe = crtc->pipe; |
| |
| new_dbuf_state->slices[pipe] = |
| skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes, |
| new_dbuf_state->joined_mbus); |
| |
| if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe]) |
| continue; |
| |
| ret = intel_atomic_lock_global_state(&new_dbuf_state->base); |
| if (ret) |
| return ret; |
| } |
| |
| new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state); |
| |
| if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices || |
| old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { |
| ret = intel_atomic_serialize_global_state(&new_dbuf_state->base); |
| if (ret) |
| return ret; |
| |
| if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { |
| /* TODO: Implement vblank synchronized MBUS joining changes */ |
| ret = intel_modeset_all_pipes(state); |
| if (ret) |
| return ret; |
| } |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n", |
| old_dbuf_state->enabled_slices, |
| new_dbuf_state->enabled_slices, |
| INTEL_INFO(dev_priv)->dbuf.slice_mask, |
| yesno(old_dbuf_state->joined_mbus), |
| yesno(new_dbuf_state->joined_mbus)); |
| } |
| |
| for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { |
| enum pipe pipe = crtc->pipe; |
| |
| new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state); |
| |
| if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe]) |
| continue; |
| |
| ret = intel_atomic_lock_global_state(&new_dbuf_state->base); |
| if (ret) |
| return ret; |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| ret = skl_crtc_allocate_ddb(state, crtc); |
| if (ret) |
| return ret; |
| } |
| |
| for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, |
| new_crtc_state, i) { |
| ret = skl_allocate_plane_ddb(state, crtc); |
| if (ret) |
| return ret; |
| |
| ret = skl_ddb_add_affected_planes(old_crtc_state, |
| new_crtc_state); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static char enast(bool enable) |
| { |
| return enable ? '*' : ' '; |
| } |
| |
| static void |
| skl_print_wm_changes(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| const struct intel_crtc_state *old_crtc_state; |
| const struct intel_crtc_state *new_crtc_state; |
| struct intel_plane *plane; |
| struct intel_crtc *crtc; |
| int i; |
| |
| if (!drm_debug_enabled(DRM_UT_KMS)) |
| return; |
| |
| for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, |
| new_crtc_state, i) { |
| const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm; |
| |
| old_pipe_wm = &old_crtc_state->wm.skl.optimal; |
| new_pipe_wm = &new_crtc_state->wm.skl.optimal; |
| |
| for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { |
| enum plane_id plane_id = plane->id; |
| const struct skl_ddb_entry *old, *new; |
| |
| old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id]; |
| new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id]; |
| |
| if (skl_ddb_entry_equal(old, new)) |
| continue; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n", |
| plane->base.base.id, plane->base.name, |
| old->start, old->end, new->start, new->end, |
| skl_ddb_entry_size(old), skl_ddb_entry_size(new)); |
| } |
| |
| for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { |
| enum plane_id plane_id = plane->id; |
| const struct skl_plane_wm *old_wm, *new_wm; |
| |
| old_wm = &old_pipe_wm->planes[plane_id]; |
| new_wm = &new_pipe_wm->planes[plane_id]; |
| |
| if (skl_plane_wm_equals(dev_priv, old_wm, new_wm)) |
| continue; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm" |
| " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n", |
| plane->base.base.id, plane->base.name, |
| enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable), |
| enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable), |
| enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable), |
| enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable), |
| enast(old_wm->trans_wm.enable), |
| enast(old_wm->sagv.wm0.enable), |
| enast(old_wm->sagv.trans_wm.enable), |
| enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable), |
| enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable), |
| enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable), |
| enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable), |
| enast(new_wm->trans_wm.enable), |
| enast(new_wm->sagv.wm0.enable), |
| enast(new_wm->sagv.trans_wm.enable)); |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d" |
| " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n", |
| plane->base.base.id, plane->base.name, |
| enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines, |
| enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines, |
| enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines, |
| enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines, |
| enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines, |
| enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines, |
| enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines, |
| enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines, |
| enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines, |
| enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines, |
| enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines, |
| enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines, |
| enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines, |
| enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines, |
| enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines, |
| enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines, |
| enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines, |
| enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines, |
| enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines, |
| enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines, |
| enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines, |
| enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines); |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" |
| " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", |
| plane->base.base.id, plane->base.name, |
| old_wm->wm[0].blocks, old_wm->wm[1].blocks, |
| old_wm->wm[2].blocks, old_wm->wm[3].blocks, |
| old_wm->wm[4].blocks, old_wm->wm[5].blocks, |
| old_wm->wm[6].blocks, old_wm->wm[7].blocks, |
| old_wm->trans_wm.blocks, |
| old_wm->sagv.wm0.blocks, |
| old_wm->sagv.trans_wm.blocks, |
| new_wm->wm[0].blocks, new_wm->wm[1].blocks, |
| new_wm->wm[2].blocks, new_wm->wm[3].blocks, |
| new_wm->wm[4].blocks, new_wm->wm[5].blocks, |
| new_wm->wm[6].blocks, new_wm->wm[7].blocks, |
| new_wm->trans_wm.blocks, |
| new_wm->sagv.wm0.blocks, |
| new_wm->sagv.trans_wm.blocks); |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" |
| " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", |
| plane->base.base.id, plane->base.name, |
| old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc, |
| old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc, |
| old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc, |
| old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc, |
| old_wm->trans_wm.min_ddb_alloc, |
| old_wm->sagv.wm0.min_ddb_alloc, |
| old_wm->sagv.trans_wm.min_ddb_alloc, |
| new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc, |
| new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc, |
| new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc, |
| new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc, |
| new_wm->trans_wm.min_ddb_alloc, |
| new_wm->sagv.wm0.min_ddb_alloc, |
| new_wm->sagv.trans_wm.min_ddb_alloc); |
| } |
| } |
| } |
| |
| static bool skl_plane_selected_wm_equals(struct intel_plane *plane, |
| const struct skl_pipe_wm *old_pipe_wm, |
| const struct skl_pipe_wm *new_pipe_wm) |
| { |
| struct drm_i915_private *i915 = to_i915(plane->base.dev); |
| int level, max_level = ilk_wm_max_level(i915); |
| |
| for (level = 0; level <= max_level; level++) { |
| /* |
| * We don't check uv_wm as the hardware doesn't actually |
| * use it. It only gets used for calculating the required |
| * ddb allocation. |
| */ |
| if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level), |
| skl_plane_wm_level(new_pipe_wm, plane->id, level))) |
| return false; |
| } |
| |
| if (HAS_HW_SAGV_WM(i915)) { |
| const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id]; |
| const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id]; |
| |
| if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) || |
| !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm)) |
| return false; |
| } |
| |
| return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id), |
| skl_plane_trans_wm(new_pipe_wm, plane->id)); |
| } |
| |
| /* |
| * To make sure the cursor watermark registers are always consistent |
| * with our computed state the following scenario needs special |
| * treatment: |
| * |
| * 1. enable cursor |
| * 2. move cursor entirely offscreen |
| * 3. disable cursor |
| * |
| * Step 2. does call .disable_plane() but does not zero the watermarks |
| * (since we consider an offscreen cursor still active for the purposes |
| * of watermarks). Step 3. would not normally call .disable_plane() |
| * because the actual plane visibility isn't changing, and we don't |
| * deallocate the cursor ddb until the pipe gets disabled. So we must |
| * force step 3. to call .disable_plane() to update the watermark |
| * registers properly. |
| * |
| * Other planes do not suffer from this issues as their watermarks are |
| * calculated based on the actual plane visibility. The only time this |
| * can trigger for the other planes is during the initial readout as the |
| * default value of the watermarks registers is not zero. |
| */ |
| static int skl_wm_add_affected_planes(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *old_crtc_state = |
| intel_atomic_get_old_crtc_state(state, crtc); |
| struct intel_crtc_state *new_crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| struct intel_plane *plane; |
| |
| for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { |
| struct intel_plane_state *plane_state; |
| enum plane_id plane_id = plane->id; |
| |
| /* |
| * Force a full wm update for every plane on modeset. |
| * Required because the reset value of the wm registers |
| * is non-zero, whereas we want all disabled planes to |
| * have zero watermarks. So if we turn off the relevant |
| * power well the hardware state will go out of sync |
| * with the software state. |
| */ |
| if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) && |
| skl_plane_selected_wm_equals(plane, |
| &old_crtc_state->wm.skl.optimal, |
| &new_crtc_state->wm.skl.optimal)) |
| continue; |
| |
| plane_state = intel_atomic_get_plane_state(state, plane); |
| if (IS_ERR(plane_state)) |
| return PTR_ERR(plane_state); |
| |
| new_crtc_state->update_planes |= BIT(plane_id); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| skl_compute_wm(struct intel_atomic_state *state) |
| { |
| struct intel_crtc *crtc; |
| struct intel_crtc_state *new_crtc_state; |
| int ret, i; |
| |
| for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { |
| ret = skl_build_pipe_wm(state, crtc); |
| if (ret) |
| return ret; |
| } |
| |
| ret = skl_compute_ddb(state); |
| if (ret) |
| return ret; |
| |
| ret = intel_compute_sagv_mask(state); |
| if (ret) |
| return ret; |
| |
| /* |
| * skl_compute_ddb() will have adjusted the final watermarks |
| * based on how much ddb is available. Now we can actually |
| * check if the final watermarks changed. |
| */ |
| for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { |
| ret = skl_wm_add_affected_planes(state, crtc); |
| if (ret) |
| return ret; |
| } |
| |
| skl_print_wm_changes(state); |
| |
| return 0; |
| } |
| |
| static void ilk_compute_wm_config(struct drm_i915_private *dev_priv, |
| struct intel_wm_config *config) |
| { |
| struct intel_crtc *crtc; |
| |
| /* Compute the currently _active_ config */ |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; |
| |
| if (!wm->pipe_enabled) |
| continue; |
| |
| config->sprites_enabled |= wm->sprites_enabled; |
| config->sprites_scaled |= wm->sprites_scaled; |
| config->num_pipes_active++; |
| } |
| } |
| |
| static void ilk_program_watermarks(struct drm_i915_private *dev_priv) |
| { |
| struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; |
| struct ilk_wm_maximums max; |
| struct intel_wm_config config = {}; |
| struct ilk_wm_values results = {}; |
| enum intel_ddb_partitioning partitioning; |
| |
| ilk_compute_wm_config(dev_priv, &config); |
| |
| ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max); |
| ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2); |
| |
| /* 5/6 split only in single pipe config on IVB+ */ |
| if (DISPLAY_VER(dev_priv) >= 7 && |
| config.num_pipes_active == 1 && config.sprites_enabled) { |
| ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max); |
| ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6); |
| |
| best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6); |
| } else { |
| best_lp_wm = &lp_wm_1_2; |
| } |
| |
| partitioning = (best_lp_wm == &lp_wm_1_2) ? |
| INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; |
| |
| ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results); |
| |
| ilk_write_wm_values(dev_priv, &results); |
| } |
| |
| static void ilk_initial_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate; |
| ilk_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void ilk_optimize_watermarks(struct intel_atomic_state *state, |
| struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *crtc_state = |
| intel_atomic_get_new_crtc_state(state, crtc); |
| |
| if (!crtc_state->wm.need_postvbl_update) |
| return; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| crtc->wm.active.ilk = crtc_state->wm.ilk.optimal; |
| ilk_program_watermarks(dev_priv); |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level) |
| { |
| level->enable = val & PLANE_WM_EN; |
| level->ignore_lines = val & PLANE_WM_IGNORE_LINES; |
| level->blocks = val & PLANE_WM_BLOCKS_MASK; |
| level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val); |
| } |
| |
| void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc, |
| struct skl_pipe_wm *out) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| int level, max_level; |
| enum plane_id plane_id; |
| u32 val; |
| |
| max_level = ilk_wm_max_level(dev_priv); |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| struct skl_plane_wm *wm = &out->planes[plane_id]; |
| |
| for (level = 0; level <= max_level; level++) { |
| if (plane_id != PLANE_CURSOR) |
| val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level)); |
| else |
| val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level)); |
| |
| skl_wm_level_from_reg_val(val, &wm->wm[level]); |
| } |
| |
| if (plane_id != PLANE_CURSOR) |
| val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id)); |
| else |
| val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe)); |
| |
| skl_wm_level_from_reg_val(val, &wm->trans_wm); |
| |
| if (HAS_HW_SAGV_WM(dev_priv)) { |
| if (plane_id != PLANE_CURSOR) |
| val = intel_uncore_read(&dev_priv->uncore, |
| PLANE_WM_SAGV(pipe, plane_id)); |
| else |
| val = intel_uncore_read(&dev_priv->uncore, |
| CUR_WM_SAGV(pipe)); |
| |
| skl_wm_level_from_reg_val(val, &wm->sagv.wm0); |
| |
| if (plane_id != PLANE_CURSOR) |
| val = intel_uncore_read(&dev_priv->uncore, |
| PLANE_WM_SAGV_TRANS(pipe, plane_id)); |
| else |
| val = intel_uncore_read(&dev_priv->uncore, |
| CUR_WM_SAGV_TRANS(pipe)); |
| |
| skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm); |
| } else if (DISPLAY_VER(dev_priv) >= 12) { |
| wm->sagv.wm0 = wm->wm[0]; |
| wm->sagv.trans_wm = wm->trans_wm; |
| } |
| } |
| } |
| |
| void skl_wm_get_hw_state(struct drm_i915_private *dev_priv) |
| { |
| struct intel_dbuf_state *dbuf_state = |
| to_intel_dbuf_state(dev_priv->dbuf.obj.state); |
| struct intel_crtc *crtc; |
| |
| if (IS_ALDERLAKE_P(dev_priv)) |
| dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| enum pipe pipe = crtc->pipe; |
| unsigned int mbus_offset; |
| enum plane_id plane_id; |
| u8 slices; |
| |
| skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal); |
| crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal; |
| |
| memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe])); |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| struct skl_ddb_entry *ddb_y = |
| &crtc_state->wm.skl.plane_ddb_y[plane_id]; |
| struct skl_ddb_entry *ddb_uv = |
| &crtc_state->wm.skl.plane_ddb_uv[plane_id]; |
| |
| skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe, |
| plane_id, ddb_y, ddb_uv); |
| |
| skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y); |
| skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv); |
| } |
| |
| dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state); |
| |
| /* |
| * Used for checking overlaps, so we need absolute |
| * offsets instead of MBUS relative offsets. |
| */ |
| slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, |
| dbuf_state->joined_mbus); |
| mbus_offset = mbus_ddb_offset(dev_priv, slices); |
| crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start; |
| crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end; |
| |
| /* The slices actually used by the planes on the pipe */ |
| dbuf_state->slices[pipe] = |
| skl_ddb_dbuf_slice_mask(dev_priv, &crtc_state->wm.skl.ddb); |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n", |
| crtc->base.base.id, crtc->base.name, |
| dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start, |
| dbuf_state->ddb[pipe].end, dbuf_state->active_pipes, |
| yesno(dbuf_state->joined_mbus)); |
| } |
| |
| dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices; |
| } |
| |
| static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915) |
| { |
| const struct intel_dbuf_state *dbuf_state = |
| to_intel_dbuf_state(i915->dbuf.obj.state); |
| struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; |
| struct intel_crtc *crtc; |
| |
| for_each_intel_crtc(&i915->drm, crtc) { |
| const struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| |
| entries[crtc->pipe] = crtc_state->wm.skl.ddb; |
| } |
| |
| for_each_intel_crtc(&i915->drm, crtc) { |
| const struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| u8 slices; |
| |
| slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, |
| dbuf_state->joined_mbus); |
| if (dbuf_state->slices[crtc->pipe] & ~slices) |
| return true; |
| |
| if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries, |
| I915_MAX_PIPES, crtc->pipe)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void skl_wm_sanitize(struct drm_i915_private *i915) |
| { |
| struct intel_crtc *crtc; |
| |
| /* |
| * On TGL/RKL (at least) the BIOS likes to assign the planes |
| * to the wrong DBUF slices. This will cause an infinite loop |
| * in skl_commit_modeset_enables() as it can't find a way to |
| * transition between the old bogus DBUF layout to the new |
| * proper DBUF layout without DBUF allocation overlaps between |
| * the planes (which cannot be allowed or else the hardware |
| * may hang). If we detect a bogus DBUF layout just turn off |
| * all the planes so that skl_commit_modeset_enables() can |
| * simply ignore them. |
| */ |
| if (!skl_dbuf_is_misconfigured(i915)) |
| return; |
| |
| drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n"); |
| |
| for_each_intel_crtc(&i915->drm, crtc) { |
| struct intel_plane *plane = to_intel_plane(crtc->base.primary); |
| const struct intel_plane_state *plane_state = |
| to_intel_plane_state(plane->base.state); |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| |
| if (plane_state->uapi.visible) |
| intel_plane_disable_noatomic(crtc, plane); |
| |
| drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0); |
| |
| memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb)); |
| } |
| } |
| |
| static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct ilk_wm_values *hw = &dev_priv->wm.hw; |
| struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); |
| struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal; |
| enum pipe pipe = crtc->pipe; |
| |
| hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe)); |
| |
| memset(active, 0, sizeof(*active)); |
| |
| active->pipe_enabled = crtc->active; |
| |
| if (active->pipe_enabled) { |
| u32 tmp = hw->wm_pipe[pipe]; |
| |
| /* |
| * For active pipes LP0 watermark is marked as |
| * enabled, and LP1+ watermaks as disabled since |
| * we can't really reverse compute them in case |
| * multiple pipes are active. |
| */ |
| active->wm[0].enable = true; |
| active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT; |
| active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT; |
| active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK; |
| } else { |
| int level, max_level = ilk_wm_max_level(dev_priv); |
| |
| /* |
| * For inactive pipes, all watermark levels |
| * should be marked as enabled but zeroed, |
| * which is what we'd compute them to. |
| */ |
| for (level = 0; level <= max_level; level++) |
| active->wm[level].enable = true; |
| } |
| |
| crtc->wm.active.ilk = *active; |
| } |
| |
| #define _FW_WM(value, plane) \ |
| (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) |
| #define _FW_WM_VLV(value, plane) \ |
| (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) |
| |
| static void g4x_read_wm_values(struct drm_i915_private *dev_priv, |
| struct g4x_wm_values *wm) |
| { |
| u32 tmp; |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); |
| wm->sr.plane = _FW_WM(tmp, SR); |
| wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); |
| wm->fbc_en = tmp & DSPFW_FBC_SR_EN; |
| wm->sr.fbc = _FW_WM(tmp, FBC_SR); |
| wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); |
| wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); |
| wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; |
| wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); |
| wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); |
| wm->hpll.plane = _FW_WM(tmp, HPLL_SR); |
| } |
| |
| static void vlv_read_wm_values(struct drm_i915_private *dev_priv, |
| struct vlv_wm_values *wm) |
| { |
| enum pipe pipe; |
| u32 tmp; |
| |
| for_each_pipe(dev_priv, pipe) { |
| tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe)); |
| |
| wm->ddl[pipe].plane[PLANE_PRIMARY] = |
| (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| wm->ddl[pipe].plane[PLANE_CURSOR] = |
| (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| wm->ddl[pipe].plane[PLANE_SPRITE0] = |
| (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| wm->ddl[pipe].plane[PLANE_SPRITE1] = |
| (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); |
| } |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); |
| wm->sr.plane = _FW_WM(tmp, SR); |
| wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); |
| wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); |
| wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV); |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV); |
| wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); |
| wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); |
| wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; |
| wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; |
| wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; |
| } else { |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); |
| wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; |
| wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; |
| wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; |
| } |
| } |
| |
| #undef _FW_WM |
| #undef _FW_WM_VLV |
| |
| void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv) |
| { |
| struct g4x_wm_values *wm = &dev_priv->wm.g4x; |
| struct intel_crtc *crtc; |
| |
| g4x_read_wm_values(dev_priv, wm); |
| |
| wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct g4x_wm_state *active = &crtc->wm.active.g4x; |
| struct g4x_pipe_wm *raw; |
| enum pipe pipe = crtc->pipe; |
| enum plane_id plane_id; |
| int level, max_level; |
| |
| active->cxsr = wm->cxsr; |
| active->hpll_en = wm->hpll_en; |
| active->fbc_en = wm->fbc_en; |
| |
| active->sr = wm->sr; |
| active->hpll = wm->hpll; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| active->wm.plane[plane_id] = |
| wm->pipe[pipe].plane[plane_id]; |
| } |
| |
| if (wm->cxsr && wm->hpll_en) |
| max_level = G4X_WM_LEVEL_HPLL; |
| else if (wm->cxsr) |
| max_level = G4X_WM_LEVEL_SR; |
| else |
| max_level = G4X_WM_LEVEL_NORMAL; |
| |
| level = G4X_WM_LEVEL_NORMAL; |
| raw = &crtc_state->wm.g4x.raw[level]; |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| raw->plane[plane_id] = active->wm.plane[plane_id]; |
| |
| level = G4X_WM_LEVEL_SR; |
| if (level > max_level) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| raw->plane[PLANE_PRIMARY] = active->sr.plane; |
| raw->plane[PLANE_CURSOR] = active->sr.cursor; |
| raw->plane[PLANE_SPRITE0] = 0; |
| raw->fbc = active->sr.fbc; |
| |
| level = G4X_WM_LEVEL_HPLL; |
| if (level > max_level) |
| goto out; |
| |
| raw = &crtc_state->wm.g4x.raw[level]; |
| raw->plane[PLANE_PRIMARY] = active->hpll.plane; |
| raw->plane[PLANE_CURSOR] = active->hpll.cursor; |
| raw->plane[PLANE_SPRITE0] = 0; |
| raw->fbc = active->hpll.fbc; |
| |
| level++; |
| out: |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| g4x_raw_plane_wm_set(crtc_state, level, |
| plane_id, USHRT_MAX); |
| g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); |
| |
| crtc_state->wm.g4x.optimal = *active; |
| crtc_state->wm.g4x.intermediate = *active; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", |
| pipe_name(pipe), |
| wm->pipe[pipe].plane[PLANE_PRIMARY], |
| wm->pipe[pipe].plane[PLANE_CURSOR], |
| wm->pipe[pipe].plane[PLANE_SPRITE0]); |
| } |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", |
| wm->sr.plane, wm->sr.cursor, wm->sr.fbc); |
| drm_dbg_kms(&dev_priv->drm, |
| "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", |
| wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); |
| drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n", |
| yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en)); |
| } |
| |
| void g4x_wm_sanitize(struct drm_i915_private *dev_priv) |
| { |
| struct intel_plane *plane; |
| struct intel_crtc *crtc; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| |
| for_each_intel_plane(&dev_priv->drm, plane) { |
| struct intel_crtc *crtc = |
| intel_crtc_for_pipe(dev_priv, plane->pipe); |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct intel_plane_state *plane_state = |
| to_intel_plane_state(plane->base.state); |
| struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; |
| enum plane_id plane_id = plane->id; |
| int level; |
| |
| if (plane_state->uapi.visible) |
| continue; |
| |
| for (level = 0; level < 3; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.g4x.raw[level]; |
| |
| raw->plane[plane_id] = 0; |
| wm_state->wm.plane[plane_id] = 0; |
| } |
| |
| if (plane_id == PLANE_PRIMARY) { |
| for (level = 0; level < 3; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.g4x.raw[level]; |
| raw->fbc = 0; |
| } |
| |
| wm_state->sr.fbc = 0; |
| wm_state->hpll.fbc = 0; |
| wm_state->fbc_en = false; |
| } |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| |
| crtc_state->wm.g4x.intermediate = |
| crtc_state->wm.g4x.optimal; |
| crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; |
| } |
| |
| g4x_program_watermarks(dev_priv); |
| |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv) |
| { |
| struct vlv_wm_values *wm = &dev_priv->wm.vlv; |
| struct intel_crtc *crtc; |
| u32 val; |
| |
| vlv_read_wm_values(dev_priv, wm); |
| |
| wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; |
| wm->level = VLV_WM_LEVEL_PM2; |
| |
| if (IS_CHERRYVIEW(dev_priv)) { |
| vlv_punit_get(dev_priv); |
| |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); |
| if (val & DSP_MAXFIFO_PM5_ENABLE) |
| wm->level = VLV_WM_LEVEL_PM5; |
| |
| /* |
| * If DDR DVFS is disabled in the BIOS, Punit |
| * will never ack the request. So if that happens |
| * assume we don't have to enable/disable DDR DVFS |
| * dynamically. To test that just set the REQ_ACK |
| * bit to poke the Punit, but don't change the |
| * HIGH/LOW bits so that we don't actually change |
| * the current state. |
| */ |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); |
| val |= FORCE_DDR_FREQ_REQ_ACK; |
| vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); |
| |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & |
| FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { |
| drm_dbg_kms(&dev_priv->drm, |
| "Punit not acking DDR DVFS request, " |
| "assuming DDR DVFS is disabled\n"); |
| dev_priv->wm.max_level = VLV_WM_LEVEL_PM5; |
| } else { |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); |
| if ((val & FORCE_DDR_HIGH_FREQ) == 0) |
| wm->level = VLV_WM_LEVEL_DDR_DVFS; |
| } |
| |
| vlv_punit_put(dev_priv); |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct vlv_wm_state *active = &crtc->wm.active.vlv; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| enum pipe pipe = crtc->pipe; |
| enum plane_id plane_id; |
| int level; |
| |
| vlv_get_fifo_size(crtc_state); |
| |
| active->num_levels = wm->level + 1; |
| active->cxsr = wm->cxsr; |
| |
| for (level = 0; level < active->num_levels; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[level]; |
| |
| active->sr[level].plane = wm->sr.plane; |
| active->sr[level].cursor = wm->sr.cursor; |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) { |
| active->wm[level].plane[plane_id] = |
| wm->pipe[pipe].plane[plane_id]; |
| |
| raw->plane[plane_id] = |
| vlv_invert_wm_value(active->wm[level].plane[plane_id], |
| fifo_state->plane[plane_id]); |
| } |
| } |
| |
| for_each_plane_id_on_crtc(crtc, plane_id) |
| vlv_raw_plane_wm_set(crtc_state, level, |
| plane_id, USHRT_MAX); |
| vlv_invalidate_wms(crtc, active, level); |
| |
| crtc_state->wm.vlv.optimal = *active; |
| crtc_state->wm.vlv.intermediate = *active; |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", |
| pipe_name(pipe), |
| wm->pipe[pipe].plane[PLANE_PRIMARY], |
| wm->pipe[pipe].plane[PLANE_CURSOR], |
| wm->pipe[pipe].plane[PLANE_SPRITE0], |
| wm->pipe[pipe].plane[PLANE_SPRITE1]); |
| } |
| |
| drm_dbg_kms(&dev_priv->drm, |
| "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", |
| wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); |
| } |
| |
| void vlv_wm_sanitize(struct drm_i915_private *dev_priv) |
| { |
| struct intel_plane *plane; |
| struct intel_crtc *crtc; |
| |
| mutex_lock(&dev_priv->wm.wm_mutex); |
| |
| for_each_intel_plane(&dev_priv->drm, plane) { |
| struct intel_crtc *crtc = |
| intel_crtc_for_pipe(dev_priv, plane->pipe); |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| struct intel_plane_state *plane_state = |
| to_intel_plane_state(plane->base.state); |
| struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; |
| const struct vlv_fifo_state *fifo_state = |
| &crtc_state->wm.vlv.fifo_state; |
| enum plane_id plane_id = plane->id; |
| int level; |
| |
| if (plane_state->uapi.visible) |
| continue; |
| |
| for (level = 0; level < wm_state->num_levels; level++) { |
| struct g4x_pipe_wm *raw = |
| &crtc_state->wm.vlv.raw[level]; |
| |
| raw->plane[plane_id] = 0; |
| |
| wm_state->wm[level].plane[plane_id] = |
| vlv_invert_wm_value(raw->plane[plane_id], |
| fifo_state->plane[plane_id]); |
| } |
| } |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) { |
| struct intel_crtc_state *crtc_state = |
| to_intel_crtc_state(crtc->base.state); |
| |
| crtc_state->wm.vlv.intermediate = |
| crtc_state->wm.vlv.optimal; |
| crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; |
| } |
| |
| vlv_program_watermarks(dev_priv); |
| |
| mutex_unlock(&dev_priv->wm.wm_mutex); |
| } |
| |
| /* |
| * FIXME should probably kill this and improve |
| * the real watermark readout/sanitation instead |
| */ |
| static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) |
| { |
| intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN); |
| intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN); |
| intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN); |
| |
| /* |
| * Don't touch WM1S_LP_EN here. |
| * Doing so could cause underruns. |
| */ |
| } |
| |
| void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv) |
| { |
| struct ilk_wm_values *hw = &dev_priv->wm.hw; |
| struct intel_crtc *crtc; |
| |
| ilk_init_lp_watermarks(dev_priv); |
| |
| for_each_intel_crtc(&dev_priv->drm, crtc) |
| ilk_pipe_wm_get_hw_state(crtc); |
| |
| hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK); |
| hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK); |
| hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK); |
| |
| hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK); |
| if (DISPLAY_VER(dev_priv) >= 7) { |
| hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB); |
| hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB); |
| } |
| |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ? |
| INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; |
| else if (IS_IVYBRIDGE(dev_priv)) |
| hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ? |
| INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; |
| |
| hw->enable_fbc_wm = |
| !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS); |
| } |
| |
| void intel_enable_ipc(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| if (!HAS_IPC(dev_priv)) |
| return; |
| |
| val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2); |
| |
| if (dev_priv->ipc_enabled) |
| val |= DISP_IPC_ENABLE; |
| else |
| val &= ~DISP_IPC_ENABLE; |
| |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val); |
| } |
| |
| static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv) |
| { |
| /* Display WA #0477 WaDisableIPC: skl */ |
| if (IS_SKYLAKE(dev_priv)) |
| return false; |
| |
| /* Display WA #1141: SKL:all KBL:all CFL */ |
| if (IS_KABYLAKE(dev_priv) || |
| IS_COFFEELAKE(dev_priv) || |
| IS_COMETLAKE(dev_priv)) |
| return dev_priv->dram_info.symmetric_memory; |
| |
| return true; |
| } |
| |
| void intel_init_ipc(struct drm_i915_private *dev_priv) |
| { |
| if (!HAS_IPC(dev_priv)) |
| return; |
| |
| dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv); |
| |
| intel_enable_ipc(dev_priv); |
| } |
| |
| static void ibx_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* |
| * On Ibex Peak and Cougar Point, we need to disable clock |
| * gating for the panel power sequencer or it will fail to |
| * start up when no ports are active. |
| */ |
| intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); |
| } |
| |
| static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv) |
| { |
| enum pipe pipe; |
| |
| for_each_pipe(dev_priv, pipe) { |
| intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe), |
| intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) | |
| DISPPLANE_TRICKLE_FEED_DISABLE); |
| |
| intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe))); |
| intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe)); |
| } |
| } |
| |
| static void ilk_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; |
| |
| /* |
| * Required for FBC |
| * WaFbcDisableDpfcClockGating:ilk |
| */ |
| dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE | |
| ILK_DPFCUNIT_CLOCK_GATE_DISABLE | |
| ILK_DPFDUNIT_CLOCK_GATE_ENABLE; |
| |
| intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0, |
| MARIUNIT_CLOCK_GATE_DISABLE | |
| SVSMUNIT_CLOCK_GATE_DISABLE); |
| intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1, |
| VFMUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * According to the spec the following bits should be set in |
| * order to enable memory self-refresh |
| * The bit 22/21 of 0x42004 |
| * The bit 5 of 0x42020 |
| * The bit 15 of 0x45000 |
| */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, |
| (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | |
| ILK_DPARB_GATE | ILK_VSDPFD_FULL)); |
| dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE; |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, |
| (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS)); |
| |
| /* |
| * Based on the document from hardware guys the following bits |
| * should be set unconditionally in order to enable FBC. |
| * The bit 22 of 0x42000 |
| * The bit 22 of 0x42004 |
| * The bit 7,8,9 of 0x42020. |
| */ |
| if (IS_IRONLAKE_M(dev_priv)) { |
| /* WaFbcAsynchFlipDisableFbcQueue:ilk */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, |
| intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) | |
| ILK_FBCQ_DIS); |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, |
| intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | |
| ILK_DPARB_GATE); |
| } |
| |
| intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate); |
| |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, |
| intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | |
| ILK_ELPIN_409_SELECT); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| |
| ibx_init_clock_gating(dev_priv); |
| } |
| |
| static void cpt_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| enum pipe pipe; |
| u32 val; |
| |
| /* |
| * On Ibex Peak and Cougar Point, we need to disable clock |
| * gating for the panel power sequencer or it will fail to |
| * start up when no ports are active. |
| */ |
| intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE | |
| PCH_DPLUNIT_CLOCK_GATE_DISABLE | |
| PCH_CPUNIT_CLOCK_GATE_DISABLE); |
| intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) | |
| DPLS_EDP_PPS_FIX_DIS); |
| /* The below fixes the weird display corruption, a few pixels shifted |
| * downward, on (only) LVDS of some HP laptops with IVY. |
| */ |
| for_each_pipe(dev_priv, pipe) { |
| val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe)); |
| val |= TRANS_CHICKEN2_TIMING_OVERRIDE; |
| val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED; |
| if (dev_priv->vbt.fdi_rx_polarity_inverted) |
| val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED; |
| val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER; |
| val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH; |
| intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val); |
| } |
| /* WADP0ClockGatingDisable */ |
| for_each_pipe(dev_priv, pipe) { |
| intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe), |
| TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); |
| } |
| } |
| |
| static void gen6_check_mch_setup(struct drm_i915_private *dev_priv) |
| { |
| u32 tmp; |
| |
| tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD); |
| if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) |
| drm_dbg_kms(&dev_priv->drm, |
| "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n", |
| tmp); |
| } |
| |
| static void gen6_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; |
| |
| intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate); |
| |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, |
| intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | |
| ILK_ELPIN_409_SELECT); |
| |
| intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, |
| intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | |
| GEN6_BLBUNIT_CLOCK_GATE_DISABLE | |
| GEN6_CSUNIT_CLOCK_GATE_DISABLE); |
| |
| /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock |
| * gating disable must be set. Failure to set it results in |
| * flickering pixels due to Z write ordering failures after |
| * some amount of runtime in the Mesa "fire" demo, and Unigine |
| * Sanctuary and Tropics, and apparently anything else with |
| * alpha test or pixel discard. |
| * |
| * According to the spec, bit 11 (RCCUNIT) must also be set, |
| * but we didn't debug actual testcases to find it out. |
| * |
| * WaDisableRCCUnitClockGating:snb |
| * WaDisableRCPBUnitClockGating:snb |
| */ |
| intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2, |
| GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | |
| GEN6_RCCUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * According to the spec the following bits should be |
| * set in order to enable memory self-refresh and fbc: |
| * The bit21 and bit22 of 0x42000 |
| * The bit21 and bit22 of 0x42004 |
| * The bit5 and bit7 of 0x42020 |
| * The bit14 of 0x70180 |
| * The bit14 of 0x71180 |
| * |
| * WaFbcAsynchFlipDisableFbcQueue:snb |
| */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, |
| intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) | |
| ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, |
| intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | |
| ILK_DPARB_GATE | ILK_VSDPFD_FULL); |
| intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, |
| intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) | |
| ILK_DPARBUNIT_CLOCK_GATE_ENABLE | |
| ILK_DPFDUNIT_CLOCK_GATE_ENABLE); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| |
| cpt_init_clock_gating(dev_priv); |
| |
| gen6_check_mch_setup(dev_priv); |
| } |
| |
| static void lpt_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* |
| * TODO: this bit should only be enabled when really needed, then |
| * disabled when not needed anymore in order to save power. |
| */ |
| if (HAS_PCH_LPT_LP(dev_priv)) |
| intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, |
| intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) | |
| PCH_LP_PARTITION_LEVEL_DISABLE); |
| |
| /* WADPOClockGatingDisable:hsw */ |
| intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A), |
| intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) | |
| TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); |
| } |
| |
| static void lpt_suspend_hw(struct drm_i915_private *dev_priv) |
| { |
| if (HAS_PCH_LPT_LP(dev_priv)) { |
| u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D); |
| |
| val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; |
| intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val); |
| } |
| } |
| |
| static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv, |
| int general_prio_credits, |
| int high_prio_credits) |
| { |
| u32 misccpctl; |
| u32 val; |
| |
| /* WaTempDisableDOPClkGating:bdw */ |
| misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL); |
| intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); |
| |
| val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1); |
| val &= ~L3_PRIO_CREDITS_MASK; |
| val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits); |
| val |= L3_HIGH_PRIO_CREDITS(high_prio_credits); |
| intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val); |
| |
| /* |
| * Wait at least 100 clocks before re-enabling clock gating. |
| * See the definition of L3SQCREG1 in BSpec. |
| */ |
| intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1); |
| udelay(1); |
| intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl); |
| } |
| |
| static void icl_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* Wa_1409120013:icl,ehl */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, |
| DPFC_CHICKEN_COMP_DUMMY_PIXEL); |
| |
| /*Wa_14010594013:icl, ehl */ |
| intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1, |
| 0, ICL_DELAY_PMRSP); |
| } |
| |
| static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* Wa_1409120013:tgl,rkl,adl-s,dg1,dg2 */ |
| if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) || |
| IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv) || IS_DG2(dev_priv)) |
| intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, |
| DPFC_CHICKEN_COMP_DUMMY_PIXEL); |
| |
| /* Wa_1409825376:tgl (pre-prod)*/ |
| if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) |
| intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) | |
| TGL_VRH_GATING_DIS); |
| |
| /* Wa_14013723622:tgl,rkl,dg1,adl-s */ |
| if (DISPLAY_VER(dev_priv) == 12) |
| intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY, |
| CLKREQ_POLICY_MEM_UP_OVRD, 0); |
| } |
| |
| static void adlp_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen12lp_init_clock_gating(dev_priv); |
| |
| /* Wa_22011091694:adlp */ |
| intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS); |
| } |
| |
| static void dg1_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen12lp_init_clock_gating(dev_priv); |
| |
| /* Wa_1409836686:dg1[a0] */ |
| if (IS_DG1_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0)) |
| intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) | |
| DPT_GATING_DIS); |
| } |
| |
| static void xehpsdv_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* Wa_22010146351:xehpsdv */ |
| if (IS_XEHPSDV_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0)) |
| intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGR_DIS); |
| } |
| |
| static void dg2_init_clock_gating(struct drm_i915_private *i915) |
| { |
| /* Wa_22010954014:dg2_g10 */ |
| if (IS_DG2_G10(i915)) |
| intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0, |
| SGSI_SIDECLK_DIS); |
| |
| /* |
| * Wa_14010733611:dg2_g10 |
| * Wa_22010146351:dg2_g10 |
| */ |
| if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) |
| intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0, |
| SGR_DIS | SGGI_DIS); |
| } |
| |
| static void cnp_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| if (!HAS_PCH_CNP(dev_priv)) |
| return; |
| |
| /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */ |
| intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) | |
| CNP_PWM_CGE_GATING_DISABLE); |
| } |
| |
| static void cfl_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| cnp_init_clock_gating(dev_priv); |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WAC6entrylatency:cfl */ |
| intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) | |
| FBC_LLC_FULLY_OPEN); |
| |
| /* |
| * WaFbcTurnOffFbcWatermark:cfl |
| * Display WA #0562: cfl |
| */ |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS); |
| |
| /* |
| * WaFbcNukeOnHostModify:cfl |
| * Display WA #0873: cfl |
| */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) | |
| DPFC_NUKE_ON_ANY_MODIFICATION); |
| } |
| |
| static void kbl_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WAC6entrylatency:kbl */ |
| intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) | |
| FBC_LLC_FULLY_OPEN); |
| |
| /* WaDisableSDEUnitClockGating:kbl */ |
| if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0)) |
| intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaDisableGamClockGating:kbl */ |
| if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0)) |
| intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | |
| GEN6_GAMUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * WaFbcTurnOffFbcWatermark:kbl |
| * Display WA #0562: kbl |
| */ |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS); |
| |
| /* |
| * WaFbcNukeOnHostModify:kbl |
| * Display WA #0873: kbl |
| */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) | |
| DPFC_NUKE_ON_ANY_MODIFICATION); |
| } |
| |
| static void skl_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| gen9_init_clock_gating(dev_priv); |
| |
| /* WaDisableDopClockGating:skl */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) & |
| ~GEN7_DOP_CLOCK_GATE_ENABLE); |
| |
| /* WAC6entrylatency:skl */ |
| intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) | |
| FBC_LLC_FULLY_OPEN); |
| |
| /* |
| * WaFbcTurnOffFbcWatermark:skl |
| * Display WA #0562: skl |
| */ |
| intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | |
| DISP_FBC_WM_DIS); |
| |
| /* |
| * WaFbcNukeOnHostModify:skl |
| * Display WA #0873: skl |
| */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) | |
| DPFC_NUKE_ON_ANY_MODIFICATION); |
| |
| /* |
| * WaFbcHighMemBwCorruptionAvoidance:skl |
| * Display WA #0883: skl |
| */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) | |
| DPFC_DISABLE_DUMMY0); |
| } |
| |
| static void bdw_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| enum pipe pipe; |
| |
| /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */ |
| intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A), |
| intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) | |
| HSW_FBCQ_DIS); |
| |
| /* WaSwitchSolVfFArbitrationPriority:bdw */ |
| intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); |
| |
| /* WaPsrDPAMaskVBlankInSRD:bdw */ |
| intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1, |
| intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD); |
| |
| for_each_pipe(dev_priv, pipe) { |
| /* WaPsrDPRSUnmaskVBlankInSRD:bdw */ |
| intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe), |
| intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) | |
| BDW_DPRS_MASK_VBLANK_SRD); |
| } |
| |
| /* WaVSRefCountFullforceMissDisable:bdw */ |
| /* WaDSRefCountFullforceMissDisable:bdw */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE, |
| intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) & |
| ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); |
| |
| intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL, |
| _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); |
| |
| /* WaDisableSDEUnitClockGating:bdw */ |
| intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaProgramL3SqcReg1Default:bdw */ |
| gen8_set_l3sqc_credits(dev_priv, 30, 2); |
| |
| /* WaKVMNotificationOnConfigChange:bdw */ |
| intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1) |
| | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT); |
| |
| lpt_init_clock_gating(dev_priv); |
| |
| /* WaDisableDopClockGating:bdw |
| * |
| * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP |
| * clock gating. |
| */ |
| intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, |
| intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE); |
| } |
| |
| static void hsw_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */ |
| intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A), |
| intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) | |
| HSW_FBCQ_DIS); |
| |
| /* This is required by WaCatErrorRejectionIssue:hsw */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, |
| intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | |
| GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); |
| |
| /* WaSwitchSolVfFArbitrationPriority:hsw */ |
| intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); |
| |
| lpt_init_clock_gating(dev_priv); |
| } |
| |
| static void ivb_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| u32 snpcr; |
| |
| intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaFbcAsynchFlipDisableFbcQueue:ivb */ |
| intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, |
| intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) | |
| ILK_FBCQ_DIS); |
| |
| /* WaDisableBackToBackFlipFix:ivb */ |
| intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3, |
| CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | |
| CHICKEN3_DGMG_DONE_FIX_DISABLE); |
| |
| if (IS_IVB_GT1(dev_priv)) |
| intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| else { |
| /* must write both registers */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| } |
| |
| /* |
| * According to the spec, bit 13 (RCZUNIT) must be set on IVB. |
| * This implements the WaDisableRCZUnitClockGating:ivb workaround. |
| */ |
| intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2, |
| GEN6_RCZUNIT_CLOCK_GATE_DISABLE); |
| |
| /* This is required by WaCatErrorRejectionIssue:ivb */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, |
| intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | |
| GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| |
| snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR); |
| snpcr &= ~GEN6_MBC_SNPCR_MASK; |
| snpcr |= GEN6_MBC_SNPCR_MED; |
| intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr); |
| |
| if (!HAS_PCH_NOP(dev_priv)) |
| cpt_init_clock_gating(dev_priv); |
| |
| gen6_check_mch_setup(dev_priv); |
| } |
| |
| static void vlv_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* WaDisableBackToBackFlipFix:vlv */ |
| intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3, |
| CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | |
| CHICKEN3_DGMG_DONE_FIX_DISABLE); |
| |
| /* WaDisableDopClockGating:vlv */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2, |
| _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); |
| |
| /* This is required by WaCatErrorRejectionIssue:vlv */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, |
| intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | |
| GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); |
| |
| /* |
| * According to the spec, bit 13 (RCZUNIT) must be set on IVB. |
| * This implements the WaDisableRCZUnitClockGating:vlv workaround. |
| */ |
| intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2, |
| GEN6_RCZUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaDisableL3Bank2xClockGate:vlv |
| * Disabling L3 clock gating- MMIO 940c[25] = 1 |
| * Set bit 25, to disable L3_BANK_2x_CLK_GATING */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4, |
| intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE); |
| |
| /* |
| * WaDisableVLVClockGating_VBIIssue:vlv |
| * Disable clock gating on th GCFG unit to prevent a delay |
| * in the reporting of vblank events. |
| */ |
| intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS); |
| } |
| |
| static void chv_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| /* WaVSRefCountFullforceMissDisable:chv */ |
| /* WaDSRefCountFullforceMissDisable:chv */ |
| intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE, |
| intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) & |
| ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); |
| |
| /* WaDisableSemaphoreAndSyncFlipWait:chv */ |
| intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL, |
| _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); |
| |
| /* WaDisableCSUnitClockGating:chv */ |
| intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | |
| GEN6_CSUNIT_CLOCK_GATE_DISABLE); |
| |
| /* WaDisableSDEUnitClockGating:chv */ |
| intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | |
| GEN8_SDEUNIT_CLOCK_GATE_DISABLE); |
| |
| /* |
| * WaProgramL3SqcReg1Default:chv |
| * See gfxspecs/Related Documents/Performance Guide/ |
| * LSQC Setting Recommendations. |
| */ |
| gen8_set_l3sqc_credits(dev_priv, 38, 2); |
| } |
| |
| static void g4x_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| u32 dspclk_gate; |
| |
| intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0); |
| intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | |
| GS_UNIT_CLOCK_GATE_DISABLE | |
| CL_UNIT_CLOCK_GATE_DISABLE); |
| intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0); |
| dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | |
| OVRUNIT_CLOCK_GATE_DISABLE | |
| OVCUNIT_CLOCK_GATE_DISABLE; |
| if (IS_GM45(dev_priv)) |
| dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; |
| intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate); |
| |
| g4x_disable_trickle_feed(dev_priv); |
| } |
| |
| static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| struct intel_uncore *uncore = &dev_priv->uncore; |
| |
| intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); |
| intel_uncore_write(uncore, RENCLK_GATE_D2, 0); |
| intel_uncore_write(uncore, DSPCLK_GATE_D, 0); |
| intel_uncore_write(uncore, RAMCLK_GATE_D, 0); |
| intel_uncore_write16(uncore, DEUC, 0); |
| intel_uncore_write(uncore, |
| MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); |
| } |
| |
| static void i965g_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | |
| I965_RCC_CLOCK_GATE_DISABLE | |
| I965_RCPB_CLOCK_GATE_DISABLE | |
| I965_ISC_CLOCK_GATE_DISABLE | |
| I965_FBC_CLOCK_GATE_DISABLE); |
| intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0); |
| intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); |
| } |
| |
| static void gen3_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE); |
| |
| dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | |
| DSTATE_DOT_CLOCK_GATING; |
| intel_uncore_write(&dev_priv->uncore, D_STATE, dstate); |
| |
| if (IS_PINEVIEW(dev_priv)) |
| intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); |
| |
| /* IIR "flip pending" means done if this bit is set */ |
| intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE)); |
| |
| /* interrupts should cause a wake up from C3 */ |
| intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN)); |
| |
| /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ |
| intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); |
| |
| intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, |
| _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); |
| } |
| |
| static void i85x_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); |
| |
| /* interrupts should cause a wake up from C3 */ |
| intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) | |
| _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE)); |
| |
| intel_uncore_write(&dev_priv->uncore, MEM_MODE, |
| _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE)); |
| |
| /* |
| * Have FBC ignore 3D activity since we use software |
| * render tracking, and otherwise a pure 3D workload |
| * (even if it just renders a single frame and then does |
| * abosultely nothing) would not allow FBC to recompress |
| * until a 2D blit occurs. |
| */ |
| intel_uncore_write(&dev_priv->uncore, SCPD0, |
| _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D)); |
| } |
| |
| static void i830_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| intel_uncore_write(&dev_priv->uncore, MEM_MODE, |
| _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) | |
| _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE)); |
| } |
| |
| void intel_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| dev_priv->clock_gating_funcs->init_clock_gating(dev_priv); |
| } |
| |
| void intel_suspend_hw(struct drm_i915_private *dev_priv) |
| { |
| if (HAS_PCH_LPT(dev_priv)) |
| lpt_suspend_hw(dev_priv); |
| } |
| |
| static void nop_init_clock_gating(struct drm_i915_private *dev_priv) |
| { |
| drm_dbg_kms(&dev_priv->drm, |
| "No clock gating settings or workarounds applied.\n"); |
| } |
| |
| #define CG_FUNCS(platform) \ |
| static const struct drm_i915_clock_gating_funcs platform##_clock_gating_funcs = { \ |
| .init_clock_gating = platform##_init_clock_gating, \ |
| } |
| |
| CG_FUNCS(dg2); |
| CG_FUNCS(xehpsdv); |
| CG_FUNCS(adlp); |
| CG_FUNCS(dg1); |
| CG_FUNCS(gen12lp); |
| CG_FUNCS(icl); |
| CG_FUNCS(cfl); |
| CG_FUNCS(skl); |
| CG_FUNCS(kbl); |
| CG_FUNCS(bxt); |
| CG_FUNCS(glk); |
| CG_FUNCS(bdw); |
| CG_FUNCS(chv); |
| CG_FUNCS(hsw); |
| CG_FUNCS(ivb); |
| CG_FUNCS(vlv); |
| CG_FUNCS(gen6); |
| CG_FUNCS(ilk); |
| CG_FUNCS(g4x); |
| CG_FUNCS(i965gm); |
| CG_FUNCS(i965g); |
| CG_FUNCS(gen3); |
| CG_FUNCS(i85x); |
| CG_FUNCS(i830); |
| CG_FUNCS(nop); |
| #undef CG_FUNCS |
| |
| /** |
| * intel_init_clock_gating_hooks - setup the clock gating hooks |
| * @dev_priv: device private |
| * |
| * Setup the hooks that configure which clocks of a given platform can be |
| * gated and also apply various GT and display specific workarounds for these |
| * platforms. Note that some GT specific workarounds are applied separately |
| * when GPU contexts or batchbuffers start their execution. |
| */ |
| void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv) |
| { |
| if (IS_DG2(dev_priv)) |
| dev_priv->clock_gating_funcs = &dg2_clock_gating_funcs; |
| else if (IS_XEHPSDV(dev_priv)) |
| dev_priv->clock_gating_funcs = &xehpsdv_clock_gating_funcs; |
| else if (IS_ALDERLAKE_P(dev_priv)) |
| dev_priv->clock_gating_funcs = &adlp_clock_gating_funcs; |
| else if (IS_DG1(dev_priv)) |
| dev_priv->clock_gating_funcs = &dg1_clock_gating_funcs; |
| else if (GRAPHICS_VER(dev_priv) == 12) |
| dev_priv->clock_gating_funcs = &gen12lp_clock_gating_funcs; |
| else if (GRAPHICS_VER(dev_priv) == 11) |
| dev_priv->clock_gating_funcs = &icl_clock_gating_funcs; |
| else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) |
| dev_priv->clock_gating_funcs = &cfl_clock_gating_funcs; |
| else if (IS_SKYLAKE(dev_priv)) |
| dev_priv->clock_gating_funcs = &skl_clock_gating_funcs; |
| else if (IS_KABYLAKE(dev_priv)) |
| dev_priv->clock_gating_funcs = &kbl_clock_gating_funcs; |
| else if (IS_BROXTON(dev_priv)) |
| dev_priv->clock_gating_funcs = &bxt_clock_gating_funcs; |
| else if (IS_GEMINILAKE(dev_priv)) |
| dev_priv->clock_gating_funcs = &glk_clock_gating_funcs; |
| else if (IS_BROADWELL(dev_priv)) |
| dev_priv->clock_gating_funcs = &bdw_clock_gating_funcs; |
| else if (IS_CHERRYVIEW(dev_priv)) |
| dev_priv->clock_gating_funcs = &chv_clock_gating_funcs; |
| else if (IS_HASWELL(dev_priv)) |
| dev_priv->clock_gating_funcs = &hsw_clock_gating_funcs; |
| else if (IS_IVYBRIDGE(dev_priv)) |
| dev_priv->clock_gating_funcs = &ivb_clock_gating_funcs; |
| else if (IS_VALLEYVIEW(dev_priv)) |
| dev_priv->clock_gating_funcs = &vlv_clock_gating_funcs; |
| else if (GRAPHICS_VER(dev_priv) == 6) |
| dev_priv->clock_gating_funcs = &gen6_clock_gating_funcs; |
| else if (GRAPHICS_VER(dev_priv) == 5) |
| dev_priv->clock_gating_funcs = &ilk_clock_gating_funcs; |
| else if (IS_G4X(dev_priv)) |
| dev_priv->clock_gating_funcs = &g4x_clock_gating_funcs; |
| else if (IS_I965GM(dev_priv)) |
| dev_priv->clock_gating_funcs = &i965gm_clock_gating_funcs; |
| else if (IS_I965G(dev_priv)) |
| dev_priv->clock_gating_funcs = &i965g_clock_gating_funcs; |
| else if (GRAPHICS_VER(dev_priv) == 3) |
| dev_priv->clock_gating_funcs = &gen3_clock_gating_funcs; |
| else if (IS_I85X(dev_priv) || IS_I865G(dev_priv)) |
| dev_priv->clock_gating_funcs = &i85x_clock_gating_funcs; |
| else if (GRAPHICS_VER(dev_priv) == 2) |
| dev_priv->clock_gating_funcs = &i830_clock_gating_funcs; |
| else { |
| MISSING_CASE(INTEL_DEVID(dev_priv)); |
| dev_priv->clock_gating_funcs = &nop_clock_gating_funcs; |
| } |
| } |
| |
| static const struct drm_i915_wm_disp_funcs skl_wm_funcs = { |
| .compute_global_watermarks = skl_compute_wm, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs ilk_wm_funcs = { |
| .compute_pipe_wm = ilk_compute_pipe_wm, |
| .compute_intermediate_wm = ilk_compute_intermediate_wm, |
| .initial_watermarks = ilk_initial_watermarks, |
| .optimize_watermarks = ilk_optimize_watermarks, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs vlv_wm_funcs = { |
| .compute_pipe_wm = vlv_compute_pipe_wm, |
| .compute_intermediate_wm = vlv_compute_intermediate_wm, |
| .initial_watermarks = vlv_initial_watermarks, |
| .optimize_watermarks = vlv_optimize_watermarks, |
| .atomic_update_watermarks = vlv_atomic_update_fifo, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs g4x_wm_funcs = { |
| .compute_pipe_wm = g4x_compute_pipe_wm, |
| .compute_intermediate_wm = g4x_compute_intermediate_wm, |
| .initial_watermarks = g4x_initial_watermarks, |
| .optimize_watermarks = g4x_optimize_watermarks, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs pnv_wm_funcs = { |
| .update_wm = pnv_update_wm, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs i965_wm_funcs = { |
| .update_wm = i965_update_wm, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs i9xx_wm_funcs = { |
| .update_wm = i9xx_update_wm, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs i845_wm_funcs = { |
| .update_wm = i845_update_wm, |
| }; |
| |
| static const struct drm_i915_wm_disp_funcs nop_funcs = { |
| }; |
| |
| /* Set up chip specific power management-related functions */ |
| void intel_init_pm(struct drm_i915_private *dev_priv) |
| { |
| /* For cxsr */ |
| if (IS_PINEVIEW(dev_priv)) |
| pnv_get_mem_freq(dev_priv); |
| else if (GRAPHICS_VER(dev_priv) == 5) |
| ilk_get_mem_freq(dev_priv); |
| |
| if (intel_has_sagv(dev_priv)) |
| skl_setup_sagv_block_time(dev_priv); |
| |
| /* For FIFO watermark updates */ |
| if (DISPLAY_VER(dev_priv) >= 9) { |
| skl_setup_wm_latency(dev_priv); |
| dev_priv->wm_disp = &skl_wm_funcs; |
| } else if (HAS_PCH_SPLIT(dev_priv)) { |
| ilk_setup_wm_latency(dev_priv); |
| |
| if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] && |
| dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) || |
| (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] && |
| dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) { |
| dev_priv->wm_disp = &ilk_wm_funcs; |
| } else { |
| drm_dbg_kms(&dev_priv->drm, |
| "Failed to read display plane latency. " |
| "Disable CxSR\n"); |
| dev_priv->wm_disp = &nop_funcs; |
| } |
| } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| vlv_setup_wm_latency(dev_priv); |
| dev_priv->wm_disp = &vlv_wm_funcs; |
| } else if (IS_G4X(dev_priv)) { |
| g4x_setup_wm_latency(dev_priv); |
| dev_priv->wm_disp = &g4x_wm_funcs; |
| } else if (IS_PINEVIEW(dev_priv)) { |
| if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv), |
| dev_priv->is_ddr3, |
| dev_priv->fsb_freq, |
| dev_priv->mem_freq)) { |
| drm_info(&dev_priv->drm, |
| "failed to find known CxSR latency " |
| "(found ddr%s fsb freq %d, mem freq %d), " |
| "disabling CxSR\n", |
| (dev_priv->is_ddr3 == 1) ? "3" : "2", |
| dev_priv->fsb_freq, dev_priv->mem_freq); |
| /* Disable CxSR and never update its watermark again */ |
| intel_set_memory_cxsr(dev_priv, false); |
| dev_priv->wm_disp = &nop_funcs; |
| } else |
| dev_priv->wm_disp = &pnv_wm_funcs; |
| } else if (DISPLAY_VER(dev_priv) == 4) { |
| dev_priv->wm_disp = &i965_wm_funcs; |
| } else if (DISPLAY_VER(dev_priv) == 3) { |
| dev_priv->wm_disp = &i9xx_wm_funcs; |
| } else if (DISPLAY_VER(dev_priv) == 2) { |
| if (INTEL_NUM_PIPES(dev_priv) == 1) |
| dev_priv->wm_disp = &i845_wm_funcs; |
| else |
| dev_priv->wm_disp = &i9xx_wm_funcs; |
| } else { |
| drm_err(&dev_priv->drm, |
| "unexpected fall-through in %s\n", __func__); |
| dev_priv->wm_disp = &nop_funcs; |
| } |
| } |
| |
| void intel_pm_setup(struct drm_i915_private *dev_priv) |
| { |
| dev_priv->runtime_pm.suspended = false; |
| atomic_set(&dev_priv->runtime_pm.wakeref_count, 0); |
| } |
| |
| static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj) |
| { |
| struct intel_dbuf_state *dbuf_state; |
| |
| dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL); |
| if (!dbuf_state) |
| return NULL; |
| |
| return &dbuf_state->base; |
| } |
| |
| static void intel_dbuf_destroy_state(struct intel_global_obj *obj, |
| struct intel_global_state *state) |
| { |
| kfree(state); |
| } |
| |
| static const struct intel_global_state_funcs intel_dbuf_funcs = { |
| .atomic_duplicate_state = intel_dbuf_duplicate_state, |
| .atomic_destroy_state = intel_dbuf_destroy_state, |
| }; |
| |
| struct intel_dbuf_state * |
| intel_atomic_get_dbuf_state(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| struct intel_global_state *dbuf_state; |
| |
| dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj); |
| if (IS_ERR(dbuf_state)) |
| return ERR_CAST(dbuf_state); |
| |
| return to_intel_dbuf_state(dbuf_state); |
| } |
| |
| int intel_dbuf_init(struct drm_i915_private *dev_priv) |
| { |
| struct intel_dbuf_state *dbuf_state; |
| |
| dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL); |
| if (!dbuf_state) |
| return -ENOMEM; |
| |
| intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj, |
| &dbuf_state->base, &intel_dbuf_funcs); |
| |
| return 0; |
| } |
| |
| /* |
| * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before |
| * update the request state of all DBUS slices. |
| */ |
| static void update_mbus_pre_enable(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| u32 mbus_ctl, dbuf_min_tracker_val; |
| enum dbuf_slice slice; |
| const struct intel_dbuf_state *dbuf_state = |
| intel_atomic_get_new_dbuf_state(state); |
| |
| if (!IS_ALDERLAKE_P(dev_priv)) |
| return; |
| |
| /* |
| * TODO: Implement vblank synchronized MBUS joining changes. |
| * Must be properly coordinated with dbuf reprogramming. |
| */ |
| if (dbuf_state->joined_mbus) { |
| mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN | |
| MBUS_JOIN_PIPE_SELECT_NONE; |
| dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3); |
| } else { |
| mbus_ctl = MBUS_HASHING_MODE_2x2 | |
| MBUS_JOIN_PIPE_SELECT_NONE; |
| dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1); |
| } |
| |
| intel_de_rmw(dev_priv, MBUS_CTL, |
| MBUS_HASHING_MODE_MASK | MBUS_JOIN | |
| MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl); |
| |
| for_each_dbuf_slice(dev_priv, slice) |
| intel_de_rmw(dev_priv, DBUF_CTL_S(slice), |
| DBUF_MIN_TRACKER_STATE_SERVICE_MASK, |
| dbuf_min_tracker_val); |
| } |
| |
| void intel_dbuf_pre_plane_update(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| const struct intel_dbuf_state *new_dbuf_state = |
| intel_atomic_get_new_dbuf_state(state); |
| const struct intel_dbuf_state *old_dbuf_state = |
| intel_atomic_get_old_dbuf_state(state); |
| |
| if (!new_dbuf_state || |
| ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices) |
| && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))) |
| return; |
| |
| WARN_ON(!new_dbuf_state->base.changed); |
| |
| update_mbus_pre_enable(state); |
| gen9_dbuf_slices_update(dev_priv, |
| old_dbuf_state->enabled_slices | |
| new_dbuf_state->enabled_slices); |
| } |
| |
| void intel_dbuf_post_plane_update(struct intel_atomic_state *state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(state->base.dev); |
| const struct intel_dbuf_state *new_dbuf_state = |
| intel_atomic_get_new_dbuf_state(state); |
| const struct intel_dbuf_state *old_dbuf_state = |
| intel_atomic_get_old_dbuf_state(state); |
| |
| if (!new_dbuf_state || |
| ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices) |
| && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))) |
| return; |
| |
| WARN_ON(!new_dbuf_state->base.changed); |
| |
| gen9_dbuf_slices_update(dev_priv, |
| new_dbuf_state->enabled_slices); |
| } |