| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * linux/boot/head.S |
| * |
| * Copyright (C) 1991, 1992, 1993 Linus Torvalds |
| */ |
| |
| /* |
| * head.S contains the 32-bit startup code. |
| * |
| * NOTE!!! Startup happens at absolute address 0x00001000, which is also where |
| * the page directory will exist. The startup code will be overwritten by |
| * the page directory. [According to comments etc elsewhere on a compressed |
| * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC] |
| * |
| * Page 0 is deliberately kept safe, since System Management Mode code in |
| * laptops may need to access the BIOS data stored there. This is also |
| * useful for future device drivers that either access the BIOS via VM86 |
| * mode. |
| */ |
| |
| /* |
| * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996 |
| */ |
| .code32 |
| .text |
| |
| #include <linux/init.h> |
| #include <linux/linkage.h> |
| #include <asm/segment.h> |
| #include <asm/boot.h> |
| #include <asm/msr.h> |
| #include <asm/processor-flags.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/bootparam.h> |
| #include <asm/desc_defs.h> |
| #include <asm/trapnr.h> |
| #include "pgtable.h" |
| |
| /* |
| * Locally defined symbols should be marked hidden: |
| */ |
| .hidden _bss |
| .hidden _ebss |
| .hidden _end |
| |
| __HEAD |
| |
| /* |
| * This macro gives the relative virtual address of X, i.e. the offset of X |
| * from startup_32. This is the same as the link-time virtual address of X, |
| * since startup_32 is at 0, but defining it this way tells the |
| * assembler/linker that we do not want the actual run-time address of X. This |
| * prevents the linker from trying to create unwanted run-time relocation |
| * entries for the reference when the compressed kernel is linked as PIE. |
| * |
| * A reference X(%reg) will result in the link-time VA of X being stored with |
| * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that |
| * adds the 64-bit base address where the kernel is loaded. |
| * |
| * Replacing it with (X-startup_32)(%reg) results in the offset being stored, |
| * and no run-time relocation. |
| * |
| * The macro should be used as a displacement with a base register containing |
| * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate |
| * [$ rva(X)]. |
| * |
| * This macro can only be used from within the .head.text section, since the |
| * expression requires startup_32 to be in the same section as the code being |
| * assembled. |
| */ |
| #define rva(X) ((X) - startup_32) |
| |
| .code32 |
| SYM_FUNC_START(startup_32) |
| /* |
| * 32bit entry is 0 and it is ABI so immutable! |
| * If we come here directly from a bootloader, |
| * kernel(text+data+bss+brk) ramdisk, zero_page, command line |
| * all need to be under the 4G limit. |
| */ |
| cld |
| cli |
| |
| /* |
| * Calculate the delta between where we were compiled to run |
| * at and where we were actually loaded at. This can only be done |
| * with a short local call on x86. Nothing else will tell us what |
| * address we are running at. The reserved chunk of the real-mode |
| * data at 0x1e4 (defined as a scratch field) are used as the stack |
| * for this calculation. Only 4 bytes are needed. |
| */ |
| leal (BP_scratch+4)(%esi), %esp |
| call 1f |
| 1: popl %ebp |
| subl $ rva(1b), %ebp |
| |
| /* Load new GDT with the 64bit segments using 32bit descriptor */ |
| leal rva(gdt)(%ebp), %eax |
| movl %eax, 2(%eax) |
| lgdt (%eax) |
| |
| /* Load segment registers with our descriptors */ |
| movl $__BOOT_DS, %eax |
| movl %eax, %ds |
| movl %eax, %es |
| movl %eax, %fs |
| movl %eax, %gs |
| movl %eax, %ss |
| |
| /* Setup a stack and load CS from current GDT */ |
| leal rva(boot_stack_end)(%ebp), %esp |
| |
| pushl $__KERNEL32_CS |
| leal rva(1f)(%ebp), %eax |
| pushl %eax |
| lretl |
| 1: |
| |
| /* Setup Exception handling for SEV-ES */ |
| call startup32_load_idt |
| |
| /* Make sure cpu supports long mode. */ |
| call verify_cpu |
| testl %eax, %eax |
| jnz .Lno_longmode |
| |
| /* |
| * Compute the delta between where we were compiled to run at |
| * and where the code will actually run at. |
| * |
| * %ebp contains the address we are loaded at by the boot loader and %ebx |
| * contains the address where we should move the kernel image temporarily |
| * for safe in-place decompression. |
| */ |
| |
| #ifdef CONFIG_RELOCATABLE |
| movl %ebp, %ebx |
| |
| #ifdef CONFIG_EFI_STUB |
| /* |
| * If we were loaded via the EFI LoadImage service, startup_32 will be at an |
| * offset to the start of the space allocated for the image. efi_pe_entry will |
| * set up image_offset to tell us where the image actually starts, so that we |
| * can use the full available buffer. |
| * image_offset = startup_32 - image_base |
| * Otherwise image_offset will be zero and has no effect on the calculations. |
| */ |
| subl rva(image_offset)(%ebp), %ebx |
| #endif |
| |
| movl BP_kernel_alignment(%esi), %eax |
| decl %eax |
| addl %eax, %ebx |
| notl %eax |
| andl %eax, %ebx |
| cmpl $LOAD_PHYSICAL_ADDR, %ebx |
| jae 1f |
| #endif |
| movl $LOAD_PHYSICAL_ADDR, %ebx |
| 1: |
| |
| /* Target address to relocate to for decompression */ |
| addl BP_init_size(%esi), %ebx |
| subl $ rva(_end), %ebx |
| |
| /* |
| * Prepare for entering 64 bit mode |
| */ |
| |
| /* Enable PAE mode */ |
| movl %cr4, %eax |
| orl $X86_CR4_PAE, %eax |
| movl %eax, %cr4 |
| |
| /* |
| * Build early 4G boot pagetable |
| */ |
| /* |
| * If SEV is active then set the encryption mask in the page tables. |
| * This will insure that when the kernel is copied and decompressed |
| * it will be done so encrypted. |
| */ |
| call get_sev_encryption_bit |
| xorl %edx, %edx |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| testl %eax, %eax |
| jz 1f |
| subl $32, %eax /* Encryption bit is always above bit 31 */ |
| bts %eax, %edx /* Set encryption mask for page tables */ |
| /* |
| * Mark SEV as active in sev_status so that startup32_check_sev_cbit() |
| * will do a check. The sev_status memory will be fully initialized |
| * with the contents of MSR_AMD_SEV_STATUS later in |
| * set_sev_encryption_mask(). For now it is sufficient to know that SEV |
| * is active. |
| */ |
| movl $1, rva(sev_status)(%ebp) |
| 1: |
| #endif |
| |
| /* Initialize Page tables to 0 */ |
| leal rva(pgtable)(%ebx), %edi |
| xorl %eax, %eax |
| movl $(BOOT_INIT_PGT_SIZE/4), %ecx |
| rep stosl |
| |
| /* Build Level 4 */ |
| leal rva(pgtable + 0)(%ebx), %edi |
| leal 0x1007 (%edi), %eax |
| movl %eax, 0(%edi) |
| addl %edx, 4(%edi) |
| |
| /* Build Level 3 */ |
| leal rva(pgtable + 0x1000)(%ebx), %edi |
| leal 0x1007(%edi), %eax |
| movl $4, %ecx |
| 1: movl %eax, 0x00(%edi) |
| addl %edx, 0x04(%edi) |
| addl $0x00001000, %eax |
| addl $8, %edi |
| decl %ecx |
| jnz 1b |
| |
| /* Build Level 2 */ |
| leal rva(pgtable + 0x2000)(%ebx), %edi |
| movl $0x00000183, %eax |
| movl $2048, %ecx |
| 1: movl %eax, 0(%edi) |
| addl %edx, 4(%edi) |
| addl $0x00200000, %eax |
| addl $8, %edi |
| decl %ecx |
| jnz 1b |
| |
| /* Enable the boot page tables */ |
| leal rva(pgtable)(%ebx), %eax |
| movl %eax, %cr3 |
| |
| /* Enable Long mode in EFER (Extended Feature Enable Register) */ |
| movl $MSR_EFER, %ecx |
| rdmsr |
| btsl $_EFER_LME, %eax |
| wrmsr |
| |
| /* After gdt is loaded */ |
| xorl %eax, %eax |
| lldt %ax |
| movl $__BOOT_TSS, %eax |
| ltr %ax |
| |
| /* |
| * Setup for the jump to 64bit mode |
| * |
| * When the jump is performed we will be in long mode but |
| * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1 |
| * (and in turn EFER.LMA = 1). To jump into 64bit mode we use |
| * the new gdt/idt that has __KERNEL_CS with CS.L = 1. |
| * We place all of the values on our mini stack so lret can |
| * used to perform that far jump. |
| */ |
| leal rva(startup_64)(%ebp), %eax |
| #ifdef CONFIG_EFI_MIXED |
| movl rva(efi32_boot_args)(%ebp), %edi |
| testl %edi, %edi |
| jz 1f |
| leal rva(efi64_stub_entry)(%ebp), %eax |
| movl rva(efi32_boot_args+4)(%ebp), %esi |
| movl rva(efi32_boot_args+8)(%ebp), %edx // saved bootparams pointer |
| testl %edx, %edx |
| jnz 1f |
| /* |
| * efi_pe_entry uses MS calling convention, which requires 32 bytes of |
| * shadow space on the stack even if all arguments are passed in |
| * registers. We also need an additional 8 bytes for the space that |
| * would be occupied by the return address, and this also results in |
| * the correct stack alignment for entry. |
| */ |
| subl $40, %esp |
| leal rva(efi_pe_entry)(%ebp), %eax |
| movl %edi, %ecx // MS calling convention |
| movl %esi, %edx |
| 1: |
| #endif |
| /* Check if the C-bit position is correct when SEV is active */ |
| call startup32_check_sev_cbit |
| |
| pushl $__KERNEL_CS |
| pushl %eax |
| |
| /* Enter paged protected Mode, activating Long Mode */ |
| movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */ |
| movl %eax, %cr0 |
| |
| /* Jump from 32bit compatibility mode into 64bit mode. */ |
| lret |
| SYM_FUNC_END(startup_32) |
| |
| #ifdef CONFIG_EFI_MIXED |
| .org 0x190 |
| SYM_FUNC_START(efi32_stub_entry) |
| add $0x4, %esp /* Discard return address */ |
| popl %ecx |
| popl %edx |
| popl %esi |
| |
| call 1f |
| 1: pop %ebp |
| subl $ rva(1b), %ebp |
| |
| movl %esi, rva(efi32_boot_args+8)(%ebp) |
| SYM_INNER_LABEL(efi32_pe_stub_entry, SYM_L_LOCAL) |
| movl %ecx, rva(efi32_boot_args)(%ebp) |
| movl %edx, rva(efi32_boot_args+4)(%ebp) |
| movb $0, rva(efi_is64)(%ebp) |
| |
| /* Save firmware GDTR and code/data selectors */ |
| sgdtl rva(efi32_boot_gdt)(%ebp) |
| movw %cs, rva(efi32_boot_cs)(%ebp) |
| movw %ds, rva(efi32_boot_ds)(%ebp) |
| |
| /* Store firmware IDT descriptor */ |
| sidtl rva(efi32_boot_idt)(%ebp) |
| |
| /* Disable paging */ |
| movl %cr0, %eax |
| btrl $X86_CR0_PG_BIT, %eax |
| movl %eax, %cr0 |
| |
| jmp startup_32 |
| SYM_FUNC_END(efi32_stub_entry) |
| #endif |
| |
| .code64 |
| .org 0x200 |
| SYM_CODE_START(startup_64) |
| /* |
| * 64bit entry is 0x200 and it is ABI so immutable! |
| * We come here either from startup_32 or directly from a |
| * 64bit bootloader. |
| * If we come here from a bootloader, kernel(text+data+bss+brk), |
| * ramdisk, zero_page, command line could be above 4G. |
| * We depend on an identity mapped page table being provided |
| * that maps our entire kernel(text+data+bss+brk), zero page |
| * and command line. |
| */ |
| |
| cld |
| cli |
| |
| /* Setup data segments. */ |
| xorl %eax, %eax |
| movl %eax, %ds |
| movl %eax, %es |
| movl %eax, %ss |
| movl %eax, %fs |
| movl %eax, %gs |
| |
| /* |
| * Compute the decompressed kernel start address. It is where |
| * we were loaded at aligned to a 2M boundary. %rbp contains the |
| * decompressed kernel start address. |
| * |
| * If it is a relocatable kernel then decompress and run the kernel |
| * from load address aligned to 2MB addr, otherwise decompress and |
| * run the kernel from LOAD_PHYSICAL_ADDR |
| * |
| * We cannot rely on the calculation done in 32-bit mode, since we |
| * may have been invoked via the 64-bit entry point. |
| */ |
| |
| /* Start with the delta to where the kernel will run at. */ |
| #ifdef CONFIG_RELOCATABLE |
| leaq startup_32(%rip) /* - $startup_32 */, %rbp |
| |
| #ifdef CONFIG_EFI_STUB |
| /* |
| * If we were loaded via the EFI LoadImage service, startup_32 will be at an |
| * offset to the start of the space allocated for the image. efi_pe_entry will |
| * set up image_offset to tell us where the image actually starts, so that we |
| * can use the full available buffer. |
| * image_offset = startup_32 - image_base |
| * Otherwise image_offset will be zero and has no effect on the calculations. |
| */ |
| movl image_offset(%rip), %eax |
| subq %rax, %rbp |
| #endif |
| |
| movl BP_kernel_alignment(%rsi), %eax |
| decl %eax |
| addq %rax, %rbp |
| notq %rax |
| andq %rax, %rbp |
| cmpq $LOAD_PHYSICAL_ADDR, %rbp |
| jae 1f |
| #endif |
| movq $LOAD_PHYSICAL_ADDR, %rbp |
| 1: |
| |
| /* Target address to relocate to for decompression */ |
| movl BP_init_size(%rsi), %ebx |
| subl $ rva(_end), %ebx |
| addq %rbp, %rbx |
| |
| /* Set up the stack */ |
| leaq rva(boot_stack_end)(%rbx), %rsp |
| |
| /* |
| * At this point we are in long mode with 4-level paging enabled, |
| * but we might want to enable 5-level paging or vice versa. |
| * |
| * The problem is that we cannot do it directly. Setting or clearing |
| * CR4.LA57 in long mode would trigger #GP. So we need to switch off |
| * long mode and paging first. |
| * |
| * We also need a trampoline in lower memory to switch over from |
| * 4- to 5-level paging for cases when the bootloader puts the kernel |
| * above 4G, but didn't enable 5-level paging for us. |
| * |
| * The same trampoline can be used to switch from 5- to 4-level paging |
| * mode, like when starting 4-level paging kernel via kexec() when |
| * original kernel worked in 5-level paging mode. |
| * |
| * For the trampoline, we need the top page table to reside in lower |
| * memory as we don't have a way to load 64-bit values into CR3 in |
| * 32-bit mode. |
| * |
| * We go though the trampoline even if we don't have to: if we're |
| * already in a desired paging mode. This way the trampoline code gets |
| * tested on every boot. |
| */ |
| |
| /* Make sure we have GDT with 32-bit code segment */ |
| leaq gdt64(%rip), %rax |
| addq %rax, 2(%rax) |
| lgdt (%rax) |
| |
| /* Reload CS so IRET returns to a CS actually in the GDT */ |
| pushq $__KERNEL_CS |
| leaq .Lon_kernel_cs(%rip), %rax |
| pushq %rax |
| lretq |
| |
| .Lon_kernel_cs: |
| |
| pushq %rsi |
| call load_stage1_idt |
| popq %rsi |
| |
| /* |
| * paging_prepare() sets up the trampoline and checks if we need to |
| * enable 5-level paging. |
| * |
| * paging_prepare() returns a two-quadword structure which lands |
| * into RDX:RAX: |
| * - Address of the trampoline is returned in RAX. |
| * - Non zero RDX means trampoline needs to enable 5-level |
| * paging. |
| * |
| * RSI holds real mode data and needs to be preserved across |
| * this function call. |
| */ |
| pushq %rsi |
| movq %rsi, %rdi /* real mode address */ |
| call paging_prepare |
| popq %rsi |
| |
| /* Save the trampoline address in RCX */ |
| movq %rax, %rcx |
| |
| /* |
| * Load the address of trampoline_return() into RDI. |
| * It will be used by the trampoline to return to the main code. |
| */ |
| leaq trampoline_return(%rip), %rdi |
| |
| /* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */ |
| pushq $__KERNEL32_CS |
| leaq TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax |
| pushq %rax |
| lretq |
| trampoline_return: |
| /* Restore the stack, the 32-bit trampoline uses its own stack */ |
| leaq rva(boot_stack_end)(%rbx), %rsp |
| |
| /* |
| * cleanup_trampoline() would restore trampoline memory. |
| * |
| * RDI is address of the page table to use instead of page table |
| * in trampoline memory (if required). |
| * |
| * RSI holds real mode data and needs to be preserved across |
| * this function call. |
| */ |
| pushq %rsi |
| leaq rva(top_pgtable)(%rbx), %rdi |
| call cleanup_trampoline |
| popq %rsi |
| |
| /* Zero EFLAGS */ |
| pushq $0 |
| popfq |
| |
| /* |
| * Copy the compressed kernel to the end of our buffer |
| * where decompression in place becomes safe. |
| */ |
| pushq %rsi |
| leaq (_bss-8)(%rip), %rsi |
| leaq rva(_bss-8)(%rbx), %rdi |
| movl $(_bss - startup_32), %ecx |
| shrl $3, %ecx |
| std |
| rep movsq |
| cld |
| popq %rsi |
| |
| /* |
| * The GDT may get overwritten either during the copy we just did or |
| * during extract_kernel below. To avoid any issues, repoint the GDTR |
| * to the new copy of the GDT. |
| */ |
| leaq rva(gdt64)(%rbx), %rax |
| leaq rva(gdt)(%rbx), %rdx |
| movq %rdx, 2(%rax) |
| lgdt (%rax) |
| |
| /* |
| * Jump to the relocated address. |
| */ |
| leaq rva(.Lrelocated)(%rbx), %rax |
| jmp *%rax |
| SYM_CODE_END(startup_64) |
| |
| #ifdef CONFIG_EFI_STUB |
| .org 0x390 |
| SYM_FUNC_START(efi64_stub_entry) |
| SYM_FUNC_START_ALIAS(efi_stub_entry) |
| and $~0xf, %rsp /* realign the stack */ |
| movq %rdx, %rbx /* save boot_params pointer */ |
| call efi_main |
| movq %rbx,%rsi |
| leaq rva(startup_64)(%rax), %rax |
| jmp *%rax |
| SYM_FUNC_END(efi64_stub_entry) |
| SYM_FUNC_END_ALIAS(efi_stub_entry) |
| #endif |
| |
| .text |
| SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated) |
| |
| /* |
| * Clear BSS (stack is currently empty) |
| */ |
| xorl %eax, %eax |
| leaq _bss(%rip), %rdi |
| leaq _ebss(%rip), %rcx |
| subq %rdi, %rcx |
| shrq $3, %rcx |
| rep stosq |
| |
| /* |
| * If running as an SEV guest, the encryption mask is required in the |
| * page-table setup code below. When the guest also has SEV-ES enabled |
| * set_sev_encryption_mask() will cause #VC exceptions, but the stage2 |
| * handler can't map its GHCB because the page-table is not set up yet. |
| * So set up the encryption mask here while still on the stage1 #VC |
| * handler. Then load stage2 IDT and switch to the kernel's own |
| * page-table. |
| */ |
| pushq %rsi |
| call set_sev_encryption_mask |
| call load_stage2_idt |
| |
| /* Pass boot_params to initialize_identity_maps() */ |
| movq (%rsp), %rdi |
| call initialize_identity_maps |
| popq %rsi |
| |
| /* |
| * Do the extraction, and jump to the new kernel.. |
| */ |
| pushq %rsi /* Save the real mode argument */ |
| movq %rsi, %rdi /* real mode address */ |
| leaq boot_heap(%rip), %rsi /* malloc area for uncompression */ |
| leaq input_data(%rip), %rdx /* input_data */ |
| movl input_len(%rip), %ecx /* input_len */ |
| movq %rbp, %r8 /* output target address */ |
| movl output_len(%rip), %r9d /* decompressed length, end of relocs */ |
| call extract_kernel /* returns kernel location in %rax */ |
| popq %rsi |
| |
| /* |
| * Jump to the decompressed kernel. |
| */ |
| jmp *%rax |
| SYM_FUNC_END(.Lrelocated) |
| |
| .code32 |
| /* |
| * This is the 32-bit trampoline that will be copied over to low memory. |
| * |
| * RDI contains the return address (might be above 4G). |
| * ECX contains the base address of the trampoline memory. |
| * Non zero RDX means trampoline needs to enable 5-level paging. |
| */ |
| SYM_CODE_START(trampoline_32bit_src) |
| /* Set up data and stack segments */ |
| movl $__KERNEL_DS, %eax |
| movl %eax, %ds |
| movl %eax, %ss |
| |
| /* Set up new stack */ |
| leal TRAMPOLINE_32BIT_STACK_END(%ecx), %esp |
| |
| /* Disable paging */ |
| movl %cr0, %eax |
| btrl $X86_CR0_PG_BIT, %eax |
| movl %eax, %cr0 |
| |
| /* Check what paging mode we want to be in after the trampoline */ |
| testl %edx, %edx |
| jz 1f |
| |
| /* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */ |
| movl %cr4, %eax |
| testl $X86_CR4_LA57, %eax |
| jnz 3f |
| jmp 2f |
| 1: |
| /* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */ |
| movl %cr4, %eax |
| testl $X86_CR4_LA57, %eax |
| jz 3f |
| 2: |
| /* Point CR3 to the trampoline's new top level page table */ |
| leal TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax |
| movl %eax, %cr3 |
| 3: |
| /* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */ |
| pushl %ecx |
| pushl %edx |
| movl $MSR_EFER, %ecx |
| rdmsr |
| btsl $_EFER_LME, %eax |
| wrmsr |
| popl %edx |
| popl %ecx |
| |
| /* Enable PAE and LA57 (if required) paging modes */ |
| movl $X86_CR4_PAE, %eax |
| testl %edx, %edx |
| jz 1f |
| orl $X86_CR4_LA57, %eax |
| 1: |
| movl %eax, %cr4 |
| |
| /* Calculate address of paging_enabled() once we are executing in the trampoline */ |
| leal .Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax |
| |
| /* Prepare the stack for far return to Long Mode */ |
| pushl $__KERNEL_CS |
| pushl %eax |
| |
| /* Enable paging again */ |
| movl $(X86_CR0_PG | X86_CR0_PE), %eax |
| movl %eax, %cr0 |
| |
| lret |
| SYM_CODE_END(trampoline_32bit_src) |
| |
| .code64 |
| SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled) |
| /* Return from the trampoline */ |
| jmp *%rdi |
| SYM_FUNC_END(.Lpaging_enabled) |
| |
| /* |
| * The trampoline code has a size limit. |
| * Make sure we fail to compile if the trampoline code grows |
| * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes. |
| */ |
| .org trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE |
| |
| .code32 |
| SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode) |
| /* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */ |
| 1: |
| hlt |
| jmp 1b |
| SYM_FUNC_END(.Lno_longmode) |
| |
| #include "../../kernel/verify_cpu.S" |
| |
| .data |
| SYM_DATA_START_LOCAL(gdt64) |
| .word gdt_end - gdt - 1 |
| .quad gdt - gdt64 |
| SYM_DATA_END(gdt64) |
| .balign 8 |
| SYM_DATA_START_LOCAL(gdt) |
| .word gdt_end - gdt - 1 |
| .long 0 |
| .word 0 |
| .quad 0x00cf9a000000ffff /* __KERNEL32_CS */ |
| .quad 0x00af9a000000ffff /* __KERNEL_CS */ |
| .quad 0x00cf92000000ffff /* __KERNEL_DS */ |
| .quad 0x0080890000000000 /* TS descriptor */ |
| .quad 0x0000000000000000 /* TS continued */ |
| SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end) |
| |
| SYM_DATA_START(boot_idt_desc) |
| .word boot_idt_end - boot_idt - 1 |
| .quad 0 |
| SYM_DATA_END(boot_idt_desc) |
| .balign 8 |
| SYM_DATA_START(boot_idt) |
| .rept BOOT_IDT_ENTRIES |
| .quad 0 |
| .quad 0 |
| .endr |
| SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end) |
| |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| SYM_DATA_START(boot32_idt_desc) |
| .word boot32_idt_end - boot32_idt - 1 |
| .long 0 |
| SYM_DATA_END(boot32_idt_desc) |
| .balign 8 |
| SYM_DATA_START(boot32_idt) |
| .rept 32 |
| .quad 0 |
| .endr |
| SYM_DATA_END_LABEL(boot32_idt, SYM_L_GLOBAL, boot32_idt_end) |
| #endif |
| |
| #ifdef CONFIG_EFI_STUB |
| SYM_DATA(image_offset, .long 0) |
| #endif |
| #ifdef CONFIG_EFI_MIXED |
| SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0, 0) |
| SYM_DATA(efi_is64, .byte 1) |
| |
| #define ST32_boottime 60 // offsetof(efi_system_table_32_t, boottime) |
| #define BS32_handle_protocol 88 // offsetof(efi_boot_services_32_t, handle_protocol) |
| #define LI32_image_base 32 // offsetof(efi_loaded_image_32_t, image_base) |
| |
| __HEAD |
| .code32 |
| SYM_FUNC_START(efi32_pe_entry) |
| /* |
| * efi_status_t efi32_pe_entry(efi_handle_t image_handle, |
| * efi_system_table_32_t *sys_table) |
| */ |
| |
| pushl %ebp |
| movl %esp, %ebp |
| pushl %eax // dummy push to allocate loaded_image |
| |
| pushl %ebx // save callee-save registers |
| pushl %edi |
| |
| call verify_cpu // check for long mode support |
| testl %eax, %eax |
| movl $0x80000003, %eax // EFI_UNSUPPORTED |
| jnz 2f |
| |
| call 1f |
| 1: pop %ebx |
| subl $ rva(1b), %ebx |
| |
| /* Get the loaded image protocol pointer from the image handle */ |
| leal -4(%ebp), %eax |
| pushl %eax // &loaded_image |
| leal rva(loaded_image_proto)(%ebx), %eax |
| pushl %eax // pass the GUID address |
| pushl 8(%ebp) // pass the image handle |
| |
| /* |
| * Note the alignment of the stack frame. |
| * sys_table |
| * handle <-- 16-byte aligned on entry by ABI |
| * return address |
| * frame pointer |
| * loaded_image <-- local variable |
| * saved %ebx <-- 16-byte aligned here |
| * saved %edi |
| * &loaded_image |
| * &loaded_image_proto |
| * handle <-- 16-byte aligned for call to handle_protocol |
| */ |
| |
| movl 12(%ebp), %eax // sys_table |
| movl ST32_boottime(%eax), %eax // sys_table->boottime |
| call *BS32_handle_protocol(%eax) // sys_table->boottime->handle_protocol |
| addl $12, %esp // restore argument space |
| testl %eax, %eax |
| jnz 2f |
| |
| movl 8(%ebp), %ecx // image_handle |
| movl 12(%ebp), %edx // sys_table |
| movl -4(%ebp), %esi // loaded_image |
| movl LI32_image_base(%esi), %esi // loaded_image->image_base |
| movl %ebx, %ebp // startup_32 for efi32_pe_stub_entry |
| /* |
| * We need to set the image_offset variable here since startup_32() will |
| * use it before we get to the 64-bit efi_pe_entry() in C code. |
| */ |
| subl %esi, %ebx |
| movl %ebx, rva(image_offset)(%ebp) // save image_offset |
| jmp efi32_pe_stub_entry |
| |
| 2: popl %edi // restore callee-save registers |
| popl %ebx |
| leave |
| RET |
| SYM_FUNC_END(efi32_pe_entry) |
| |
| .section ".rodata" |
| /* EFI loaded image protocol GUID */ |
| .balign 4 |
| SYM_DATA_START_LOCAL(loaded_image_proto) |
| .long 0x5b1b31a1 |
| .word 0x9562, 0x11d2 |
| .byte 0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b |
| SYM_DATA_END(loaded_image_proto) |
| #endif |
| |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| __HEAD |
| .code32 |
| /* |
| * Write an IDT entry into boot32_idt |
| * |
| * Parameters: |
| * |
| * %eax: Handler address |
| * %edx: Vector number |
| * |
| * Physical offset is expected in %ebp |
| */ |
| SYM_FUNC_START(startup32_set_idt_entry) |
| push %ebx |
| push %ecx |
| |
| /* IDT entry address to %ebx */ |
| leal rva(boot32_idt)(%ebp), %ebx |
| shl $3, %edx |
| addl %edx, %ebx |
| |
| /* Build IDT entry, lower 4 bytes */ |
| movl %eax, %edx |
| andl $0x0000ffff, %edx # Target code segment offset [15:0] |
| movl $__KERNEL32_CS, %ecx # Target code segment selector |
| shl $16, %ecx |
| orl %ecx, %edx |
| |
| /* Store lower 4 bytes to IDT */ |
| movl %edx, (%ebx) |
| |
| /* Build IDT entry, upper 4 bytes */ |
| movl %eax, %edx |
| andl $0xffff0000, %edx # Target code segment offset [31:16] |
| orl $0x00008e00, %edx # Present, Type 32-bit Interrupt Gate |
| |
| /* Store upper 4 bytes to IDT */ |
| movl %edx, 4(%ebx) |
| |
| pop %ecx |
| pop %ebx |
| RET |
| SYM_FUNC_END(startup32_set_idt_entry) |
| #endif |
| |
| SYM_FUNC_START(startup32_load_idt) |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| /* #VC handler */ |
| leal rva(startup32_vc_handler)(%ebp), %eax |
| movl $X86_TRAP_VC, %edx |
| call startup32_set_idt_entry |
| |
| /* Load IDT */ |
| leal rva(boot32_idt)(%ebp), %eax |
| movl %eax, rva(boot32_idt_desc+2)(%ebp) |
| lidt rva(boot32_idt_desc)(%ebp) |
| #endif |
| RET |
| SYM_FUNC_END(startup32_load_idt) |
| |
| /* |
| * Check for the correct C-bit position when the startup_32 boot-path is used. |
| * |
| * The check makes use of the fact that all memory is encrypted when paging is |
| * disabled. The function creates 64 bits of random data using the RDRAND |
| * instruction. RDRAND is mandatory for SEV guests, so always available. If the |
| * hypervisor violates that the kernel will crash right here. |
| * |
| * The 64 bits of random data are stored to a memory location and at the same |
| * time kept in the %eax and %ebx registers. Since encryption is always active |
| * when paging is off the random data will be stored encrypted in main memory. |
| * |
| * Then paging is enabled. When the C-bit position is correct all memory is |
| * still mapped encrypted and comparing the register values with memory will |
| * succeed. An incorrect C-bit position will map all memory unencrypted, so that |
| * the compare will use the encrypted random data and fail. |
| */ |
| SYM_FUNC_START(startup32_check_sev_cbit) |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| pushl %eax |
| pushl %ebx |
| pushl %ecx |
| pushl %edx |
| |
| /* Check for non-zero sev_status */ |
| movl rva(sev_status)(%ebp), %eax |
| testl %eax, %eax |
| jz 4f |
| |
| /* |
| * Get two 32-bit random values - Don't bail out if RDRAND fails |
| * because it is better to prevent forward progress if no random value |
| * can be gathered. |
| */ |
| 1: rdrand %eax |
| jnc 1b |
| 2: rdrand %ebx |
| jnc 2b |
| |
| /* Store to memory and keep it in the registers */ |
| movl %eax, rva(sev_check_data)(%ebp) |
| movl %ebx, rva(sev_check_data+4)(%ebp) |
| |
| /* Enable paging to see if encryption is active */ |
| movl %cr0, %edx /* Backup %cr0 in %edx */ |
| movl $(X86_CR0_PG | X86_CR0_PE), %ecx /* Enable Paging and Protected mode */ |
| movl %ecx, %cr0 |
| |
| cmpl %eax, rva(sev_check_data)(%ebp) |
| jne 3f |
| cmpl %ebx, rva(sev_check_data+4)(%ebp) |
| jne 3f |
| |
| movl %edx, %cr0 /* Restore previous %cr0 */ |
| |
| jmp 4f |
| |
| 3: /* Check failed - hlt the machine */ |
| hlt |
| jmp 3b |
| |
| 4: |
| popl %edx |
| popl %ecx |
| popl %ebx |
| popl %eax |
| #endif |
| RET |
| SYM_FUNC_END(startup32_check_sev_cbit) |
| |
| /* |
| * Stack and heap for uncompression |
| */ |
| .bss |
| .balign 4 |
| SYM_DATA_LOCAL(boot_heap, .fill BOOT_HEAP_SIZE, 1, 0) |
| |
| SYM_DATA_START_LOCAL(boot_stack) |
| .fill BOOT_STACK_SIZE, 1, 0 |
| .balign 16 |
| SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end) |
| |
| /* |
| * Space for page tables (not in .bss so not zeroed) |
| */ |
| .section ".pgtable","aw",@nobits |
| .balign 4096 |
| SYM_DATA_LOCAL(pgtable, .fill BOOT_PGT_SIZE, 1, 0) |
| |
| /* |
| * The page table is going to be used instead of page table in the trampoline |
| * memory. |
| */ |
| SYM_DATA_LOCAL(top_pgtable, .fill PAGE_SIZE, 1, 0) |