| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * pSeries_lpar.c |
| * Copyright (C) 2001 Todd Inglett, IBM Corporation |
| * |
| * pSeries LPAR support. |
| */ |
| |
| /* Enables debugging of low-level hash table routines - careful! */ |
| #undef DEBUG |
| #define pr_fmt(fmt) "lpar: " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/console.h> |
| #include <linux/export.h> |
| #include <linux/jump_label.h> |
| #include <linux/delay.h> |
| #include <linux/stop_machine.h> |
| #include <linux/spinlock.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/workqueue.h> |
| #include <linux/proc_fs.h> |
| #include <linux/pgtable.h> |
| #include <linux/debugfs.h> |
| |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/page.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu_context.h> |
| #include <asm/iommu.h> |
| #include <asm/tlb.h> |
| #include <asm/prom.h> |
| #include <asm/cputable.h> |
| #include <asm/udbg.h> |
| #include <asm/smp.h> |
| #include <asm/trace.h> |
| #include <asm/firmware.h> |
| #include <asm/plpar_wrappers.h> |
| #include <asm/kexec.h> |
| #include <asm/fadump.h> |
| #include <asm/asm-prototypes.h> |
| #include <asm/dtl.h> |
| |
| #include "pseries.h" |
| |
| /* Flag bits for H_BULK_REMOVE */ |
| #define HBR_REQUEST 0x4000000000000000UL |
| #define HBR_RESPONSE 0x8000000000000000UL |
| #define HBR_END 0xc000000000000000UL |
| #define HBR_AVPN 0x0200000000000000UL |
| #define HBR_ANDCOND 0x0100000000000000UL |
| |
| |
| /* in hvCall.S */ |
| EXPORT_SYMBOL(plpar_hcall); |
| EXPORT_SYMBOL(plpar_hcall9); |
| EXPORT_SYMBOL(plpar_hcall_norets); |
| |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| /* |
| * H_BLOCK_REMOVE supported block size for this page size in segment who's base |
| * page size is that page size. |
| * |
| * The first index is the segment base page size, the second one is the actual |
| * page size. |
| */ |
| static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init; |
| #endif |
| |
| /* |
| * Due to the involved complexity, and that the current hypervisor is only |
| * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE |
| * buffer size to 8 size block. |
| */ |
| #define HBLKRM_SUPPORTED_BLOCK_SIZE 8 |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| static u8 dtl_mask = DTL_LOG_PREEMPT; |
| #else |
| static u8 dtl_mask; |
| #endif |
| |
| void alloc_dtl_buffers(unsigned long *time_limit) |
| { |
| int cpu; |
| struct paca_struct *pp; |
| struct dtl_entry *dtl; |
| |
| for_each_possible_cpu(cpu) { |
| pp = paca_ptrs[cpu]; |
| if (pp->dispatch_log) |
| continue; |
| dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL); |
| if (!dtl) { |
| pr_warn("Failed to allocate dispatch trace log for cpu %d\n", |
| cpu); |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| pr_warn("Stolen time statistics will be unreliable\n"); |
| #endif |
| break; |
| } |
| |
| pp->dtl_ridx = 0; |
| pp->dispatch_log = dtl; |
| pp->dispatch_log_end = dtl + N_DISPATCH_LOG; |
| pp->dtl_curr = dtl; |
| |
| if (time_limit && time_after(jiffies, *time_limit)) { |
| cond_resched(); |
| *time_limit = jiffies + HZ; |
| } |
| } |
| } |
| |
| void register_dtl_buffer(int cpu) |
| { |
| long ret; |
| struct paca_struct *pp; |
| struct dtl_entry *dtl; |
| int hwcpu = get_hard_smp_processor_id(cpu); |
| |
| pp = paca_ptrs[cpu]; |
| dtl = pp->dispatch_log; |
| if (dtl && dtl_mask) { |
| pp->dtl_ridx = 0; |
| pp->dtl_curr = dtl; |
| lppaca_of(cpu).dtl_idx = 0; |
| |
| /* hypervisor reads buffer length from this field */ |
| dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES); |
| ret = register_dtl(hwcpu, __pa(dtl)); |
| if (ret) |
| pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n", |
| cpu, hwcpu, ret); |
| |
| lppaca_of(cpu).dtl_enable_mask = dtl_mask; |
| } |
| } |
| |
| #ifdef CONFIG_PPC_SPLPAR |
| struct dtl_worker { |
| struct delayed_work work; |
| int cpu; |
| }; |
| |
| struct vcpu_dispatch_data { |
| int last_disp_cpu; |
| |
| int total_disp; |
| |
| int same_cpu_disp; |
| int same_chip_disp; |
| int diff_chip_disp; |
| int far_chip_disp; |
| |
| int numa_home_disp; |
| int numa_remote_disp; |
| int numa_far_disp; |
| }; |
| |
| /* |
| * This represents the number of cpus in the hypervisor. Since there is no |
| * architected way to discover the number of processors in the host, we |
| * provision for dealing with NR_CPUS. This is currently 2048 by default, and |
| * is sufficient for our purposes. This will need to be tweaked if |
| * CONFIG_NR_CPUS is changed. |
| */ |
| #define NR_CPUS_H NR_CPUS |
| |
| DEFINE_RWLOCK(dtl_access_lock); |
| static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data); |
| static DEFINE_PER_CPU(u64, dtl_entry_ridx); |
| static DEFINE_PER_CPU(struct dtl_worker, dtl_workers); |
| static enum cpuhp_state dtl_worker_state; |
| static DEFINE_MUTEX(dtl_enable_mutex); |
| static int vcpudispatch_stats_on __read_mostly; |
| static int vcpudispatch_stats_freq = 50; |
| static __be32 *vcpu_associativity, *pcpu_associativity; |
| |
| |
| static void free_dtl_buffers(unsigned long *time_limit) |
| { |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| int cpu; |
| struct paca_struct *pp; |
| |
| for_each_possible_cpu(cpu) { |
| pp = paca_ptrs[cpu]; |
| if (!pp->dispatch_log) |
| continue; |
| kmem_cache_free(dtl_cache, pp->dispatch_log); |
| pp->dtl_ridx = 0; |
| pp->dispatch_log = 0; |
| pp->dispatch_log_end = 0; |
| pp->dtl_curr = 0; |
| |
| if (time_limit && time_after(jiffies, *time_limit)) { |
| cond_resched(); |
| *time_limit = jiffies + HZ; |
| } |
| } |
| #endif |
| } |
| |
| static int init_cpu_associativity(void) |
| { |
| vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core, |
| VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); |
| pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core, |
| VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL); |
| |
| if (!vcpu_associativity || !pcpu_associativity) { |
| pr_err("error allocating memory for associativity information\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void destroy_cpu_associativity(void) |
| { |
| kfree(vcpu_associativity); |
| kfree(pcpu_associativity); |
| vcpu_associativity = pcpu_associativity = 0; |
| } |
| |
| static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag) |
| { |
| __be32 *assoc; |
| int rc = 0; |
| |
| assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE]; |
| if (!assoc[0]) { |
| rc = hcall_vphn(cpu, flag, &assoc[0]); |
| if (rc) |
| return NULL; |
| } |
| |
| return assoc; |
| } |
| |
| static __be32 *get_pcpu_associativity(int cpu) |
| { |
| return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU); |
| } |
| |
| static __be32 *get_vcpu_associativity(int cpu) |
| { |
| return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU); |
| } |
| |
| static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu) |
| { |
| __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc; |
| |
| if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H) |
| return -EINVAL; |
| |
| last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu); |
| cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu); |
| |
| if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc) |
| return -EIO; |
| |
| return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc); |
| } |
| |
| static int cpu_home_node_dispatch_distance(int disp_cpu) |
| { |
| __be32 *disp_cpu_assoc, *vcpu_assoc; |
| int vcpu_id = smp_processor_id(); |
| |
| if (disp_cpu >= NR_CPUS_H) { |
| pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n", |
| disp_cpu, NR_CPUS_H); |
| return -EINVAL; |
| } |
| |
| disp_cpu_assoc = get_pcpu_associativity(disp_cpu); |
| vcpu_assoc = get_vcpu_associativity(vcpu_id); |
| |
| if (!disp_cpu_assoc || !vcpu_assoc) |
| return -EIO; |
| |
| return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc); |
| } |
| |
| static void update_vcpu_disp_stat(int disp_cpu) |
| { |
| struct vcpu_dispatch_data *disp; |
| int distance; |
| |
| disp = this_cpu_ptr(&vcpu_disp_data); |
| if (disp->last_disp_cpu == -1) { |
| disp->last_disp_cpu = disp_cpu; |
| return; |
| } |
| |
| disp->total_disp++; |
| |
| if (disp->last_disp_cpu == disp_cpu || |
| (cpu_first_thread_sibling(disp->last_disp_cpu) == |
| cpu_first_thread_sibling(disp_cpu))) |
| disp->same_cpu_disp++; |
| else { |
| distance = cpu_relative_dispatch_distance(disp->last_disp_cpu, |
| disp_cpu); |
| if (distance < 0) |
| pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", |
| smp_processor_id()); |
| else { |
| switch (distance) { |
| case 0: |
| disp->same_chip_disp++; |
| break; |
| case 1: |
| disp->diff_chip_disp++; |
| break; |
| case 2: |
| disp->far_chip_disp++; |
| break; |
| default: |
| pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n", |
| smp_processor_id(), |
| disp->last_disp_cpu, |
| disp_cpu, |
| distance); |
| } |
| } |
| } |
| |
| distance = cpu_home_node_dispatch_distance(disp_cpu); |
| if (distance < 0) |
| pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n", |
| smp_processor_id()); |
| else { |
| switch (distance) { |
| case 0: |
| disp->numa_home_disp++; |
| break; |
| case 1: |
| disp->numa_remote_disp++; |
| break; |
| case 2: |
| disp->numa_far_disp++; |
| break; |
| default: |
| pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n", |
| smp_processor_id(), |
| disp_cpu, |
| distance); |
| } |
| } |
| |
| disp->last_disp_cpu = disp_cpu; |
| } |
| |
| static void process_dtl_buffer(struct work_struct *work) |
| { |
| struct dtl_entry dtle; |
| u64 i = __this_cpu_read(dtl_entry_ridx); |
| struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); |
| struct dtl_entry *dtl_end = local_paca->dispatch_log_end; |
| struct lppaca *vpa = local_paca->lppaca_ptr; |
| struct dtl_worker *d = container_of(work, struct dtl_worker, work.work); |
| |
| if (!local_paca->dispatch_log) |
| return; |
| |
| /* if we have been migrated away, we cancel ourself */ |
| if (d->cpu != smp_processor_id()) { |
| pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n", |
| smp_processor_id()); |
| return; |
| } |
| |
| if (i == be64_to_cpu(vpa->dtl_idx)) |
| goto out; |
| |
| while (i < be64_to_cpu(vpa->dtl_idx)) { |
| dtle = *dtl; |
| barrier(); |
| if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) { |
| /* buffer has overflowed */ |
| pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n", |
| d->cpu, |
| be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i); |
| i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG; |
| dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG); |
| continue; |
| } |
| update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id)); |
| ++i; |
| ++dtl; |
| if (dtl == dtl_end) |
| dtl = local_paca->dispatch_log; |
| } |
| |
| __this_cpu_write(dtl_entry_ridx, i); |
| |
| out: |
| schedule_delayed_work_on(d->cpu, to_delayed_work(work), |
| HZ / vcpudispatch_stats_freq); |
| } |
| |
| static int dtl_worker_online(unsigned int cpu) |
| { |
| struct dtl_worker *d = &per_cpu(dtl_workers, cpu); |
| |
| memset(d, 0, sizeof(*d)); |
| INIT_DELAYED_WORK(&d->work, process_dtl_buffer); |
| d->cpu = cpu; |
| |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| per_cpu(dtl_entry_ridx, cpu) = 0; |
| register_dtl_buffer(cpu); |
| #else |
| per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx); |
| #endif |
| |
| schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq); |
| return 0; |
| } |
| |
| static int dtl_worker_offline(unsigned int cpu) |
| { |
| struct dtl_worker *d = &per_cpu(dtl_workers, cpu); |
| |
| cancel_delayed_work_sync(&d->work); |
| |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| unregister_dtl(get_hard_smp_processor_id(cpu)); |
| #endif |
| |
| return 0; |
| } |
| |
| static void set_global_dtl_mask(u8 mask) |
| { |
| int cpu; |
| |
| dtl_mask = mask; |
| for_each_present_cpu(cpu) |
| lppaca_of(cpu).dtl_enable_mask = dtl_mask; |
| } |
| |
| static void reset_global_dtl_mask(void) |
| { |
| int cpu; |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| dtl_mask = DTL_LOG_PREEMPT; |
| #else |
| dtl_mask = 0; |
| #endif |
| for_each_present_cpu(cpu) |
| lppaca_of(cpu).dtl_enable_mask = dtl_mask; |
| } |
| |
| static int dtl_worker_enable(unsigned long *time_limit) |
| { |
| int rc = 0, state; |
| |
| if (!write_trylock(&dtl_access_lock)) { |
| rc = -EBUSY; |
| goto out; |
| } |
| |
| set_global_dtl_mask(DTL_LOG_ALL); |
| |
| /* Setup dtl buffers and register those */ |
| alloc_dtl_buffers(time_limit); |
| |
| state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online", |
| dtl_worker_online, dtl_worker_offline); |
| if (state < 0) { |
| pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n"); |
| free_dtl_buffers(time_limit); |
| reset_global_dtl_mask(); |
| write_unlock(&dtl_access_lock); |
| rc = -EINVAL; |
| goto out; |
| } |
| dtl_worker_state = state; |
| |
| out: |
| return rc; |
| } |
| |
| static void dtl_worker_disable(unsigned long *time_limit) |
| { |
| cpuhp_remove_state(dtl_worker_state); |
| free_dtl_buffers(time_limit); |
| reset_global_dtl_mask(); |
| write_unlock(&dtl_access_lock); |
| } |
| |
| static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long time_limit = jiffies + HZ; |
| struct vcpu_dispatch_data *disp; |
| int rc, cmd, cpu; |
| char buf[16]; |
| |
| if (count > 15) |
| return -EINVAL; |
| |
| if (copy_from_user(buf, p, count)) |
| return -EFAULT; |
| |
| buf[count] = 0; |
| rc = kstrtoint(buf, 0, &cmd); |
| if (rc || cmd < 0 || cmd > 1) { |
| pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n"); |
| return rc ? rc : -EINVAL; |
| } |
| |
| mutex_lock(&dtl_enable_mutex); |
| |
| if ((cmd == 0 && !vcpudispatch_stats_on) || |
| (cmd == 1 && vcpudispatch_stats_on)) |
| goto out; |
| |
| if (cmd) { |
| rc = init_cpu_associativity(); |
| if (rc) |
| goto out; |
| |
| for_each_possible_cpu(cpu) { |
| disp = per_cpu_ptr(&vcpu_disp_data, cpu); |
| memset(disp, 0, sizeof(*disp)); |
| disp->last_disp_cpu = -1; |
| } |
| |
| rc = dtl_worker_enable(&time_limit); |
| if (rc) { |
| destroy_cpu_associativity(); |
| goto out; |
| } |
| } else { |
| dtl_worker_disable(&time_limit); |
| destroy_cpu_associativity(); |
| } |
| |
| vcpudispatch_stats_on = cmd; |
| |
| out: |
| mutex_unlock(&dtl_enable_mutex); |
| if (rc) |
| return rc; |
| return count; |
| } |
| |
| static int vcpudispatch_stats_display(struct seq_file *p, void *v) |
| { |
| int cpu; |
| struct vcpu_dispatch_data *disp; |
| |
| if (!vcpudispatch_stats_on) { |
| seq_puts(p, "off\n"); |
| return 0; |
| } |
| |
| for_each_online_cpu(cpu) { |
| disp = per_cpu_ptr(&vcpu_disp_data, cpu); |
| seq_printf(p, "cpu%d", cpu); |
| seq_put_decimal_ull(p, " ", disp->total_disp); |
| seq_put_decimal_ull(p, " ", disp->same_cpu_disp); |
| seq_put_decimal_ull(p, " ", disp->same_chip_disp); |
| seq_put_decimal_ull(p, " ", disp->diff_chip_disp); |
| seq_put_decimal_ull(p, " ", disp->far_chip_disp); |
| seq_put_decimal_ull(p, " ", disp->numa_home_disp); |
| seq_put_decimal_ull(p, " ", disp->numa_remote_disp); |
| seq_put_decimal_ull(p, " ", disp->numa_far_disp); |
| seq_puts(p, "\n"); |
| } |
| |
| return 0; |
| } |
| |
| static int vcpudispatch_stats_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, vcpudispatch_stats_display, NULL); |
| } |
| |
| static const struct proc_ops vcpudispatch_stats_proc_ops = { |
| .proc_open = vcpudispatch_stats_open, |
| .proc_read = seq_read, |
| .proc_write = vcpudispatch_stats_write, |
| .proc_lseek = seq_lseek, |
| .proc_release = single_release, |
| }; |
| |
| static ssize_t vcpudispatch_stats_freq_write(struct file *file, |
| const char __user *p, size_t count, loff_t *ppos) |
| { |
| int rc, freq; |
| char buf[16]; |
| |
| if (count > 15) |
| return -EINVAL; |
| |
| if (copy_from_user(buf, p, count)) |
| return -EFAULT; |
| |
| buf[count] = 0; |
| rc = kstrtoint(buf, 0, &freq); |
| if (rc || freq < 1 || freq > HZ) { |
| pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n", |
| HZ); |
| return rc ? rc : -EINVAL; |
| } |
| |
| vcpudispatch_stats_freq = freq; |
| |
| return count; |
| } |
| |
| static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v) |
| { |
| seq_printf(p, "%d\n", vcpudispatch_stats_freq); |
| return 0; |
| } |
| |
| static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, vcpudispatch_stats_freq_display, NULL); |
| } |
| |
| static const struct proc_ops vcpudispatch_stats_freq_proc_ops = { |
| .proc_open = vcpudispatch_stats_freq_open, |
| .proc_read = seq_read, |
| .proc_write = vcpudispatch_stats_freq_write, |
| .proc_lseek = seq_lseek, |
| .proc_release = single_release, |
| }; |
| |
| static int __init vcpudispatch_stats_procfs_init(void) |
| { |
| /* |
| * Avoid smp_processor_id while preemptible. All CPUs should have |
| * the same value for lppaca_shared_proc. |
| */ |
| preempt_disable(); |
| if (!lppaca_shared_proc(get_lppaca())) { |
| preempt_enable(); |
| return 0; |
| } |
| preempt_enable(); |
| |
| if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL, |
| &vcpudispatch_stats_proc_ops)) |
| pr_err("vcpudispatch_stats: error creating procfs file\n"); |
| else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL, |
| &vcpudispatch_stats_freq_proc_ops)) |
| pr_err("vcpudispatch_stats_freq: error creating procfs file\n"); |
| |
| return 0; |
| } |
| |
| machine_device_initcall(pseries, vcpudispatch_stats_procfs_init); |
| #endif /* CONFIG_PPC_SPLPAR */ |
| |
| void vpa_init(int cpu) |
| { |
| int hwcpu = get_hard_smp_processor_id(cpu); |
| unsigned long addr; |
| long ret; |
| |
| /* |
| * The spec says it "may be problematic" if CPU x registers the VPA of |
| * CPU y. We should never do that, but wail if we ever do. |
| */ |
| WARN_ON(cpu != smp_processor_id()); |
| |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| lppaca_of(cpu).vmxregs_in_use = 1; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| lppaca_of(cpu).ebb_regs_in_use = 1; |
| |
| addr = __pa(&lppaca_of(cpu)); |
| ret = register_vpa(hwcpu, addr); |
| |
| if (ret) { |
| pr_err("WARNING: VPA registration for cpu %d (hw %d) of area " |
| "%lx failed with %ld\n", cpu, hwcpu, addr, ret); |
| return; |
| } |
| |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| /* |
| * PAPR says this feature is SLB-Buffer but firmware never |
| * reports that. All SPLPAR support SLB shadow buffer. |
| */ |
| if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) { |
| addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr); |
| ret = register_slb_shadow(hwcpu, addr); |
| if (ret) |
| pr_err("WARNING: SLB shadow buffer registration for " |
| "cpu %d (hw %d) of area %lx failed with %ld\n", |
| cpu, hwcpu, addr, ret); |
| } |
| #endif /* CONFIG_PPC_64S_HASH_MMU */ |
| |
| /* |
| * Register dispatch trace log, if one has been allocated. |
| */ |
| register_dtl_buffer(cpu); |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| |
| static int __init pseries_lpar_register_process_table(unsigned long base, |
| unsigned long page_size, unsigned long table_size) |
| { |
| long rc; |
| unsigned long flags = 0; |
| |
| if (table_size) |
| flags |= PROC_TABLE_NEW; |
| if (radix_enabled()) { |
| flags |= PROC_TABLE_RADIX; |
| if (mmu_has_feature(MMU_FTR_GTSE)) |
| flags |= PROC_TABLE_GTSE; |
| } else |
| flags |= PROC_TABLE_HPT_SLB; |
| for (;;) { |
| rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base, |
| page_size, table_size); |
| if (!H_IS_LONG_BUSY(rc)) |
| break; |
| mdelay(get_longbusy_msecs(rc)); |
| } |
| if (rc != H_SUCCESS) { |
| pr_err("Failed to register process table (rc=%ld)\n", rc); |
| BUG(); |
| } |
| return rc; |
| } |
| |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| |
| static long pSeries_lpar_hpte_insert(unsigned long hpte_group, |
| unsigned long vpn, unsigned long pa, |
| unsigned long rflags, unsigned long vflags, |
| int psize, int apsize, int ssize) |
| { |
| unsigned long lpar_rc; |
| unsigned long flags; |
| unsigned long slot; |
| unsigned long hpte_v, hpte_r; |
| |
| if (!(vflags & HPTE_V_BOLTED)) |
| pr_devel("hpte_insert(group=%lx, vpn=%016lx, " |
| "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n", |
| hpte_group, vpn, pa, rflags, vflags, psize); |
| |
| hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID; |
| hpte_r = hpte_encode_r(pa, psize, apsize) | rflags; |
| |
| if (!(vflags & HPTE_V_BOLTED)) |
| pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r); |
| |
| /* Now fill in the actual HPTE */ |
| /* Set CEC cookie to 0 */ |
| /* Zero page = 0 */ |
| /* I-cache Invalidate = 0 */ |
| /* I-cache synchronize = 0 */ |
| /* Exact = 0 */ |
| flags = 0; |
| |
| if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N)) |
| flags |= H_COALESCE_CAND; |
| |
| lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot); |
| if (unlikely(lpar_rc == H_PTEG_FULL)) { |
| pr_devel("Hash table group is full\n"); |
| return -1; |
| } |
| |
| /* |
| * Since we try and ioremap PHBs we don't own, the pte insert |
| * will fail. However we must catch the failure in hash_page |
| * or we will loop forever, so return -2 in this case. |
| */ |
| if (unlikely(lpar_rc != H_SUCCESS)) { |
| pr_err("Failed hash pte insert with error %ld\n", lpar_rc); |
| return -2; |
| } |
| if (!(vflags & HPTE_V_BOLTED)) |
| pr_devel(" -> slot: %lu\n", slot & 7); |
| |
| /* Because of iSeries, we have to pass down the secondary |
| * bucket bit here as well |
| */ |
| return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3); |
| } |
| |
| static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock); |
| |
| static long pSeries_lpar_hpte_remove(unsigned long hpte_group) |
| { |
| unsigned long slot_offset; |
| unsigned long lpar_rc; |
| int i; |
| unsigned long dummy1, dummy2; |
| |
| /* pick a random slot to start at */ |
| slot_offset = mftb() & 0x7; |
| |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| |
| /* don't remove a bolted entry */ |
| lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset, |
| HPTE_V_BOLTED, &dummy1, &dummy2); |
| if (lpar_rc == H_SUCCESS) |
| return i; |
| |
| /* |
| * The test for adjunct partition is performed before the |
| * ANDCOND test. H_RESOURCE may be returned, so we need to |
| * check for that as well. |
| */ |
| BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE); |
| |
| slot_offset++; |
| slot_offset &= 0x7; |
| } |
| |
| return -1; |
| } |
| |
| /* Called during kexec sequence with MMU off */ |
| static notrace void manual_hpte_clear_all(void) |
| { |
| unsigned long size_bytes = 1UL << ppc64_pft_size; |
| unsigned long hpte_count = size_bytes >> 4; |
| struct { |
| unsigned long pteh; |
| unsigned long ptel; |
| } ptes[4]; |
| long lpar_rc; |
| unsigned long i, j; |
| |
| /* Read in batches of 4, |
| * invalidate only valid entries not in the VRMA |
| * hpte_count will be a multiple of 4 |
| */ |
| for (i = 0; i < hpte_count; i += 4) { |
| lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes); |
| if (lpar_rc != H_SUCCESS) { |
| pr_info("Failed to read hash page table at %ld err %ld\n", |
| i, lpar_rc); |
| continue; |
| } |
| for (j = 0; j < 4; j++){ |
| if ((ptes[j].pteh & HPTE_V_VRMA_MASK) == |
| HPTE_V_VRMA_MASK) |
| continue; |
| if (ptes[j].pteh & HPTE_V_VALID) |
| plpar_pte_remove_raw(0, i + j, 0, |
| &(ptes[j].pteh), &(ptes[j].ptel)); |
| } |
| } |
| } |
| |
| /* Called during kexec sequence with MMU off */ |
| static notrace int hcall_hpte_clear_all(void) |
| { |
| int rc; |
| |
| do { |
| rc = plpar_hcall_norets(H_CLEAR_HPT); |
| } while (rc == H_CONTINUE); |
| |
| return rc; |
| } |
| |
| /* Called during kexec sequence with MMU off */ |
| static notrace void pseries_hpte_clear_all(void) |
| { |
| int rc; |
| |
| rc = hcall_hpte_clear_all(); |
| if (rc != H_SUCCESS) |
| manual_hpte_clear_all(); |
| |
| #ifdef __LITTLE_ENDIAN__ |
| /* |
| * Reset exceptions to big endian. |
| * |
| * FIXME this is a hack for kexec, we need to reset the exception |
| * endian before starting the new kernel and this is a convenient place |
| * to do it. |
| * |
| * This is also called on boot when a fadump happens. In that case we |
| * must not change the exception endian mode. |
| */ |
| if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active()) |
| pseries_big_endian_exceptions(); |
| #endif |
| } |
| |
| /* |
| * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and |
| * the low 3 bits of flags happen to line up. So no transform is needed. |
| * We can probably optimize here and assume the high bits of newpp are |
| * already zero. For now I am paranoid. |
| */ |
| static long pSeries_lpar_hpte_updatepp(unsigned long slot, |
| unsigned long newpp, |
| unsigned long vpn, |
| int psize, int apsize, |
| int ssize, unsigned long inv_flags) |
| { |
| unsigned long lpar_rc; |
| unsigned long flags; |
| unsigned long want_v; |
| |
| want_v = hpte_encode_avpn(vpn, psize, ssize); |
| |
| flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN; |
| flags |= (newpp & HPTE_R_KEY_HI) >> 48; |
| if (mmu_has_feature(MMU_FTR_KERNEL_RO)) |
| /* Move pp0 into bit 8 (IBM 55) */ |
| flags |= (newpp & HPTE_R_PP0) >> 55; |
| |
| pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...", |
| want_v, slot, flags, psize); |
| |
| lpar_rc = plpar_pte_protect(flags, slot, want_v); |
| |
| if (lpar_rc == H_NOT_FOUND) { |
| pr_devel("not found !\n"); |
| return -1; |
| } |
| |
| pr_devel("ok\n"); |
| |
| BUG_ON(lpar_rc != H_SUCCESS); |
| |
| return 0; |
| } |
| |
| static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group) |
| { |
| long lpar_rc; |
| unsigned long i, j; |
| struct { |
| unsigned long pteh; |
| unsigned long ptel; |
| } ptes[4]; |
| |
| for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) { |
| |
| lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes); |
| if (lpar_rc != H_SUCCESS) { |
| pr_info("Failed to read hash page table at %ld err %ld\n", |
| hpte_group, lpar_rc); |
| continue; |
| } |
| |
| for (j = 0; j < 4; j++) { |
| if (HPTE_V_COMPARE(ptes[j].pteh, want_v) && |
| (ptes[j].pteh & HPTE_V_VALID)) |
| return i + j; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize) |
| { |
| long slot; |
| unsigned long hash; |
| unsigned long want_v; |
| unsigned long hpte_group; |
| |
| hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize); |
| want_v = hpte_encode_avpn(vpn, psize, ssize); |
| |
| /* |
| * We try to keep bolted entries always in primary hash |
| * But in some case we can find them in secondary too. |
| */ |
| hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot = __pSeries_lpar_hpte_find(want_v, hpte_group); |
| if (slot < 0) { |
| /* Try in secondary */ |
| hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot = __pSeries_lpar_hpte_find(want_v, hpte_group); |
| if (slot < 0) |
| return -1; |
| } |
| return hpte_group + slot; |
| } |
| |
| static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp, |
| unsigned long ea, |
| int psize, int ssize) |
| { |
| unsigned long vpn; |
| unsigned long lpar_rc, slot, vsid, flags; |
| |
| vsid = get_kernel_vsid(ea, ssize); |
| vpn = hpt_vpn(ea, vsid, ssize); |
| |
| slot = pSeries_lpar_hpte_find(vpn, psize, ssize); |
| BUG_ON(slot == -1); |
| |
| flags = newpp & (HPTE_R_PP | HPTE_R_N); |
| if (mmu_has_feature(MMU_FTR_KERNEL_RO)) |
| /* Move pp0 into bit 8 (IBM 55) */ |
| flags |= (newpp & HPTE_R_PP0) >> 55; |
| |
| flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO); |
| |
| lpar_rc = plpar_pte_protect(flags, slot, 0); |
| |
| BUG_ON(lpar_rc != H_SUCCESS); |
| } |
| |
| static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn, |
| int psize, int apsize, |
| int ssize, int local) |
| { |
| unsigned long want_v; |
| unsigned long lpar_rc; |
| unsigned long dummy1, dummy2; |
| |
| pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n", |
| slot, vpn, psize, local); |
| |
| want_v = hpte_encode_avpn(vpn, psize, ssize); |
| lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2); |
| if (lpar_rc == H_NOT_FOUND) |
| return; |
| |
| BUG_ON(lpar_rc != H_SUCCESS); |
| } |
| |
| |
| /* |
| * As defined in the PAPR's section 14.5.4.1.8 |
| * The control mask doesn't include the returned reference and change bit from |
| * the processed PTE. |
| */ |
| #define HBLKR_AVPN 0x0100000000000000UL |
| #define HBLKR_CTRL_MASK 0xf800000000000000UL |
| #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL |
| #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL |
| #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL |
| |
| /* |
| * Returned true if we are supporting this block size for the specified segment |
| * base page size and actual page size. |
| * |
| * Currently, we only support 8 size block. |
| */ |
| static inline bool is_supported_hlbkrm(int bpsize, int psize) |
| { |
| return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE); |
| } |
| |
| /** |
| * H_BLOCK_REMOVE caller. |
| * @idx should point to the latest @param entry set with a PTEX. |
| * If PTE cannot be processed because another CPUs has already locked that |
| * group, those entries are put back in @param starting at index 1. |
| * If entries has to be retried and @retry_busy is set to true, these entries |
| * are retried until success. If @retry_busy is set to false, the returned |
| * is the number of entries yet to process. |
| */ |
| static unsigned long call_block_remove(unsigned long idx, unsigned long *param, |
| bool retry_busy) |
| { |
| unsigned long i, rc, new_idx; |
| unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; |
| |
| if (idx < 2) { |
| pr_warn("Unexpected empty call to H_BLOCK_REMOVE"); |
| return 0; |
| } |
| again: |
| new_idx = 0; |
| if (idx > PLPAR_HCALL9_BUFSIZE) { |
| pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx); |
| idx = PLPAR_HCALL9_BUFSIZE; |
| } else if (idx < PLPAR_HCALL9_BUFSIZE) |
| param[idx] = HBR_END; |
| |
| rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf, |
| param[0], /* AVA */ |
| param[1], param[2], param[3], param[4], /* TS0-7 */ |
| param[5], param[6], param[7], param[8]); |
| if (rc == H_SUCCESS) |
| return 0; |
| |
| BUG_ON(rc != H_PARTIAL); |
| |
| /* Check that the unprocessed entries were 'not found' or 'busy' */ |
| for (i = 0; i < idx-1; i++) { |
| unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK; |
| |
| if (ctrl == HBLKR_CTRL_ERRBUSY) { |
| param[++new_idx] = param[i+1]; |
| continue; |
| } |
| |
| BUG_ON(ctrl != HBLKR_CTRL_SUCCESS |
| && ctrl != HBLKR_CTRL_ERRNOTFOUND); |
| } |
| |
| /* |
| * If there were entries found busy, retry these entries if requested, |
| * of if all the entries have to be retried. |
| */ |
| if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) { |
| idx = new_idx + 1; |
| goto again; |
| } |
| |
| return new_idx; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* |
| * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need |
| * to make sure that we avoid bouncing the hypervisor tlbie lock. |
| */ |
| #define PPC64_HUGE_HPTE_BATCH 12 |
| |
| static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn, |
| int count, int psize, int ssize) |
| { |
| unsigned long param[PLPAR_HCALL9_BUFSIZE]; |
| unsigned long shift, current_vpgb, vpgb; |
| int i, pix = 0; |
| |
| shift = mmu_psize_defs[psize].shift; |
| |
| for (i = 0; i < count; i++) { |
| /* |
| * Shifting 3 bits more on the right to get a |
| * 8 pages aligned virtual addresse. |
| */ |
| vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3)); |
| if (!pix || vpgb != current_vpgb) { |
| /* |
| * Need to start a new 8 pages block, flush |
| * the current one if needed. |
| */ |
| if (pix) |
| (void)call_block_remove(pix, param, true); |
| current_vpgb = vpgb; |
| param[0] = hpte_encode_avpn(vpn[i], psize, ssize); |
| pix = 1; |
| } |
| |
| param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i]; |
| if (pix == PLPAR_HCALL9_BUFSIZE) { |
| pix = call_block_remove(pix, param, false); |
| /* |
| * pix = 0 means that all the entries were |
| * removed, we can start a new block. |
| * Otherwise, this means that there are entries |
| * to retry, and pix points to latest one, so |
| * we should increment it and try to continue |
| * the same block. |
| */ |
| if (pix) |
| pix++; |
| } |
| } |
| if (pix) |
| (void)call_block_remove(pix, param, true); |
| } |
| |
| static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn, |
| int count, int psize, int ssize) |
| { |
| unsigned long param[PLPAR_HCALL9_BUFSIZE]; |
| int i = 0, pix = 0, rc; |
| |
| for (i = 0; i < count; i++) { |
| |
| if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { |
| pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0, |
| ssize, 0); |
| } else { |
| param[pix] = HBR_REQUEST | HBR_AVPN | slot[i]; |
| param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize); |
| pix += 2; |
| if (pix == 8) { |
| rc = plpar_hcall9(H_BULK_REMOVE, param, |
| param[0], param[1], param[2], |
| param[3], param[4], param[5], |
| param[6], param[7]); |
| BUG_ON(rc != H_SUCCESS); |
| pix = 0; |
| } |
| } |
| } |
| if (pix) { |
| param[pix] = HBR_END; |
| rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], |
| param[2], param[3], param[4], param[5], |
| param[6], param[7]); |
| BUG_ON(rc != H_SUCCESS); |
| } |
| } |
| |
| static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot, |
| unsigned long *vpn, |
| int count, int psize, |
| int ssize) |
| { |
| unsigned long flags = 0; |
| int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); |
| |
| if (lock_tlbie) |
| spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); |
| |
| /* Assuming THP size is 16M */ |
| if (is_supported_hlbkrm(psize, MMU_PAGE_16M)) |
| hugepage_block_invalidate(slot, vpn, count, psize, ssize); |
| else |
| hugepage_bulk_invalidate(slot, vpn, count, psize, ssize); |
| |
| if (lock_tlbie) |
| spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); |
| } |
| |
| static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, |
| unsigned long addr, |
| unsigned char *hpte_slot_array, |
| int psize, int ssize, int local) |
| { |
| int i, index = 0; |
| unsigned long s_addr = addr; |
| unsigned int max_hpte_count, valid; |
| unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH]; |
| unsigned long slot_array[PPC64_HUGE_HPTE_BATCH]; |
| unsigned long shift, hidx, vpn = 0, hash, slot; |
| |
| shift = mmu_psize_defs[psize].shift; |
| max_hpte_count = 1U << (PMD_SHIFT - shift); |
| |
| for (i = 0; i < max_hpte_count; i++) { |
| valid = hpte_valid(hpte_slot_array, i); |
| if (!valid) |
| continue; |
| hidx = hpte_hash_index(hpte_slot_array, i); |
| |
| /* get the vpn */ |
| addr = s_addr + (i * (1ul << shift)); |
| vpn = hpt_vpn(addr, vsid, ssize); |
| hash = hpt_hash(vpn, shift, ssize); |
| if (hidx & _PTEIDX_SECONDARY) |
| hash = ~hash; |
| |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += hidx & _PTEIDX_GROUP_IX; |
| |
| slot_array[index] = slot; |
| vpn_array[index] = vpn; |
| if (index == PPC64_HUGE_HPTE_BATCH - 1) { |
| /* |
| * Now do a bluk invalidate |
| */ |
| __pSeries_lpar_hugepage_invalidate(slot_array, |
| vpn_array, |
| PPC64_HUGE_HPTE_BATCH, |
| psize, ssize); |
| index = 0; |
| } else |
| index++; |
| } |
| if (index) |
| __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array, |
| index, psize, ssize); |
| } |
| #else |
| static void pSeries_lpar_hugepage_invalidate(unsigned long vsid, |
| unsigned long addr, |
| unsigned char *hpte_slot_array, |
| int psize, int ssize, int local) |
| { |
| WARN(1, "%s called without THP support\n", __func__); |
| } |
| #endif |
| |
| static int pSeries_lpar_hpte_removebolted(unsigned long ea, |
| int psize, int ssize) |
| { |
| unsigned long vpn; |
| unsigned long slot, vsid; |
| |
| vsid = get_kernel_vsid(ea, ssize); |
| vpn = hpt_vpn(ea, vsid, ssize); |
| |
| slot = pSeries_lpar_hpte_find(vpn, psize, ssize); |
| if (slot == -1) |
| return -ENOENT; |
| |
| /* |
| * lpar doesn't use the passed actual page size |
| */ |
| pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0); |
| return 0; |
| } |
| |
| |
| static inline unsigned long compute_slot(real_pte_t pte, |
| unsigned long vpn, |
| unsigned long index, |
| unsigned long shift, |
| int ssize) |
| { |
| unsigned long slot, hash, hidx; |
| |
| hash = hpt_hash(vpn, shift, ssize); |
| hidx = __rpte_to_hidx(pte, index); |
| if (hidx & _PTEIDX_SECONDARY) |
| hash = ~hash; |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += hidx & _PTEIDX_GROUP_IX; |
| return slot; |
| } |
| |
| /** |
| * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are |
| * "all within the same naturally aligned 8 page virtual address block". |
| */ |
| static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch, |
| unsigned long *param) |
| { |
| unsigned long vpn; |
| unsigned long i, pix = 0; |
| unsigned long index, shift, slot, current_vpgb, vpgb; |
| real_pte_t pte; |
| int psize, ssize; |
| |
| psize = batch->psize; |
| ssize = batch->ssize; |
| |
| for (i = 0; i < number; i++) { |
| vpn = batch->vpn[i]; |
| pte = batch->pte[i]; |
| pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { |
| /* |
| * Shifting 3 bits more on the right to get a |
| * 8 pages aligned virtual addresse. |
| */ |
| vpgb = (vpn >> (shift - VPN_SHIFT + 3)); |
| if (!pix || vpgb != current_vpgb) { |
| /* |
| * Need to start a new 8 pages block, flush |
| * the current one if needed. |
| */ |
| if (pix) |
| (void)call_block_remove(pix, param, |
| true); |
| current_vpgb = vpgb; |
| param[0] = hpte_encode_avpn(vpn, psize, |
| ssize); |
| pix = 1; |
| } |
| |
| slot = compute_slot(pte, vpn, index, shift, ssize); |
| param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot; |
| |
| if (pix == PLPAR_HCALL9_BUFSIZE) { |
| pix = call_block_remove(pix, param, false); |
| /* |
| * pix = 0 means that all the entries were |
| * removed, we can start a new block. |
| * Otherwise, this means that there are entries |
| * to retry, and pix points to latest one, so |
| * we should increment it and try to continue |
| * the same block. |
| */ |
| if (pix) |
| pix++; |
| } |
| } pte_iterate_hashed_end(); |
| } |
| |
| if (pix) |
| (void)call_block_remove(pix, param, true); |
| } |
| |
| /* |
| * TLB Block Invalidate Characteristics |
| * |
| * These characteristics define the size of the block the hcall H_BLOCK_REMOVE |
| * is able to process for each couple segment base page size, actual page size. |
| * |
| * The ibm,get-system-parameter properties is returning a buffer with the |
| * following layout: |
| * |
| * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ] |
| * ----------------- |
| * TLB Block Invalidate Specifiers: |
| * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ] |
| * [ 1 byte Number of page sizes (N) that are supported for the specified |
| * TLB invalidate block size ] |
| * [ 1 byte Encoded segment base page size and actual page size |
| * MSB=0 means 4k segment base page size and actual page size |
| * MSB=1 the penc value in mmu_psize_def ] |
| * ... |
| * ----------------- |
| * Next TLB Block Invalidate Specifiers... |
| * ----------------- |
| * [ 0 ] |
| */ |
| static inline void set_hblkrm_bloc_size(int bpsize, int psize, |
| unsigned int block_size) |
| { |
| if (block_size > hblkrm_size[bpsize][psize]) |
| hblkrm_size[bpsize][psize] = block_size; |
| } |
| |
| /* |
| * Decode the Encoded segment base page size and actual page size. |
| * PAPR specifies: |
| * - bit 7 is the L bit |
| * - bits 0-5 are the penc value |
| * If the L bit is 0, this means 4K segment base page size and actual page size |
| * otherwise the penc value should be read. |
| */ |
| #define HBLKRM_L_MASK 0x80 |
| #define HBLKRM_PENC_MASK 0x3f |
| static inline void __init check_lp_set_hblkrm(unsigned int lp, |
| unsigned int block_size) |
| { |
| unsigned int bpsize, psize; |
| |
| /* First, check the L bit, if not set, this means 4K */ |
| if ((lp & HBLKRM_L_MASK) == 0) { |
| set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size); |
| return; |
| } |
| |
| lp &= HBLKRM_PENC_MASK; |
| for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) { |
| struct mmu_psize_def *def = &mmu_psize_defs[bpsize]; |
| |
| for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { |
| if (def->penc[psize] == lp) { |
| set_hblkrm_bloc_size(bpsize, psize, block_size); |
| return; |
| } |
| } |
| } |
| } |
| |
| #define SPLPAR_TLB_BIC_TOKEN 50 |
| |
| /* |
| * The size of the TLB Block Invalidate Characteristics is variable. But at the |
| * maximum it will be the number of possible page sizes *2 + 10 bytes. |
| * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size |
| * (128 bytes) for the buffer to get plenty of space. |
| */ |
| #define SPLPAR_TLB_BIC_MAXLENGTH 128 |
| |
| void __init pseries_lpar_read_hblkrm_characteristics(void) |
| { |
| unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH]; |
| int call_status, len, idx, bpsize; |
| |
| if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) |
| return; |
| |
| spin_lock(&rtas_data_buf_lock); |
| memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE); |
| call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1, |
| NULL, |
| SPLPAR_TLB_BIC_TOKEN, |
| __pa(rtas_data_buf), |
| RTAS_DATA_BUF_SIZE); |
| memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH); |
| local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0'; |
| spin_unlock(&rtas_data_buf_lock); |
| |
| if (call_status != 0) { |
| pr_warn("%s %s Error calling get-system-parameter (0x%x)\n", |
| __FILE__, __func__, call_status); |
| return; |
| } |
| |
| /* |
| * The first two (2) bytes of the data in the buffer are the length of |
| * the returned data, not counting these first two (2) bytes. |
| */ |
| len = be16_to_cpu(*((u16 *)local_buffer)) + 2; |
| if (len > SPLPAR_TLB_BIC_MAXLENGTH) { |
| pr_warn("%s too large returned buffer %d", __func__, len); |
| return; |
| } |
| |
| idx = 2; |
| while (idx < len) { |
| u8 block_shift = local_buffer[idx++]; |
| u32 block_size; |
| unsigned int npsize; |
| |
| if (!block_shift) |
| break; |
| |
| block_size = 1 << block_shift; |
| |
| for (npsize = local_buffer[idx++]; |
| npsize > 0 && idx < len; npsize--) |
| check_lp_set_hblkrm((unsigned int) local_buffer[idx++], |
| block_size); |
| } |
| |
| for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) |
| for (idx = 0; idx < MMU_PAGE_COUNT; idx++) |
| if (hblkrm_size[bpsize][idx]) |
| pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d", |
| bpsize, idx, hblkrm_size[bpsize][idx]); |
| } |
| |
| /* |
| * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie |
| * lock. |
| */ |
| static void pSeries_lpar_flush_hash_range(unsigned long number, int local) |
| { |
| unsigned long vpn; |
| unsigned long i, pix, rc; |
| unsigned long flags = 0; |
| struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch); |
| int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE); |
| unsigned long param[PLPAR_HCALL9_BUFSIZE]; |
| unsigned long index, shift, slot; |
| real_pte_t pte; |
| int psize, ssize; |
| |
| if (lock_tlbie) |
| spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags); |
| |
| if (is_supported_hlbkrm(batch->psize, batch->psize)) { |
| do_block_remove(number, batch, param); |
| goto out; |
| } |
| |
| psize = batch->psize; |
| ssize = batch->ssize; |
| pix = 0; |
| for (i = 0; i < number; i++) { |
| vpn = batch->vpn[i]; |
| pte = batch->pte[i]; |
| pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) { |
| slot = compute_slot(pte, vpn, index, shift, ssize); |
| if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { |
| /* |
| * lpar doesn't use the passed actual page size |
| */ |
| pSeries_lpar_hpte_invalidate(slot, vpn, psize, |
| 0, ssize, local); |
| } else { |
| param[pix] = HBR_REQUEST | HBR_AVPN | slot; |
| param[pix+1] = hpte_encode_avpn(vpn, psize, |
| ssize); |
| pix += 2; |
| if (pix == 8) { |
| rc = plpar_hcall9(H_BULK_REMOVE, param, |
| param[0], param[1], param[2], |
| param[3], param[4], param[5], |
| param[6], param[7]); |
| BUG_ON(rc != H_SUCCESS); |
| pix = 0; |
| } |
| } |
| } pte_iterate_hashed_end(); |
| } |
| if (pix) { |
| param[pix] = HBR_END; |
| rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1], |
| param[2], param[3], param[4], param[5], |
| param[6], param[7]); |
| BUG_ON(rc != H_SUCCESS); |
| } |
| |
| out: |
| if (lock_tlbie) |
| spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags); |
| } |
| |
| static int __init disable_bulk_remove(char *str) |
| { |
| if (strcmp(str, "off") == 0 && |
| firmware_has_feature(FW_FEATURE_BULK_REMOVE)) { |
| pr_info("Disabling BULK_REMOVE firmware feature"); |
| powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE; |
| } |
| return 1; |
| } |
| |
| __setup("bulk_remove=", disable_bulk_remove); |
| |
| #define HPT_RESIZE_TIMEOUT 10000 /* ms */ |
| |
| struct hpt_resize_state { |
| unsigned long shift; |
| int commit_rc; |
| }; |
| |
| static int pseries_lpar_resize_hpt_commit(void *data) |
| { |
| struct hpt_resize_state *state = data; |
| |
| state->commit_rc = plpar_resize_hpt_commit(0, state->shift); |
| if (state->commit_rc != H_SUCCESS) |
| return -EIO; |
| |
| /* Hypervisor has transitioned the HTAB, update our globals */ |
| ppc64_pft_size = state->shift; |
| htab_size_bytes = 1UL << ppc64_pft_size; |
| htab_hash_mask = (htab_size_bytes >> 7) - 1; |
| |
| return 0; |
| } |
| |
| /* |
| * Must be called in process context. The caller must hold the |
| * cpus_lock. |
| */ |
| static int pseries_lpar_resize_hpt(unsigned long shift) |
| { |
| struct hpt_resize_state state = { |
| .shift = shift, |
| .commit_rc = H_FUNCTION, |
| }; |
| unsigned int delay, total_delay = 0; |
| int rc; |
| ktime_t t0, t1, t2; |
| |
| might_sleep(); |
| |
| if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE)) |
| return -ENODEV; |
| |
| pr_info("Attempting to resize HPT to shift %lu\n", shift); |
| |
| t0 = ktime_get(); |
| |
| rc = plpar_resize_hpt_prepare(0, shift); |
| while (H_IS_LONG_BUSY(rc)) { |
| delay = get_longbusy_msecs(rc); |
| total_delay += delay; |
| if (total_delay > HPT_RESIZE_TIMEOUT) { |
| /* prepare with shift==0 cancels an in-progress resize */ |
| rc = plpar_resize_hpt_prepare(0, 0); |
| if (rc != H_SUCCESS) |
| pr_warn("Unexpected error %d cancelling timed out HPT resize\n", |
| rc); |
| return -ETIMEDOUT; |
| } |
| msleep(delay); |
| rc = plpar_resize_hpt_prepare(0, shift); |
| } |
| |
| switch (rc) { |
| case H_SUCCESS: |
| /* Continue on */ |
| break; |
| |
| case H_PARAMETER: |
| pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n"); |
| return -EINVAL; |
| case H_RESOURCE: |
| pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n"); |
| return -EPERM; |
| default: |
| pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc); |
| return -EIO; |
| } |
| |
| t1 = ktime_get(); |
| |
| rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit, |
| &state, NULL); |
| |
| t2 = ktime_get(); |
| |
| if (rc != 0) { |
| switch (state.commit_rc) { |
| case H_PTEG_FULL: |
| return -ENOSPC; |
| |
| default: |
| pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n", |
| state.commit_rc); |
| return -EIO; |
| }; |
| } |
| |
| pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n", |
| shift, (long long) ktime_ms_delta(t1, t0), |
| (long long) ktime_ms_delta(t2, t1)); |
| |
| return 0; |
| } |
| |
| void __init hpte_init_pseries(void) |
| { |
| mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate; |
| mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp; |
| mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp; |
| mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert; |
| mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove; |
| mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted; |
| mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range; |
| mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all; |
| mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate; |
| |
| if (firmware_has_feature(FW_FEATURE_HPT_RESIZE)) |
| mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt; |
| |
| /* |
| * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall |
| * to inform the hypervisor that we wish to use the HPT. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| pseries_lpar_register_process_table(0, 0, 0); |
| } |
| #endif /* CONFIG_PPC_64S_HASH_MMU */ |
| |
| #ifdef CONFIG_PPC_RADIX_MMU |
| void __init radix_init_pseries(void) |
| { |
| pr_info("Using radix MMU under hypervisor\n"); |
| |
| pseries_lpar_register_process_table(__pa(process_tb), |
| 0, PRTB_SIZE_SHIFT - 12); |
| } |
| #endif |
| |
| #ifdef CONFIG_PPC_SMLPAR |
| #define CMO_FREE_HINT_DEFAULT 1 |
| static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT; |
| |
| static int __init cmo_free_hint(char *str) |
| { |
| char *parm; |
| parm = strstrip(str); |
| |
| if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) { |
| pr_info("%s: CMO free page hinting is not active.\n", __func__); |
| cmo_free_hint_flag = 0; |
| return 1; |
| } |
| |
| cmo_free_hint_flag = 1; |
| pr_info("%s: CMO free page hinting is active.\n", __func__); |
| |
| if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| __setup("cmo_free_hint=", cmo_free_hint); |
| |
| static void pSeries_set_page_state(struct page *page, int order, |
| unsigned long state) |
| { |
| int i, j; |
| unsigned long cmo_page_sz, addr; |
| |
| cmo_page_sz = cmo_get_page_size(); |
| addr = __pa((unsigned long)page_address(page)); |
| |
| for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) { |
| for (j = 0; j < PAGE_SIZE; j += cmo_page_sz) |
| plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0); |
| } |
| } |
| |
| void arch_free_page(struct page *page, int order) |
| { |
| if (radix_enabled()) |
| return; |
| if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO)) |
| return; |
| |
| pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED); |
| } |
| EXPORT_SYMBOL(arch_free_page); |
| |
| #endif /* CONFIG_PPC_SMLPAR */ |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |
| |
| #ifdef CONFIG_TRACEPOINTS |
| #ifdef CONFIG_JUMP_LABEL |
| struct static_key hcall_tracepoint_key = STATIC_KEY_INIT; |
| |
| int hcall_tracepoint_regfunc(void) |
| { |
| static_key_slow_inc(&hcall_tracepoint_key); |
| return 0; |
| } |
| |
| void hcall_tracepoint_unregfunc(void) |
| { |
| static_key_slow_dec(&hcall_tracepoint_key); |
| } |
| #else |
| /* |
| * We optimise our hcall path by placing hcall_tracepoint_refcount |
| * directly in the TOC so we can check if the hcall tracepoints are |
| * enabled via a single load. |
| */ |
| |
| /* NB: reg/unreg are called while guarded with the tracepoints_mutex */ |
| extern long hcall_tracepoint_refcount; |
| |
| int hcall_tracepoint_regfunc(void) |
| { |
| hcall_tracepoint_refcount++; |
| return 0; |
| } |
| |
| void hcall_tracepoint_unregfunc(void) |
| { |
| hcall_tracepoint_refcount--; |
| } |
| #endif |
| |
| /* |
| * Keep track of hcall tracing depth and prevent recursion. Warn if any is |
| * detected because it may indicate a problem. This will not catch all |
| * problems with tracing code making hcalls, because the tracing might have |
| * been invoked from a non-hcall, so the first hcall could recurse into it |
| * without warning here, but this better than nothing. |
| * |
| * Hcalls with specific problems being traced should use the _notrace |
| * plpar_hcall variants. |
| */ |
| static DEFINE_PER_CPU(unsigned int, hcall_trace_depth); |
| |
| |
| notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args) |
| { |
| unsigned long flags; |
| unsigned int *depth; |
| |
| local_irq_save(flags); |
| |
| depth = this_cpu_ptr(&hcall_trace_depth); |
| |
| if (WARN_ON_ONCE(*depth)) |
| goto out; |
| |
| (*depth)++; |
| preempt_disable(); |
| trace_hcall_entry(opcode, args); |
| (*depth)--; |
| |
| out: |
| local_irq_restore(flags); |
| } |
| |
| notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf) |
| { |
| unsigned long flags; |
| unsigned int *depth; |
| |
| local_irq_save(flags); |
| |
| depth = this_cpu_ptr(&hcall_trace_depth); |
| |
| if (*depth) /* Don't warn again on the way out */ |
| goto out; |
| |
| (*depth)++; |
| trace_hcall_exit(opcode, retval, retbuf); |
| preempt_enable(); |
| (*depth)--; |
| |
| out: |
| local_irq_restore(flags); |
| } |
| #endif |
| |
| /** |
| * h_get_mpp |
| * H_GET_MPP hcall returns info in 7 parms |
| */ |
| int h_get_mpp(struct hvcall_mpp_data *mpp_data) |
| { |
| int rc; |
| unsigned long retbuf[PLPAR_HCALL9_BUFSIZE]; |
| |
| rc = plpar_hcall9(H_GET_MPP, retbuf); |
| |
| mpp_data->entitled_mem = retbuf[0]; |
| mpp_data->mapped_mem = retbuf[1]; |
| |
| mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff; |
| mpp_data->pool_num = retbuf[2] & 0xffff; |
| |
| mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff; |
| mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff; |
| mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL; |
| |
| mpp_data->pool_size = retbuf[4]; |
| mpp_data->loan_request = retbuf[5]; |
| mpp_data->backing_mem = retbuf[6]; |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(h_get_mpp); |
| |
| int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data) |
| { |
| int rc; |
| unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 }; |
| |
| rc = plpar_hcall9(H_GET_MPP_X, retbuf); |
| |
| mpp_x_data->coalesced_bytes = retbuf[0]; |
| mpp_x_data->pool_coalesced_bytes = retbuf[1]; |
| mpp_x_data->pool_purr_cycles = retbuf[2]; |
| mpp_x_data->pool_spurr_cycles = retbuf[3]; |
| |
| return rc; |
| } |
| |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize) |
| { |
| unsigned long protovsid; |
| unsigned long va_bits = VA_BITS; |
| unsigned long modinv, vsid_modulus; |
| unsigned long max_mod_inv, tmp_modinv; |
| |
| if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) |
| va_bits = 65; |
| |
| if (ssize == MMU_SEGSIZE_256M) { |
| modinv = VSID_MULINV_256M; |
| vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1); |
| } else { |
| modinv = VSID_MULINV_1T; |
| vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1); |
| } |
| |
| /* |
| * vsid outside our range. |
| */ |
| if (vsid >= vsid_modulus) |
| return 0; |
| |
| /* |
| * If modinv is the modular multiplicate inverse of (x % vsid_modulus) |
| * and vsid = (protovsid * x) % vsid_modulus, then we say: |
| * protovsid = (vsid * modinv) % vsid_modulus |
| */ |
| |
| /* Check if (vsid * modinv) overflow (63 bits) */ |
| max_mod_inv = 0x7fffffffffffffffull / vsid; |
| if (modinv < max_mod_inv) |
| return (vsid * modinv) % vsid_modulus; |
| |
| tmp_modinv = modinv/max_mod_inv; |
| modinv %= max_mod_inv; |
| |
| protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus; |
| protovsid = (protovsid + vsid * modinv) % vsid_modulus; |
| |
| return protovsid; |
| } |
| |
| static int __init reserve_vrma_context_id(void) |
| { |
| unsigned long protovsid; |
| |
| /* |
| * Reserve context ids which map to reserved virtual addresses. For now |
| * we only reserve the context id which maps to the VRMA VSID. We ignore |
| * the addresses in "ibm,adjunct-virtual-addresses" because we don't |
| * enable adjunct support via the "ibm,client-architecture-support" |
| * interface. |
| */ |
| protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T); |
| hash__reserve_context_id(protovsid >> ESID_BITS_1T); |
| return 0; |
| } |
| machine_device_initcall(pseries, reserve_vrma_context_id); |
| #endif |
| |
| #ifdef CONFIG_DEBUG_FS |
| /* debugfs file interface for vpa data */ |
| static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len, |
| loff_t *pos) |
| { |
| int cpu = (long)filp->private_data; |
| struct lppaca *lppaca = &lppaca_of(cpu); |
| |
| return simple_read_from_buffer(buf, len, pos, lppaca, |
| sizeof(struct lppaca)); |
| } |
| |
| static const struct file_operations vpa_fops = { |
| .open = simple_open, |
| .read = vpa_file_read, |
| .llseek = default_llseek, |
| }; |
| |
| static int __init vpa_debugfs_init(void) |
| { |
| char name[16]; |
| long i; |
| struct dentry *vpa_dir; |
| |
| if (!firmware_has_feature(FW_FEATURE_SPLPAR)) |
| return 0; |
| |
| vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir); |
| |
| /* set up the per-cpu vpa file*/ |
| for_each_possible_cpu(i) { |
| sprintf(name, "cpu-%ld", i); |
| debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops); |
| } |
| |
| return 0; |
| } |
| machine_arch_initcall(pseries, vpa_debugfs_init); |
| #endif /* CONFIG_DEBUG_FS */ |