| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * This file contains the routines for TLB flushing. |
| * On machines where the MMU does not use a hash table to store virtual to |
| * physical translations (ie, SW loaded TLBs or Book3E compilant processors, |
| * this does -not- include 603 however which shares the implementation with |
| * hash based processors) |
| * |
| * -- BenH |
| * |
| * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org> |
| * IBM Corp. |
| * |
| * Derived from arch/ppc/mm/init.c: |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/preempt.h> |
| #include <linux/spinlock.h> |
| #include <linux/memblock.h> |
| #include <linux/of_fdt.h> |
| #include <linux/hugetlb.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/tlb.h> |
| #include <asm/code-patching.h> |
| #include <asm/cputhreads.h> |
| #include <asm/hugetlb.h> |
| #include <asm/paca.h> |
| |
| #include <mm/mmu_decl.h> |
| |
| /* |
| * This struct lists the sw-supported page sizes. The hardawre MMU may support |
| * other sizes not listed here. The .ind field is only used on MMUs that have |
| * indirect page table entries. |
| */ |
| #if defined(CONFIG_PPC_BOOK3E_MMU) || defined(CONFIG_PPC_8xx) |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { |
| [MMU_PAGE_4K] = { |
| .shift = 12, |
| .enc = BOOK3E_PAGESZ_4K, |
| }, |
| [MMU_PAGE_2M] = { |
| .shift = 21, |
| .enc = BOOK3E_PAGESZ_2M, |
| }, |
| [MMU_PAGE_4M] = { |
| .shift = 22, |
| .enc = BOOK3E_PAGESZ_4M, |
| }, |
| [MMU_PAGE_16M] = { |
| .shift = 24, |
| .enc = BOOK3E_PAGESZ_16M, |
| }, |
| [MMU_PAGE_64M] = { |
| .shift = 26, |
| .enc = BOOK3E_PAGESZ_64M, |
| }, |
| [MMU_PAGE_256M] = { |
| .shift = 28, |
| .enc = BOOK3E_PAGESZ_256M, |
| }, |
| [MMU_PAGE_1G] = { |
| .shift = 30, |
| .enc = BOOK3E_PAGESZ_1GB, |
| }, |
| }; |
| #elif defined(CONFIG_PPC_8xx) |
| struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { |
| [MMU_PAGE_4K] = { |
| .shift = 12, |
| }, |
| [MMU_PAGE_16K] = { |
| .shift = 14, |
| }, |
| [MMU_PAGE_512K] = { |
| .shift = 19, |
| }, |
| [MMU_PAGE_8M] = { |
| .shift = 23, |
| }, |
| }; |
| #else |
| struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { |
| [MMU_PAGE_4K] = { |
| .shift = 12, |
| .ind = 20, |
| .enc = BOOK3E_PAGESZ_4K, |
| }, |
| [MMU_PAGE_16K] = { |
| .shift = 14, |
| .enc = BOOK3E_PAGESZ_16K, |
| }, |
| [MMU_PAGE_64K] = { |
| .shift = 16, |
| .ind = 28, |
| .enc = BOOK3E_PAGESZ_64K, |
| }, |
| [MMU_PAGE_1M] = { |
| .shift = 20, |
| .enc = BOOK3E_PAGESZ_1M, |
| }, |
| [MMU_PAGE_16M] = { |
| .shift = 24, |
| .ind = 36, |
| .enc = BOOK3E_PAGESZ_16M, |
| }, |
| [MMU_PAGE_256M] = { |
| .shift = 28, |
| .enc = BOOK3E_PAGESZ_256M, |
| }, |
| [MMU_PAGE_1G] = { |
| .shift = 30, |
| .enc = BOOK3E_PAGESZ_1GB, |
| }, |
| }; |
| #endif /* CONFIG_FSL_BOOKE */ |
| |
| static inline int mmu_get_tsize(int psize) |
| { |
| return mmu_psize_defs[psize].enc; |
| } |
| #else |
| static inline int mmu_get_tsize(int psize) |
| { |
| /* This isn't used on !Book3E for now */ |
| return 0; |
| } |
| #endif /* CONFIG_PPC_BOOK3E_MMU */ |
| |
| /* The variables below are currently only used on 64-bit Book3E |
| * though this will probably be made common with other nohash |
| * implementations at some point |
| */ |
| #ifdef CONFIG_PPC64 |
| |
| int mmu_pte_psize; /* Page size used for PTE pages */ |
| int mmu_vmemmap_psize; /* Page size used for the virtual mem map */ |
| int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */ |
| unsigned long linear_map_top; /* Top of linear mapping */ |
| |
| |
| /* |
| * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug |
| * exceptions. This is used for bolted and e6500 TLB miss handlers which |
| * do not modify this SPRG in the TLB miss code; for other TLB miss handlers, |
| * this is set to zero. |
| */ |
| int extlb_level_exc; |
| |
| #endif /* CONFIG_PPC64 */ |
| |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */ |
| DEFINE_PER_CPU(int, next_tlbcam_idx); |
| EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx); |
| #endif |
| |
| /* |
| * Base TLB flushing operations: |
| * |
| * - flush_tlb_mm(mm) flushes the specified mm context TLB's |
| * - flush_tlb_page(vma, vmaddr) flushes one page |
| * - flush_tlb_range(vma, start, end) flushes a range of pages |
| * - flush_tlb_kernel_range(start, end) flushes kernel pages |
| * |
| * - local_* variants of page and mm only apply to the current |
| * processor |
| */ |
| |
| #ifndef CONFIG_PPC_8xx |
| /* |
| * These are the base non-SMP variants of page and mm flushing |
| */ |
| void local_flush_tlb_mm(struct mm_struct *mm) |
| { |
| unsigned int pid; |
| |
| preempt_disable(); |
| pid = mm->context.id; |
| if (pid != MMU_NO_CONTEXT) |
| _tlbil_pid(pid); |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL(local_flush_tlb_mm); |
| |
| void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, |
| int tsize, int ind) |
| { |
| unsigned int pid; |
| |
| preempt_disable(); |
| pid = mm ? mm->context.id : 0; |
| if (pid != MMU_NO_CONTEXT) |
| _tlbil_va(vmaddr, pid, tsize, ind); |
| preempt_enable(); |
| } |
| |
| void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) |
| { |
| __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, |
| mmu_get_tsize(mmu_virtual_psize), 0); |
| } |
| EXPORT_SYMBOL(local_flush_tlb_page); |
| #endif |
| |
| /* |
| * And here are the SMP non-local implementations |
| */ |
| #ifdef CONFIG_SMP |
| |
| static DEFINE_RAW_SPINLOCK(tlbivax_lock); |
| |
| struct tlb_flush_param { |
| unsigned long addr; |
| unsigned int pid; |
| unsigned int tsize; |
| unsigned int ind; |
| }; |
| |
| static void do_flush_tlb_mm_ipi(void *param) |
| { |
| struct tlb_flush_param *p = param; |
| |
| _tlbil_pid(p ? p->pid : 0); |
| } |
| |
| static void do_flush_tlb_page_ipi(void *param) |
| { |
| struct tlb_flush_param *p = param; |
| |
| _tlbil_va(p->addr, p->pid, p->tsize, p->ind); |
| } |
| |
| |
| /* Note on invalidations and PID: |
| * |
| * We snapshot the PID with preempt disabled. At this point, it can still |
| * change either because: |
| * - our context is being stolen (PID -> NO_CONTEXT) on another CPU |
| * - we are invaliating some target that isn't currently running here |
| * and is concurrently acquiring a new PID on another CPU |
| * - some other CPU is re-acquiring a lost PID for this mm |
| * etc... |
| * |
| * However, this shouldn't be a problem as we only guarantee |
| * invalidation of TLB entries present prior to this call, so we |
| * don't care about the PID changing, and invalidating a stale PID |
| * is generally harmless. |
| */ |
| |
| void flush_tlb_mm(struct mm_struct *mm) |
| { |
| unsigned int pid; |
| |
| preempt_disable(); |
| pid = mm->context.id; |
| if (unlikely(pid == MMU_NO_CONTEXT)) |
| goto no_context; |
| if (!mm_is_core_local(mm)) { |
| struct tlb_flush_param p = { .pid = pid }; |
| /* Ignores smp_processor_id() even if set. */ |
| smp_call_function_many(mm_cpumask(mm), |
| do_flush_tlb_mm_ipi, &p, 1); |
| } |
| _tlbil_pid(pid); |
| no_context: |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL(flush_tlb_mm); |
| |
| void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, |
| int tsize, int ind) |
| { |
| struct cpumask *cpu_mask; |
| unsigned int pid; |
| |
| /* |
| * This function as well as __local_flush_tlb_page() must only be called |
| * for user contexts. |
| */ |
| if (WARN_ON(!mm)) |
| return; |
| |
| preempt_disable(); |
| pid = mm->context.id; |
| if (unlikely(pid == MMU_NO_CONTEXT)) |
| goto bail; |
| cpu_mask = mm_cpumask(mm); |
| if (!mm_is_core_local(mm)) { |
| /* If broadcast tlbivax is supported, use it */ |
| if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) { |
| int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL); |
| if (lock) |
| raw_spin_lock(&tlbivax_lock); |
| _tlbivax_bcast(vmaddr, pid, tsize, ind); |
| if (lock) |
| raw_spin_unlock(&tlbivax_lock); |
| goto bail; |
| } else { |
| struct tlb_flush_param p = { |
| .pid = pid, |
| .addr = vmaddr, |
| .tsize = tsize, |
| .ind = ind, |
| }; |
| /* Ignores smp_processor_id() even if set in cpu_mask */ |
| smp_call_function_many(cpu_mask, |
| do_flush_tlb_page_ipi, &p, 1); |
| } |
| } |
| _tlbil_va(vmaddr, pid, tsize, ind); |
| bail: |
| preempt_enable(); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) |
| { |
| #ifdef CONFIG_HUGETLB_PAGE |
| if (vma && is_vm_hugetlb_page(vma)) |
| flush_hugetlb_page(vma, vmaddr); |
| #endif |
| |
| __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, |
| mmu_get_tsize(mmu_virtual_psize), 0); |
| } |
| EXPORT_SYMBOL(flush_tlb_page); |
| |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_PPC_47x |
| void __init early_init_mmu_47x(void) |
| { |
| #ifdef CONFIG_SMP |
| unsigned long root = of_get_flat_dt_root(); |
| if (of_get_flat_dt_prop(root, "cooperative-partition", NULL)) |
| mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST); |
| #endif /* CONFIG_SMP */ |
| } |
| #endif /* CONFIG_PPC_47x */ |
| |
| /* |
| * Flush kernel TLB entries in the given range |
| */ |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| #ifdef CONFIG_SMP |
| preempt_disable(); |
| smp_call_function(do_flush_tlb_mm_ipi, NULL, 1); |
| _tlbil_pid(0); |
| preempt_enable(); |
| #else |
| _tlbil_pid(0); |
| #endif |
| } |
| EXPORT_SYMBOL(flush_tlb_kernel_range); |
| |
| /* |
| * Currently, for range flushing, we just do a full mm flush. This should |
| * be optimized based on a threshold on the size of the range, since |
| * some implementation can stack multiple tlbivax before a tlbsync but |
| * for now, we keep it that way |
| */ |
| void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| |
| { |
| if (end - start == PAGE_SIZE && !(start & ~PAGE_MASK)) |
| flush_tlb_page(vma, start); |
| else |
| flush_tlb_mm(vma->vm_mm); |
| } |
| EXPORT_SYMBOL(flush_tlb_range); |
| |
| void tlb_flush(struct mmu_gather *tlb) |
| { |
| flush_tlb_mm(tlb->mm); |
| } |
| |
| /* |
| * Below are functions specific to the 64-bit variant of Book3E though that |
| * may change in the future |
| */ |
| |
| #ifdef CONFIG_PPC64 |
| |
| /* |
| * Handling of virtual linear page tables or indirect TLB entries |
| * flushing when PTE pages are freed |
| */ |
| void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address) |
| { |
| int tsize = mmu_psize_defs[mmu_pte_psize].enc; |
| |
| if (book3e_htw_mode != PPC_HTW_NONE) { |
| unsigned long start = address & PMD_MASK; |
| unsigned long end = address + PMD_SIZE; |
| unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift; |
| |
| /* This isn't the most optimal, ideally we would factor out the |
| * while preempt & CPU mask mucking around, or even the IPI but |
| * it will do for now |
| */ |
| while (start < end) { |
| __flush_tlb_page(tlb->mm, start, tsize, 1); |
| start += size; |
| } |
| } else { |
| unsigned long rmask = 0xf000000000000000ul; |
| unsigned long rid = (address & rmask) | 0x1000000000000000ul; |
| unsigned long vpte = address & ~rmask; |
| |
| vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful; |
| vpte |= rid; |
| __flush_tlb_page(tlb->mm, vpte, tsize, 0); |
| } |
| } |
| |
| static void __init setup_page_sizes(void) |
| { |
| unsigned int tlb0cfg; |
| unsigned int tlb0ps; |
| unsigned int eptcfg; |
| int i, psize; |
| |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| unsigned int mmucfg = mfspr(SPRN_MMUCFG); |
| int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E); |
| |
| if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) { |
| unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG); |
| unsigned int min_pg, max_pg; |
| |
| min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT; |
| max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT; |
| |
| for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { |
| struct mmu_psize_def *def; |
| unsigned int shift; |
| |
| def = &mmu_psize_defs[psize]; |
| shift = def->shift; |
| |
| if (shift == 0 || shift & 1) |
| continue; |
| |
| /* adjust to be in terms of 4^shift Kb */ |
| shift = (shift - 10) >> 1; |
| |
| if ((shift >= min_pg) && (shift <= max_pg)) |
| def->flags |= MMU_PAGE_SIZE_DIRECT; |
| } |
| |
| goto out; |
| } |
| |
| if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) { |
| u32 tlb1cfg, tlb1ps; |
| |
| tlb0cfg = mfspr(SPRN_TLB0CFG); |
| tlb1cfg = mfspr(SPRN_TLB1CFG); |
| tlb1ps = mfspr(SPRN_TLB1PS); |
| eptcfg = mfspr(SPRN_EPTCFG); |
| |
| if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT)) |
| book3e_htw_mode = PPC_HTW_E6500; |
| |
| /* |
| * We expect 4K subpage size and unrestricted indirect size. |
| * The lack of a restriction on indirect size is a Freescale |
| * extension, indicated by PSn = 0 but SPSn != 0. |
| */ |
| if (eptcfg != 2) |
| book3e_htw_mode = PPC_HTW_NONE; |
| |
| for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { |
| struct mmu_psize_def *def = &mmu_psize_defs[psize]; |
| |
| if (!def->shift) |
| continue; |
| |
| if (tlb1ps & (1U << (def->shift - 10))) { |
| def->flags |= MMU_PAGE_SIZE_DIRECT; |
| |
| if (book3e_htw_mode && psize == MMU_PAGE_2M) |
| def->flags |= MMU_PAGE_SIZE_INDIRECT; |
| } |
| } |
| |
| goto out; |
| } |
| #endif |
| |
| tlb0cfg = mfspr(SPRN_TLB0CFG); |
| tlb0ps = mfspr(SPRN_TLB0PS); |
| eptcfg = mfspr(SPRN_EPTCFG); |
| |
| /* Look for supported direct sizes */ |
| for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { |
| struct mmu_psize_def *def = &mmu_psize_defs[psize]; |
| |
| if (tlb0ps & (1U << (def->shift - 10))) |
| def->flags |= MMU_PAGE_SIZE_DIRECT; |
| } |
| |
| /* Indirect page sizes supported ? */ |
| if ((tlb0cfg & TLBnCFG_IND) == 0 || |
| (tlb0cfg & TLBnCFG_PT) == 0) |
| goto out; |
| |
| book3e_htw_mode = PPC_HTW_IBM; |
| |
| /* Now, we only deal with one IND page size for each |
| * direct size. Hopefully all implementations today are |
| * unambiguous, but we might want to be careful in the |
| * future. |
| */ |
| for (i = 0; i < 3; i++) { |
| unsigned int ps, sps; |
| |
| sps = eptcfg & 0x1f; |
| eptcfg >>= 5; |
| ps = eptcfg & 0x1f; |
| eptcfg >>= 5; |
| if (!ps || !sps) |
| continue; |
| for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { |
| struct mmu_psize_def *def = &mmu_psize_defs[psize]; |
| |
| if (ps == (def->shift - 10)) |
| def->flags |= MMU_PAGE_SIZE_INDIRECT; |
| if (sps == (def->shift - 10)) |
| def->ind = ps + 10; |
| } |
| } |
| |
| out: |
| /* Cleanup array and print summary */ |
| pr_info("MMU: Supported page sizes\n"); |
| for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { |
| struct mmu_psize_def *def = &mmu_psize_defs[psize]; |
| const char *__page_type_names[] = { |
| "unsupported", |
| "direct", |
| "indirect", |
| "direct & indirect" |
| }; |
| if (def->flags == 0) { |
| def->shift = 0; |
| continue; |
| } |
| pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10), |
| __page_type_names[def->flags & 0x3]); |
| } |
| } |
| |
| static void __init setup_mmu_htw(void) |
| { |
| /* |
| * If we want to use HW tablewalk, enable it by patching the TLB miss |
| * handlers to branch to the one dedicated to it. |
| */ |
| |
| switch (book3e_htw_mode) { |
| case PPC_HTW_IBM: |
| patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e); |
| patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e); |
| break; |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| case PPC_HTW_E6500: |
| extlb_level_exc = EX_TLB_SIZE; |
| patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e); |
| patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e); |
| break; |
| #endif |
| } |
| pr_info("MMU: Book3E HW tablewalk %s\n", |
| book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported"); |
| } |
| |
| /* |
| * Early initialization of the MMU TLB code |
| */ |
| static void early_init_this_mmu(void) |
| { |
| unsigned int mas4; |
| |
| /* Set MAS4 based on page table setting */ |
| |
| mas4 = 0x4 << MAS4_WIMGED_SHIFT; |
| switch (book3e_htw_mode) { |
| case PPC_HTW_E6500: |
| mas4 |= MAS4_INDD; |
| mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT; |
| mas4 |= MAS4_TLBSELD(1); |
| mmu_pte_psize = MMU_PAGE_2M; |
| break; |
| |
| case PPC_HTW_IBM: |
| mas4 |= MAS4_INDD; |
| mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT; |
| mmu_pte_psize = MMU_PAGE_1M; |
| break; |
| |
| case PPC_HTW_NONE: |
| mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT; |
| mmu_pte_psize = mmu_virtual_psize; |
| break; |
| } |
| mtspr(SPRN_MAS4, mas4); |
| |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { |
| unsigned int num_cams; |
| bool map = true; |
| |
| /* use a quarter of the TLBCAM for bolted linear map */ |
| num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; |
| |
| /* |
| * Only do the mapping once per core, or else the |
| * transient mapping would cause problems. |
| */ |
| #ifdef CONFIG_SMP |
| if (hweight32(get_tensr()) > 1) |
| map = false; |
| #endif |
| |
| if (map) |
| linear_map_top = map_mem_in_cams(linear_map_top, |
| num_cams, false, true); |
| } |
| #endif |
| |
| /* A sync won't hurt us after mucking around with |
| * the MMU configuration |
| */ |
| mb(); |
| } |
| |
| static void __init early_init_mmu_global(void) |
| { |
| /* XXX This should be decided at runtime based on supported |
| * page sizes in the TLB, but for now let's assume 16M is |
| * always there and a good fit (which it probably is) |
| * |
| * Freescale booke only supports 4K pages in TLB0, so use that. |
| */ |
| if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) |
| mmu_vmemmap_psize = MMU_PAGE_4K; |
| else |
| mmu_vmemmap_psize = MMU_PAGE_16M; |
| |
| /* XXX This code only checks for TLB 0 capabilities and doesn't |
| * check what page size combos are supported by the HW. It |
| * also doesn't handle the case where a separate array holds |
| * the IND entries from the array loaded by the PT. |
| */ |
| /* Look for supported page sizes */ |
| setup_page_sizes(); |
| |
| /* Look for HW tablewalk support */ |
| setup_mmu_htw(); |
| |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { |
| if (book3e_htw_mode == PPC_HTW_NONE) { |
| extlb_level_exc = EX_TLB_SIZE; |
| patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e); |
| patch_exception(0x1e0, |
| exc_instruction_tlb_miss_bolted_book3e); |
| } |
| } |
| #endif |
| |
| /* Set the global containing the top of the linear mapping |
| * for use by the TLB miss code |
| */ |
| linear_map_top = memblock_end_of_DRAM(); |
| |
| ioremap_bot = IOREMAP_BASE; |
| } |
| |
| static void __init early_mmu_set_memory_limit(void) |
| { |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { |
| /* |
| * Limit memory so we dont have linear faults. |
| * Unlike memblock_set_current_limit, which limits |
| * memory available during early boot, this permanently |
| * reduces the memory available to Linux. We need to |
| * do this because highmem is not supported on 64-bit. |
| */ |
| memblock_enforce_memory_limit(linear_map_top); |
| } |
| #endif |
| |
| memblock_set_current_limit(linear_map_top); |
| } |
| |
| /* boot cpu only */ |
| void __init early_init_mmu(void) |
| { |
| early_init_mmu_global(); |
| early_init_this_mmu(); |
| early_mmu_set_memory_limit(); |
| } |
| |
| void early_init_mmu_secondary(void) |
| { |
| early_init_this_mmu(); |
| } |
| |
| void setup_initial_memory_limit(phys_addr_t first_memblock_base, |
| phys_addr_t first_memblock_size) |
| { |
| /* On non-FSL Embedded 64-bit, we adjust the RMA size to match |
| * the bolted TLB entry. We know for now that only 1G |
| * entries are supported though that may eventually |
| * change. |
| * |
| * on FSL Embedded 64-bit, usually all RAM is bolted, but with |
| * unusual memory sizes it's possible for some RAM to not be mapped |
| * (such RAM is not used at all by Linux, since we don't support |
| * highmem on 64-bit). We limit ppc64_rma_size to what would be |
| * mappable if this memblock is the only one. Additional memblocks |
| * can only increase, not decrease, the amount that ends up getting |
| * mapped. We still limit max to 1G even if we'll eventually map |
| * more. This is due to what the early init code is set up to do. |
| * |
| * We crop it to the size of the first MEMBLOCK to |
| * avoid going over total available memory just in case... |
| */ |
| #ifdef CONFIG_PPC_FSL_BOOK3E |
| if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { |
| unsigned long linear_sz; |
| unsigned int num_cams; |
| |
| /* use a quarter of the TLBCAM for bolted linear map */ |
| num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; |
| |
| linear_sz = map_mem_in_cams(first_memblock_size, num_cams, |
| true, true); |
| |
| ppc64_rma_size = min_t(u64, linear_sz, 0x40000000); |
| } else |
| #endif |
| ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000); |
| |
| /* Finally limit subsequent allocations */ |
| memblock_set_current_limit(first_memblock_base + ppc64_rma_size); |
| } |
| #else /* ! CONFIG_PPC64 */ |
| void __init early_init_mmu(void) |
| { |
| #ifdef CONFIG_PPC_47x |
| early_init_mmu_47x(); |
| #endif |
| |
| #ifdef CONFIG_PPC_MM_SLICES |
| mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT); |
| #endif |
| } |
| #endif /* CONFIG_PPC64 */ |