| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Slab allocator functions that are independent of the allocator strategy |
| * |
| * (C) 2012 Christoph Lameter <cl@linux.com> |
| */ |
| #include <linux/slab.h> |
| |
| #include <linux/mm.h> |
| #include <linux/poison.h> |
| #include <linux/interrupt.h> |
| #include <linux/memory.h> |
| #include <linux/cache.h> |
| #include <linux/compiler.h> |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| #include <linux/uaccess.h> |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/debugfs.h> |
| #include <linux/kasan.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/page.h> |
| #include <linux/memcontrol.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/kmem.h> |
| |
| #include "internal.h" |
| |
| #include "slab.h" |
| |
| enum slab_state slab_state; |
| LIST_HEAD(slab_caches); |
| DEFINE_MUTEX(slab_mutex); |
| struct kmem_cache *kmem_cache; |
| |
| #ifdef CONFIG_HARDENED_USERCOPY |
| bool usercopy_fallback __ro_after_init = |
| IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); |
| module_param(usercopy_fallback, bool, 0400); |
| MODULE_PARM_DESC(usercopy_fallback, |
| "WARN instead of reject usercopy whitelist violations"); |
| #endif |
| |
| static LIST_HEAD(slab_caches_to_rcu_destroy); |
| static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); |
| static DECLARE_WORK(slab_caches_to_rcu_destroy_work, |
| slab_caches_to_rcu_destroy_workfn); |
| |
| /* |
| * Set of flags that will prevent slab merging |
| */ |
| #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
| SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
| SLAB_FAILSLAB | kasan_never_merge()) |
| |
| #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
| SLAB_CACHE_DMA32 | SLAB_ACCOUNT) |
| |
| /* |
| * Merge control. If this is set then no merging of slab caches will occur. |
| */ |
| static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
| |
| static int __init setup_slab_nomerge(char *str) |
| { |
| slab_nomerge = true; |
| return 1; |
| } |
| |
| #ifdef CONFIG_SLUB |
| __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); |
| #endif |
| |
| __setup("slab_nomerge", setup_slab_nomerge); |
| |
| /* |
| * Determine the size of a slab object |
| */ |
| unsigned int kmem_cache_size(struct kmem_cache *s) |
| { |
| return s->object_size; |
| } |
| EXPORT_SYMBOL(kmem_cache_size); |
| |
| #ifdef CONFIG_DEBUG_VM |
| static int kmem_cache_sanity_check(const char *name, unsigned int size) |
| { |
| if (!name || in_interrupt() || size < sizeof(void *) || |
| size > KMALLOC_MAX_SIZE) { |
| pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
| return -EINVAL; |
| } |
| |
| WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
| return 0; |
| } |
| #else |
| static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
| { |
| return 0; |
| } |
| #endif |
| |
| void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
| { |
| size_t i; |
| |
| for (i = 0; i < nr; i++) { |
| if (s) |
| kmem_cache_free(s, p[i]); |
| else |
| kfree(p[i]); |
| } |
| } |
| |
| int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
| void **p) |
| { |
| size_t i; |
| |
| for (i = 0; i < nr; i++) { |
| void *x = p[i] = kmem_cache_alloc(s, flags); |
| if (!x) { |
| __kmem_cache_free_bulk(s, i, p); |
| return 0; |
| } |
| } |
| return i; |
| } |
| |
| /* |
| * Figure out what the alignment of the objects will be given a set of |
| * flags, a user specified alignment and the size of the objects. |
| */ |
| static unsigned int calculate_alignment(slab_flags_t flags, |
| unsigned int align, unsigned int size) |
| { |
| /* |
| * If the user wants hardware cache aligned objects then follow that |
| * suggestion if the object is sufficiently large. |
| * |
| * The hardware cache alignment cannot override the specified |
| * alignment though. If that is greater then use it. |
| */ |
| if (flags & SLAB_HWCACHE_ALIGN) { |
| unsigned int ralign; |
| |
| ralign = cache_line_size(); |
| while (size <= ralign / 2) |
| ralign /= 2; |
| align = max(align, ralign); |
| } |
| |
| if (align < ARCH_SLAB_MINALIGN) |
| align = ARCH_SLAB_MINALIGN; |
| |
| return ALIGN(align, sizeof(void *)); |
| } |
| |
| /* |
| * Find a mergeable slab cache |
| */ |
| int slab_unmergeable(struct kmem_cache *s) |
| { |
| if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) |
| return 1; |
| |
| if (s->ctor) |
| return 1; |
| |
| if (s->usersize) |
| return 1; |
| |
| /* |
| * We may have set a slab to be unmergeable during bootstrap. |
| */ |
| if (s->refcount < 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
| slab_flags_t flags, const char *name, void (*ctor)(void *)) |
| { |
| struct kmem_cache *s; |
| |
| if (slab_nomerge) |
| return NULL; |
| |
| if (ctor) |
| return NULL; |
| |
| size = ALIGN(size, sizeof(void *)); |
| align = calculate_alignment(flags, align, size); |
| size = ALIGN(size, align); |
| flags = kmem_cache_flags(size, flags, name); |
| |
| if (flags & SLAB_NEVER_MERGE) |
| return NULL; |
| |
| list_for_each_entry_reverse(s, &slab_caches, list) { |
| if (slab_unmergeable(s)) |
| continue; |
| |
| if (size > s->size) |
| continue; |
| |
| if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) |
| continue; |
| /* |
| * Check if alignment is compatible. |
| * Courtesy of Adrian Drzewiecki |
| */ |
| if ((s->size & ~(align - 1)) != s->size) |
| continue; |
| |
| if (s->size - size >= sizeof(void *)) |
| continue; |
| |
| if (IS_ENABLED(CONFIG_SLAB) && align && |
| (align > s->align || s->align % align)) |
| continue; |
| |
| return s; |
| } |
| return NULL; |
| } |
| |
| static struct kmem_cache *create_cache(const char *name, |
| unsigned int object_size, unsigned int align, |
| slab_flags_t flags, unsigned int useroffset, |
| unsigned int usersize, void (*ctor)(void *), |
| struct kmem_cache *root_cache) |
| { |
| struct kmem_cache *s; |
| int err; |
| |
| if (WARN_ON(useroffset + usersize > object_size)) |
| useroffset = usersize = 0; |
| |
| err = -ENOMEM; |
| s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); |
| if (!s) |
| goto out; |
| |
| s->name = name; |
| s->size = s->object_size = object_size; |
| s->align = align; |
| s->ctor = ctor; |
| s->useroffset = useroffset; |
| s->usersize = usersize; |
| |
| err = __kmem_cache_create(s, flags); |
| if (err) |
| goto out_free_cache; |
| |
| s->refcount = 1; |
| list_add(&s->list, &slab_caches); |
| out: |
| if (err) |
| return ERR_PTR(err); |
| return s; |
| |
| out_free_cache: |
| kmem_cache_free(kmem_cache, s); |
| goto out; |
| } |
| |
| /** |
| * kmem_cache_create_usercopy - Create a cache with a region suitable |
| * for copying to userspace |
| * @name: A string which is used in /proc/slabinfo to identify this cache. |
| * @size: The size of objects to be created in this cache. |
| * @align: The required alignment for the objects. |
| * @flags: SLAB flags |
| * @useroffset: Usercopy region offset |
| * @usersize: Usercopy region size |
| * @ctor: A constructor for the objects. |
| * |
| * Cannot be called within a interrupt, but can be interrupted. |
| * The @ctor is run when new pages are allocated by the cache. |
| * |
| * The flags are |
| * |
| * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) |
| * to catch references to uninitialised memory. |
| * |
| * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check |
| * for buffer overruns. |
| * |
| * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
| * cacheline. This can be beneficial if you're counting cycles as closely |
| * as davem. |
| * |
| * Return: a pointer to the cache on success, NULL on failure. |
| */ |
| struct kmem_cache * |
| kmem_cache_create_usercopy(const char *name, |
| unsigned int size, unsigned int align, |
| slab_flags_t flags, |
| unsigned int useroffset, unsigned int usersize, |
| void (*ctor)(void *)) |
| { |
| struct kmem_cache *s = NULL; |
| const char *cache_name; |
| int err; |
| |
| mutex_lock(&slab_mutex); |
| |
| err = kmem_cache_sanity_check(name, size); |
| if (err) { |
| goto out_unlock; |
| } |
| |
| /* Refuse requests with allocator specific flags */ |
| if (flags & ~SLAB_FLAGS_PERMITTED) { |
| err = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* |
| * Some allocators will constraint the set of valid flags to a subset |
| * of all flags. We expect them to define CACHE_CREATE_MASK in this |
| * case, and we'll just provide them with a sanitized version of the |
| * passed flags. |
| */ |
| flags &= CACHE_CREATE_MASK; |
| |
| /* Fail closed on bad usersize of useroffset values. */ |
| if (WARN_ON(!usersize && useroffset) || |
| WARN_ON(size < usersize || size - usersize < useroffset)) |
| usersize = useroffset = 0; |
| |
| if (!usersize) |
| s = __kmem_cache_alias(name, size, align, flags, ctor); |
| if (s) |
| goto out_unlock; |
| |
| cache_name = kstrdup_const(name, GFP_KERNEL); |
| if (!cache_name) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| s = create_cache(cache_name, size, |
| calculate_alignment(flags, align, size), |
| flags, useroffset, usersize, ctor, NULL); |
| if (IS_ERR(s)) { |
| err = PTR_ERR(s); |
| kfree_const(cache_name); |
| } |
| |
| out_unlock: |
| mutex_unlock(&slab_mutex); |
| |
| if (err) { |
| if (flags & SLAB_PANIC) |
| panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", |
| name, err); |
| else { |
| pr_warn("kmem_cache_create(%s) failed with error %d\n", |
| name, err); |
| dump_stack(); |
| } |
| return NULL; |
| } |
| return s; |
| } |
| EXPORT_SYMBOL(kmem_cache_create_usercopy); |
| |
| /** |
| * kmem_cache_create - Create a cache. |
| * @name: A string which is used in /proc/slabinfo to identify this cache. |
| * @size: The size of objects to be created in this cache. |
| * @align: The required alignment for the objects. |
| * @flags: SLAB flags |
| * @ctor: A constructor for the objects. |
| * |
| * Cannot be called within a interrupt, but can be interrupted. |
| * The @ctor is run when new pages are allocated by the cache. |
| * |
| * The flags are |
| * |
| * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) |
| * to catch references to uninitialised memory. |
| * |
| * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check |
| * for buffer overruns. |
| * |
| * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
| * cacheline. This can be beneficial if you're counting cycles as closely |
| * as davem. |
| * |
| * Return: a pointer to the cache on success, NULL on failure. |
| */ |
| struct kmem_cache * |
| kmem_cache_create(const char *name, unsigned int size, unsigned int align, |
| slab_flags_t flags, void (*ctor)(void *)) |
| { |
| return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, |
| ctor); |
| } |
| EXPORT_SYMBOL(kmem_cache_create); |
| |
| static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) |
| { |
| LIST_HEAD(to_destroy); |
| struct kmem_cache *s, *s2; |
| |
| /* |
| * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the |
| * @slab_caches_to_rcu_destroy list. The slab pages are freed |
| * through RCU and the associated kmem_cache are dereferenced |
| * while freeing the pages, so the kmem_caches should be freed only |
| * after the pending RCU operations are finished. As rcu_barrier() |
| * is a pretty slow operation, we batch all pending destructions |
| * asynchronously. |
| */ |
| mutex_lock(&slab_mutex); |
| list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); |
| mutex_unlock(&slab_mutex); |
| |
| if (list_empty(&to_destroy)) |
| return; |
| |
| rcu_barrier(); |
| |
| list_for_each_entry_safe(s, s2, &to_destroy, list) { |
| #ifdef SLAB_SUPPORTS_SYSFS |
| sysfs_slab_release(s); |
| #else |
| slab_kmem_cache_release(s); |
| #endif |
| } |
| } |
| |
| static int shutdown_cache(struct kmem_cache *s) |
| { |
| /* free asan quarantined objects */ |
| kasan_cache_shutdown(s); |
| |
| if (__kmem_cache_shutdown(s) != 0) |
| return -EBUSY; |
| |
| list_del(&s->list); |
| |
| if (s->flags & SLAB_TYPESAFE_BY_RCU) { |
| #ifdef SLAB_SUPPORTS_SYSFS |
| sysfs_slab_unlink(s); |
| #endif |
| list_add_tail(&s->list, &slab_caches_to_rcu_destroy); |
| schedule_work(&slab_caches_to_rcu_destroy_work); |
| } else { |
| #ifdef SLAB_SUPPORTS_SYSFS |
| sysfs_slab_unlink(s); |
| sysfs_slab_release(s); |
| #else |
| slab_kmem_cache_release(s); |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| void slab_kmem_cache_release(struct kmem_cache *s) |
| { |
| __kmem_cache_release(s); |
| kfree_const(s->name); |
| kmem_cache_free(kmem_cache, s); |
| } |
| |
| void kmem_cache_destroy(struct kmem_cache *s) |
| { |
| int err; |
| |
| if (unlikely(!s)) |
| return; |
| |
| mutex_lock(&slab_mutex); |
| |
| s->refcount--; |
| if (s->refcount) |
| goto out_unlock; |
| |
| err = shutdown_cache(s); |
| if (err) { |
| pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", |
| s->name); |
| dump_stack(); |
| } |
| out_unlock: |
| mutex_unlock(&slab_mutex); |
| } |
| EXPORT_SYMBOL(kmem_cache_destroy); |
| |
| /** |
| * kmem_cache_shrink - Shrink a cache. |
| * @cachep: The cache to shrink. |
| * |
| * Releases as many slabs as possible for a cache. |
| * To help debugging, a zero exit status indicates all slabs were released. |
| * |
| * Return: %0 if all slabs were released, non-zero otherwise |
| */ |
| int kmem_cache_shrink(struct kmem_cache *cachep) |
| { |
| int ret; |
| |
| |
| kasan_cache_shrink(cachep); |
| ret = __kmem_cache_shrink(cachep); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_shrink); |
| |
| bool slab_is_available(void) |
| { |
| return slab_state >= UP; |
| } |
| |
| /** |
| * kmem_valid_obj - does the pointer reference a valid slab object? |
| * @object: pointer to query. |
| * |
| * Return: %true if the pointer is to a not-yet-freed object from |
| * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer |
| * is to an already-freed object, and %false otherwise. |
| */ |
| bool kmem_valid_obj(void *object) |
| { |
| struct page *page; |
| |
| /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ |
| if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) |
| return false; |
| page = virt_to_head_page(object); |
| return PageSlab(page); |
| } |
| |
| /** |
| * kmem_dump_obj - Print available slab provenance information |
| * @object: slab object for which to find provenance information. |
| * |
| * This function uses pr_cont(), so that the caller is expected to have |
| * printed out whatever preamble is appropriate. The provenance information |
| * depends on the type of object and on how much debugging is enabled. |
| * For a slab-cache object, the fact that it is a slab object is printed, |
| * and, if available, the slab name, return address, and stack trace from |
| * the allocation of that object. |
| * |
| * This function will splat if passed a pointer to a non-slab object. |
| * If you are not sure what type of object you have, you should instead |
| * use mem_dump_obj(). |
| */ |
| void kmem_dump_obj(void *object) |
| { |
| char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; |
| int i; |
| struct page *page; |
| unsigned long ptroffset; |
| struct kmem_obj_info kp = { }; |
| |
| if (WARN_ON_ONCE(!virt_addr_valid(object))) |
| return; |
| page = virt_to_head_page(object); |
| if (WARN_ON_ONCE(!PageSlab(page))) { |
| pr_cont(" non-slab memory.\n"); |
| return; |
| } |
| kmem_obj_info(&kp, object, page); |
| if (kp.kp_slab_cache) |
| pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); |
| else |
| pr_cont(" slab%s", cp); |
| if (kp.kp_objp) |
| pr_cont(" start %px", kp.kp_objp); |
| if (kp.kp_data_offset) |
| pr_cont(" data offset %lu", kp.kp_data_offset); |
| if (kp.kp_objp) { |
| ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; |
| pr_cont(" pointer offset %lu", ptroffset); |
| } |
| if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) |
| pr_cont(" size %u", kp.kp_slab_cache->usersize); |
| if (kp.kp_ret) |
| pr_cont(" allocated at %pS\n", kp.kp_ret); |
| else |
| pr_cont("\n"); |
| for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { |
| if (!kp.kp_stack[i]) |
| break; |
| pr_info(" %pS\n", kp.kp_stack[i]); |
| } |
| } |
| |
| #ifndef CONFIG_SLOB |
| /* Create a cache during boot when no slab services are available yet */ |
| void __init create_boot_cache(struct kmem_cache *s, const char *name, |
| unsigned int size, slab_flags_t flags, |
| unsigned int useroffset, unsigned int usersize) |
| { |
| int err; |
| unsigned int align = ARCH_KMALLOC_MINALIGN; |
| |
| s->name = name; |
| s->size = s->object_size = size; |
| |
| /* |
| * For power of two sizes, guarantee natural alignment for kmalloc |
| * caches, regardless of SL*B debugging options. |
| */ |
| if (is_power_of_2(size)) |
| align = max(align, size); |
| s->align = calculate_alignment(flags, align, size); |
| |
| s->useroffset = useroffset; |
| s->usersize = usersize; |
| |
| err = __kmem_cache_create(s, flags); |
| |
| if (err) |
| panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
| name, size, err); |
| |
| s->refcount = -1; /* Exempt from merging for now */ |
| } |
| |
| struct kmem_cache *__init create_kmalloc_cache(const char *name, |
| unsigned int size, slab_flags_t flags, |
| unsigned int useroffset, unsigned int usersize) |
| { |
| struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
| |
| if (!s) |
| panic("Out of memory when creating slab %s\n", name); |
| |
| create_boot_cache(s, name, size, flags, useroffset, usersize); |
| list_add(&s->list, &slab_caches); |
| s->refcount = 1; |
| return s; |
| } |
| |
| struct kmem_cache * |
| kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = |
| { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; |
| EXPORT_SYMBOL(kmalloc_caches); |
| |
| /* |
| * Conversion table for small slabs sizes / 8 to the index in the |
| * kmalloc array. This is necessary for slabs < 192 since we have non power |
| * of two cache sizes there. The size of larger slabs can be determined using |
| * fls. |
| */ |
| static u8 size_index[24] __ro_after_init = { |
| 3, /* 8 */ |
| 4, /* 16 */ |
| 5, /* 24 */ |
| 5, /* 32 */ |
| 6, /* 40 */ |
| 6, /* 48 */ |
| 6, /* 56 */ |
| 6, /* 64 */ |
| 1, /* 72 */ |
| 1, /* 80 */ |
| 1, /* 88 */ |
| 1, /* 96 */ |
| 7, /* 104 */ |
| 7, /* 112 */ |
| 7, /* 120 */ |
| 7, /* 128 */ |
| 2, /* 136 */ |
| 2, /* 144 */ |
| 2, /* 152 */ |
| 2, /* 160 */ |
| 2, /* 168 */ |
| 2, /* 176 */ |
| 2, /* 184 */ |
| 2 /* 192 */ |
| }; |
| |
| static inline unsigned int size_index_elem(unsigned int bytes) |
| { |
| return (bytes - 1) / 8; |
| } |
| |
| /* |
| * Find the kmem_cache structure that serves a given size of |
| * allocation |
| */ |
| struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) |
| { |
| unsigned int index; |
| |
| if (size <= 192) { |
| if (!size) |
| return ZERO_SIZE_PTR; |
| |
| index = size_index[size_index_elem(size)]; |
| } else { |
| if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) |
| return NULL; |
| index = fls(size - 1); |
| } |
| |
| return kmalloc_caches[kmalloc_type(flags)][index]; |
| } |
| |
| #ifdef CONFIG_ZONE_DMA |
| #define INIT_KMALLOC_INFO(__size, __short_size) \ |
| { \ |
| .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ |
| .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ |
| .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \ |
| .size = __size, \ |
| } |
| #else |
| #define INIT_KMALLOC_INFO(__size, __short_size) \ |
| { \ |
| .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ |
| .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ |
| .size = __size, \ |
| } |
| #endif |
| |
| /* |
| * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. |
| * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is |
| * kmalloc-67108864. |
| */ |
| const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
| INIT_KMALLOC_INFO(0, 0), |
| INIT_KMALLOC_INFO(96, 96), |
| INIT_KMALLOC_INFO(192, 192), |
| INIT_KMALLOC_INFO(8, 8), |
| INIT_KMALLOC_INFO(16, 16), |
| INIT_KMALLOC_INFO(32, 32), |
| INIT_KMALLOC_INFO(64, 64), |
| INIT_KMALLOC_INFO(128, 128), |
| INIT_KMALLOC_INFO(256, 256), |
| INIT_KMALLOC_INFO(512, 512), |
| INIT_KMALLOC_INFO(1024, 1k), |
| INIT_KMALLOC_INFO(2048, 2k), |
| INIT_KMALLOC_INFO(4096, 4k), |
| INIT_KMALLOC_INFO(8192, 8k), |
| INIT_KMALLOC_INFO(16384, 16k), |
| INIT_KMALLOC_INFO(32768, 32k), |
| INIT_KMALLOC_INFO(65536, 64k), |
| INIT_KMALLOC_INFO(131072, 128k), |
| INIT_KMALLOC_INFO(262144, 256k), |
| INIT_KMALLOC_INFO(524288, 512k), |
| INIT_KMALLOC_INFO(1048576, 1M), |
| INIT_KMALLOC_INFO(2097152, 2M), |
| INIT_KMALLOC_INFO(4194304, 4M), |
| INIT_KMALLOC_INFO(8388608, 8M), |
| INIT_KMALLOC_INFO(16777216, 16M), |
| INIT_KMALLOC_INFO(33554432, 32M), |
| INIT_KMALLOC_INFO(67108864, 64M) |
| }; |
| |
| /* |
| * Patch up the size_index table if we have strange large alignment |
| * requirements for the kmalloc array. This is only the case for |
| * MIPS it seems. The standard arches will not generate any code here. |
| * |
| * Largest permitted alignment is 256 bytes due to the way we |
| * handle the index determination for the smaller caches. |
| * |
| * Make sure that nothing crazy happens if someone starts tinkering |
| * around with ARCH_KMALLOC_MINALIGN |
| */ |
| void __init setup_kmalloc_cache_index_table(void) |
| { |
| unsigned int i; |
| |
| BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
| (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); |
| |
| for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { |
| unsigned int elem = size_index_elem(i); |
| |
| if (elem >= ARRAY_SIZE(size_index)) |
| break; |
| size_index[elem] = KMALLOC_SHIFT_LOW; |
| } |
| |
| if (KMALLOC_MIN_SIZE >= 64) { |
| /* |
| * The 96 byte size cache is not used if the alignment |
| * is 64 byte. |
| */ |
| for (i = 64 + 8; i <= 96; i += 8) |
| size_index[size_index_elem(i)] = 7; |
| |
| } |
| |
| if (KMALLOC_MIN_SIZE >= 128) { |
| /* |
| * The 192 byte sized cache is not used if the alignment |
| * is 128 byte. Redirect kmalloc to use the 256 byte cache |
| * instead. |
| */ |
| for (i = 128 + 8; i <= 192; i += 8) |
| size_index[size_index_elem(i)] = 8; |
| } |
| } |
| |
| static void __init |
| new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) |
| { |
| if (type == KMALLOC_RECLAIM) |
| flags |= SLAB_RECLAIM_ACCOUNT; |
| |
| kmalloc_caches[type][idx] = create_kmalloc_cache( |
| kmalloc_info[idx].name[type], |
| kmalloc_info[idx].size, flags, 0, |
| kmalloc_info[idx].size); |
| } |
| |
| /* |
| * Create the kmalloc array. Some of the regular kmalloc arrays |
| * may already have been created because they were needed to |
| * enable allocations for slab creation. |
| */ |
| void __init create_kmalloc_caches(slab_flags_t flags) |
| { |
| int i; |
| enum kmalloc_cache_type type; |
| |
| for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { |
| for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
| if (!kmalloc_caches[type][i]) |
| new_kmalloc_cache(i, type, flags); |
| |
| /* |
| * Caches that are not of the two-to-the-power-of size. |
| * These have to be created immediately after the |
| * earlier power of two caches |
| */ |
| if (KMALLOC_MIN_SIZE <= 32 && i == 6 && |
| !kmalloc_caches[type][1]) |
| new_kmalloc_cache(1, type, flags); |
| if (KMALLOC_MIN_SIZE <= 64 && i == 7 && |
| !kmalloc_caches[type][2]) |
| new_kmalloc_cache(2, type, flags); |
| } |
| } |
| |
| /* Kmalloc array is now usable */ |
| slab_state = UP; |
| |
| #ifdef CONFIG_ZONE_DMA |
| for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { |
| struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; |
| |
| if (s) { |
| kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( |
| kmalloc_info[i].name[KMALLOC_DMA], |
| kmalloc_info[i].size, |
| SLAB_CACHE_DMA | flags, 0, |
| kmalloc_info[i].size); |
| } |
| } |
| #endif |
| } |
| #endif /* !CONFIG_SLOB */ |
| |
| gfp_t kmalloc_fix_flags(gfp_t flags) |
| { |
| gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
| |
| flags &= ~GFP_SLAB_BUG_MASK; |
| pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", |
| invalid_mask, &invalid_mask, flags, &flags); |
| dump_stack(); |
| |
| return flags; |
| } |
| |
| /* |
| * To avoid unnecessary overhead, we pass through large allocation requests |
| * directly to the page allocator. We use __GFP_COMP, because we will need to |
| * know the allocation order to free the pages properly in kfree. |
| */ |
| void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
| { |
| void *ret = NULL; |
| struct page *page; |
| |
| if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
| flags = kmalloc_fix_flags(flags); |
| |
| flags |= __GFP_COMP; |
| page = alloc_pages(flags, order); |
| if (likely(page)) { |
| ret = page_address(page); |
| mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, |
| PAGE_SIZE << order); |
| } |
| ret = kasan_kmalloc_large(ret, size, flags); |
| /* As ret might get tagged, call kmemleak hook after KASAN. */ |
| kmemleak_alloc(ret, size, 1, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(kmalloc_order); |
| |
| #ifdef CONFIG_TRACING |
| void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) |
| { |
| void *ret = kmalloc_order(size, flags, order); |
| trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(kmalloc_order_trace); |
| #endif |
| |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| /* Randomize a generic freelist */ |
| static void freelist_randomize(struct rnd_state *state, unsigned int *list, |
| unsigned int count) |
| { |
| unsigned int rand; |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) |
| list[i] = i; |
| |
| /* Fisher-Yates shuffle */ |
| for (i = count - 1; i > 0; i--) { |
| rand = prandom_u32_state(state); |
| rand %= (i + 1); |
| swap(list[i], list[rand]); |
| } |
| } |
| |
| /* Create a random sequence per cache */ |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, |
| gfp_t gfp) |
| { |
| struct rnd_state state; |
| |
| if (count < 2 || cachep->random_seq) |
| return 0; |
| |
| cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); |
| if (!cachep->random_seq) |
| return -ENOMEM; |
| |
| /* Get best entropy at this stage of boot */ |
| prandom_seed_state(&state, get_random_long()); |
| |
| freelist_randomize(&state, cachep->random_seq, count); |
| return 0; |
| } |
| |
| /* Destroy the per-cache random freelist sequence */ |
| void cache_random_seq_destroy(struct kmem_cache *cachep) |
| { |
| kfree(cachep->random_seq); |
| cachep->random_seq = NULL; |
| } |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| |
| #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
| #ifdef CONFIG_SLAB |
| #define SLABINFO_RIGHTS (0600) |
| #else |
| #define SLABINFO_RIGHTS (0400) |
| #endif |
| |
| static void print_slabinfo_header(struct seq_file *m) |
| { |
| /* |
| * Output format version, so at least we can change it |
| * without _too_ many complaints. |
| */ |
| #ifdef CONFIG_DEBUG_SLAB |
| seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
| #else |
| seq_puts(m, "slabinfo - version: 2.1\n"); |
| #endif |
| seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
| seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
| seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
| #ifdef CONFIG_DEBUG_SLAB |
| seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
| seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
| #endif |
| seq_putc(m, '\n'); |
| } |
| |
| void *slab_start(struct seq_file *m, loff_t *pos) |
| { |
| mutex_lock(&slab_mutex); |
| return seq_list_start(&slab_caches, *pos); |
| } |
| |
| void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
| { |
| return seq_list_next(p, &slab_caches, pos); |
| } |
| |
| void slab_stop(struct seq_file *m, void *p) |
| { |
| mutex_unlock(&slab_mutex); |
| } |
| |
| static void cache_show(struct kmem_cache *s, struct seq_file *m) |
| { |
| struct slabinfo sinfo; |
| |
| memset(&sinfo, 0, sizeof(sinfo)); |
| get_slabinfo(s, &sinfo); |
| |
| seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
| s->name, sinfo.active_objs, sinfo.num_objs, s->size, |
| sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
| |
| seq_printf(m, " : tunables %4u %4u %4u", |
| sinfo.limit, sinfo.batchcount, sinfo.shared); |
| seq_printf(m, " : slabdata %6lu %6lu %6lu", |
| sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); |
| slabinfo_show_stats(m, s); |
| seq_putc(m, '\n'); |
| } |
| |
| static int slab_show(struct seq_file *m, void *p) |
| { |
| struct kmem_cache *s = list_entry(p, struct kmem_cache, list); |
| |
| if (p == slab_caches.next) |
| print_slabinfo_header(m); |
| cache_show(s, m); |
| return 0; |
| } |
| |
| void dump_unreclaimable_slab(void) |
| { |
| struct kmem_cache *s; |
| struct slabinfo sinfo; |
| |
| /* |
| * Here acquiring slab_mutex is risky since we don't prefer to get |
| * sleep in oom path. But, without mutex hold, it may introduce a |
| * risk of crash. |
| * Use mutex_trylock to protect the list traverse, dump nothing |
| * without acquiring the mutex. |
| */ |
| if (!mutex_trylock(&slab_mutex)) { |
| pr_warn("excessive unreclaimable slab but cannot dump stats\n"); |
| return; |
| } |
| |
| pr_info("Unreclaimable slab info:\n"); |
| pr_info("Name Used Total\n"); |
| |
| list_for_each_entry(s, &slab_caches, list) { |
| if (s->flags & SLAB_RECLAIM_ACCOUNT) |
| continue; |
| |
| get_slabinfo(s, &sinfo); |
| |
| if (sinfo.num_objs > 0) |
| pr_info("%-17s %10luKB %10luKB\n", s->name, |
| (sinfo.active_objs * s->size) / 1024, |
| (sinfo.num_objs * s->size) / 1024); |
| } |
| mutex_unlock(&slab_mutex); |
| } |
| |
| #if defined(CONFIG_MEMCG_KMEM) |
| int memcg_slab_show(struct seq_file *m, void *p) |
| { |
| /* |
| * Deprecated. |
| * Please, take a look at tools/cgroup/slabinfo.py . |
| */ |
| return 0; |
| } |
| #endif |
| |
| /* |
| * slabinfo_op - iterator that generates /proc/slabinfo |
| * |
| * Output layout: |
| * cache-name |
| * num-active-objs |
| * total-objs |
| * object size |
| * num-active-slabs |
| * total-slabs |
| * num-pages-per-slab |
| * + further values on SMP and with statistics enabled |
| */ |
| static const struct seq_operations slabinfo_op = { |
| .start = slab_start, |
| .next = slab_next, |
| .stop = slab_stop, |
| .show = slab_show, |
| }; |
| |
| static int slabinfo_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &slabinfo_op); |
| } |
| |
| static const struct proc_ops slabinfo_proc_ops = { |
| .proc_flags = PROC_ENTRY_PERMANENT, |
| .proc_open = slabinfo_open, |
| .proc_read = seq_read, |
| .proc_write = slabinfo_write, |
| .proc_lseek = seq_lseek, |
| .proc_release = seq_release, |
| }; |
| |
| static int __init slab_proc_init(void) |
| { |
| proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); |
| return 0; |
| } |
| module_init(slab_proc_init); |
| |
| #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ |
| |
| static __always_inline void *__do_krealloc(const void *p, size_t new_size, |
| gfp_t flags) |
| { |
| void *ret; |
| size_t ks; |
| |
| ks = ksize(p); |
| |
| if (ks >= new_size) { |
| p = kasan_krealloc((void *)p, new_size, flags); |
| return (void *)p; |
| } |
| |
| ret = kmalloc_track_caller(new_size, flags); |
| if (ret && p) |
| memcpy(ret, p, ks); |
| |
| return ret; |
| } |
| |
| /** |
| * krealloc - reallocate memory. The contents will remain unchanged. |
| * @p: object to reallocate memory for. |
| * @new_size: how many bytes of memory are required. |
| * @flags: the type of memory to allocate. |
| * |
| * The contents of the object pointed to are preserved up to the |
| * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). |
| * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size |
| * is 0 and @p is not a %NULL pointer, the object pointed to is freed. |
| * |
| * Return: pointer to the allocated memory or %NULL in case of error |
| */ |
| void *krealloc(const void *p, size_t new_size, gfp_t flags) |
| { |
| void *ret; |
| |
| if (unlikely(!new_size)) { |
| kfree(p); |
| return ZERO_SIZE_PTR; |
| } |
| |
| ret = __do_krealloc(p, new_size, flags); |
| if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) |
| kfree(p); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(krealloc); |
| |
| /** |
| * kfree_sensitive - Clear sensitive information in memory before freeing |
| * @p: object to free memory of |
| * |
| * The memory of the object @p points to is zeroed before freed. |
| * If @p is %NULL, kfree_sensitive() does nothing. |
| * |
| * Note: this function zeroes the whole allocated buffer which can be a good |
| * deal bigger than the requested buffer size passed to kmalloc(). So be |
| * careful when using this function in performance sensitive code. |
| */ |
| void kfree_sensitive(const void *p) |
| { |
| size_t ks; |
| void *mem = (void *)p; |
| |
| ks = ksize(mem); |
| if (ks) |
| memzero_explicit(mem, ks); |
| kfree(mem); |
| } |
| EXPORT_SYMBOL(kfree_sensitive); |
| |
| /** |
| * ksize - get the actual amount of memory allocated for a given object |
| * @objp: Pointer to the object |
| * |
| * kmalloc may internally round up allocations and return more memory |
| * than requested. ksize() can be used to determine the actual amount of |
| * memory allocated. The caller may use this additional memory, even though |
| * a smaller amount of memory was initially specified with the kmalloc call. |
| * The caller must guarantee that objp points to a valid object previously |
| * allocated with either kmalloc() or kmem_cache_alloc(). The object |
| * must not be freed during the duration of the call. |
| * |
| * Return: size of the actual memory used by @objp in bytes |
| */ |
| size_t ksize(const void *objp) |
| { |
| size_t size; |
| |
| /* |
| * We need to check that the pointed to object is valid, and only then |
| * unpoison the shadow memory below. We use __kasan_check_read(), to |
| * generate a more useful report at the time ksize() is called (rather |
| * than later where behaviour is undefined due to potential |
| * use-after-free or double-free). |
| * |
| * If the pointed to memory is invalid we return 0, to avoid users of |
| * ksize() writing to and potentially corrupting the memory region. |
| * |
| * We want to perform the check before __ksize(), to avoid potentially |
| * crashing in __ksize() due to accessing invalid metadata. |
| */ |
| if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1)) |
| return 0; |
| |
| size = __ksize(objp); |
| /* |
| * We assume that ksize callers could use whole allocated area, |
| * so we need to unpoison this area. |
| */ |
| kasan_unpoison_range(objp, size); |
| return size; |
| } |
| EXPORT_SYMBOL(ksize); |
| |
| /* Tracepoints definitions. */ |
| EXPORT_TRACEPOINT_SYMBOL(kmalloc); |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); |
| EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); |
| EXPORT_TRACEPOINT_SYMBOL(kfree); |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |
| |
| int should_failslab(struct kmem_cache *s, gfp_t gfpflags) |
| { |
| if (__should_failslab(s, gfpflags)) |
| return -ENOMEM; |
| return 0; |
| } |
| ALLOW_ERROR_INJECTION(should_failslab, ERRNO); |