| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4 |
| * |
| * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/bug.h> |
| #include <linux/mm_types.h> |
| |
| #include <asm/arcregs.h> |
| #include <asm/setup.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mmu.h> |
| |
| /* A copy of the ASID from the PID reg is kept in asid_cache */ |
| DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; |
| |
| static int __read_mostly pae_exists; |
| |
| /* |
| * Utility Routine to erase a J-TLB entry |
| * Caller needs to setup Index Reg (manually or via getIndex) |
| */ |
| static inline void __tlb_entry_erase(void) |
| { |
| write_aux_reg(ARC_REG_TLBPD1, 0); |
| |
| if (is_pae40_enabled()) |
| write_aux_reg(ARC_REG_TLBPD1HI, 0); |
| |
| write_aux_reg(ARC_REG_TLBPD0, 0); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); |
| } |
| |
| static void utlb_invalidate(void) |
| { |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); |
| } |
| |
| #ifdef CONFIG_ARC_MMU_V3 |
| |
| static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) |
| { |
| unsigned int idx; |
| |
| write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); |
| |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); |
| idx = read_aux_reg(ARC_REG_TLBINDEX); |
| |
| return idx; |
| } |
| |
| static void tlb_entry_erase(unsigned int vaddr_n_asid) |
| { |
| unsigned int idx; |
| |
| /* Locate the TLB entry for this vaddr + ASID */ |
| idx = tlb_entry_lkup(vaddr_n_asid); |
| |
| /* No error means entry found, zero it out */ |
| if (likely(!(idx & TLB_LKUP_ERR))) { |
| __tlb_entry_erase(); |
| } else { |
| /* Duplicate entry error */ |
| WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", |
| vaddr_n_asid); |
| } |
| } |
| |
| static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) |
| { |
| unsigned int idx; |
| |
| /* |
| * First verify if entry for this vaddr+ASID already exists |
| * This also sets up PD0 (vaddr, ASID..) for final commit |
| */ |
| idx = tlb_entry_lkup(pd0); |
| |
| /* |
| * If Not already present get a free slot from MMU. |
| * Otherwise, Probe would have located the entry and set INDEX Reg |
| * with existing location. This will cause Write CMD to over-write |
| * existing entry with new PD0 and PD1 |
| */ |
| if (likely(idx & TLB_LKUP_ERR)) |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); |
| |
| /* setup the other half of TLB entry (pfn, rwx..) */ |
| write_aux_reg(ARC_REG_TLBPD1, pd1); |
| |
| /* |
| * Commit the Entry to MMU |
| * It doesn't sound safe to use the TLBWriteNI cmd here |
| * which doesn't flush uTLBs. I'd rather be safe than sorry. |
| */ |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); |
| } |
| |
| #else /* MMUv4 */ |
| |
| static void tlb_entry_erase(unsigned int vaddr_n_asid) |
| { |
| write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); |
| } |
| |
| static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1) |
| { |
| write_aux_reg(ARC_REG_TLBPD0, pd0); |
| |
| if (!is_pae40_enabled()) { |
| write_aux_reg(ARC_REG_TLBPD1, pd1); |
| } else { |
| write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF); |
| write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); |
| } |
| |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); |
| } |
| |
| #endif |
| |
| /* |
| * Un-conditionally (without lookup) erase the entire MMU contents |
| */ |
| |
| noinline void local_flush_tlb_all(void) |
| { |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| unsigned long flags; |
| unsigned int entry; |
| int num_tlb = mmu->sets * mmu->ways; |
| |
| local_irq_save(flags); |
| |
| /* Load PD0 and PD1 with template for a Blank Entry */ |
| write_aux_reg(ARC_REG_TLBPD1, 0); |
| |
| if (is_pae40_enabled()) |
| write_aux_reg(ARC_REG_TLBPD1HI, 0); |
| |
| write_aux_reg(ARC_REG_TLBPD0, 0); |
| |
| for (entry = 0; entry < num_tlb; entry++) { |
| /* write this entry to the TLB */ |
| write_aux_reg(ARC_REG_TLBINDEX, entry); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); |
| } |
| |
| if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { |
| const int stlb_idx = 0x800; |
| |
| /* Blank sTLB entry */ |
| write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); |
| |
| for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { |
| write_aux_reg(ARC_REG_TLBINDEX, entry); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI); |
| } |
| } |
| |
| utlb_invalidate(); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Flush the entire MM for userland. The fastest way is to move to Next ASID |
| */ |
| noinline void local_flush_tlb_mm(struct mm_struct *mm) |
| { |
| /* |
| * Small optimisation courtesy IA64 |
| * flush_mm called during fork,exit,munmap etc, multiple times as well. |
| * Only for fork( ) do we need to move parent to a new MMU ctxt, |
| * all other cases are NOPs, hence this check. |
| */ |
| if (atomic_read(&mm->mm_users) == 0) |
| return; |
| |
| /* |
| * - Move to a new ASID, but only if the mm is still wired in |
| * (Android Binder ended up calling this for vma->mm != tsk->mm, |
| * causing h/w - s/w ASID to get out of sync) |
| * - Also get_new_mmu_context() new implementation allocates a new |
| * ASID only if it is not allocated already - so unallocate first |
| */ |
| destroy_context(mm); |
| if (current->mm == mm) |
| get_new_mmu_context(mm); |
| } |
| |
| /* |
| * Flush a Range of TLB entries for userland. |
| * @start is inclusive, while @end is exclusive |
| * Difference between this and Kernel Range Flush is |
| * -Here the fastest way (if range is too large) is to move to next ASID |
| * without doing any explicit Shootdown |
| * -In case of kernel Flush, entry has to be shot down explicitly |
| */ |
| void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| const unsigned int cpu = smp_processor_id(); |
| unsigned long flags; |
| |
| /* If range @start to @end is more than 32 TLB entries deep, |
| * its better to move to a new ASID rather than searching for |
| * individual entries and then shooting them down |
| * |
| * The calc above is rough, doesn't account for unaligned parts, |
| * since this is heuristics based anyways |
| */ |
| if (unlikely((end - start) >= PAGE_SIZE * 32)) { |
| local_flush_tlb_mm(vma->vm_mm); |
| return; |
| } |
| |
| /* |
| * @start moved to page start: this alone suffices for checking |
| * loop end condition below, w/o need for aligning @end to end |
| * e.g. 2000 to 4001 will anyhow loop twice |
| */ |
| start &= PAGE_MASK; |
| |
| local_irq_save(flags); |
| |
| if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { |
| while (start < end) { |
| tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); |
| start += PAGE_SIZE; |
| } |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) |
| * @start, @end interpreted as kvaddr |
| * Interestingly, shared TLB entries can also be flushed using just |
| * @start,@end alone (interpreted as user vaddr), although technically SASID |
| * is also needed. However our smart TLbProbe lookup takes care of that. |
| */ |
| void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| unsigned long flags; |
| |
| /* exactly same as above, except for TLB entry not taking ASID */ |
| |
| if (unlikely((end - start) >= PAGE_SIZE * 32)) { |
| local_flush_tlb_all(); |
| return; |
| } |
| |
| start &= PAGE_MASK; |
| |
| local_irq_save(flags); |
| while (start < end) { |
| tlb_entry_erase(start); |
| start += PAGE_SIZE; |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Delete TLB entry in MMU for a given page (??? address) |
| * NOTE One TLB entry contains translation for single PAGE |
| */ |
| |
| void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| const unsigned int cpu = smp_processor_id(); |
| unsigned long flags; |
| |
| /* Note that it is critical that interrupts are DISABLED between |
| * checking the ASID and using it flush the TLB entry |
| */ |
| local_irq_save(flags); |
| |
| if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { |
| tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| struct tlb_args { |
| struct vm_area_struct *ta_vma; |
| unsigned long ta_start; |
| unsigned long ta_end; |
| }; |
| |
| static inline void ipi_flush_tlb_page(void *arg) |
| { |
| struct tlb_args *ta = arg; |
| |
| local_flush_tlb_page(ta->ta_vma, ta->ta_start); |
| } |
| |
| static inline void ipi_flush_tlb_range(void *arg) |
| { |
| struct tlb_args *ta = arg; |
| |
| local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline void ipi_flush_pmd_tlb_range(void *arg) |
| { |
| struct tlb_args *ta = arg; |
| |
| local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); |
| } |
| #endif |
| |
| static inline void ipi_flush_tlb_kernel_range(void *arg) |
| { |
| struct tlb_args *ta = (struct tlb_args *)arg; |
| |
| local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); |
| } |
| |
| void flush_tlb_mm(struct mm_struct *mm) |
| { |
| on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, |
| mm, 1); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) |
| { |
| struct tlb_args ta = { |
| .ta_vma = vma, |
| .ta_start = uaddr |
| }; |
| |
| on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); |
| } |
| |
| void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| struct tlb_args ta = { |
| .ta_vma = vma, |
| .ta_start = start, |
| .ta_end = end |
| }; |
| |
| on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| struct tlb_args ta = { |
| .ta_vma = vma, |
| .ta_start = start, |
| .ta_end = end |
| }; |
| |
| on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); |
| } |
| #endif |
| |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| struct tlb_args ta = { |
| .ta_start = start, |
| .ta_end = end |
| }; |
| |
| on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); |
| } |
| #endif |
| |
| /* |
| * Routine to create a TLB entry |
| */ |
| void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) |
| { |
| unsigned long flags; |
| unsigned int asid_or_sasid, rwx; |
| unsigned long pd0; |
| phys_addr_t pd1; |
| |
| /* |
| * create_tlb() assumes that current->mm == vma->mm, since |
| * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) |
| * -completes the lazy write to SASID reg (again valid for curr tsk) |
| * |
| * Removing the assumption involves |
| * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. |
| * -More importantly it makes this handler inconsistent with fast-path |
| * TLB Refill handler which always deals with "current" |
| * |
| * Lets see the use cases when current->mm != vma->mm and we land here |
| * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault |
| * Here VM wants to pre-install a TLB entry for user stack while |
| * current->mm still points to pre-execve mm (hence the condition). |
| * However the stack vaddr is soon relocated (randomization) and |
| * move_page_tables() tries to undo that TLB entry. |
| * Thus not creating TLB entry is not any worse. |
| * |
| * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a |
| * breakpoint in debugged task. Not creating a TLB now is not |
| * performance critical. |
| * |
| * Both the cases above are not good enough for code churn. |
| */ |
| if (current->active_mm != vma->vm_mm) |
| return; |
| |
| local_irq_save(flags); |
| |
| vaddr &= PAGE_MASK; |
| |
| /* update this PTE credentials */ |
| pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); |
| |
| /* Create HW TLB(PD0,PD1) from PTE */ |
| |
| /* ASID for this task */ |
| asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; |
| |
| pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); |
| |
| /* |
| * ARC MMU provides fully orthogonal access bits for K/U mode, |
| * however Linux only saves 1 set to save PTE real-estate |
| * Here we convert 3 PTE bits into 6 MMU bits: |
| * -Kernel only entries have Kr Kw Kx 0 0 0 |
| * -User entries have mirrored K and U bits |
| */ |
| rwx = pte_val(*ptep) & PTE_BITS_RWX; |
| |
| if (pte_val(*ptep) & _PAGE_GLOBAL) |
| rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */ |
| else |
| rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */ |
| |
| pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); |
| |
| tlb_entry_insert(pd0, pd1); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Called at the end of pagefault, for a userspace mapped page |
| * -pre-install the corresponding TLB entry into MMU |
| * -Finalize the delayed D-cache flush of kernel mapping of page due to |
| * flush_dcache_page(), copy_user_page() |
| * |
| * Note that flush (when done) involves both WBACK - so physical page is |
| * in sync as well as INV - so any non-congruent aliases don't remain |
| */ |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, |
| pte_t *ptep) |
| { |
| unsigned long vaddr = vaddr_unaligned & PAGE_MASK; |
| phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS; |
| struct page *page = pfn_to_page(pte_pfn(*ptep)); |
| |
| create_tlb(vma, vaddr, ptep); |
| |
| if (page == ZERO_PAGE(0)) { |
| return; |
| } |
| |
| /* |
| * Exec page : Independent of aliasing/page-color considerations, |
| * since icache doesn't snoop dcache on ARC, any dirty |
| * K-mapping of a code page needs to be wback+inv so that |
| * icache fetch by userspace sees code correctly. |
| * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it |
| * so userspace sees the right data. |
| * (Avoids the flush for Non-exec + congruent mapping case) |
| */ |
| if ((vma->vm_flags & VM_EXEC) || |
| addr_not_cache_congruent(paddr, vaddr)) { |
| |
| int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); |
| if (dirty) { |
| /* wback + inv dcache lines (K-mapping) */ |
| __flush_dcache_page(paddr, paddr); |
| |
| /* invalidate any existing icache lines (U-mapping) */ |
| if (vma->vm_flags & VM_EXEC) |
| __inv_icache_page(paddr, vaddr); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| |
| /* |
| * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP |
| * support. |
| * |
| * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a |
| * new bit "SZ" in TLB page descriptor to distinguish between them. |
| * Super Page size is configurable in hardware (4K to 16M), but fixed once |
| * RTL builds. |
| * |
| * The exact THP size a Linux configuration will support is a function of: |
| * - MMU page size (typical 8K, RTL fixed) |
| * - software page walker address split between PGD:PTE:PFN (typical |
| * 11:8:13, but can be changed with 1 line) |
| * So for above default, THP size supported is 8K * (2^8) = 2M |
| * |
| * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime |
| * reduces to 1 level (as PTE is folded into PGD and canonically referred |
| * to as PMD). |
| * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) |
| */ |
| |
| void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t *pmd) |
| { |
| pte_t pte = __pte(pmd_val(*pmd)); |
| update_mmu_cache(vma, addr, &pte); |
| } |
| |
| void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| unsigned int cpu; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| |
| cpu = smp_processor_id(); |
| |
| if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { |
| unsigned int asid = hw_pid(vma->vm_mm, cpu); |
| |
| /* No need to loop here: this will always be for 1 Huge Page */ |
| tlb_entry_erase(start | _PAGE_HW_SZ | asid); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| #endif |
| |
| /* Read the Cache Build Configuration Registers, Decode them and save into |
| * the cpuinfo structure for later use. |
| * No Validation is done here, simply read/convert the BCRs |
| */ |
| void read_decode_mmu_bcr(void) |
| { |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| unsigned int tmp; |
| struct bcr_mmu_3 { |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, |
| u_itlb:4, u_dtlb:4; |
| #else |
| unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, |
| ways:4, ver:8; |
| #endif |
| } *mmu3; |
| |
| struct bcr_mmu_4 { |
| #ifdef CONFIG_CPU_BIG_ENDIAN |
| unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, |
| n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; |
| #else |
| /* DTLB ITLB JES JE JA */ |
| unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, |
| pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; |
| #endif |
| } *mmu4; |
| |
| tmp = read_aux_reg(ARC_REG_MMU_BCR); |
| mmu->ver = (tmp >> 24); |
| |
| if (is_isa_arcompact() && mmu->ver == 3) { |
| mmu3 = (struct bcr_mmu_3 *)&tmp; |
| mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); |
| mmu->sets = 1 << mmu3->sets; |
| mmu->ways = 1 << mmu3->ways; |
| mmu->u_dtlb = mmu3->u_dtlb; |
| mmu->u_itlb = mmu3->u_itlb; |
| mmu->sasid = mmu3->sasid; |
| } else { |
| mmu4 = (struct bcr_mmu_4 *)&tmp; |
| mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); |
| mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); |
| mmu->sets = 64 << mmu4->n_entry; |
| mmu->ways = mmu4->n_ways * 2; |
| mmu->u_dtlb = mmu4->u_dtlb * 4; |
| mmu->u_itlb = mmu4->u_itlb * 4; |
| mmu->sasid = mmu4->sasid; |
| pae_exists = mmu->pae = mmu4->pae; |
| } |
| } |
| |
| char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) |
| { |
| int n = 0; |
| struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; |
| char super_pg[64] = ""; |
| |
| if (p_mmu->s_pg_sz_m) |
| scnprintf(super_pg, 64, "%dM Super Page %s", |
| p_mmu->s_pg_sz_m, |
| IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); |
| |
| n += scnprintf(buf + n, len - n, |
| "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n", |
| p_mmu->ver, p_mmu->pg_sz_k, super_pg, |
| p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, |
| p_mmu->u_dtlb, p_mmu->u_itlb, |
| IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); |
| |
| return buf; |
| } |
| |
| int pae40_exist_but_not_enab(void) |
| { |
| return pae_exists && !is_pae40_enabled(); |
| } |
| |
| void arc_mmu_init(void) |
| { |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| char str[256]; |
| int compat = 0; |
| |
| pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str))); |
| |
| /* |
| * Can't be done in processor.h due to header include dependencies |
| */ |
| BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); |
| |
| /* |
| * stack top size sanity check, |
| * Can't be done in processor.h due to header include dependencies |
| */ |
| BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); |
| |
| /* |
| * Ensure that MMU features assumed by kernel exist in hardware. |
| * - For older ARC700 cpus, only v3 supported |
| * - For HS cpus, v4 was baseline and v5 is backwards compatible |
| * (will run older software). |
| */ |
| if (is_isa_arcompact() && mmu->ver == 3) |
| compat = 1; |
| else if (is_isa_arcv2() && mmu->ver >= 4) |
| compat = 1; |
| |
| if (!compat) |
| panic("MMU ver %d doesn't match kernel built for\n", mmu->ver); |
| |
| if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) |
| panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); |
| |
| if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && |
| mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) |
| panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", |
| (unsigned long)TO_MB(HPAGE_PMD_SIZE)); |
| |
| if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) |
| panic("Hardware doesn't support PAE40\n"); |
| |
| /* Enable the MMU with ASID 0 */ |
| mmu_setup_asid(NULL, 0); |
| |
| /* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */ |
| mmu_setup_pgd(NULL, swapper_pg_dir); |
| |
| if (pae40_exist_but_not_enab()) |
| write_aux_reg(ARC_REG_TLBPD1HI, 0); |
| } |
| |
| /* |
| * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} |
| * The mapping is Column-first. |
| * --------------------- ----------- |
| * |way0|way1|way2|way3| |way0|way1| |
| * --------------------- ----------- |
| * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 | |
| * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 | |
| * ~ ~ ~ ~ |
| * [set127] | 508| 509| 510| 511| | 254| 255| |
| * --------------------- ----------- |
| * For normal operations we don't(must not) care how above works since |
| * MMU cmd getIndex(vaddr) abstracts that out. |
| * However for walking WAYS of a SET, we need to know this |
| */ |
| #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way)) |
| |
| /* Handling of Duplicate PD (TLB entry) in MMU. |
| * -Could be due to buggy customer tapeouts or obscure kernel bugs |
| * -MMU complaints not at the time of duplicate PD installation, but at the |
| * time of lookup matching multiple ways. |
| * -Ideally these should never happen - but if they do - workaround by deleting |
| * the duplicate one. |
| * -Knob to be verbose abt it.(TODO: hook them up to debugfs) |
| */ |
| volatile int dup_pd_silent; /* Be silent abt it or complain (default) */ |
| |
| void do_tlb_overlap_fault(unsigned long cause, unsigned long address, |
| struct pt_regs *regs) |
| { |
| struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; |
| unsigned long flags; |
| int set, n_ways = mmu->ways; |
| |
| n_ways = min(n_ways, 4); |
| BUG_ON(mmu->ways > 4); |
| |
| local_irq_save(flags); |
| |
| /* loop thru all sets of TLB */ |
| for (set = 0; set < mmu->sets; set++) { |
| |
| int is_valid, way; |
| unsigned int pd0[4]; |
| |
| /* read out all the ways of current set */ |
| for (way = 0, is_valid = 0; way < n_ways; way++) { |
| write_aux_reg(ARC_REG_TLBINDEX, |
| SET_WAY_TO_IDX(mmu, set, way)); |
| write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); |
| pd0[way] = read_aux_reg(ARC_REG_TLBPD0); |
| is_valid |= pd0[way] & _PAGE_PRESENT; |
| pd0[way] &= PAGE_MASK; |
| } |
| |
| /* If all the WAYS in SET are empty, skip to next SET */ |
| if (!is_valid) |
| continue; |
| |
| /* Scan the set for duplicate ways: needs a nested loop */ |
| for (way = 0; way < n_ways - 1; way++) { |
| |
| int n; |
| |
| if (!pd0[way]) |
| continue; |
| |
| for (n = way + 1; n < n_ways; n++) { |
| if (pd0[way] != pd0[n]) |
| continue; |
| |
| if (!dup_pd_silent) |
| pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", |
| pd0[way], set, way, n); |
| |
| /* |
| * clear entry @way and not @n. |
| * This is critical to our optimised loop |
| */ |
| pd0[way] = 0; |
| write_aux_reg(ARC_REG_TLBINDEX, |
| SET_WAY_TO_IDX(mmu, set, way)); |
| __tlb_entry_erase(); |
| } |
| } |
| } |
| |
| local_irq_restore(flags); |
| } |