| /* |
| * Page table support for the Hexagon architecture |
| * |
| * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| * 02110-1301, USA. |
| */ |
| |
| #ifndef _ASM_PGTABLE_H |
| #define _ASM_PGTABLE_H |
| |
| /* |
| * Page table definitions for Qualcomm Hexagon processor. |
| */ |
| #include <linux/swap.h> |
| #include <asm/page.h> |
| #define __ARCH_USE_5LEVEL_HACK |
| #include <asm-generic/pgtable-nopmd.h> |
| |
| /* A handy thing to have if one has the RAM. Declared in head.S */ |
| extern unsigned long empty_zero_page; |
| extern unsigned long zero_page_mask; |
| |
| /* |
| * The PTE model described here is that of the Hexagon Virtual Machine, |
| * which autonomously walks 2-level page tables. At a lower level, we |
| * also describe the RISCish software-loaded TLB entry structure of |
| * the underlying Hexagon processor. A kernel built to run on the |
| * virtual machine has no need to know about the underlying hardware. |
| */ |
| #include <asm/vm_mmu.h> |
| |
| /* |
| * To maximize the comfort level for the PTE manipulation macros, |
| * define the "well known" architecture-specific bits. |
| */ |
| #define _PAGE_READ __HVM_PTE_R |
| #define _PAGE_WRITE __HVM_PTE_W |
| #define _PAGE_EXECUTE __HVM_PTE_X |
| #define _PAGE_USER __HVM_PTE_U |
| |
| /* |
| * We have a total of 4 "soft" bits available in the abstract PTE. |
| * The two mandatory software bits are Dirty and Accessed. |
| * To make nonlinear swap work according to the more recent |
| * model, we want a low order "Present" bit to indicate whether |
| * the PTE describes MMU programming or swap space. |
| */ |
| #define _PAGE_PRESENT (1<<0) |
| #define _PAGE_DIRTY (1<<1) |
| #define _PAGE_ACCESSED (1<<2) |
| |
| /* |
| * For now, let's say that Valid and Present are the same thing. |
| * Alternatively, we could say that it's the "or" of R, W, and X |
| * permissions. |
| */ |
| #define _PAGE_VALID _PAGE_PRESENT |
| |
| /* |
| * We're not defining _PAGE_GLOBAL here, since there's no concept |
| * of global pages or ASIDs exposed to the Hexagon Virtual Machine, |
| * and we want to use the same page table structures and macros in |
| * the native kernel as we do in the virtual machine kernel. |
| * So we'll put up with a bit of inefficiency for now... |
| */ |
| |
| /* |
| * Top "FOURTH" level (pgd), which for the Hexagon VM is really |
| * only the second from the bottom, pgd and pud both being collapsed. |
| * Each entry represents 4MB of virtual address space, 4K of table |
| * thus maps the full 4GB. |
| */ |
| #define PGDIR_SHIFT 22 |
| #define PTRS_PER_PGD 1024 |
| |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| #ifdef CONFIG_PAGE_SIZE_4KB |
| #define PTRS_PER_PTE 1024 |
| #endif |
| |
| #ifdef CONFIG_PAGE_SIZE_16KB |
| #define PTRS_PER_PTE 256 |
| #endif |
| |
| #ifdef CONFIG_PAGE_SIZE_64KB |
| #define PTRS_PER_PTE 64 |
| #endif |
| |
| #ifdef CONFIG_PAGE_SIZE_256KB |
| #define PTRS_PER_PTE 16 |
| #endif |
| |
| #ifdef CONFIG_PAGE_SIZE_1MB |
| #define PTRS_PER_PTE 4 |
| #endif |
| |
| /* Any bigger and the PTE disappears. */ |
| #define pgd_ERROR(e) \ |
| printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ |
| pgd_val(e)) |
| |
| /* |
| * Page Protection Constants. Includes (in this variant) cache attributes. |
| */ |
| extern unsigned long _dflt_cache_att; |
| |
| #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ |
| _dflt_cache_att) |
| #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ |
| _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) |
| #define PAGE_COPY PAGE_READONLY |
| #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ |
| _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) |
| #define PAGE_COPY_EXEC PAGE_EXEC |
| #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ |
| _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) |
| #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ |
| _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) |
| |
| |
| /* |
| * Aliases for mapping mmap() protection bits to page protections. |
| * These get used for static initialization, so using the _dflt_cache_att |
| * variable for the default cache attribute isn't workable. If the |
| * default gets changed at boot time, the boot option code has to |
| * update data structures like the protaction_map[] array. |
| */ |
| #define CACHEDEF (CACHE_DEFAULT << 6) |
| |
| /* Private (copy-on-write) page protections. */ |
| #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) |
| #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) |
| #define __P010 __P000 /* Write-only copy-on-write */ |
| #define __P011 __P001 /* Read/Write copy-on-write */ |
| #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ |
| _PAGE_EXECUTE | CACHEDEF) |
| #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ |
| _PAGE_READ | CACHEDEF) |
| #define __P110 __P100 /* Write/execute copy-on-write */ |
| #define __P111 __P101 /* Read/Write/Execute, copy-on-write */ |
| |
| /* Shared page protections. */ |
| #define __S000 __P000 |
| #define __S001 __P001 |
| #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ |
| _PAGE_WRITE | CACHEDEF) |
| #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ |
| _PAGE_WRITE | CACHEDEF) |
| #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ |
| _PAGE_EXECUTE | CACHEDEF) |
| #define __S101 __P101 |
| #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ |
| _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) |
| #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ |
| _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ |
| |
| /* Seems to be zero even in architectures where the zero page is firewalled? */ |
| #define FIRST_USER_ADDRESS 0UL |
| #define pte_special(pte) 0 |
| #define pte_mkspecial(pte) (pte) |
| |
| /* HUGETLB not working currently */ |
| #ifdef CONFIG_HUGETLB_PAGE |
| #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) |
| #endif |
| |
| /* |
| * For now, assume that higher-level code will do TLB/MMU invalidations |
| * and don't insert that overhead into this low-level function. |
| */ |
| extern void sync_icache_dcache(pte_t pte); |
| |
| #define pte_present_exec_user(pte) \ |
| ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ |
| (_PAGE_EXECUTE | _PAGE_USER)) |
| |
| static inline void set_pte(pte_t *ptep, pte_t pteval) |
| { |
| /* should really be using pte_exec, if it weren't declared later. */ |
| if (pte_present_exec_user(pteval)) |
| sync_icache_dcache(pteval); |
| |
| *ptep = pteval; |
| } |
| |
| /* |
| * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid |
| * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE |
| * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 |
| * as a universal null entry, but some of those least significant bits |
| * are interpreted by software. |
| */ |
| #define _NULL_PMD 0x7 |
| #define _NULL_PTE 0x0 |
| |
| static inline void pmd_clear(pmd_t *pmd_entry_ptr) |
| { |
| pmd_val(*pmd_entry_ptr) = _NULL_PMD; |
| } |
| |
| /* |
| * Conveniently, a null PTE value is invalid. |
| */ |
| static inline void pte_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_val(*ptep) = _NULL_PTE; |
| } |
| |
| #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL |
| /** |
| * pmd_index - returns the index of the entry in the PMD page |
| * which would control the given virtual address |
| */ |
| #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| |
| #endif |
| |
| /** |
| * pgd_index - returns the index of the entry in the PGD page |
| * which would control the given virtual address |
| * |
| * This returns the *index* for the address in the pgd_t |
| */ |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| |
| /* |
| * pgd_offset - find an offset in a page-table-directory |
| */ |
| #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) |
| |
| /* |
| * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr |
| */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /** |
| * pmd_none - check if pmd_entry is mapped |
| * @pmd_entry: pmd entry |
| * |
| * MIPS checks it against that "invalid pte table" thing. |
| */ |
| static inline int pmd_none(pmd_t pmd) |
| { |
| return pmd_val(pmd) == _NULL_PMD; |
| } |
| |
| /** |
| * pmd_present - is there a page table behind this? |
| * Essentially the inverse of pmd_none. We maybe |
| * save an inline instruction by defining it this |
| * way, instead of simply "!pmd_none". |
| */ |
| static inline int pmd_present(pmd_t pmd) |
| { |
| return pmd_val(pmd) != (unsigned long)_NULL_PMD; |
| } |
| |
| /** |
| * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. |
| * As we have no known cause of badness, it's null, as it is for many |
| * architectures. |
| */ |
| static inline int pmd_bad(pmd_t pmd) |
| { |
| return 0; |
| } |
| |
| /* |
| * pmd_page - converts a PMD entry to a page pointer |
| */ |
| #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
| #define pmd_pgtable(pmd) pmd_page(pmd) |
| |
| /** |
| * pte_none - check if pte is mapped |
| * @pte: pte_t entry |
| */ |
| static inline int pte_none(pte_t pte) |
| { |
| return pte_val(pte) == _NULL_PTE; |
| }; |
| |
| /* |
| * pte_present - check if page is present |
| */ |
| static inline int pte_present(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_PRESENT; |
| } |
| |
| /* mk_pte - make a PTE out of a page pointer and protection bits */ |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| /* pte_mkold - mark PTE as not recently accessed */ |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_ACCESSED; |
| return pte; |
| } |
| |
| /* pte_mkyoung - mark PTE as recently accessed */ |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_ACCESSED; |
| return pte; |
| } |
| |
| /* pte_mkclean - mark page as in sync with backing store */ |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_DIRTY; |
| return pte; |
| } |
| |
| /* pte_mkdirty - mark page as modified */ |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_DIRTY; |
| return pte; |
| } |
| |
| /* pte_young - "is PTE marked as accessed"? */ |
| static inline int pte_young(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_ACCESSED; |
| } |
| |
| /* pte_dirty - "is PTE dirty?" */ |
| static inline int pte_dirty(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_DIRTY; |
| } |
| |
| /* pte_modify - set protection bits on PTE */ |
| static inline pte_t pte_modify(pte_t pte, pgprot_t prot) |
| { |
| pte_val(pte) &= PAGE_MASK; |
| pte_val(pte) |= pgprot_val(prot); |
| return pte; |
| } |
| |
| /* pte_wrprotect - mark page as not writable */ |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| pte_val(pte) &= ~_PAGE_WRITE; |
| return pte; |
| } |
| |
| /* pte_mkwrite - mark page as writable */ |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_WRITE; |
| return pte; |
| } |
| |
| /* pte_mkexec - mark PTE as executable */ |
| static inline pte_t pte_mkexec(pte_t pte) |
| { |
| pte_val(pte) |= _PAGE_EXECUTE; |
| return pte; |
| } |
| |
| /* pte_read - "is PTE marked as readable?" */ |
| static inline int pte_read(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_READ; |
| } |
| |
| /* pte_write - "is PTE marked as writable?" */ |
| static inline int pte_write(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_WRITE; |
| } |
| |
| |
| /* pte_exec - "is PTE marked as executable?" */ |
| static inline int pte_exec(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_EXECUTE; |
| } |
| |
| /* __pte_to_swp_entry - extract swap entry from PTE */ |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| |
| /* __swp_entry_to_pte - extract PTE from swap entry */ |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| /* pfn_pte - convert page number and protection value to page table entry */ |
| #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) |
| |
| /* pte_pfn - convert pte to page frame number */ |
| #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) |
| |
| /* |
| * set_pte_at - update page table and do whatever magic may be |
| * necessary to make the underlying hardware/firmware take note. |
| * |
| * VM may require a virtual instruction to alert the MMU. |
| */ |
| #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) |
| |
| /* |
| * May need to invoke the virtual machine as well... |
| */ |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| /* |
| * pte_offset_map - returns the linear address of the page table entry |
| * corresponding to an address |
| */ |
| #define pte_offset_map(dir, address) \ |
| ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) |
| |
| #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr) |
| |
| /* pte_offset_kernel - kernel version of pte_offset */ |
| #define pte_offset_kernel(dir, address) \ |
| ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \ |
| + __pte_offset(address)) |
| |
| /* ZERO_PAGE - returns the globally shared zero page */ |
| #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) |
| |
| #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| |
| /* I think this is in case we have page table caches; needed by init/main.c */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| /* |
| * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is |
| * interpreted as swap information. The remaining free bits are interpreted as |
| * swap type/offset tuple. Rather than have the TLB fill handler test |
| * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to |
| * all zeros for swap entries, which speeds up the miss handler at the cost of |
| * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon |
| * processor architecture and target applications suggest a lot of TLB misses |
| * and not much swap space. |
| * |
| * Format of swap PTE: |
| * bit 0: Present (zero) |
| * bits 1-5: swap type (arch independent layer uses 5 bits max) |
| * bits 6-9: bits 3:0 of offset |
| * bits 10-12: effectively _PAGE_PROTNONE (all zero) |
| * bits 13-31: bits 22:4 of swap offset |
| * |
| * The split offset makes some of the following macros a little gnarly, |
| * but there's plenty of precedent for this sort of thing. |
| */ |
| |
| /* Used for swap PTEs */ |
| #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) |
| |
| #define __swp_offset(swp_pte) \ |
| ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) |
| |
| #define __swp_entry(type, offset) \ |
| ((swp_entry_t) { \ |
| ((type << 1) | \ |
| ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) |
| |
| /* Oh boy. There are a lot of possible arch overrides found in this file. */ |
| #include <asm-generic/pgtable.h> |
| |
| #endif |