| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * KVM/MIPS: Instruction/Exception emulation |
| * |
| * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/ktime.h> |
| #include <linux/kvm_host.h> |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <linux/bootmem.h> |
| #include <linux/random.h> |
| #include <asm/page.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cpu-info.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlbflush.h> |
| #include <asm/inst.h> |
| |
| #undef CONFIG_MIPS_MT |
| #include <asm/r4kcache.h> |
| #define CONFIG_MIPS_MT |
| |
| #include "opcode.h" |
| #include "interrupt.h" |
| #include "commpage.h" |
| |
| #include "trace.h" |
| |
| /* |
| * Compute the return address and do emulate branch simulation, if required. |
| * This function should be called only in branch delay slot active. |
| */ |
| unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu, |
| unsigned long instpc) |
| { |
| unsigned int dspcontrol; |
| union mips_instruction insn; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| long epc = instpc; |
| long nextpc = KVM_INVALID_INST; |
| |
| if (epc & 3) |
| goto unaligned; |
| |
| /* Read the instruction */ |
| insn.word = kvm_get_inst((uint32_t *) epc, vcpu); |
| |
| if (insn.word == KVM_INVALID_INST) |
| return KVM_INVALID_INST; |
| |
| switch (insn.i_format.opcode) { |
| /* jr and jalr are in r_format format. */ |
| case spec_op: |
| switch (insn.r_format.func) { |
| case jalr_op: |
| arch->gprs[insn.r_format.rd] = epc + 8; |
| /* Fall through */ |
| case jr_op: |
| nextpc = arch->gprs[insn.r_format.rs]; |
| break; |
| } |
| break; |
| |
| /* |
| * This group contains: |
| * bltz_op, bgez_op, bltzl_op, bgezl_op, |
| * bltzal_op, bgezal_op, bltzall_op, bgezall_op. |
| */ |
| case bcond_op: |
| switch (insn.i_format.rt) { |
| case bltz_op: |
| case bltzl_op: |
| if ((long)arch->gprs[insn.i_format.rs] < 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bgez_op: |
| case bgezl_op: |
| if ((long)arch->gprs[insn.i_format.rs] >= 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bltzal_op: |
| case bltzall_op: |
| arch->gprs[31] = epc + 8; |
| if ((long)arch->gprs[insn.i_format.rs] < 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bgezal_op: |
| case bgezall_op: |
| arch->gprs[31] = epc + 8; |
| if ((long)arch->gprs[insn.i_format.rs] >= 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| case bposge32_op: |
| if (!cpu_has_dsp) |
| goto sigill; |
| |
| dspcontrol = rddsp(0x01); |
| |
| if (dspcontrol >= 32) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| } |
| break; |
| |
| /* These are unconditional and in j_format. */ |
| case jal_op: |
| arch->gprs[31] = instpc + 8; |
| case j_op: |
| epc += 4; |
| epc >>= 28; |
| epc <<= 28; |
| epc |= (insn.j_format.target << 2); |
| nextpc = epc; |
| break; |
| |
| /* These are conditional and in i_format. */ |
| case beq_op: |
| case beql_op: |
| if (arch->gprs[insn.i_format.rs] == |
| arch->gprs[insn.i_format.rt]) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bne_op: |
| case bnel_op: |
| if (arch->gprs[insn.i_format.rs] != |
| arch->gprs[insn.i_format.rt]) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case blez_op: /* not really i_format */ |
| case blezl_op: |
| /* rt field assumed to be zero */ |
| if ((long)arch->gprs[insn.i_format.rs] <= 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| case bgtz_op: |
| case bgtzl_op: |
| /* rt field assumed to be zero */ |
| if ((long)arch->gprs[insn.i_format.rs] > 0) |
| epc = epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| epc += 8; |
| nextpc = epc; |
| break; |
| |
| /* And now the FPA/cp1 branch instructions. */ |
| case cop1_op: |
| kvm_err("%s: unsupported cop1_op\n", __func__); |
| break; |
| } |
| |
| return nextpc; |
| |
| unaligned: |
| kvm_err("%s: unaligned epc\n", __func__); |
| return nextpc; |
| |
| sigill: |
| kvm_err("%s: DSP branch but not DSP ASE\n", __func__); |
| return nextpc; |
| } |
| |
| enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause) |
| { |
| unsigned long branch_pc; |
| enum emulation_result er = EMULATE_DONE; |
| |
| if (cause & CAUSEF_BD) { |
| branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc); |
| if (branch_pc == KVM_INVALID_INST) { |
| er = EMULATE_FAIL; |
| } else { |
| vcpu->arch.pc = branch_pc; |
| kvm_debug("BD update_pc(): New PC: %#lx\n", |
| vcpu->arch.pc); |
| } |
| } else |
| vcpu->arch.pc += 4; |
| |
| kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); |
| |
| return er; |
| } |
| |
| /** |
| * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. |
| * @vcpu: Virtual CPU. |
| * |
| * Returns: 1 if the CP0_Count timer is disabled by either the guest |
| * CP0_Cause.DC bit or the count_ctl.DC bit. |
| * 0 otherwise (in which case CP0_Count timer is running). |
| */ |
| static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || |
| (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); |
| } |
| |
| /** |
| * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. |
| * |
| * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| */ |
| static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) |
| { |
| s64 now_ns, periods; |
| u64 delta; |
| |
| now_ns = ktime_to_ns(now); |
| delta = now_ns + vcpu->arch.count_dyn_bias; |
| |
| if (delta >= vcpu->arch.count_period) { |
| /* If delta is out of safe range the bias needs adjusting */ |
| periods = div64_s64(now_ns, vcpu->arch.count_period); |
| vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; |
| /* Recalculate delta with new bias */ |
| delta = now_ns + vcpu->arch.count_dyn_bias; |
| } |
| |
| /* |
| * We've ensured that: |
| * delta < count_period |
| * |
| * Therefore the intermediate delta*count_hz will never overflow since |
| * at the boundary condition: |
| * delta = count_period |
| * delta = NSEC_PER_SEC * 2^32 / count_hz |
| * delta * count_hz = NSEC_PER_SEC * 2^32 |
| */ |
| return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); |
| } |
| |
| /** |
| * kvm_mips_count_time() - Get effective current time. |
| * @vcpu: Virtual CPU. |
| * |
| * Get effective monotonic ktime. This is usually a straightforward ktime_get(), |
| * except when the master disable bit is set in count_ctl, in which case it is |
| * count_resume, i.e. the time that the count was disabled. |
| * |
| * Returns: Effective monotonic ktime for CP0_Count. |
| */ |
| static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) |
| { |
| if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) |
| return vcpu->arch.count_resume; |
| |
| return ktime_get(); |
| } |
| |
| /** |
| * kvm_mips_read_count_running() - Read the current count value as if running. |
| * @vcpu: Virtual CPU. |
| * @now: Kernel time to read CP0_Count at. |
| * |
| * Returns the current guest CP0_Count register at time @now and handles if the |
| * timer interrupt is pending and hasn't been handled yet. |
| * |
| * Returns: The current value of the guest CP0_Count register. |
| */ |
| static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) |
| { |
| ktime_t expires; |
| int running; |
| |
| /* Is the hrtimer pending? */ |
| expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); |
| if (ktime_compare(now, expires) >= 0) { |
| /* |
| * Cancel it while we handle it so there's no chance of |
| * interference with the timeout handler. |
| */ |
| running = hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| |
| /* Nothing should be waiting on the timeout */ |
| kvm_mips_callbacks->queue_timer_int(vcpu); |
| |
| /* |
| * Restart the timer if it was running based on the expiry time |
| * we read, so that we don't push it back 2 periods. |
| */ |
| if (running) { |
| expires = ktime_add_ns(expires, |
| vcpu->arch.count_period); |
| hrtimer_start(&vcpu->arch.comparecount_timer, expires, |
| HRTIMER_MODE_ABS); |
| } |
| } |
| |
| /* Return the biased and scaled guest CP0_Count */ |
| return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); |
| } |
| |
| /** |
| * kvm_mips_read_count() - Read the current count value. |
| * @vcpu: Virtual CPU. |
| * |
| * Read the current guest CP0_Count value, taking into account whether the timer |
| * is stopped. |
| * |
| * Returns: The current guest CP0_Count value. |
| */ |
| uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| /* If count disabled just read static copy of count */ |
| if (kvm_mips_count_disabled(vcpu)) |
| return kvm_read_c0_guest_count(cop0); |
| |
| return kvm_mips_read_count_running(vcpu, ktime_get()); |
| } |
| |
| /** |
| * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. |
| * @vcpu: Virtual CPU. |
| * @count: Output pointer for CP0_Count value at point of freeze. |
| * |
| * Freeze the hrtimer safely and return both the ktime and the CP0_Count value |
| * at the point it was frozen. It is guaranteed that any pending interrupts at |
| * the point it was frozen are handled, and none after that point. |
| * |
| * This is useful where the time/CP0_Count is needed in the calculation of the |
| * new parameters. |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| * |
| * Returns: The ktime at the point of freeze. |
| */ |
| static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, |
| uint32_t *count) |
| { |
| ktime_t now; |
| |
| /* stop hrtimer before finding time */ |
| hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| now = ktime_get(); |
| |
| /* find count at this point and handle pending hrtimer */ |
| *count = kvm_mips_read_count_running(vcpu, now); |
| |
| return now; |
| } |
| |
| /** |
| * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. |
| * @vcpu: Virtual CPU. |
| * @now: ktime at point of resume. |
| * @count: CP0_Count at point of resume. |
| * |
| * Resumes the timer and updates the timer expiry based on @now and @count. |
| * This can be used in conjunction with kvm_mips_freeze_timer() when timer |
| * parameters need to be changed. |
| * |
| * It is guaranteed that a timer interrupt immediately after resume will be |
| * handled, but not if CP_Compare is exactly at @count. That case is already |
| * handled by kvm_mips_freeze_timer(). |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| */ |
| static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, |
| ktime_t now, uint32_t count) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| uint32_t compare; |
| u64 delta; |
| ktime_t expire; |
| |
| /* Calculate timeout (wrap 0 to 2^32) */ |
| compare = kvm_read_c0_guest_compare(cop0); |
| delta = (u64)(uint32_t)(compare - count - 1) + 1; |
| delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); |
| expire = ktime_add_ns(now, delta); |
| |
| /* Update hrtimer to use new timeout */ |
| hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); |
| } |
| |
| /** |
| * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer. |
| * @vcpu: Virtual CPU. |
| * |
| * Recalculates and updates the expiry time of the hrtimer. This can be used |
| * after timer parameters have been altered which do not depend on the time that |
| * the change occurs (in those cases kvm_mips_freeze_hrtimer() and |
| * kvm_mips_resume_hrtimer() are used directly). |
| * |
| * It is guaranteed that no timer interrupts will be lost in the process. |
| * |
| * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). |
| */ |
| static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu) |
| { |
| ktime_t now; |
| uint32_t count; |
| |
| /* |
| * freeze_hrtimer takes care of a timer interrupts <= count, and |
| * resume_hrtimer the hrtimer takes care of a timer interrupts > count. |
| */ |
| now = kvm_mips_freeze_hrtimer(vcpu, &count); |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| } |
| |
| /** |
| * kvm_mips_write_count() - Modify the count and update timer. |
| * @vcpu: Virtual CPU. |
| * @count: Guest CP0_Count value to set. |
| * |
| * Sets the CP0_Count value and updates the timer accordingly. |
| */ |
| void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| ktime_t now; |
| |
| /* Calculate bias */ |
| now = kvm_mips_count_time(vcpu); |
| vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); |
| |
| if (kvm_mips_count_disabled(vcpu)) |
| /* The timer's disabled, adjust the static count */ |
| kvm_write_c0_guest_count(cop0, count); |
| else |
| /* Update timeout */ |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| } |
| |
| /** |
| * kvm_mips_init_count() - Initialise timer. |
| * @vcpu: Virtual CPU. |
| * |
| * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set |
| * it going if it's enabled. |
| */ |
| void kvm_mips_init_count(struct kvm_vcpu *vcpu) |
| { |
| /* 100 MHz */ |
| vcpu->arch.count_hz = 100*1000*1000; |
| vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, |
| vcpu->arch.count_hz); |
| vcpu->arch.count_dyn_bias = 0; |
| |
| /* Starting at 0 */ |
| kvm_mips_write_count(vcpu, 0); |
| } |
| |
| /** |
| * kvm_mips_set_count_hz() - Update the frequency of the timer. |
| * @vcpu: Virtual CPU. |
| * @count_hz: Frequency of CP0_Count timer in Hz. |
| * |
| * Change the frequency of the CP0_Count timer. This is done atomically so that |
| * CP0_Count is continuous and no timer interrupt is lost. |
| * |
| * Returns: -EINVAL if @count_hz is out of range. |
| * 0 on success. |
| */ |
| int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| int dc; |
| ktime_t now; |
| u32 count; |
| |
| /* ensure the frequency is in a sensible range... */ |
| if (count_hz <= 0 || count_hz > NSEC_PER_SEC) |
| return -EINVAL; |
| /* ... and has actually changed */ |
| if (vcpu->arch.count_hz == count_hz) |
| return 0; |
| |
| /* Safely freeze timer so we can keep it continuous */ |
| dc = kvm_mips_count_disabled(vcpu); |
| if (dc) { |
| now = kvm_mips_count_time(vcpu); |
| count = kvm_read_c0_guest_count(cop0); |
| } else { |
| now = kvm_mips_freeze_hrtimer(vcpu, &count); |
| } |
| |
| /* Update the frequency */ |
| vcpu->arch.count_hz = count_hz; |
| vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); |
| vcpu->arch.count_dyn_bias = 0; |
| |
| /* Calculate adjusted bias so dynamic count is unchanged */ |
| vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); |
| |
| /* Update and resume hrtimer */ |
| if (!dc) |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| return 0; |
| } |
| |
| /** |
| * kvm_mips_write_compare() - Modify compare and update timer. |
| * @vcpu: Virtual CPU. |
| * @compare: New CP0_Compare value. |
| * |
| * Update CP0_Compare to a new value and update the timeout. |
| */ |
| void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| /* if unchanged, must just be an ack */ |
| if (kvm_read_c0_guest_compare(cop0) == compare) |
| return; |
| |
| /* Update compare */ |
| kvm_write_c0_guest_compare(cop0, compare); |
| |
| /* Update timeout if count enabled */ |
| if (!kvm_mips_count_disabled(vcpu)) |
| kvm_mips_update_hrtimer(vcpu); |
| } |
| |
| /** |
| * kvm_mips_count_disable() - Disable count. |
| * @vcpu: Virtual CPU. |
| * |
| * Disable the CP0_Count timer. A timer interrupt on or before the final stop |
| * time will be handled but not after. |
| * |
| * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or |
| * count_ctl.DC has been set (count disabled). |
| * |
| * Returns: The time that the timer was stopped. |
| */ |
| static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| uint32_t count; |
| ktime_t now; |
| |
| /* Stop hrtimer */ |
| hrtimer_cancel(&vcpu->arch.comparecount_timer); |
| |
| /* Set the static count from the dynamic count, handling pending TI */ |
| now = ktime_get(); |
| count = kvm_mips_read_count_running(vcpu, now); |
| kvm_write_c0_guest_count(cop0, count); |
| |
| return now; |
| } |
| |
| /** |
| * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. |
| * @vcpu: Virtual CPU. |
| * |
| * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or |
| * before the final stop time will be handled if the timer isn't disabled by |
| * count_ctl.DC, but not after. |
| * |
| * Assumes CP0_Cause.DC is clear (count enabled). |
| */ |
| void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| |
| kvm_set_c0_guest_cause(cop0, CAUSEF_DC); |
| if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) |
| kvm_mips_count_disable(vcpu); |
| } |
| |
| /** |
| * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. |
| * @vcpu: Virtual CPU. |
| * |
| * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after |
| * the start time will be handled if the timer isn't disabled by count_ctl.DC, |
| * potentially before even returning, so the caller should be careful with |
| * ordering of CP0_Cause modifications so as not to lose it. |
| * |
| * Assumes CP0_Cause.DC is set (count disabled). |
| */ |
| void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| uint32_t count; |
| |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); |
| |
| /* |
| * Set the dynamic count to match the static count. |
| * This starts the hrtimer if count_ctl.DC allows it. |
| * Otherwise it conveniently updates the biases. |
| */ |
| count = kvm_read_c0_guest_count(cop0); |
| kvm_mips_write_count(vcpu, count); |
| } |
| |
| /** |
| * kvm_mips_set_count_ctl() - Update the count control KVM register. |
| * @vcpu: Virtual CPU. |
| * @count_ctl: Count control register new value. |
| * |
| * Set the count control KVM register. The timer is updated accordingly. |
| * |
| * Returns: -EINVAL if reserved bits are set. |
| * 0 on success. |
| */ |
| int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| s64 changed = count_ctl ^ vcpu->arch.count_ctl; |
| s64 delta; |
| ktime_t expire, now; |
| uint32_t count, compare; |
| |
| /* Only allow defined bits to be changed */ |
| if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) |
| return -EINVAL; |
| |
| /* Apply new value */ |
| vcpu->arch.count_ctl = count_ctl; |
| |
| /* Master CP0_Count disable */ |
| if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { |
| /* Is CP0_Cause.DC already disabling CP0_Count? */ |
| if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { |
| if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) |
| /* Just record the current time */ |
| vcpu->arch.count_resume = ktime_get(); |
| } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { |
| /* disable timer and record current time */ |
| vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); |
| } else { |
| /* |
| * Calculate timeout relative to static count at resume |
| * time (wrap 0 to 2^32). |
| */ |
| count = kvm_read_c0_guest_count(cop0); |
| compare = kvm_read_c0_guest_compare(cop0); |
| delta = (u64)(uint32_t)(compare - count - 1) + 1; |
| delta = div_u64(delta * NSEC_PER_SEC, |
| vcpu->arch.count_hz); |
| expire = ktime_add_ns(vcpu->arch.count_resume, delta); |
| |
| /* Handle pending interrupt */ |
| now = ktime_get(); |
| if (ktime_compare(now, expire) >= 0) |
| /* Nothing should be waiting on the timeout */ |
| kvm_mips_callbacks->queue_timer_int(vcpu); |
| |
| /* Resume hrtimer without changing bias */ |
| count = kvm_mips_read_count_running(vcpu, now); |
| kvm_mips_resume_hrtimer(vcpu, now, count); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_mips_set_count_resume() - Update the count resume KVM register. |
| * @vcpu: Virtual CPU. |
| * @count_resume: Count resume register new value. |
| * |
| * Set the count resume KVM register. |
| * |
| * Returns: -EINVAL if out of valid range (0..now). |
| * 0 on success. |
| */ |
| int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) |
| { |
| /* |
| * It doesn't make sense for the resume time to be in the future, as it |
| * would be possible for the next interrupt to be more than a full |
| * period in the future. |
| */ |
| if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) |
| return -EINVAL; |
| |
| vcpu->arch.count_resume = ns_to_ktime(count_resume); |
| return 0; |
| } |
| |
| /** |
| * kvm_mips_count_timeout() - Push timer forward on timeout. |
| * @vcpu: Virtual CPU. |
| * |
| * Handle an hrtimer event by push the hrtimer forward a period. |
| * |
| * Returns: The hrtimer_restart value to return to the hrtimer subsystem. |
| */ |
| enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) |
| { |
| /* Add the Count period to the current expiry time */ |
| hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, |
| vcpu->arch.count_period); |
| return HRTIMER_RESTART; |
| } |
| |
| enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| enum emulation_result er = EMULATE_DONE; |
| |
| if (kvm_read_c0_guest_status(cop0) & ST0_EXL) { |
| kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc, |
| kvm_read_c0_guest_epc(cop0)); |
| kvm_clear_c0_guest_status(cop0, ST0_EXL); |
| vcpu->arch.pc = kvm_read_c0_guest_epc(cop0); |
| |
| } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) { |
| kvm_clear_c0_guest_status(cop0, ST0_ERL); |
| vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0); |
| } else { |
| kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n", |
| vcpu->arch.pc); |
| er = EMULATE_FAIL; |
| } |
| |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) |
| { |
| kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, |
| vcpu->arch.pending_exceptions); |
| |
| ++vcpu->stat.wait_exits; |
| trace_kvm_exit(vcpu, WAIT_EXITS); |
| if (!vcpu->arch.pending_exceptions) { |
| vcpu->arch.wait = 1; |
| kvm_vcpu_block(vcpu); |
| |
| /* |
| * We we are runnable, then definitely go off to user space to |
| * check if any I/O interrupts are pending. |
| */ |
| if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { |
| clear_bit(KVM_REQ_UNHALT, &vcpu->requests); |
| vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| } |
| } |
| |
| return EMULATE_DONE; |
| } |
| |
| /* |
| * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that |
| * we can catch this, if things ever change |
| */ |
| enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| uint32_t pc = vcpu->arch.pc; |
| |
| kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0)); |
| return EMULATE_FAIL; |
| } |
| |
| /* Write Guest TLB Entry @ Index */ |
| enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| int index = kvm_read_c0_guest_index(cop0); |
| struct kvm_mips_tlb *tlb = NULL; |
| uint32_t pc = vcpu->arch.pc; |
| |
| if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { |
| kvm_debug("%s: illegal index: %d\n", __func__, index); |
| kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", |
| pc, index, kvm_read_c0_guest_entryhi(cop0), |
| kvm_read_c0_guest_entrylo0(cop0), |
| kvm_read_c0_guest_entrylo1(cop0), |
| kvm_read_c0_guest_pagemask(cop0)); |
| index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE; |
| } |
| |
| tlb = &vcpu->arch.guest_tlb[index]; |
| /* |
| * Probe the shadow host TLB for the entry being overwritten, if one |
| * matches, invalidate it |
| */ |
| kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi); |
| |
| tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); |
| tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); |
| tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0); |
| tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0); |
| |
| kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", |
| pc, index, kvm_read_c0_guest_entryhi(cop0), |
| kvm_read_c0_guest_entrylo0(cop0), |
| kvm_read_c0_guest_entrylo1(cop0), |
| kvm_read_c0_guest_pagemask(cop0)); |
| |
| return EMULATE_DONE; |
| } |
| |
| /* Write Guest TLB Entry @ Random Index */ |
| enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_mips_tlb *tlb = NULL; |
| uint32_t pc = vcpu->arch.pc; |
| int index; |
| |
| get_random_bytes(&index, sizeof(index)); |
| index &= (KVM_MIPS_GUEST_TLB_SIZE - 1); |
| |
| tlb = &vcpu->arch.guest_tlb[index]; |
| |
| /* |
| * Probe the shadow host TLB for the entry being overwritten, if one |
| * matches, invalidate it |
| */ |
| kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi); |
| |
| tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); |
| tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); |
| tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0); |
| tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0); |
| |
| kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n", |
| pc, index, kvm_read_c0_guest_entryhi(cop0), |
| kvm_read_c0_guest_entrylo0(cop0), |
| kvm_read_c0_guest_entrylo1(cop0)); |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| long entryhi = kvm_read_c0_guest_entryhi(cop0); |
| uint32_t pc = vcpu->arch.pc; |
| int index = -1; |
| |
| index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); |
| |
| kvm_write_c0_guest_index(cop0, index); |
| |
| kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi, |
| index); |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc, |
| uint32_t cause, struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| enum emulation_result er = EMULATE_DONE; |
| int32_t rt, rd, copz, sel, co_bit, op; |
| uint32_t pc = vcpu->arch.pc; |
| unsigned long curr_pc; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| copz = (inst >> 21) & 0x1f; |
| rt = (inst >> 16) & 0x1f; |
| rd = (inst >> 11) & 0x1f; |
| sel = inst & 0x7; |
| co_bit = (inst >> 25) & 1; |
| |
| if (co_bit) { |
| op = (inst) & 0xff; |
| |
| switch (op) { |
| case tlbr_op: /* Read indexed TLB entry */ |
| er = kvm_mips_emul_tlbr(vcpu); |
| break; |
| case tlbwi_op: /* Write indexed */ |
| er = kvm_mips_emul_tlbwi(vcpu); |
| break; |
| case tlbwr_op: /* Write random */ |
| er = kvm_mips_emul_tlbwr(vcpu); |
| break; |
| case tlbp_op: /* TLB Probe */ |
| er = kvm_mips_emul_tlbp(vcpu); |
| break; |
| case rfe_op: |
| kvm_err("!!!COP0_RFE!!!\n"); |
| break; |
| case eret_op: |
| er = kvm_mips_emul_eret(vcpu); |
| goto dont_update_pc; |
| break; |
| case wait_op: |
| er = kvm_mips_emul_wait(vcpu); |
| break; |
| } |
| } else { |
| switch (copz) { |
| case mfc_op: |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| cop0->stat[rd][sel]++; |
| #endif |
| /* Get reg */ |
| if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { |
| vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu); |
| } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) { |
| vcpu->arch.gprs[rt] = 0x0; |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| kvm_mips_trans_mfc0(inst, opc, vcpu); |
| #endif |
| } else { |
| vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; |
| |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| kvm_mips_trans_mfc0(inst, opc, vcpu); |
| #endif |
| } |
| |
| kvm_debug |
| ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n", |
| pc, rd, sel, rt, vcpu->arch.gprs[rt]); |
| |
| break; |
| |
| case dmfc_op: |
| vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; |
| break; |
| |
| case mtc_op: |
| #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS |
| cop0->stat[rd][sel]++; |
| #endif |
| if ((rd == MIPS_CP0_TLB_INDEX) |
| && (vcpu->arch.gprs[rt] >= |
| KVM_MIPS_GUEST_TLB_SIZE)) { |
| kvm_err("Invalid TLB Index: %ld", |
| vcpu->arch.gprs[rt]); |
| er = EMULATE_FAIL; |
| break; |
| } |
| #define C0_EBASE_CORE_MASK 0xff |
| if ((rd == MIPS_CP0_PRID) && (sel == 1)) { |
| /* Preserve CORE number */ |
| kvm_change_c0_guest_ebase(cop0, |
| ~(C0_EBASE_CORE_MASK), |
| vcpu->arch.gprs[rt]); |
| kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n", |
| kvm_read_c0_guest_ebase(cop0)); |
| } else if (rd == MIPS_CP0_TLB_HI && sel == 0) { |
| uint32_t nasid = |
| vcpu->arch.gprs[rt] & ASID_MASK; |
| if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) && |
| ((kvm_read_c0_guest_entryhi(cop0) & |
| ASID_MASK) != nasid)) { |
| kvm_debug("MTCz, change ASID from %#lx to %#lx\n", |
| kvm_read_c0_guest_entryhi(cop0) |
| & ASID_MASK, |
| vcpu->arch.gprs[rt] |
| & ASID_MASK); |
| |
| /* Blow away the shadow host TLBs */ |
| kvm_mips_flush_host_tlb(1); |
| } |
| kvm_write_c0_guest_entryhi(cop0, |
| vcpu->arch.gprs[rt]); |
| } |
| /* Are we writing to COUNT */ |
| else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { |
| kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); |
| goto done; |
| } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) { |
| kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n", |
| pc, kvm_read_c0_guest_compare(cop0), |
| vcpu->arch.gprs[rt]); |
| |
| /* If we are writing to COMPARE */ |
| /* Clear pending timer interrupt, if any */ |
| kvm_mips_callbacks->dequeue_timer_int(vcpu); |
| kvm_mips_write_compare(vcpu, |
| vcpu->arch.gprs[rt]); |
| } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { |
| kvm_write_c0_guest_status(cop0, |
| vcpu->arch.gprs[rt]); |
| /* |
| * Make sure that CU1 and NMI bits are |
| * never set |
| */ |
| kvm_clear_c0_guest_status(cop0, |
| (ST0_CU1 | ST0_NMI)); |
| |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| kvm_mips_trans_mtc0(inst, opc, vcpu); |
| #endif |
| } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { |
| uint32_t old_cause, new_cause; |
| |
| old_cause = kvm_read_c0_guest_cause(cop0); |
| new_cause = vcpu->arch.gprs[rt]; |
| /* Update R/W bits */ |
| kvm_change_c0_guest_cause(cop0, 0x08800300, |
| new_cause); |
| /* DC bit enabling/disabling timer? */ |
| if ((old_cause ^ new_cause) & CAUSEF_DC) { |
| if (new_cause & CAUSEF_DC) |
| kvm_mips_count_disable_cause(vcpu); |
| else |
| kvm_mips_count_enable_cause(vcpu); |
| } |
| } else { |
| cop0->reg[rd][sel] = vcpu->arch.gprs[rt]; |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| kvm_mips_trans_mtc0(inst, opc, vcpu); |
| #endif |
| } |
| |
| kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc, |
| rd, sel, cop0->reg[rd][sel]); |
| break; |
| |
| case dmtc_op: |
| kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n", |
| vcpu->arch.pc, rt, rd, sel); |
| er = EMULATE_FAIL; |
| break; |
| |
| case mfmcz_op: |
| #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS |
| cop0->stat[MIPS_CP0_STATUS][0]++; |
| #endif |
| if (rt != 0) { |
| vcpu->arch.gprs[rt] = |
| kvm_read_c0_guest_status(cop0); |
| } |
| /* EI */ |
| if (inst & 0x20) { |
| kvm_debug("[%#lx] mfmcz_op: EI\n", |
| vcpu->arch.pc); |
| kvm_set_c0_guest_status(cop0, ST0_IE); |
| } else { |
| kvm_debug("[%#lx] mfmcz_op: DI\n", |
| vcpu->arch.pc); |
| kvm_clear_c0_guest_status(cop0, ST0_IE); |
| } |
| |
| break; |
| |
| case wrpgpr_op: |
| { |
| uint32_t css = |
| cop0->reg[MIPS_CP0_STATUS][2] & 0xf; |
| uint32_t pss = |
| (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf; |
| /* |
| * We don't support any shadow register sets, so |
| * SRSCtl[PSS] == SRSCtl[CSS] = 0 |
| */ |
| if (css || pss) { |
| er = EMULATE_FAIL; |
| break; |
| } |
| kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd, |
| vcpu->arch.gprs[rt]); |
| vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt]; |
| } |
| break; |
| default: |
| kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n", |
| vcpu->arch.pc, copz); |
| er = EMULATE_FAIL; |
| break; |
| } |
| } |
| |
| done: |
| /* Rollback PC only if emulation was unsuccessful */ |
| if (er == EMULATE_FAIL) |
| vcpu->arch.pc = curr_pc; |
| |
| dont_update_pc: |
| /* |
| * This is for special instructions whose emulation |
| * updates the PC, so do not overwrite the PC under |
| * any circumstances |
| */ |
| |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DO_MMIO; |
| int32_t op, base, rt, offset; |
| uint32_t bytes; |
| void *data = run->mmio.data; |
| unsigned long curr_pc; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| rt = (inst >> 16) & 0x1f; |
| base = (inst >> 21) & 0x1f; |
| offset = inst & 0xffff; |
| op = (inst >> 26) & 0x3f; |
| |
| switch (op) { |
| case sb_op: |
| bytes = 1; |
| if (bytes > sizeof(run->mmio.data)) { |
| kvm_err("%s: bad MMIO length: %d\n", __func__, |
| run->mmio.len); |
| } |
| run->mmio.phys_addr = |
| kvm_mips_callbacks->gva_to_gpa(vcpu->arch. |
| host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) { |
| er = EMULATE_FAIL; |
| break; |
| } |
| run->mmio.len = bytes; |
| run->mmio.is_write = 1; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_is_write = 1; |
| *(u8 *) data = vcpu->arch.gprs[rt]; |
| kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt], |
| *(uint8_t *) data); |
| |
| break; |
| |
| case sw_op: |
| bytes = 4; |
| if (bytes > sizeof(run->mmio.data)) { |
| kvm_err("%s: bad MMIO length: %d\n", __func__, |
| run->mmio.len); |
| } |
| run->mmio.phys_addr = |
| kvm_mips_callbacks->gva_to_gpa(vcpu->arch. |
| host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) { |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| run->mmio.len = bytes; |
| run->mmio.is_write = 1; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_is_write = 1; |
| *(uint32_t *) data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(uint32_t *) data); |
| break; |
| |
| case sh_op: |
| bytes = 2; |
| if (bytes > sizeof(run->mmio.data)) { |
| kvm_err("%s: bad MMIO length: %d\n", __func__, |
| run->mmio.len); |
| } |
| run->mmio.phys_addr = |
| kvm_mips_callbacks->gva_to_gpa(vcpu->arch. |
| host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) { |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| run->mmio.len = bytes; |
| run->mmio.is_write = 1; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_is_write = 1; |
| *(uint16_t *) data = vcpu->arch.gprs[rt]; |
| |
| kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", |
| vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, |
| vcpu->arch.gprs[rt], *(uint32_t *) data); |
| break; |
| |
| default: |
| kvm_err("Store not yet supported"); |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| /* Rollback PC if emulation was unsuccessful */ |
| if (er == EMULATE_FAIL) |
| vcpu->arch.pc = curr_pc; |
| |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DO_MMIO; |
| int32_t op, base, rt, offset; |
| uint32_t bytes; |
| |
| rt = (inst >> 16) & 0x1f; |
| base = (inst >> 21) & 0x1f; |
| offset = inst & 0xffff; |
| op = (inst >> 26) & 0x3f; |
| |
| vcpu->arch.pending_load_cause = cause; |
| vcpu->arch.io_gpr = rt; |
| |
| switch (op) { |
| case lw_op: |
| bytes = 4; |
| if (bytes > sizeof(run->mmio.data)) { |
| kvm_err("%s: bad MMIO length: %d\n", __func__, |
| run->mmio.len); |
| er = EMULATE_FAIL; |
| break; |
| } |
| run->mmio.phys_addr = |
| kvm_mips_callbacks->gva_to_gpa(vcpu->arch. |
| host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) { |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| run->mmio.len = bytes; |
| run->mmio.is_write = 0; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_is_write = 0; |
| break; |
| |
| case lh_op: |
| case lhu_op: |
| bytes = 2; |
| if (bytes > sizeof(run->mmio.data)) { |
| kvm_err("%s: bad MMIO length: %d\n", __func__, |
| run->mmio.len); |
| er = EMULATE_FAIL; |
| break; |
| } |
| run->mmio.phys_addr = |
| kvm_mips_callbacks->gva_to_gpa(vcpu->arch. |
| host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) { |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| run->mmio.len = bytes; |
| run->mmio.is_write = 0; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_is_write = 0; |
| |
| if (op == lh_op) |
| vcpu->mmio_needed = 2; |
| else |
| vcpu->mmio_needed = 1; |
| |
| break; |
| |
| case lbu_op: |
| case lb_op: |
| bytes = 1; |
| if (bytes > sizeof(run->mmio.data)) { |
| kvm_err("%s: bad MMIO length: %d\n", __func__, |
| run->mmio.len); |
| er = EMULATE_FAIL; |
| break; |
| } |
| run->mmio.phys_addr = |
| kvm_mips_callbacks->gva_to_gpa(vcpu->arch. |
| host_cp0_badvaddr); |
| if (run->mmio.phys_addr == KVM_INVALID_ADDR) { |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| run->mmio.len = bytes; |
| run->mmio.is_write = 0; |
| vcpu->mmio_is_write = 0; |
| |
| if (op == lb_op) |
| vcpu->mmio_needed = 2; |
| else |
| vcpu->mmio_needed = 1; |
| |
| break; |
| |
| default: |
| kvm_err("Load not yet supported"); |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| return er; |
| } |
| |
| int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu) |
| { |
| unsigned long offset = (va & ~PAGE_MASK); |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long pa; |
| gfn_t gfn; |
| pfn_t pfn; |
| |
| gfn = va >> PAGE_SHIFT; |
| |
| if (gfn >= kvm->arch.guest_pmap_npages) { |
| kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn); |
| kvm_mips_dump_host_tlbs(); |
| kvm_arch_vcpu_dump_regs(vcpu); |
| return -1; |
| } |
| pfn = kvm->arch.guest_pmap[gfn]; |
| pa = (pfn << PAGE_SHIFT) | offset; |
| |
| kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va, |
| CKSEG0ADDR(pa)); |
| |
| local_flush_icache_range(CKSEG0ADDR(pa), 32); |
| return 0; |
| } |
| |
| #define MIPS_CACHE_OP_INDEX_INV 0x0 |
| #define MIPS_CACHE_OP_INDEX_LD_TAG 0x1 |
| #define MIPS_CACHE_OP_INDEX_ST_TAG 0x2 |
| #define MIPS_CACHE_OP_IMP 0x3 |
| #define MIPS_CACHE_OP_HIT_INV 0x4 |
| #define MIPS_CACHE_OP_FILL_WB_INV 0x5 |
| #define MIPS_CACHE_OP_HIT_HB 0x6 |
| #define MIPS_CACHE_OP_FETCH_LOCK 0x7 |
| |
| #define MIPS_CACHE_ICACHE 0x0 |
| #define MIPS_CACHE_DCACHE 0x1 |
| #define MIPS_CACHE_SEC 0x3 |
| |
| enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc, |
| uint32_t cause, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| enum emulation_result er = EMULATE_DONE; |
| int32_t offset, cache, op_inst, op, base; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| unsigned long va; |
| unsigned long curr_pc; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| base = (inst >> 21) & 0x1f; |
| op_inst = (inst >> 16) & 0x1f; |
| offset = inst & 0xffff; |
| cache = (inst >> 16) & 0x3; |
| op = (inst >> 18) & 0x7; |
| |
| va = arch->gprs[base] + offset; |
| |
| kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| cache, op, base, arch->gprs[base], offset); |
| |
| /* |
| * Treat INDEX_INV as a nop, basically issued by Linux on startup to |
| * invalidate the caches entirely by stepping through all the |
| * ways/indexes |
| */ |
| if (op == MIPS_CACHE_OP_INDEX_INV) { |
| kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base, |
| arch->gprs[base], offset); |
| |
| if (cache == MIPS_CACHE_DCACHE) |
| r4k_blast_dcache(); |
| else if (cache == MIPS_CACHE_ICACHE) |
| r4k_blast_icache(); |
| else { |
| kvm_err("%s: unsupported CACHE INDEX operation\n", |
| __func__); |
| return EMULATE_FAIL; |
| } |
| |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| kvm_mips_trans_cache_index(inst, opc, vcpu); |
| #endif |
| goto done; |
| } |
| |
| preempt_disable(); |
| if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) { |
| if (kvm_mips_host_tlb_lookup(vcpu, va) < 0) |
| kvm_mips_handle_kseg0_tlb_fault(va, vcpu); |
| } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) || |
| KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) { |
| int index; |
| |
| /* If an entry already exists then skip */ |
| if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0) |
| goto skip_fault; |
| |
| /* |
| * If address not in the guest TLB, then give the guest a fault, |
| * the resulting handler will do the right thing |
| */ |
| index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi |
| (cop0) & ASID_MASK)); |
| |
| if (index < 0) { |
| vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK); |
| vcpu->arch.host_cp0_badvaddr = va; |
| er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, |
| vcpu); |
| preempt_enable(); |
| goto dont_update_pc; |
| } else { |
| struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; |
| /* |
| * Check if the entry is valid, if not then setup a TLB |
| * invalid exception to the guest |
| */ |
| if (!TLB_IS_VALID(*tlb, va)) { |
| er = kvm_mips_emulate_tlbinv_ld(cause, NULL, |
| run, vcpu); |
| preempt_enable(); |
| goto dont_update_pc; |
| } else { |
| /* |
| * We fault an entry from the guest tlb to the |
| * shadow host TLB |
| */ |
| kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, |
| NULL, |
| NULL); |
| } |
| } |
| } else { |
| kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| cache, op, base, arch->gprs[base], offset); |
| er = EMULATE_FAIL; |
| preempt_enable(); |
| goto dont_update_pc; |
| |
| } |
| |
| skip_fault: |
| /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */ |
| if (cache == MIPS_CACHE_DCACHE |
| && (op == MIPS_CACHE_OP_FILL_WB_INV |
| || op == MIPS_CACHE_OP_HIT_INV)) { |
| flush_dcache_line(va); |
| |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| /* |
| * Replace the CACHE instruction, with a SYNCI, not the same, |
| * but avoids a trap |
| */ |
| kvm_mips_trans_cache_va(inst, opc, vcpu); |
| #endif |
| } else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) { |
| flush_dcache_line(va); |
| flush_icache_line(va); |
| |
| #ifdef CONFIG_KVM_MIPS_DYN_TRANS |
| /* Replace the CACHE instruction, with a SYNCI */ |
| kvm_mips_trans_cache_va(inst, opc, vcpu); |
| #endif |
| } else { |
| kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", |
| cache, op, base, arch->gprs[base], offset); |
| er = EMULATE_FAIL; |
| preempt_enable(); |
| goto dont_update_pc; |
| } |
| |
| preempt_enable(); |
| |
| dont_update_pc: |
| /* Rollback PC */ |
| vcpu->arch.pc = curr_pc; |
| done: |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DONE; |
| uint32_t inst; |
| |
| /* Fetch the instruction. */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| |
| inst = kvm_get_inst(opc, vcpu); |
| |
| switch (((union mips_instruction)inst).r_format.opcode) { |
| case cop0_op: |
| er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu); |
| break; |
| case sb_op: |
| case sh_op: |
| case sw_op: |
| er = kvm_mips_emulate_store(inst, cause, run, vcpu); |
| break; |
| case lb_op: |
| case lbu_op: |
| case lhu_op: |
| case lh_op: |
| case lw_op: |
| er = kvm_mips_emulate_load(inst, cause, run, vcpu); |
| break; |
| |
| case cache_op: |
| ++vcpu->stat.cache_exits; |
| trace_kvm_exit(vcpu, CACHE_EXITS); |
| er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu); |
| break; |
| |
| default: |
| kvm_err("Instruction emulation not supported (%p/%#x)\n", opc, |
| inst); |
| kvm_arch_vcpu_dump_regs(vcpu); |
| er = EMULATE_FAIL; |
| break; |
| } |
| |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emulate_syscall(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| enum emulation_result er = EMULATE_DONE; |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc); |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_SYSCALL << CAUSEB_EXCCODE)); |
| |
| /* Set PC to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| |
| } else { |
| kvm_err("Trying to deliver SYSCALL when EXL is already set\n"); |
| er = EMULATE_FAIL; |
| } |
| |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n", |
| arch->pc); |
| |
| /* set pc to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x0; |
| |
| } else { |
| kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", |
| arch->pc); |
| |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| } |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_TLB_LD_MISS << CAUSEB_EXCCODE)); |
| |
| /* setup badvaddr, context and entryhi registers for the guest */ |
| kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| /* XXXKYMA: is the context register used by linux??? */ |
| kvm_write_c0_guest_entryhi(cop0, entryhi); |
| /* Blow away the shadow host TLBs */ |
| kvm_mips_flush_host_tlb(1); |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| unsigned long entryhi = |
| (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n", |
| arch->pc); |
| |
| /* set pc to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| |
| } else { |
| kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", |
| arch->pc); |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| } |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_TLB_LD_MISS << CAUSEB_EXCCODE)); |
| |
| /* setup badvaddr, context and entryhi registers for the guest */ |
| kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| /* XXXKYMA: is the context register used by linux??? */ |
| kvm_write_c0_guest_entryhi(cop0, entryhi); |
| /* Blow away the shadow host TLBs */ |
| kvm_mips_flush_host_tlb(1); |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", |
| arch->pc); |
| |
| /* Set PC to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x0; |
| } else { |
| kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", |
| arch->pc); |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| } |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_TLB_ST_MISS << CAUSEB_EXCCODE)); |
| |
| /* setup badvaddr, context and entryhi registers for the guest */ |
| kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| /* XXXKYMA: is the context register used by linux??? */ |
| kvm_write_c0_guest_entryhi(cop0, entryhi); |
| /* Blow away the shadow host TLBs */ |
| kvm_mips_flush_host_tlb(1); |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", |
| arch->pc); |
| |
| /* Set PC to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| } else { |
| kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", |
| arch->pc); |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| } |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_TLB_ST_MISS << CAUSEB_EXCCODE)); |
| |
| /* setup badvaddr, context and entryhi registers for the guest */ |
| kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| /* XXXKYMA: is the context register used by linux??? */ |
| kvm_write_c0_guest_entryhi(cop0, entryhi); |
| /* Blow away the shadow host TLBs */ |
| kvm_mips_flush_host_tlb(1); |
| |
| return EMULATE_DONE; |
| } |
| |
| /* TLBMOD: store into address matching TLB with Dirty bit off */ |
| enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DONE; |
| #ifdef DEBUG |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); |
| int index; |
| |
| /* If address not in the guest TLB, then we are in trouble */ |
| index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); |
| if (index < 0) { |
| /* XXXKYMA Invalidate and retry */ |
| kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr); |
| kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n", |
| __func__, entryhi); |
| kvm_mips_dump_guest_tlbs(vcpu); |
| kvm_mips_dump_host_tlbs(); |
| return EMULATE_FAIL; |
| } |
| #endif |
| |
| er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu); |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK); |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n", |
| arch->pc); |
| |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| } else { |
| kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n", |
| arch->pc); |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| } |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE)); |
| |
| /* setup badvaddr, context and entryhi registers for the guest */ |
| kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| /* XXXKYMA: is the context register used by linux??? */ |
| kvm_write_c0_guest_entryhi(cop0, entryhi); |
| /* Blow away the shadow host TLBs */ |
| kvm_mips_flush_host_tlb(1); |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| } |
| |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_COP_UNUSABLE << CAUSEB_EXCCODE)); |
| kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE)); |
| |
| return EMULATE_DONE; |
| } |
| |
| enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| enum emulation_result er = EMULATE_DONE; |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("Delivering RI @ pc %#lx\n", arch->pc); |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_RES_INST << CAUSEB_EXCCODE)); |
| |
| /* Set PC to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| |
| } else { |
| kvm_err("Trying to deliver RI when EXL is already set\n"); |
| er = EMULATE_FAIL; |
| } |
| |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| enum emulation_result er = EMULATE_DONE; |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_debug("Delivering BP @ pc %#lx\n", arch->pc); |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (T_BREAK << CAUSEB_EXCCODE)); |
| |
| /* Set PC to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| |
| } else { |
| kvm_err("Trying to deliver BP when EXL is already set\n"); |
| er = EMULATE_FAIL; |
| } |
| |
| return er; |
| } |
| |
| /* ll/sc, rdhwr, sync emulation */ |
| |
| #define OPCODE 0xfc000000 |
| #define BASE 0x03e00000 |
| #define RT 0x001f0000 |
| #define OFFSET 0x0000ffff |
| #define LL 0xc0000000 |
| #define SC 0xe0000000 |
| #define SPEC0 0x00000000 |
| #define SPEC3 0x7c000000 |
| #define RD 0x0000f800 |
| #define FUNC 0x0000003f |
| #define SYNC 0x0000000f |
| #define RDHWR 0x0000003b |
| |
| enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| enum emulation_result er = EMULATE_DONE; |
| unsigned long curr_pc; |
| uint32_t inst; |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| /* Fetch the instruction. */ |
| if (cause & CAUSEF_BD) |
| opc += 1; |
| |
| inst = kvm_get_inst(opc, vcpu); |
| |
| if (inst == KVM_INVALID_INST) { |
| kvm_err("%s: Cannot get inst @ %p\n", __func__, opc); |
| return EMULATE_FAIL; |
| } |
| |
| if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) { |
| int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); |
| int rd = (inst & RD) >> 11; |
| int rt = (inst & RT) >> 16; |
| /* If usermode, check RDHWR rd is allowed by guest HWREna */ |
| if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) { |
| kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n", |
| rd, opc); |
| goto emulate_ri; |
| } |
| switch (rd) { |
| case 0: /* CPU number */ |
| arch->gprs[rt] = 0; |
| break; |
| case 1: /* SYNCI length */ |
| arch->gprs[rt] = min(current_cpu_data.dcache.linesz, |
| current_cpu_data.icache.linesz); |
| break; |
| case 2: /* Read count register */ |
| arch->gprs[rt] = kvm_mips_read_count(vcpu); |
| break; |
| case 3: /* Count register resolution */ |
| switch (current_cpu_data.cputype) { |
| case CPU_20KC: |
| case CPU_25KF: |
| arch->gprs[rt] = 1; |
| break; |
| default: |
| arch->gprs[rt] = 2; |
| } |
| break; |
| case 29: |
| arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0); |
| break; |
| |
| default: |
| kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc); |
| goto emulate_ri; |
| } |
| } else { |
| kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst); |
| goto emulate_ri; |
| } |
| |
| return EMULATE_DONE; |
| |
| emulate_ri: |
| /* |
| * Rollback PC (if in branch delay slot then the PC already points to |
| * branch target), and pass the RI exception to the guest OS. |
| */ |
| vcpu->arch.pc = curr_pc; |
| return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu); |
| } |
| |
| enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu, |
| struct kvm_run *run) |
| { |
| unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; |
| enum emulation_result er = EMULATE_DONE; |
| unsigned long curr_pc; |
| |
| if (run->mmio.len > sizeof(*gpr)) { |
| kvm_err("Bad MMIO length: %d", run->mmio.len); |
| er = EMULATE_FAIL; |
| goto done; |
| } |
| |
| /* |
| * Update PC and hold onto current PC in case there is |
| * an error and we want to rollback the PC |
| */ |
| curr_pc = vcpu->arch.pc; |
| er = update_pc(vcpu, vcpu->arch.pending_load_cause); |
| if (er == EMULATE_FAIL) |
| return er; |
| |
| switch (run->mmio.len) { |
| case 4: |
| *gpr = *(int32_t *) run->mmio.data; |
| break; |
| |
| case 2: |
| if (vcpu->mmio_needed == 2) |
| *gpr = *(int16_t *) run->mmio.data; |
| else |
| *gpr = *(int16_t *) run->mmio.data; |
| |
| break; |
| case 1: |
| if (vcpu->mmio_needed == 2) |
| *gpr = *(int8_t *) run->mmio.data; |
| else |
| *gpr = *(u8 *) run->mmio.data; |
| break; |
| } |
| |
| if (vcpu->arch.pending_load_cause & CAUSEF_BD) |
| kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n", |
| vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr, |
| vcpu->mmio_needed); |
| |
| done: |
| return er; |
| } |
| |
| static enum emulation_result kvm_mips_emulate_exc(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_vcpu_arch *arch = &vcpu->arch; |
| enum emulation_result er = EMULATE_DONE; |
| |
| if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { |
| /* save old pc */ |
| kvm_write_c0_guest_epc(cop0, arch->pc); |
| kvm_set_c0_guest_status(cop0, ST0_EXL); |
| |
| if (cause & CAUSEF_BD) |
| kvm_set_c0_guest_cause(cop0, CAUSEF_BD); |
| else |
| kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); |
| |
| kvm_change_c0_guest_cause(cop0, (0xff), |
| (exccode << CAUSEB_EXCCODE)); |
| |
| /* Set PC to the exception entry point */ |
| arch->pc = KVM_GUEST_KSEG0 + 0x180; |
| kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); |
| |
| kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n", |
| exccode, kvm_read_c0_guest_epc(cop0), |
| kvm_read_c0_guest_badvaddr(cop0)); |
| } else { |
| kvm_err("Trying to deliver EXC when EXL is already set\n"); |
| er = EMULATE_FAIL; |
| } |
| |
| return er; |
| } |
| |
| enum emulation_result kvm_mips_check_privilege(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DONE; |
| uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; |
| unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; |
| |
| int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); |
| |
| if (usermode) { |
| switch (exccode) { |
| case T_INT: |
| case T_SYSCALL: |
| case T_BREAK: |
| case T_RES_INST: |
| case T_MSADIS: |
| break; |
| |
| case T_COP_UNUSABLE: |
| if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0) |
| er = EMULATE_PRIV_FAIL; |
| break; |
| |
| case T_TLB_MOD: |
| break; |
| |
| case T_TLB_LD_MISS: |
| /* |
| * We we are accessing Guest kernel space, then send an |
| * address error exception to the guest |
| */ |
| if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { |
| kvm_debug("%s: LD MISS @ %#lx\n", __func__, |
| badvaddr); |
| cause &= ~0xff; |
| cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE); |
| er = EMULATE_PRIV_FAIL; |
| } |
| break; |
| |
| case T_TLB_ST_MISS: |
| /* |
| * We we are accessing Guest kernel space, then send an |
| * address error exception to the guest |
| */ |
| if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { |
| kvm_debug("%s: ST MISS @ %#lx\n", __func__, |
| badvaddr); |
| cause &= ~0xff; |
| cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE); |
| er = EMULATE_PRIV_FAIL; |
| } |
| break; |
| |
| case T_ADDR_ERR_ST: |
| kvm_debug("%s: address error ST @ %#lx\n", __func__, |
| badvaddr); |
| if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { |
| cause &= ~0xff; |
| cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE); |
| } |
| er = EMULATE_PRIV_FAIL; |
| break; |
| case T_ADDR_ERR_LD: |
| kvm_debug("%s: address error LD @ %#lx\n", __func__, |
| badvaddr); |
| if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { |
| cause &= ~0xff; |
| cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE); |
| } |
| er = EMULATE_PRIV_FAIL; |
| break; |
| default: |
| er = EMULATE_PRIV_FAIL; |
| break; |
| } |
| } |
| |
| if (er == EMULATE_PRIV_FAIL) |
| kvm_mips_emulate_exc(cause, opc, run, vcpu); |
| |
| return er; |
| } |
| |
| /* |
| * User Address (UA) fault, this could happen if |
| * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this |
| * case we pass on the fault to the guest kernel and let it handle it. |
| * (2) TLB entry is present in the Guest TLB but not in the shadow, in this |
| * case we inject the TLB from the Guest TLB into the shadow host TLB |
| */ |
| enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause, |
| uint32_t *opc, |
| struct kvm_run *run, |
| struct kvm_vcpu *vcpu) |
| { |
| enum emulation_result er = EMULATE_DONE; |
| uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; |
| unsigned long va = vcpu->arch.host_cp0_badvaddr; |
| int index; |
| |
| kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n", |
| vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi); |
| |
| /* |
| * KVM would not have got the exception if this entry was valid in the |
| * shadow host TLB. Check the Guest TLB, if the entry is not there then |
| * send the guest an exception. The guest exc handler should then inject |
| * an entry into the guest TLB. |
| */ |
| index = kvm_mips_guest_tlb_lookup(vcpu, |
| (va & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi |
| (vcpu->arch.cop0) & ASID_MASK)); |
| if (index < 0) { |
| if (exccode == T_TLB_LD_MISS) { |
| er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu); |
| } else if (exccode == T_TLB_ST_MISS) { |
| er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu); |
| } else { |
| kvm_err("%s: invalid exc code: %d\n", __func__, |
| exccode); |
| er = EMULATE_FAIL; |
| } |
| } else { |
| struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; |
| |
| /* |
| * Check if the entry is valid, if not then setup a TLB invalid |
| * exception to the guest |
| */ |
| if (!TLB_IS_VALID(*tlb, va)) { |
| if (exccode == T_TLB_LD_MISS) { |
| er = kvm_mips_emulate_tlbinv_ld(cause, opc, run, |
| vcpu); |
| } else if (exccode == T_TLB_ST_MISS) { |
| er = kvm_mips_emulate_tlbinv_st(cause, opc, run, |
| vcpu); |
| } else { |
| kvm_err("%s: invalid exc code: %d\n", __func__, |
| exccode); |
| er = EMULATE_FAIL; |
| } |
| } else { |
| kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n", |
| tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1); |
| /* |
| * OK we have a Guest TLB entry, now inject it into the |
| * shadow host TLB |
| */ |
| kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL, |
| NULL); |
| } |
| } |
| |
| return er; |
| } |