| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Driver for AMBA serial ports |
| * |
| * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. |
| * |
| * Copyright 1999 ARM Limited |
| * Copyright (C) 2000 Deep Blue Solutions Ltd. |
| * Copyright (C) 2010 ST-Ericsson SA |
| * |
| * This is a generic driver for ARM AMBA-type serial ports. They |
| * have a lot of 16550-like features, but are not register compatible. |
| * Note that although they do have CTS, DCD and DSR inputs, they do |
| * not have an RI input, nor do they have DTR or RTS outputs. If |
| * required, these have to be supplied via some other means (eg, GPIO) |
| * and hooked into this driver. |
| */ |
| |
| |
| #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) |
| #define SUPPORT_SYSRQ |
| #endif |
| |
| #include <linux/module.h> |
| #include <linux/ioport.h> |
| #include <linux/init.h> |
| #include <linux/console.h> |
| #include <linux/sysrq.h> |
| #include <linux/device.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/serial_core.h> |
| #include <linux/serial.h> |
| #include <linux/amba/bus.h> |
| #include <linux/amba/serial.h> |
| #include <linux/clk.h> |
| #include <linux/slab.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/scatterlist.h> |
| #include <linux/delay.h> |
| #include <linux/types.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/sizes.h> |
| #include <linux/io.h> |
| #include <linux/acpi.h> |
| |
| #include "amba-pl011.h" |
| |
| #define UART_NR 14 |
| |
| #define SERIAL_AMBA_MAJOR 204 |
| #define SERIAL_AMBA_MINOR 64 |
| #define SERIAL_AMBA_NR UART_NR |
| |
| #define AMBA_ISR_PASS_LIMIT 256 |
| |
| #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) |
| #define UART_DUMMY_DR_RX (1 << 16) |
| |
| static u16 pl011_std_offsets[REG_ARRAY_SIZE] = { |
| [REG_DR] = UART01x_DR, |
| [REG_FR] = UART01x_FR, |
| [REG_LCRH_RX] = UART011_LCRH, |
| [REG_LCRH_TX] = UART011_LCRH, |
| [REG_IBRD] = UART011_IBRD, |
| [REG_FBRD] = UART011_FBRD, |
| [REG_CR] = UART011_CR, |
| [REG_IFLS] = UART011_IFLS, |
| [REG_IMSC] = UART011_IMSC, |
| [REG_RIS] = UART011_RIS, |
| [REG_MIS] = UART011_MIS, |
| [REG_ICR] = UART011_ICR, |
| [REG_DMACR] = UART011_DMACR, |
| }; |
| |
| /* There is by now at least one vendor with differing details, so handle it */ |
| struct vendor_data { |
| const u16 *reg_offset; |
| unsigned int ifls; |
| unsigned int fr_busy; |
| unsigned int fr_dsr; |
| unsigned int fr_cts; |
| unsigned int fr_ri; |
| unsigned int inv_fr; |
| bool access_32b; |
| bool oversampling; |
| bool dma_threshold; |
| bool cts_event_workaround; |
| bool always_enabled; |
| bool fixed_options; |
| |
| unsigned int (*get_fifosize)(struct amba_device *dev); |
| }; |
| |
| static unsigned int get_fifosize_arm(struct amba_device *dev) |
| { |
| return amba_rev(dev) < 3 ? 16 : 32; |
| } |
| |
| static struct vendor_data vendor_arm = { |
| .reg_offset = pl011_std_offsets, |
| .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, |
| .fr_busy = UART01x_FR_BUSY, |
| .fr_dsr = UART01x_FR_DSR, |
| .fr_cts = UART01x_FR_CTS, |
| .fr_ri = UART011_FR_RI, |
| .oversampling = false, |
| .dma_threshold = false, |
| .cts_event_workaround = false, |
| .always_enabled = false, |
| .fixed_options = false, |
| .get_fifosize = get_fifosize_arm, |
| }; |
| |
| static const struct vendor_data vendor_sbsa = { |
| .reg_offset = pl011_std_offsets, |
| .fr_busy = UART01x_FR_BUSY, |
| .fr_dsr = UART01x_FR_DSR, |
| .fr_cts = UART01x_FR_CTS, |
| .fr_ri = UART011_FR_RI, |
| .access_32b = true, |
| .oversampling = false, |
| .dma_threshold = false, |
| .cts_event_workaround = false, |
| .always_enabled = true, |
| .fixed_options = true, |
| }; |
| |
| #ifdef CONFIG_ACPI_SPCR_TABLE |
| static const struct vendor_data vendor_qdt_qdf2400_e44 = { |
| .reg_offset = pl011_std_offsets, |
| .fr_busy = UART011_FR_TXFE, |
| .fr_dsr = UART01x_FR_DSR, |
| .fr_cts = UART01x_FR_CTS, |
| .fr_ri = UART011_FR_RI, |
| .inv_fr = UART011_FR_TXFE, |
| .access_32b = true, |
| .oversampling = false, |
| .dma_threshold = false, |
| .cts_event_workaround = false, |
| .always_enabled = true, |
| .fixed_options = true, |
| }; |
| #endif |
| |
| static u16 pl011_st_offsets[REG_ARRAY_SIZE] = { |
| [REG_DR] = UART01x_DR, |
| [REG_ST_DMAWM] = ST_UART011_DMAWM, |
| [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT, |
| [REG_FR] = UART01x_FR, |
| [REG_LCRH_RX] = ST_UART011_LCRH_RX, |
| [REG_LCRH_TX] = ST_UART011_LCRH_TX, |
| [REG_IBRD] = UART011_IBRD, |
| [REG_FBRD] = UART011_FBRD, |
| [REG_CR] = UART011_CR, |
| [REG_IFLS] = UART011_IFLS, |
| [REG_IMSC] = UART011_IMSC, |
| [REG_RIS] = UART011_RIS, |
| [REG_MIS] = UART011_MIS, |
| [REG_ICR] = UART011_ICR, |
| [REG_DMACR] = UART011_DMACR, |
| [REG_ST_XFCR] = ST_UART011_XFCR, |
| [REG_ST_XON1] = ST_UART011_XON1, |
| [REG_ST_XON2] = ST_UART011_XON2, |
| [REG_ST_XOFF1] = ST_UART011_XOFF1, |
| [REG_ST_XOFF2] = ST_UART011_XOFF2, |
| [REG_ST_ITCR] = ST_UART011_ITCR, |
| [REG_ST_ITIP] = ST_UART011_ITIP, |
| [REG_ST_ABCR] = ST_UART011_ABCR, |
| [REG_ST_ABIMSC] = ST_UART011_ABIMSC, |
| }; |
| |
| static unsigned int get_fifosize_st(struct amba_device *dev) |
| { |
| return 64; |
| } |
| |
| static struct vendor_data vendor_st = { |
| .reg_offset = pl011_st_offsets, |
| .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, |
| .fr_busy = UART01x_FR_BUSY, |
| .fr_dsr = UART01x_FR_DSR, |
| .fr_cts = UART01x_FR_CTS, |
| .fr_ri = UART011_FR_RI, |
| .oversampling = true, |
| .dma_threshold = true, |
| .cts_event_workaround = true, |
| .always_enabled = false, |
| .fixed_options = false, |
| .get_fifosize = get_fifosize_st, |
| }; |
| |
| static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = { |
| [REG_DR] = ZX_UART011_DR, |
| [REG_FR] = ZX_UART011_FR, |
| [REG_LCRH_RX] = ZX_UART011_LCRH, |
| [REG_LCRH_TX] = ZX_UART011_LCRH, |
| [REG_IBRD] = ZX_UART011_IBRD, |
| [REG_FBRD] = ZX_UART011_FBRD, |
| [REG_CR] = ZX_UART011_CR, |
| [REG_IFLS] = ZX_UART011_IFLS, |
| [REG_IMSC] = ZX_UART011_IMSC, |
| [REG_RIS] = ZX_UART011_RIS, |
| [REG_MIS] = ZX_UART011_MIS, |
| [REG_ICR] = ZX_UART011_ICR, |
| [REG_DMACR] = ZX_UART011_DMACR, |
| }; |
| |
| static unsigned int get_fifosize_zte(struct amba_device *dev) |
| { |
| return 16; |
| } |
| |
| static struct vendor_data vendor_zte = { |
| .reg_offset = pl011_zte_offsets, |
| .access_32b = true, |
| .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, |
| .fr_busy = ZX_UART01x_FR_BUSY, |
| .fr_dsr = ZX_UART01x_FR_DSR, |
| .fr_cts = ZX_UART01x_FR_CTS, |
| .fr_ri = ZX_UART011_FR_RI, |
| .get_fifosize = get_fifosize_zte, |
| }; |
| |
| /* Deals with DMA transactions */ |
| |
| struct pl011_sgbuf { |
| struct scatterlist sg; |
| char *buf; |
| }; |
| |
| struct pl011_dmarx_data { |
| struct dma_chan *chan; |
| struct completion complete; |
| bool use_buf_b; |
| struct pl011_sgbuf sgbuf_a; |
| struct pl011_sgbuf sgbuf_b; |
| dma_cookie_t cookie; |
| bool running; |
| struct timer_list timer; |
| unsigned int last_residue; |
| unsigned long last_jiffies; |
| bool auto_poll_rate; |
| unsigned int poll_rate; |
| unsigned int poll_timeout; |
| }; |
| |
| struct pl011_dmatx_data { |
| struct dma_chan *chan; |
| struct scatterlist sg; |
| char *buf; |
| bool queued; |
| }; |
| |
| /* |
| * We wrap our port structure around the generic uart_port. |
| */ |
| struct uart_amba_port { |
| struct uart_port port; |
| const u16 *reg_offset; |
| struct clk *clk; |
| const struct vendor_data *vendor; |
| unsigned int dmacr; /* dma control reg */ |
| unsigned int im; /* interrupt mask */ |
| unsigned int old_status; |
| unsigned int fifosize; /* vendor-specific */ |
| unsigned int old_cr; /* state during shutdown */ |
| unsigned int fixed_baud; /* vendor-set fixed baud rate */ |
| char type[12]; |
| #ifdef CONFIG_DMA_ENGINE |
| /* DMA stuff */ |
| bool using_tx_dma; |
| bool using_rx_dma; |
| struct pl011_dmarx_data dmarx; |
| struct pl011_dmatx_data dmatx; |
| bool dma_probed; |
| #endif |
| }; |
| |
| static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap, |
| unsigned int reg) |
| { |
| return uap->reg_offset[reg]; |
| } |
| |
| static unsigned int pl011_read(const struct uart_amba_port *uap, |
| unsigned int reg) |
| { |
| void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); |
| |
| return (uap->port.iotype == UPIO_MEM32) ? |
| readl_relaxed(addr) : readw_relaxed(addr); |
| } |
| |
| static void pl011_write(unsigned int val, const struct uart_amba_port *uap, |
| unsigned int reg) |
| { |
| void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); |
| |
| if (uap->port.iotype == UPIO_MEM32) |
| writel_relaxed(val, addr); |
| else |
| writew_relaxed(val, addr); |
| } |
| |
| /* |
| * Reads up to 256 characters from the FIFO or until it's empty and |
| * inserts them into the TTY layer. Returns the number of characters |
| * read from the FIFO. |
| */ |
| static int pl011_fifo_to_tty(struct uart_amba_port *uap) |
| { |
| u16 status; |
| unsigned int ch, flag, fifotaken; |
| |
| for (fifotaken = 0; fifotaken != 256; fifotaken++) { |
| status = pl011_read(uap, REG_FR); |
| if (status & UART01x_FR_RXFE) |
| break; |
| |
| /* Take chars from the FIFO and update status */ |
| ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX; |
| flag = TTY_NORMAL; |
| uap->port.icount.rx++; |
| |
| if (unlikely(ch & UART_DR_ERROR)) { |
| if (ch & UART011_DR_BE) { |
| ch &= ~(UART011_DR_FE | UART011_DR_PE); |
| uap->port.icount.brk++; |
| if (uart_handle_break(&uap->port)) |
| continue; |
| } else if (ch & UART011_DR_PE) |
| uap->port.icount.parity++; |
| else if (ch & UART011_DR_FE) |
| uap->port.icount.frame++; |
| if (ch & UART011_DR_OE) |
| uap->port.icount.overrun++; |
| |
| ch &= uap->port.read_status_mask; |
| |
| if (ch & UART011_DR_BE) |
| flag = TTY_BREAK; |
| else if (ch & UART011_DR_PE) |
| flag = TTY_PARITY; |
| else if (ch & UART011_DR_FE) |
| flag = TTY_FRAME; |
| } |
| |
| if (uart_handle_sysrq_char(&uap->port, ch & 255)) |
| continue; |
| |
| uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); |
| } |
| |
| return fifotaken; |
| } |
| |
| |
| /* |
| * All the DMA operation mode stuff goes inside this ifdef. |
| * This assumes that you have a generic DMA device interface, |
| * no custom DMA interfaces are supported. |
| */ |
| #ifdef CONFIG_DMA_ENGINE |
| |
| #define PL011_DMA_BUFFER_SIZE PAGE_SIZE |
| |
| static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, |
| enum dma_data_direction dir) |
| { |
| dma_addr_t dma_addr; |
| |
| sg->buf = dma_alloc_coherent(chan->device->dev, |
| PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); |
| if (!sg->buf) |
| return -ENOMEM; |
| |
| sg_init_table(&sg->sg, 1); |
| sg_set_page(&sg->sg, phys_to_page(dma_addr), |
| PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); |
| sg_dma_address(&sg->sg) = dma_addr; |
| sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE; |
| |
| return 0; |
| } |
| |
| static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, |
| enum dma_data_direction dir) |
| { |
| if (sg->buf) { |
| dma_free_coherent(chan->device->dev, |
| PL011_DMA_BUFFER_SIZE, sg->buf, |
| sg_dma_address(&sg->sg)); |
| } |
| } |
| |
| static void pl011_dma_probe(struct uart_amba_port *uap) |
| { |
| /* DMA is the sole user of the platform data right now */ |
| struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); |
| struct device *dev = uap->port.dev; |
| struct dma_slave_config tx_conf = { |
| .dst_addr = uap->port.mapbase + |
| pl011_reg_to_offset(uap, REG_DR), |
| .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .direction = DMA_MEM_TO_DEV, |
| .dst_maxburst = uap->fifosize >> 1, |
| .device_fc = false, |
| }; |
| struct dma_chan *chan; |
| dma_cap_mask_t mask; |
| |
| uap->dma_probed = true; |
| chan = dma_request_chan(dev, "tx"); |
| if (IS_ERR(chan)) { |
| if (PTR_ERR(chan) == -EPROBE_DEFER) { |
| uap->dma_probed = false; |
| return; |
| } |
| |
| /* We need platform data */ |
| if (!plat || !plat->dma_filter) { |
| dev_info(uap->port.dev, "no DMA platform data\n"); |
| return; |
| } |
| |
| /* Try to acquire a generic DMA engine slave TX channel */ |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| chan = dma_request_channel(mask, plat->dma_filter, |
| plat->dma_tx_param); |
| if (!chan) { |
| dev_err(uap->port.dev, "no TX DMA channel!\n"); |
| return; |
| } |
| } |
| |
| dmaengine_slave_config(chan, &tx_conf); |
| uap->dmatx.chan = chan; |
| |
| dev_info(uap->port.dev, "DMA channel TX %s\n", |
| dma_chan_name(uap->dmatx.chan)); |
| |
| /* Optionally make use of an RX channel as well */ |
| chan = dma_request_slave_channel(dev, "rx"); |
| |
| if (!chan && plat && plat->dma_rx_param) { |
| chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); |
| |
| if (!chan) { |
| dev_err(uap->port.dev, "no RX DMA channel!\n"); |
| return; |
| } |
| } |
| |
| if (chan) { |
| struct dma_slave_config rx_conf = { |
| .src_addr = uap->port.mapbase + |
| pl011_reg_to_offset(uap, REG_DR), |
| .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, |
| .direction = DMA_DEV_TO_MEM, |
| .src_maxburst = uap->fifosize >> 2, |
| .device_fc = false, |
| }; |
| struct dma_slave_caps caps; |
| |
| /* |
| * Some DMA controllers provide information on their capabilities. |
| * If the controller does, check for suitable residue processing |
| * otherwise assime all is well. |
| */ |
| if (0 == dma_get_slave_caps(chan, &caps)) { |
| if (caps.residue_granularity == |
| DMA_RESIDUE_GRANULARITY_DESCRIPTOR) { |
| dma_release_channel(chan); |
| dev_info(uap->port.dev, |
| "RX DMA disabled - no residue processing\n"); |
| return; |
| } |
| } |
| dmaengine_slave_config(chan, &rx_conf); |
| uap->dmarx.chan = chan; |
| |
| uap->dmarx.auto_poll_rate = false; |
| if (plat && plat->dma_rx_poll_enable) { |
| /* Set poll rate if specified. */ |
| if (plat->dma_rx_poll_rate) { |
| uap->dmarx.auto_poll_rate = false; |
| uap->dmarx.poll_rate = plat->dma_rx_poll_rate; |
| } else { |
| /* |
| * 100 ms defaults to poll rate if not |
| * specified. This will be adjusted with |
| * the baud rate at set_termios. |
| */ |
| uap->dmarx.auto_poll_rate = true; |
| uap->dmarx.poll_rate = 100; |
| } |
| /* 3 secs defaults poll_timeout if not specified. */ |
| if (plat->dma_rx_poll_timeout) |
| uap->dmarx.poll_timeout = |
| plat->dma_rx_poll_timeout; |
| else |
| uap->dmarx.poll_timeout = 3000; |
| } else if (!plat && dev->of_node) { |
| uap->dmarx.auto_poll_rate = of_property_read_bool( |
| dev->of_node, "auto-poll"); |
| if (uap->dmarx.auto_poll_rate) { |
| u32 x; |
| |
| if (0 == of_property_read_u32(dev->of_node, |
| "poll-rate-ms", &x)) |
| uap->dmarx.poll_rate = x; |
| else |
| uap->dmarx.poll_rate = 100; |
| if (0 == of_property_read_u32(dev->of_node, |
| "poll-timeout-ms", &x)) |
| uap->dmarx.poll_timeout = x; |
| else |
| uap->dmarx.poll_timeout = 3000; |
| } |
| } |
| dev_info(uap->port.dev, "DMA channel RX %s\n", |
| dma_chan_name(uap->dmarx.chan)); |
| } |
| } |
| |
| static void pl011_dma_remove(struct uart_amba_port *uap) |
| { |
| if (uap->dmatx.chan) |
| dma_release_channel(uap->dmatx.chan); |
| if (uap->dmarx.chan) |
| dma_release_channel(uap->dmarx.chan); |
| } |
| |
| /* Forward declare these for the refill routine */ |
| static int pl011_dma_tx_refill(struct uart_amba_port *uap); |
| static void pl011_start_tx_pio(struct uart_amba_port *uap); |
| |
| /* |
| * The current DMA TX buffer has been sent. |
| * Try to queue up another DMA buffer. |
| */ |
| static void pl011_dma_tx_callback(void *data) |
| { |
| struct uart_amba_port *uap = data; |
| struct pl011_dmatx_data *dmatx = &uap->dmatx; |
| unsigned long flags; |
| u16 dmacr; |
| |
| spin_lock_irqsave(&uap->port.lock, flags); |
| if (uap->dmatx.queued) |
| dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, |
| DMA_TO_DEVICE); |
| |
| dmacr = uap->dmacr; |
| uap->dmacr = dmacr & ~UART011_TXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| |
| /* |
| * If TX DMA was disabled, it means that we've stopped the DMA for |
| * some reason (eg, XOFF received, or we want to send an X-char.) |
| * |
| * Note: we need to be careful here of a potential race between DMA |
| * and the rest of the driver - if the driver disables TX DMA while |
| * a TX buffer completing, we must update the tx queued status to |
| * get further refills (hence we check dmacr). |
| */ |
| if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || |
| uart_circ_empty(&uap->port.state->xmit)) { |
| uap->dmatx.queued = false; |
| spin_unlock_irqrestore(&uap->port.lock, flags); |
| return; |
| } |
| |
| if (pl011_dma_tx_refill(uap) <= 0) |
| /* |
| * We didn't queue a DMA buffer for some reason, but we |
| * have data pending to be sent. Re-enable the TX IRQ. |
| */ |
| pl011_start_tx_pio(uap); |
| |
| spin_unlock_irqrestore(&uap->port.lock, flags); |
| } |
| |
| /* |
| * Try to refill the TX DMA buffer. |
| * Locking: called with port lock held and IRQs disabled. |
| * Returns: |
| * 1 if we queued up a TX DMA buffer. |
| * 0 if we didn't want to handle this by DMA |
| * <0 on error |
| */ |
| static int pl011_dma_tx_refill(struct uart_amba_port *uap) |
| { |
| struct pl011_dmatx_data *dmatx = &uap->dmatx; |
| struct dma_chan *chan = dmatx->chan; |
| struct dma_device *dma_dev = chan->device; |
| struct dma_async_tx_descriptor *desc; |
| struct circ_buf *xmit = &uap->port.state->xmit; |
| unsigned int count; |
| |
| /* |
| * Try to avoid the overhead involved in using DMA if the |
| * transaction fits in the first half of the FIFO, by using |
| * the standard interrupt handling. This ensures that we |
| * issue a uart_write_wakeup() at the appropriate time. |
| */ |
| count = uart_circ_chars_pending(xmit); |
| if (count < (uap->fifosize >> 1)) { |
| uap->dmatx.queued = false; |
| return 0; |
| } |
| |
| /* |
| * Bodge: don't send the last character by DMA, as this |
| * will prevent XON from notifying us to restart DMA. |
| */ |
| count -= 1; |
| |
| /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ |
| if (count > PL011_DMA_BUFFER_SIZE) |
| count = PL011_DMA_BUFFER_SIZE; |
| |
| if (xmit->tail < xmit->head) |
| memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); |
| else { |
| size_t first = UART_XMIT_SIZE - xmit->tail; |
| size_t second; |
| |
| if (first > count) |
| first = count; |
| second = count - first; |
| |
| memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); |
| if (second) |
| memcpy(&dmatx->buf[first], &xmit->buf[0], second); |
| } |
| |
| dmatx->sg.length = count; |
| |
| if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { |
| uap->dmatx.queued = false; |
| dev_dbg(uap->port.dev, "unable to map TX DMA\n"); |
| return -EBUSY; |
| } |
| |
| desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) { |
| dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); |
| uap->dmatx.queued = false; |
| /* |
| * If DMA cannot be used right now, we complete this |
| * transaction via IRQ and let the TTY layer retry. |
| */ |
| dev_dbg(uap->port.dev, "TX DMA busy\n"); |
| return -EBUSY; |
| } |
| |
| /* Some data to go along to the callback */ |
| desc->callback = pl011_dma_tx_callback; |
| desc->callback_param = uap; |
| |
| /* All errors should happen at prepare time */ |
| dmaengine_submit(desc); |
| |
| /* Fire the DMA transaction */ |
| dma_dev->device_issue_pending(chan); |
| |
| uap->dmacr |= UART011_TXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| uap->dmatx.queued = true; |
| |
| /* |
| * Now we know that DMA will fire, so advance the ring buffer |
| * with the stuff we just dispatched. |
| */ |
| xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); |
| uap->port.icount.tx += count; |
| |
| if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| uart_write_wakeup(&uap->port); |
| |
| return 1; |
| } |
| |
| /* |
| * We received a transmit interrupt without a pending X-char but with |
| * pending characters. |
| * Locking: called with port lock held and IRQs disabled. |
| * Returns: |
| * false if we want to use PIO to transmit |
| * true if we queued a DMA buffer |
| */ |
| static bool pl011_dma_tx_irq(struct uart_amba_port *uap) |
| { |
| if (!uap->using_tx_dma) |
| return false; |
| |
| /* |
| * If we already have a TX buffer queued, but received a |
| * TX interrupt, it will be because we've just sent an X-char. |
| * Ensure the TX DMA is enabled and the TX IRQ is disabled. |
| */ |
| if (uap->dmatx.queued) { |
| uap->dmacr |= UART011_TXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| uap->im &= ~UART011_TXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| return true; |
| } |
| |
| /* |
| * We don't have a TX buffer queued, so try to queue one. |
| * If we successfully queued a buffer, mask the TX IRQ. |
| */ |
| if (pl011_dma_tx_refill(uap) > 0) { |
| uap->im &= ~UART011_TXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Stop the DMA transmit (eg, due to received XOFF). |
| * Locking: called with port lock held and IRQs disabled. |
| */ |
| static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) |
| { |
| if (uap->dmatx.queued) { |
| uap->dmacr &= ~UART011_TXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| } |
| } |
| |
| /* |
| * Try to start a DMA transmit, or in the case of an XON/OFF |
| * character queued for send, try to get that character out ASAP. |
| * Locking: called with port lock held and IRQs disabled. |
| * Returns: |
| * false if we want the TX IRQ to be enabled |
| * true if we have a buffer queued |
| */ |
| static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) |
| { |
| u16 dmacr; |
| |
| if (!uap->using_tx_dma) |
| return false; |
| |
| if (!uap->port.x_char) { |
| /* no X-char, try to push chars out in DMA mode */ |
| bool ret = true; |
| |
| if (!uap->dmatx.queued) { |
| if (pl011_dma_tx_refill(uap) > 0) { |
| uap->im &= ~UART011_TXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| } else |
| ret = false; |
| } else if (!(uap->dmacr & UART011_TXDMAE)) { |
| uap->dmacr |= UART011_TXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| } |
| return ret; |
| } |
| |
| /* |
| * We have an X-char to send. Disable DMA to prevent it loading |
| * the TX fifo, and then see if we can stuff it into the FIFO. |
| */ |
| dmacr = uap->dmacr; |
| uap->dmacr &= ~UART011_TXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| |
| if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) { |
| /* |
| * No space in the FIFO, so enable the transmit interrupt |
| * so we know when there is space. Note that once we've |
| * loaded the character, we should just re-enable DMA. |
| */ |
| return false; |
| } |
| |
| pl011_write(uap->port.x_char, uap, REG_DR); |
| uap->port.icount.tx++; |
| uap->port.x_char = 0; |
| |
| /* Success - restore the DMA state */ |
| uap->dmacr = dmacr; |
| pl011_write(dmacr, uap, REG_DMACR); |
| |
| return true; |
| } |
| |
| /* |
| * Flush the transmit buffer. |
| * Locking: called with port lock held and IRQs disabled. |
| */ |
| static void pl011_dma_flush_buffer(struct uart_port *port) |
| __releases(&uap->port.lock) |
| __acquires(&uap->port.lock) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| if (!uap->using_tx_dma) |
| return; |
| |
| dmaengine_terminate_async(uap->dmatx.chan); |
| |
| if (uap->dmatx.queued) { |
| dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, |
| DMA_TO_DEVICE); |
| uap->dmatx.queued = false; |
| uap->dmacr &= ~UART011_TXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| } |
| } |
| |
| static void pl011_dma_rx_callback(void *data); |
| |
| static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) |
| { |
| struct dma_chan *rxchan = uap->dmarx.chan; |
| struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| struct dma_async_tx_descriptor *desc; |
| struct pl011_sgbuf *sgbuf; |
| |
| if (!rxchan) |
| return -EIO; |
| |
| /* Start the RX DMA job */ |
| sgbuf = uap->dmarx.use_buf_b ? |
| &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; |
| desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| /* |
| * If the DMA engine is busy and cannot prepare a |
| * channel, no big deal, the driver will fall back |
| * to interrupt mode as a result of this error code. |
| */ |
| if (!desc) { |
| uap->dmarx.running = false; |
| dmaengine_terminate_all(rxchan); |
| return -EBUSY; |
| } |
| |
| /* Some data to go along to the callback */ |
| desc->callback = pl011_dma_rx_callback; |
| desc->callback_param = uap; |
| dmarx->cookie = dmaengine_submit(desc); |
| dma_async_issue_pending(rxchan); |
| |
| uap->dmacr |= UART011_RXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| uap->dmarx.running = true; |
| |
| uap->im &= ~UART011_RXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| |
| return 0; |
| } |
| |
| /* |
| * This is called when either the DMA job is complete, or |
| * the FIFO timeout interrupt occurred. This must be called |
| * with the port spinlock uap->port.lock held. |
| */ |
| static void pl011_dma_rx_chars(struct uart_amba_port *uap, |
| u32 pending, bool use_buf_b, |
| bool readfifo) |
| { |
| struct tty_port *port = &uap->port.state->port; |
| struct pl011_sgbuf *sgbuf = use_buf_b ? |
| &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; |
| int dma_count = 0; |
| u32 fifotaken = 0; /* only used for vdbg() */ |
| |
| struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| int dmataken = 0; |
| |
| if (uap->dmarx.poll_rate) { |
| /* The data can be taken by polling */ |
| dmataken = sgbuf->sg.length - dmarx->last_residue; |
| /* Recalculate the pending size */ |
| if (pending >= dmataken) |
| pending -= dmataken; |
| } |
| |
| /* Pick the remain data from the DMA */ |
| if (pending) { |
| |
| /* |
| * First take all chars in the DMA pipe, then look in the FIFO. |
| * Note that tty_insert_flip_buf() tries to take as many chars |
| * as it can. |
| */ |
| dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, |
| pending); |
| |
| uap->port.icount.rx += dma_count; |
| if (dma_count < pending) |
| dev_warn(uap->port.dev, |
| "couldn't insert all characters (TTY is full?)\n"); |
| } |
| |
| /* Reset the last_residue for Rx DMA poll */ |
| if (uap->dmarx.poll_rate) |
| dmarx->last_residue = sgbuf->sg.length; |
| |
| /* |
| * Only continue with trying to read the FIFO if all DMA chars have |
| * been taken first. |
| */ |
| if (dma_count == pending && readfifo) { |
| /* Clear any error flags */ |
| pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | |
| UART011_FEIS, uap, REG_ICR); |
| |
| /* |
| * If we read all the DMA'd characters, and we had an |
| * incomplete buffer, that could be due to an rx error, or |
| * maybe we just timed out. Read any pending chars and check |
| * the error status. |
| * |
| * Error conditions will only occur in the FIFO, these will |
| * trigger an immediate interrupt and stop the DMA job, so we |
| * will always find the error in the FIFO, never in the DMA |
| * buffer. |
| */ |
| fifotaken = pl011_fifo_to_tty(uap); |
| } |
| |
| spin_unlock(&uap->port.lock); |
| dev_vdbg(uap->port.dev, |
| "Took %d chars from DMA buffer and %d chars from the FIFO\n", |
| dma_count, fifotaken); |
| tty_flip_buffer_push(port); |
| spin_lock(&uap->port.lock); |
| } |
| |
| static void pl011_dma_rx_irq(struct uart_amba_port *uap) |
| { |
| struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| struct dma_chan *rxchan = dmarx->chan; |
| struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? |
| &dmarx->sgbuf_b : &dmarx->sgbuf_a; |
| size_t pending; |
| struct dma_tx_state state; |
| enum dma_status dmastat; |
| |
| /* |
| * Pause the transfer so we can trust the current counter, |
| * do this before we pause the PL011 block, else we may |
| * overflow the FIFO. |
| */ |
| if (dmaengine_pause(rxchan)) |
| dev_err(uap->port.dev, "unable to pause DMA transfer\n"); |
| dmastat = rxchan->device->device_tx_status(rxchan, |
| dmarx->cookie, &state); |
| if (dmastat != DMA_PAUSED) |
| dev_err(uap->port.dev, "unable to pause DMA transfer\n"); |
| |
| /* Disable RX DMA - incoming data will wait in the FIFO */ |
| uap->dmacr &= ~UART011_RXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| uap->dmarx.running = false; |
| |
| pending = sgbuf->sg.length - state.residue; |
| BUG_ON(pending > PL011_DMA_BUFFER_SIZE); |
| /* Then we terminate the transfer - we now know our residue */ |
| dmaengine_terminate_all(rxchan); |
| |
| /* |
| * This will take the chars we have so far and insert |
| * into the framework. |
| */ |
| pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); |
| |
| /* Switch buffer & re-trigger DMA job */ |
| dmarx->use_buf_b = !dmarx->use_buf_b; |
| if (pl011_dma_rx_trigger_dma(uap)) { |
| dev_dbg(uap->port.dev, "could not retrigger RX DMA job " |
| "fall back to interrupt mode\n"); |
| uap->im |= UART011_RXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| } |
| } |
| |
| static void pl011_dma_rx_callback(void *data) |
| { |
| struct uart_amba_port *uap = data; |
| struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| struct dma_chan *rxchan = dmarx->chan; |
| bool lastbuf = dmarx->use_buf_b; |
| struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? |
| &dmarx->sgbuf_b : &dmarx->sgbuf_a; |
| size_t pending; |
| struct dma_tx_state state; |
| int ret; |
| |
| /* |
| * This completion interrupt occurs typically when the |
| * RX buffer is totally stuffed but no timeout has yet |
| * occurred. When that happens, we just want the RX |
| * routine to flush out the secondary DMA buffer while |
| * we immediately trigger the next DMA job. |
| */ |
| spin_lock_irq(&uap->port.lock); |
| /* |
| * Rx data can be taken by the UART interrupts during |
| * the DMA irq handler. So we check the residue here. |
| */ |
| rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); |
| pending = sgbuf->sg.length - state.residue; |
| BUG_ON(pending > PL011_DMA_BUFFER_SIZE); |
| /* Then we terminate the transfer - we now know our residue */ |
| dmaengine_terminate_all(rxchan); |
| |
| uap->dmarx.running = false; |
| dmarx->use_buf_b = !lastbuf; |
| ret = pl011_dma_rx_trigger_dma(uap); |
| |
| pl011_dma_rx_chars(uap, pending, lastbuf, false); |
| spin_unlock_irq(&uap->port.lock); |
| /* |
| * Do this check after we picked the DMA chars so we don't |
| * get some IRQ immediately from RX. |
| */ |
| if (ret) { |
| dev_dbg(uap->port.dev, "could not retrigger RX DMA job " |
| "fall back to interrupt mode\n"); |
| uap->im |= UART011_RXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| } |
| } |
| |
| /* |
| * Stop accepting received characters, when we're shutting down or |
| * suspending this port. |
| * Locking: called with port lock held and IRQs disabled. |
| */ |
| static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) |
| { |
| /* FIXME. Just disable the DMA enable */ |
| uap->dmacr &= ~UART011_RXDMAE; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| } |
| |
| /* |
| * Timer handler for Rx DMA polling. |
| * Every polling, It checks the residue in the dma buffer and transfer |
| * data to the tty. Also, last_residue is updated for the next polling. |
| */ |
| static void pl011_dma_rx_poll(struct timer_list *t) |
| { |
| struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer); |
| struct tty_port *port = &uap->port.state->port; |
| struct pl011_dmarx_data *dmarx = &uap->dmarx; |
| struct dma_chan *rxchan = uap->dmarx.chan; |
| unsigned long flags = 0; |
| unsigned int dmataken = 0; |
| unsigned int size = 0; |
| struct pl011_sgbuf *sgbuf; |
| int dma_count; |
| struct dma_tx_state state; |
| |
| sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; |
| rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); |
| if (likely(state.residue < dmarx->last_residue)) { |
| dmataken = sgbuf->sg.length - dmarx->last_residue; |
| size = dmarx->last_residue - state.residue; |
| dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, |
| size); |
| if (dma_count == size) |
| dmarx->last_residue = state.residue; |
| dmarx->last_jiffies = jiffies; |
| } |
| tty_flip_buffer_push(port); |
| |
| /* |
| * If no data is received in poll_timeout, the driver will fall back |
| * to interrupt mode. We will retrigger DMA at the first interrupt. |
| */ |
| if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) |
| > uap->dmarx.poll_timeout) { |
| |
| spin_lock_irqsave(&uap->port.lock, flags); |
| pl011_dma_rx_stop(uap); |
| uap->im |= UART011_RXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| spin_unlock_irqrestore(&uap->port.lock, flags); |
| |
| uap->dmarx.running = false; |
| dmaengine_terminate_all(rxchan); |
| del_timer(&uap->dmarx.timer); |
| } else { |
| mod_timer(&uap->dmarx.timer, |
| jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); |
| } |
| } |
| |
| static void pl011_dma_startup(struct uart_amba_port *uap) |
| { |
| int ret; |
| |
| if (!uap->dma_probed) |
| pl011_dma_probe(uap); |
| |
| if (!uap->dmatx.chan) |
| return; |
| |
| uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA); |
| if (!uap->dmatx.buf) { |
| dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); |
| uap->port.fifosize = uap->fifosize; |
| return; |
| } |
| |
| sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); |
| |
| /* The DMA buffer is now the FIFO the TTY subsystem can use */ |
| uap->port.fifosize = PL011_DMA_BUFFER_SIZE; |
| uap->using_tx_dma = true; |
| |
| if (!uap->dmarx.chan) |
| goto skip_rx; |
| |
| /* Allocate and map DMA RX buffers */ |
| ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, |
| DMA_FROM_DEVICE); |
| if (ret) { |
| dev_err(uap->port.dev, "failed to init DMA %s: %d\n", |
| "RX buffer A", ret); |
| goto skip_rx; |
| } |
| |
| ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, |
| DMA_FROM_DEVICE); |
| if (ret) { |
| dev_err(uap->port.dev, "failed to init DMA %s: %d\n", |
| "RX buffer B", ret); |
| pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, |
| DMA_FROM_DEVICE); |
| goto skip_rx; |
| } |
| |
| uap->using_rx_dma = true; |
| |
| skip_rx: |
| /* Turn on DMA error (RX/TX will be enabled on demand) */ |
| uap->dmacr |= UART011_DMAONERR; |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| |
| /* |
| * ST Micro variants has some specific dma burst threshold |
| * compensation. Set this to 16 bytes, so burst will only |
| * be issued above/below 16 bytes. |
| */ |
| if (uap->vendor->dma_threshold) |
| pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, |
| uap, REG_ST_DMAWM); |
| |
| if (uap->using_rx_dma) { |
| if (pl011_dma_rx_trigger_dma(uap)) |
| dev_dbg(uap->port.dev, "could not trigger initial " |
| "RX DMA job, fall back to interrupt mode\n"); |
| if (uap->dmarx.poll_rate) { |
| timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0); |
| mod_timer(&uap->dmarx.timer, |
| jiffies + |
| msecs_to_jiffies(uap->dmarx.poll_rate)); |
| uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; |
| uap->dmarx.last_jiffies = jiffies; |
| } |
| } |
| } |
| |
| static void pl011_dma_shutdown(struct uart_amba_port *uap) |
| { |
| if (!(uap->using_tx_dma || uap->using_rx_dma)) |
| return; |
| |
| /* Disable RX and TX DMA */ |
| while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy) |
| cpu_relax(); |
| |
| spin_lock_irq(&uap->port.lock); |
| uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); |
| pl011_write(uap->dmacr, uap, REG_DMACR); |
| spin_unlock_irq(&uap->port.lock); |
| |
| if (uap->using_tx_dma) { |
| /* In theory, this should already be done by pl011_dma_flush_buffer */ |
| dmaengine_terminate_all(uap->dmatx.chan); |
| if (uap->dmatx.queued) { |
| dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, |
| DMA_TO_DEVICE); |
| uap->dmatx.queued = false; |
| } |
| |
| kfree(uap->dmatx.buf); |
| uap->using_tx_dma = false; |
| } |
| |
| if (uap->using_rx_dma) { |
| dmaengine_terminate_all(uap->dmarx.chan); |
| /* Clean up the RX DMA */ |
| pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); |
| pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); |
| if (uap->dmarx.poll_rate) |
| del_timer_sync(&uap->dmarx.timer); |
| uap->using_rx_dma = false; |
| } |
| } |
| |
| static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) |
| { |
| return uap->using_rx_dma; |
| } |
| |
| static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) |
| { |
| return uap->using_rx_dma && uap->dmarx.running; |
| } |
| |
| #else |
| /* Blank functions if the DMA engine is not available */ |
| static inline void pl011_dma_remove(struct uart_amba_port *uap) |
| { |
| } |
| |
| static inline void pl011_dma_startup(struct uart_amba_port *uap) |
| { |
| } |
| |
| static inline void pl011_dma_shutdown(struct uart_amba_port *uap) |
| { |
| } |
| |
| static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) |
| { |
| return false; |
| } |
| |
| static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) |
| { |
| } |
| |
| static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) |
| { |
| return false; |
| } |
| |
| static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) |
| { |
| } |
| |
| static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) |
| { |
| } |
| |
| static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) |
| { |
| return -EIO; |
| } |
| |
| static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) |
| { |
| return false; |
| } |
| |
| static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) |
| { |
| return false; |
| } |
| |
| #define pl011_dma_flush_buffer NULL |
| #endif |
| |
| static void pl011_stop_tx(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| uap->im &= ~UART011_TXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| pl011_dma_tx_stop(uap); |
| } |
| |
| static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq); |
| |
| /* Start TX with programmed I/O only (no DMA) */ |
| static void pl011_start_tx_pio(struct uart_amba_port *uap) |
| { |
| if (pl011_tx_chars(uap, false)) { |
| uap->im |= UART011_TXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| } |
| } |
| |
| static void pl011_start_tx(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| if (!pl011_dma_tx_start(uap)) |
| pl011_start_tx_pio(uap); |
| } |
| |
| static void pl011_stop_rx(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| |
| UART011_PEIM|UART011_BEIM|UART011_OEIM); |
| pl011_write(uap->im, uap, REG_IMSC); |
| |
| pl011_dma_rx_stop(uap); |
| } |
| |
| static void pl011_enable_ms(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| } |
| |
| static void pl011_rx_chars(struct uart_amba_port *uap) |
| __releases(&uap->port.lock) |
| __acquires(&uap->port.lock) |
| { |
| pl011_fifo_to_tty(uap); |
| |
| spin_unlock(&uap->port.lock); |
| tty_flip_buffer_push(&uap->port.state->port); |
| /* |
| * If we were temporarily out of DMA mode for a while, |
| * attempt to switch back to DMA mode again. |
| */ |
| if (pl011_dma_rx_available(uap)) { |
| if (pl011_dma_rx_trigger_dma(uap)) { |
| dev_dbg(uap->port.dev, "could not trigger RX DMA job " |
| "fall back to interrupt mode again\n"); |
| uap->im |= UART011_RXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| } else { |
| #ifdef CONFIG_DMA_ENGINE |
| /* Start Rx DMA poll */ |
| if (uap->dmarx.poll_rate) { |
| uap->dmarx.last_jiffies = jiffies; |
| uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; |
| mod_timer(&uap->dmarx.timer, |
| jiffies + |
| msecs_to_jiffies(uap->dmarx.poll_rate)); |
| } |
| #endif |
| } |
| } |
| spin_lock(&uap->port.lock); |
| } |
| |
| static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c, |
| bool from_irq) |
| { |
| if (unlikely(!from_irq) && |
| pl011_read(uap, REG_FR) & UART01x_FR_TXFF) |
| return false; /* unable to transmit character */ |
| |
| pl011_write(c, uap, REG_DR); |
| uap->port.icount.tx++; |
| |
| return true; |
| } |
| |
| /* Returns true if tx interrupts have to be (kept) enabled */ |
| static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq) |
| { |
| struct circ_buf *xmit = &uap->port.state->xmit; |
| int count = uap->fifosize >> 1; |
| |
| if (uap->port.x_char) { |
| if (!pl011_tx_char(uap, uap->port.x_char, from_irq)) |
| return true; |
| uap->port.x_char = 0; |
| --count; |
| } |
| if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { |
| pl011_stop_tx(&uap->port); |
| return false; |
| } |
| |
| /* If we are using DMA mode, try to send some characters. */ |
| if (pl011_dma_tx_irq(uap)) |
| return true; |
| |
| do { |
| if (likely(from_irq) && count-- == 0) |
| break; |
| |
| if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq)) |
| break; |
| |
| xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); |
| } while (!uart_circ_empty(xmit)); |
| |
| if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| uart_write_wakeup(&uap->port); |
| |
| if (uart_circ_empty(xmit)) { |
| pl011_stop_tx(&uap->port); |
| return false; |
| } |
| return true; |
| } |
| |
| static void pl011_modem_status(struct uart_amba_port *uap) |
| { |
| unsigned int status, delta; |
| |
| status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; |
| |
| delta = status ^ uap->old_status; |
| uap->old_status = status; |
| |
| if (!delta) |
| return; |
| |
| if (delta & UART01x_FR_DCD) |
| uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); |
| |
| if (delta & uap->vendor->fr_dsr) |
| uap->port.icount.dsr++; |
| |
| if (delta & uap->vendor->fr_cts) |
| uart_handle_cts_change(&uap->port, |
| status & uap->vendor->fr_cts); |
| |
| wake_up_interruptible(&uap->port.state->port.delta_msr_wait); |
| } |
| |
| static void check_apply_cts_event_workaround(struct uart_amba_port *uap) |
| { |
| unsigned int dummy_read; |
| |
| if (!uap->vendor->cts_event_workaround) |
| return; |
| |
| /* workaround to make sure that all bits are unlocked.. */ |
| pl011_write(0x00, uap, REG_ICR); |
| |
| /* |
| * WA: introduce 26ns(1 uart clk) delay before W1C; |
| * single apb access will incur 2 pclk(133.12Mhz) delay, |
| * so add 2 dummy reads |
| */ |
| dummy_read = pl011_read(uap, REG_ICR); |
| dummy_read = pl011_read(uap, REG_ICR); |
| } |
| |
| static irqreturn_t pl011_int(int irq, void *dev_id) |
| { |
| struct uart_amba_port *uap = dev_id; |
| unsigned long flags; |
| unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; |
| int handled = 0; |
| |
| spin_lock_irqsave(&uap->port.lock, flags); |
| status = pl011_read(uap, REG_RIS) & uap->im; |
| if (status) { |
| do { |
| check_apply_cts_event_workaround(uap); |
| |
| pl011_write(status & ~(UART011_TXIS|UART011_RTIS| |
| UART011_RXIS), |
| uap, REG_ICR); |
| |
| if (status & (UART011_RTIS|UART011_RXIS)) { |
| if (pl011_dma_rx_running(uap)) |
| pl011_dma_rx_irq(uap); |
| else |
| pl011_rx_chars(uap); |
| } |
| if (status & (UART011_DSRMIS|UART011_DCDMIS| |
| UART011_CTSMIS|UART011_RIMIS)) |
| pl011_modem_status(uap); |
| if (status & UART011_TXIS) |
| pl011_tx_chars(uap, true); |
| |
| if (pass_counter-- == 0) |
| break; |
| |
| status = pl011_read(uap, REG_RIS) & uap->im; |
| } while (status != 0); |
| handled = 1; |
| } |
| |
| spin_unlock_irqrestore(&uap->port.lock, flags); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| static unsigned int pl011_tx_empty(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| /* Allow feature register bits to be inverted to work around errata */ |
| unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr; |
| |
| return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ? |
| 0 : TIOCSER_TEMT; |
| } |
| |
| static unsigned int pl011_get_mctrl(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| unsigned int result = 0; |
| unsigned int status = pl011_read(uap, REG_FR); |
| |
| #define TIOCMBIT(uartbit, tiocmbit) \ |
| if (status & uartbit) \ |
| result |= tiocmbit |
| |
| TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); |
| TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR); |
| TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS); |
| TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG); |
| #undef TIOCMBIT |
| return result; |
| } |
| |
| static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| unsigned int cr; |
| |
| cr = pl011_read(uap, REG_CR); |
| |
| #define TIOCMBIT(tiocmbit, uartbit) \ |
| if (mctrl & tiocmbit) \ |
| cr |= uartbit; \ |
| else \ |
| cr &= ~uartbit |
| |
| TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); |
| TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); |
| TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); |
| TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); |
| TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); |
| |
| if (port->status & UPSTAT_AUTORTS) { |
| /* We need to disable auto-RTS if we want to turn RTS off */ |
| TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); |
| } |
| #undef TIOCMBIT |
| |
| pl011_write(cr, uap, REG_CR); |
| } |
| |
| static void pl011_break_ctl(struct uart_port *port, int break_state) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| unsigned long flags; |
| unsigned int lcr_h; |
| |
| spin_lock_irqsave(&uap->port.lock, flags); |
| lcr_h = pl011_read(uap, REG_LCRH_TX); |
| if (break_state == -1) |
| lcr_h |= UART01x_LCRH_BRK; |
| else |
| lcr_h &= ~UART01x_LCRH_BRK; |
| pl011_write(lcr_h, uap, REG_LCRH_TX); |
| spin_unlock_irqrestore(&uap->port.lock, flags); |
| } |
| |
| #ifdef CONFIG_CONSOLE_POLL |
| |
| static void pl011_quiesce_irqs(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR); |
| /* |
| * There is no way to clear TXIM as this is "ready to transmit IRQ", so |
| * we simply mask it. start_tx() will unmask it. |
| * |
| * Note we can race with start_tx(), and if the race happens, the |
| * polling user might get another interrupt just after we clear it. |
| * But it should be OK and can happen even w/o the race, e.g. |
| * controller immediately got some new data and raised the IRQ. |
| * |
| * And whoever uses polling routines assumes that it manages the device |
| * (including tx queue), so we're also fine with start_tx()'s caller |
| * side. |
| */ |
| pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap, |
| REG_IMSC); |
| } |
| |
| static int pl011_get_poll_char(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| unsigned int status; |
| |
| /* |
| * The caller might need IRQs lowered, e.g. if used with KDB NMI |
| * debugger. |
| */ |
| pl011_quiesce_irqs(port); |
| |
| status = pl011_read(uap, REG_FR); |
| if (status & UART01x_FR_RXFE) |
| return NO_POLL_CHAR; |
| |
| return pl011_read(uap, REG_DR); |
| } |
| |
| static void pl011_put_poll_char(struct uart_port *port, |
| unsigned char ch) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) |
| cpu_relax(); |
| |
| pl011_write(ch, uap, REG_DR); |
| } |
| |
| #endif /* CONFIG_CONSOLE_POLL */ |
| |
| static int pl011_hwinit(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| int retval; |
| |
| /* Optionaly enable pins to be muxed in and configured */ |
| pinctrl_pm_select_default_state(port->dev); |
| |
| /* |
| * Try to enable the clock producer. |
| */ |
| retval = clk_prepare_enable(uap->clk); |
| if (retval) |
| return retval; |
| |
| uap->port.uartclk = clk_get_rate(uap->clk); |
| |
| /* Clear pending error and receive interrupts */ |
| pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | |
| UART011_FEIS | UART011_RTIS | UART011_RXIS, |
| uap, REG_ICR); |
| |
| /* |
| * Save interrupts enable mask, and enable RX interrupts in case if |
| * the interrupt is used for NMI entry. |
| */ |
| uap->im = pl011_read(uap, REG_IMSC); |
| pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC); |
| |
| if (dev_get_platdata(uap->port.dev)) { |
| struct amba_pl011_data *plat; |
| |
| plat = dev_get_platdata(uap->port.dev); |
| if (plat->init) |
| plat->init(); |
| } |
| return 0; |
| } |
| |
| static bool pl011_split_lcrh(const struct uart_amba_port *uap) |
| { |
| return pl011_reg_to_offset(uap, REG_LCRH_RX) != |
| pl011_reg_to_offset(uap, REG_LCRH_TX); |
| } |
| |
| static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) |
| { |
| pl011_write(lcr_h, uap, REG_LCRH_RX); |
| if (pl011_split_lcrh(uap)) { |
| int i; |
| /* |
| * Wait 10 PCLKs before writing LCRH_TX register, |
| * to get this delay write read only register 10 times |
| */ |
| for (i = 0; i < 10; ++i) |
| pl011_write(0xff, uap, REG_MIS); |
| pl011_write(lcr_h, uap, REG_LCRH_TX); |
| } |
| } |
| |
| static int pl011_allocate_irq(struct uart_amba_port *uap) |
| { |
| pl011_write(uap->im, uap, REG_IMSC); |
| |
| return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap); |
| } |
| |
| /* |
| * Enable interrupts, only timeouts when using DMA |
| * if initial RX DMA job failed, start in interrupt mode |
| * as well. |
| */ |
| static void pl011_enable_interrupts(struct uart_amba_port *uap) |
| { |
| unsigned int i; |
| |
| spin_lock_irq(&uap->port.lock); |
| |
| /* Clear out any spuriously appearing RX interrupts */ |
| pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR); |
| |
| /* |
| * RXIS is asserted only when the RX FIFO transitions from below |
| * to above the trigger threshold. If the RX FIFO is already |
| * full to the threshold this can't happen and RXIS will now be |
| * stuck off. Drain the RX FIFO explicitly to fix this: |
| */ |
| for (i = 0; i < uap->fifosize * 2; ++i) { |
| if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE) |
| break; |
| |
| pl011_read(uap, REG_DR); |
| } |
| |
| uap->im = UART011_RTIM; |
| if (!pl011_dma_rx_running(uap)) |
| uap->im |= UART011_RXIM; |
| pl011_write(uap->im, uap, REG_IMSC); |
| spin_unlock_irq(&uap->port.lock); |
| } |
| |
| static int pl011_startup(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| unsigned int cr; |
| int retval; |
| |
| retval = pl011_hwinit(port); |
| if (retval) |
| goto clk_dis; |
| |
| retval = pl011_allocate_irq(uap); |
| if (retval) |
| goto clk_dis; |
| |
| pl011_write(uap->vendor->ifls, uap, REG_IFLS); |
| |
| spin_lock_irq(&uap->port.lock); |
| |
| /* restore RTS and DTR */ |
| cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); |
| cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; |
| pl011_write(cr, uap, REG_CR); |
| |
| spin_unlock_irq(&uap->port.lock); |
| |
| /* |
| * initialise the old status of the modem signals |
| */ |
| uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; |
| |
| /* Startup DMA */ |
| pl011_dma_startup(uap); |
| |
| pl011_enable_interrupts(uap); |
| |
| return 0; |
| |
| clk_dis: |
| clk_disable_unprepare(uap->clk); |
| return retval; |
| } |
| |
| static int sbsa_uart_startup(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| int retval; |
| |
| retval = pl011_hwinit(port); |
| if (retval) |
| return retval; |
| |
| retval = pl011_allocate_irq(uap); |
| if (retval) |
| return retval; |
| |
| /* The SBSA UART does not support any modem status lines. */ |
| uap->old_status = 0; |
| |
| pl011_enable_interrupts(uap); |
| |
| return 0; |
| } |
| |
| static void pl011_shutdown_channel(struct uart_amba_port *uap, |
| unsigned int lcrh) |
| { |
| unsigned long val; |
| |
| val = pl011_read(uap, lcrh); |
| val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); |
| pl011_write(val, uap, lcrh); |
| } |
| |
| /* |
| * disable the port. It should not disable RTS and DTR. |
| * Also RTS and DTR state should be preserved to restore |
| * it during startup(). |
| */ |
| static void pl011_disable_uart(struct uart_amba_port *uap) |
| { |
| unsigned int cr; |
| |
| uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); |
| spin_lock_irq(&uap->port.lock); |
| cr = pl011_read(uap, REG_CR); |
| uap->old_cr = cr; |
| cr &= UART011_CR_RTS | UART011_CR_DTR; |
| cr |= UART01x_CR_UARTEN | UART011_CR_TXE; |
| pl011_write(cr, uap, REG_CR); |
| spin_unlock_irq(&uap->port.lock); |
| |
| /* |
| * disable break condition and fifos |
| */ |
| pl011_shutdown_channel(uap, REG_LCRH_RX); |
| if (pl011_split_lcrh(uap)) |
| pl011_shutdown_channel(uap, REG_LCRH_TX); |
| } |
| |
| static void pl011_disable_interrupts(struct uart_amba_port *uap) |
| { |
| spin_lock_irq(&uap->port.lock); |
| |
| /* mask all interrupts and clear all pending ones */ |
| uap->im = 0; |
| pl011_write(uap->im, uap, REG_IMSC); |
| pl011_write(0xffff, uap, REG_ICR); |
| |
| spin_unlock_irq(&uap->port.lock); |
| } |
| |
| static void pl011_shutdown(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| pl011_disable_interrupts(uap); |
| |
| pl011_dma_shutdown(uap); |
| |
| free_irq(uap->port.irq, uap); |
| |
| pl011_disable_uart(uap); |
| |
| /* |
| * Shut down the clock producer |
| */ |
| clk_disable_unprepare(uap->clk); |
| /* Optionally let pins go into sleep states */ |
| pinctrl_pm_select_sleep_state(port->dev); |
| |
| if (dev_get_platdata(uap->port.dev)) { |
| struct amba_pl011_data *plat; |
| |
| plat = dev_get_platdata(uap->port.dev); |
| if (plat->exit) |
| plat->exit(); |
| } |
| |
| if (uap->port.ops->flush_buffer) |
| uap->port.ops->flush_buffer(port); |
| } |
| |
| static void sbsa_uart_shutdown(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| pl011_disable_interrupts(uap); |
| |
| free_irq(uap->port.irq, uap); |
| |
| if (uap->port.ops->flush_buffer) |
| uap->port.ops->flush_buffer(port); |
| } |
| |
| static void |
| pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios) |
| { |
| port->read_status_mask = UART011_DR_OE | 255; |
| if (termios->c_iflag & INPCK) |
| port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; |
| if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) |
| port->read_status_mask |= UART011_DR_BE; |
| |
| /* |
| * Characters to ignore |
| */ |
| port->ignore_status_mask = 0; |
| if (termios->c_iflag & IGNPAR) |
| port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; |
| if (termios->c_iflag & IGNBRK) { |
| port->ignore_status_mask |= UART011_DR_BE; |
| /* |
| * If we're ignoring parity and break indicators, |
| * ignore overruns too (for real raw support). |
| */ |
| if (termios->c_iflag & IGNPAR) |
| port->ignore_status_mask |= UART011_DR_OE; |
| } |
| |
| /* |
| * Ignore all characters if CREAD is not set. |
| */ |
| if ((termios->c_cflag & CREAD) == 0) |
| port->ignore_status_mask |= UART_DUMMY_DR_RX; |
| } |
| |
| static void |
| pl011_set_termios(struct uart_port *port, struct ktermios *termios, |
| struct ktermios *old) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| unsigned int lcr_h, old_cr; |
| unsigned long flags; |
| unsigned int baud, quot, clkdiv; |
| |
| if (uap->vendor->oversampling) |
| clkdiv = 8; |
| else |
| clkdiv = 16; |
| |
| /* |
| * Ask the core to calculate the divisor for us. |
| */ |
| baud = uart_get_baud_rate(port, termios, old, 0, |
| port->uartclk / clkdiv); |
| #ifdef CONFIG_DMA_ENGINE |
| /* |
| * Adjust RX DMA polling rate with baud rate if not specified. |
| */ |
| if (uap->dmarx.auto_poll_rate) |
| uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); |
| #endif |
| |
| if (baud > port->uartclk/16) |
| quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); |
| else |
| quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); |
| |
| switch (termios->c_cflag & CSIZE) { |
| case CS5: |
| lcr_h = UART01x_LCRH_WLEN_5; |
| break; |
| case CS6: |
| lcr_h = UART01x_LCRH_WLEN_6; |
| break; |
| case CS7: |
| lcr_h = UART01x_LCRH_WLEN_7; |
| break; |
| default: // CS8 |
| lcr_h = UART01x_LCRH_WLEN_8; |
| break; |
| } |
| if (termios->c_cflag & CSTOPB) |
| lcr_h |= UART01x_LCRH_STP2; |
| if (termios->c_cflag & PARENB) { |
| lcr_h |= UART01x_LCRH_PEN; |
| if (!(termios->c_cflag & PARODD)) |
| lcr_h |= UART01x_LCRH_EPS; |
| if (termios->c_cflag & CMSPAR) |
| lcr_h |= UART011_LCRH_SPS; |
| } |
| if (uap->fifosize > 1) |
| lcr_h |= UART01x_LCRH_FEN; |
| |
| spin_lock_irqsave(&port->lock, flags); |
| |
| /* |
| * Update the per-port timeout. |
| */ |
| uart_update_timeout(port, termios->c_cflag, baud); |
| |
| pl011_setup_status_masks(port, termios); |
| |
| if (UART_ENABLE_MS(port, termios->c_cflag)) |
| pl011_enable_ms(port); |
| |
| /* first, disable everything */ |
| old_cr = pl011_read(uap, REG_CR); |
| pl011_write(0, uap, REG_CR); |
| |
| if (termios->c_cflag & CRTSCTS) { |
| if (old_cr & UART011_CR_RTS) |
| old_cr |= UART011_CR_RTSEN; |
| |
| old_cr |= UART011_CR_CTSEN; |
| port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS; |
| } else { |
| old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); |
| port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); |
| } |
| |
| if (uap->vendor->oversampling) { |
| if (baud > port->uartclk / 16) |
| old_cr |= ST_UART011_CR_OVSFACT; |
| else |
| old_cr &= ~ST_UART011_CR_OVSFACT; |
| } |
| |
| /* |
| * Workaround for the ST Micro oversampling variants to |
| * increase the bitrate slightly, by lowering the divisor, |
| * to avoid delayed sampling of start bit at high speeds, |
| * else we see data corruption. |
| */ |
| if (uap->vendor->oversampling) { |
| if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) |
| quot -= 1; |
| else if ((baud > 3250000) && (quot > 2)) |
| quot -= 2; |
| } |
| /* Set baud rate */ |
| pl011_write(quot & 0x3f, uap, REG_FBRD); |
| pl011_write(quot >> 6, uap, REG_IBRD); |
| |
| /* |
| * ----------v----------v----------v----------v----- |
| * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER |
| * REG_FBRD & REG_IBRD. |
| * ----------^----------^----------^----------^----- |
| */ |
| pl011_write_lcr_h(uap, lcr_h); |
| pl011_write(old_cr, uap, REG_CR); |
| |
| spin_unlock_irqrestore(&port->lock, flags); |
| } |
| |
| static void |
| sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios, |
| struct ktermios *old) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| unsigned long flags; |
| |
| tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud); |
| |
| /* The SBSA UART only supports 8n1 without hardware flow control. */ |
| termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD); |
| termios->c_cflag &= ~(CMSPAR | CRTSCTS); |
| termios->c_cflag |= CS8 | CLOCAL; |
| |
| spin_lock_irqsave(&port->lock, flags); |
| uart_update_timeout(port, CS8, uap->fixed_baud); |
| pl011_setup_status_masks(port, termios); |
| spin_unlock_irqrestore(&port->lock, flags); |
| } |
| |
| static const char *pl011_type(struct uart_port *port) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| return uap->port.type == PORT_AMBA ? uap->type : NULL; |
| } |
| |
| /* |
| * Release the memory region(s) being used by 'port' |
| */ |
| static void pl011_release_port(struct uart_port *port) |
| { |
| release_mem_region(port->mapbase, SZ_4K); |
| } |
| |
| /* |
| * Request the memory region(s) being used by 'port' |
| */ |
| static int pl011_request_port(struct uart_port *port) |
| { |
| return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") |
| != NULL ? 0 : -EBUSY; |
| } |
| |
| /* |
| * Configure/autoconfigure the port. |
| */ |
| static void pl011_config_port(struct uart_port *port, int flags) |
| { |
| if (flags & UART_CONFIG_TYPE) { |
| port->type = PORT_AMBA; |
| pl011_request_port(port); |
| } |
| } |
| |
| /* |
| * verify the new serial_struct (for TIOCSSERIAL). |
| */ |
| static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) |
| { |
| int ret = 0; |
| if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) |
| ret = -EINVAL; |
| if (ser->irq < 0 || ser->irq >= nr_irqs) |
| ret = -EINVAL; |
| if (ser->baud_base < 9600) |
| ret = -EINVAL; |
| return ret; |
| } |
| |
| static const struct uart_ops amba_pl011_pops = { |
| .tx_empty = pl011_tx_empty, |
| .set_mctrl = pl011_set_mctrl, |
| .get_mctrl = pl011_get_mctrl, |
| .stop_tx = pl011_stop_tx, |
| .start_tx = pl011_start_tx, |
| .stop_rx = pl011_stop_rx, |
| .enable_ms = pl011_enable_ms, |
| .break_ctl = pl011_break_ctl, |
| .startup = pl011_startup, |
| .shutdown = pl011_shutdown, |
| .flush_buffer = pl011_dma_flush_buffer, |
| .set_termios = pl011_set_termios, |
| .type = pl011_type, |
| .release_port = pl011_release_port, |
| .request_port = pl011_request_port, |
| .config_port = pl011_config_port, |
| .verify_port = pl011_verify_port, |
| #ifdef CONFIG_CONSOLE_POLL |
| .poll_init = pl011_hwinit, |
| .poll_get_char = pl011_get_poll_char, |
| .poll_put_char = pl011_put_poll_char, |
| #endif |
| }; |
| |
| static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) |
| { |
| } |
| |
| static unsigned int sbsa_uart_get_mctrl(struct uart_port *port) |
| { |
| return 0; |
| } |
| |
| static const struct uart_ops sbsa_uart_pops = { |
| .tx_empty = pl011_tx_empty, |
| .set_mctrl = sbsa_uart_set_mctrl, |
| .get_mctrl = sbsa_uart_get_mctrl, |
| .stop_tx = pl011_stop_tx, |
| .start_tx = pl011_start_tx, |
| .stop_rx = pl011_stop_rx, |
| .startup = sbsa_uart_startup, |
| .shutdown = sbsa_uart_shutdown, |
| .set_termios = sbsa_uart_set_termios, |
| .type = pl011_type, |
| .release_port = pl011_release_port, |
| .request_port = pl011_request_port, |
| .config_port = pl011_config_port, |
| .verify_port = pl011_verify_port, |
| #ifdef CONFIG_CONSOLE_POLL |
| .poll_init = pl011_hwinit, |
| .poll_get_char = pl011_get_poll_char, |
| .poll_put_char = pl011_put_poll_char, |
| #endif |
| }; |
| |
| static struct uart_amba_port *amba_ports[UART_NR]; |
| |
| #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE |
| |
| static void pl011_console_putchar(struct uart_port *port, int ch) |
| { |
| struct uart_amba_port *uap = |
| container_of(port, struct uart_amba_port, port); |
| |
| while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) |
| cpu_relax(); |
| pl011_write(ch, uap, REG_DR); |
| } |
| |
| static void |
| pl011_console_write(struct console *co, const char *s, unsigned int count) |
| { |
| struct uart_amba_port *uap = amba_ports[co->index]; |
| unsigned int old_cr = 0, new_cr; |
| unsigned long flags; |
| int locked = 1; |
| |
| clk_enable(uap->clk); |
| |
| local_irq_save(flags); |
| if (uap->port.sysrq) |
| locked = 0; |
| else if (oops_in_progress) |
| locked = spin_trylock(&uap->port.lock); |
| else |
| spin_lock(&uap->port.lock); |
| |
| /* |
| * First save the CR then disable the interrupts |
| */ |
| if (!uap->vendor->always_enabled) { |
| old_cr = pl011_read(uap, REG_CR); |
| new_cr = old_cr & ~UART011_CR_CTSEN; |
| new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; |
| pl011_write(new_cr, uap, REG_CR); |
| } |
| |
| uart_console_write(&uap->port, s, count, pl011_console_putchar); |
| |
| /* |
| * Finally, wait for transmitter to become empty and restore the |
| * TCR. Allow feature register bits to be inverted to work around |
| * errata. |
| */ |
| while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) |
| & uap->vendor->fr_busy) |
| cpu_relax(); |
| if (!uap->vendor->always_enabled) |
| pl011_write(old_cr, uap, REG_CR); |
| |
| if (locked) |
| spin_unlock(&uap->port.lock); |
| local_irq_restore(flags); |
| |
| clk_disable(uap->clk); |
| } |
| |
| static void __init |
| pl011_console_get_options(struct uart_amba_port *uap, int *baud, |
| int *parity, int *bits) |
| { |
| if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) { |
| unsigned int lcr_h, ibrd, fbrd; |
| |
| lcr_h = pl011_read(uap, REG_LCRH_TX); |
| |
| *parity = 'n'; |
| if (lcr_h & UART01x_LCRH_PEN) { |
| if (lcr_h & UART01x_LCRH_EPS) |
| *parity = 'e'; |
| else |
| *parity = 'o'; |
| } |
| |
| if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) |
| *bits = 7; |
| else |
| *bits = 8; |
| |
| ibrd = pl011_read(uap, REG_IBRD); |
| fbrd = pl011_read(uap, REG_FBRD); |
| |
| *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); |
| |
| if (uap->vendor->oversampling) { |
| if (pl011_read(uap, REG_CR) |
| & ST_UART011_CR_OVSFACT) |
| *baud *= 2; |
| } |
| } |
| } |
| |
| static int __init pl011_console_setup(struct console *co, char *options) |
| { |
| struct uart_amba_port *uap; |
| int baud = 38400; |
| int bits = 8; |
| int parity = 'n'; |
| int flow = 'n'; |
| int ret; |
| |
| /* |
| * Check whether an invalid uart number has been specified, and |
| * if so, search for the first available port that does have |
| * console support. |
| */ |
| if (co->index >= UART_NR) |
| co->index = 0; |
| uap = amba_ports[co->index]; |
| if (!uap) |
| return -ENODEV; |
| |
| /* Allow pins to be muxed in and configured */ |
| pinctrl_pm_select_default_state(uap->port.dev); |
| |
| ret = clk_prepare(uap->clk); |
| if (ret) |
| return ret; |
| |
| if (dev_get_platdata(uap->port.dev)) { |
| struct amba_pl011_data *plat; |
| |
| plat = dev_get_platdata(uap->port.dev); |
| if (plat->init) |
| plat->init(); |
| } |
| |
| uap->port.uartclk = clk_get_rate(uap->clk); |
| |
| if (uap->vendor->fixed_options) { |
| baud = uap->fixed_baud; |
| } else { |
| if (options) |
| uart_parse_options(options, |
| &baud, &parity, &bits, &flow); |
| else |
| pl011_console_get_options(uap, &baud, &parity, &bits); |
| } |
| |
| return uart_set_options(&uap->port, co, baud, parity, bits, flow); |
| } |
| |
| /** |
| * pl011_console_match - non-standard console matching |
| * @co: registering console |
| * @name: name from console command line |
| * @idx: index from console command line |
| * @options: ptr to option string from console command line |
| * |
| * Only attempts to match console command lines of the form: |
| * console=pl011,mmio|mmio32,<addr>[,<options>] |
| * console=pl011,0x<addr>[,<options>] |
| * This form is used to register an initial earlycon boot console and |
| * replace it with the amba_console at pl011 driver init. |
| * |
| * Performs console setup for a match (as required by interface) |
| * If no <options> are specified, then assume the h/w is already setup. |
| * |
| * Returns 0 if console matches; otherwise non-zero to use default matching |
| */ |
| static int __init pl011_console_match(struct console *co, char *name, int idx, |
| char *options) |
| { |
| unsigned char iotype; |
| resource_size_t addr; |
| int i; |
| |
| /* |
| * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum |
| * have a distinct console name, so make sure we check for that. |
| * The actual implementation of the erratum occurs in the probe |
| * function. |
| */ |
| if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0)) |
| return -ENODEV; |
| |
| if (uart_parse_earlycon(options, &iotype, &addr, &options)) |
| return -ENODEV; |
| |
| if (iotype != UPIO_MEM && iotype != UPIO_MEM32) |
| return -ENODEV; |
| |
| /* try to match the port specified on the command line */ |
| for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { |
| struct uart_port *port; |
| |
| if (!amba_ports[i]) |
| continue; |
| |
| port = &amba_ports[i]->port; |
| |
| if (port->mapbase != addr) |
| continue; |
| |
| co->index = i; |
| port->cons = co; |
| return pl011_console_setup(co, options); |
| } |
| |
| return -ENODEV; |
| } |
| |
| static struct uart_driver amba_reg; |
| static struct console amba_console = { |
| .name = "ttyAMA", |
| .write = pl011_console_write, |
| .device = uart_console_device, |
| .setup = pl011_console_setup, |
| .match = pl011_console_match, |
| .flags = CON_PRINTBUFFER | CON_ANYTIME, |
| .index = -1, |
| .data = &amba_reg, |
| }; |
| |
| #define AMBA_CONSOLE (&amba_console) |
| |
| static void qdf2400_e44_putc(struct uart_port *port, int c) |
| { |
| while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) |
| cpu_relax(); |
| writel(c, port->membase + UART01x_DR); |
| while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE)) |
| cpu_relax(); |
| } |
| |
| static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n) |
| { |
| struct earlycon_device *dev = con->data; |
| |
| uart_console_write(&dev->port, s, n, qdf2400_e44_putc); |
| } |
| |
| static void pl011_putc(struct uart_port *port, int c) |
| { |
| while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) |
| cpu_relax(); |
| if (port->iotype == UPIO_MEM32) |
| writel(c, port->membase + UART01x_DR); |
| else |
| writeb(c, port->membase + UART01x_DR); |
| while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) |
| cpu_relax(); |
| } |
| |
| static void pl011_early_write(struct console *con, const char *s, unsigned n) |
| { |
| struct earlycon_device *dev = con->data; |
| |
| uart_console_write(&dev->port, s, n, pl011_putc); |
| } |
| |
| /* |
| * On non-ACPI systems, earlycon is enabled by specifying |
| * "earlycon=pl011,<address>" on the kernel command line. |
| * |
| * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table, |
| * by specifying only "earlycon" on the command line. Because it requires |
| * SPCR, the console starts after ACPI is parsed, which is later than a |
| * traditional early console. |
| * |
| * To get the traditional early console that starts before ACPI is parsed, |
| * specify the full "earlycon=pl011,<address>" option. |
| */ |
| static int __init pl011_early_console_setup(struct earlycon_device *device, |
| const char *opt) |
| { |
| if (!device->port.membase) |
| return -ENODEV; |
| |
| device->con->write = pl011_early_write; |
| |
| return 0; |
| } |
| OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); |
| OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup); |
| |
| /* |
| * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by |
| * Erratum 44, traditional earlycon can be enabled by specifying |
| * "earlycon=qdf2400_e44,<address>". Any options are ignored. |
| * |
| * Alternatively, you can just specify "earlycon", and the early console |
| * will be enabled with the information from the SPCR table. In this |
| * case, the SPCR code will detect the need for the E44 work-around, |
| * and set the console name to "qdf2400_e44". |
| */ |
| static int __init |
| qdf2400_e44_early_console_setup(struct earlycon_device *device, |
| const char *opt) |
| { |
| if (!device->port.membase) |
| return -ENODEV; |
| |
| device->con->write = qdf2400_e44_early_write; |
| return 0; |
| } |
| EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup); |
| |
| #else |
| #define AMBA_CONSOLE NULL |
| #endif |
| |
| static struct uart_driver amba_reg = { |
| .owner = THIS_MODULE, |
| .driver_name = "ttyAMA", |
| .dev_name = "ttyAMA", |
| .major = SERIAL_AMBA_MAJOR, |
| .minor = SERIAL_AMBA_MINOR, |
| .nr = UART_NR, |
| .cons = AMBA_CONSOLE, |
| }; |
| |
| static int pl011_probe_dt_alias(int index, struct device *dev) |
| { |
| struct device_node *np; |
| static bool seen_dev_with_alias = false; |
| static bool seen_dev_without_alias = false; |
| int ret = index; |
| |
| if (!IS_ENABLED(CONFIG_OF)) |
| return ret; |
| |
| np = dev->of_node; |
| if (!np) |
| return ret; |
| |
| ret = of_alias_get_id(np, "serial"); |
| if (ret < 0) { |
| seen_dev_without_alias = true; |
| ret = index; |
| } else { |
| seen_dev_with_alias = true; |
| if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { |
| dev_warn(dev, "requested serial port %d not available.\n", ret); |
| ret = index; |
| } |
| } |
| |
| if (seen_dev_with_alias && seen_dev_without_alias) |
| dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); |
| |
| return ret; |
| } |
| |
| /* unregisters the driver also if no more ports are left */ |
| static void pl011_unregister_port(struct uart_amba_port *uap) |
| { |
| int i; |
| bool busy = false; |
| |
| for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { |
| if (amba_ports[i] == uap) |
| amba_ports[i] = NULL; |
| else if (amba_ports[i]) |
| busy = true; |
| } |
| pl011_dma_remove(uap); |
| if (!busy) |
| uart_unregister_driver(&amba_reg); |
| } |
| |
| static int pl011_find_free_port(void) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(amba_ports); i++) |
| if (amba_ports[i] == NULL) |
| return i; |
| |
| return -EBUSY; |
| } |
| |
| static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap, |
| struct resource *mmiobase, int index) |
| { |
| void __iomem *base; |
| |
| base = devm_ioremap_resource(dev, mmiobase); |
| if (IS_ERR(base)) |
| return PTR_ERR(base); |
| |
| index = pl011_probe_dt_alias(index, dev); |
| |
| uap->old_cr = 0; |
| uap->port.dev = dev; |
| uap->port.mapbase = mmiobase->start; |
| uap->port.membase = base; |
| uap->port.fifosize = uap->fifosize; |
| uap->port.flags = UPF_BOOT_AUTOCONF; |
| uap->port.line = index; |
| |
| amba_ports[index] = uap; |
| |
| return 0; |
| } |
| |
| static int pl011_register_port(struct uart_amba_port *uap) |
| { |
| int ret; |
| |
| /* Ensure interrupts from this UART are masked and cleared */ |
| pl011_write(0, uap, REG_IMSC); |
| pl011_write(0xffff, uap, REG_ICR); |
| |
| if (!amba_reg.state) { |
| ret = uart_register_driver(&amba_reg); |
| if (ret < 0) { |
| dev_err(uap->port.dev, |
| "Failed to register AMBA-PL011 driver\n"); |
| return ret; |
| } |
| } |
| |
| ret = uart_add_one_port(&amba_reg, &uap->port); |
| if (ret) |
| pl011_unregister_port(uap); |
| |
| return ret; |
| } |
| |
| static int pl011_probe(struct amba_device *dev, const struct amba_id *id) |
| { |
| struct uart_amba_port *uap; |
| struct vendor_data *vendor = id->data; |
| int portnr, ret; |
| |
| portnr = pl011_find_free_port(); |
| if (portnr < 0) |
| return portnr; |
| |
| uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), |
| GFP_KERNEL); |
| if (!uap) |
| return -ENOMEM; |
| |
| uap->clk = devm_clk_get(&dev->dev, NULL); |
| if (IS_ERR(uap->clk)) |
| return PTR_ERR(uap->clk); |
| |
| uap->reg_offset = vendor->reg_offset; |
| uap->vendor = vendor; |
| uap->fifosize = vendor->get_fifosize(dev); |
| uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; |
| uap->port.irq = dev->irq[0]; |
| uap->port.ops = &amba_pl011_pops; |
| |
| snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); |
| |
| ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr); |
| if (ret) |
| return ret; |
| |
| amba_set_drvdata(dev, uap); |
| |
| return pl011_register_port(uap); |
| } |
| |
| static int pl011_remove(struct amba_device *dev) |
| { |
| struct uart_amba_port *uap = amba_get_drvdata(dev); |
| |
| uart_remove_one_port(&amba_reg, &uap->port); |
| pl011_unregister_port(uap); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int pl011_suspend(struct device *dev) |
| { |
| struct uart_amba_port *uap = dev_get_drvdata(dev); |
| |
| if (!uap) |
| return -EINVAL; |
| |
| return uart_suspend_port(&amba_reg, &uap->port); |
| } |
| |
| static int pl011_resume(struct device *dev) |
| { |
| struct uart_amba_port *uap = dev_get_drvdata(dev); |
| |
| if (!uap) |
| return -EINVAL; |
| |
| return uart_resume_port(&amba_reg, &uap->port); |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); |
| |
| static int sbsa_uart_probe(struct platform_device *pdev) |
| { |
| struct uart_amba_port *uap; |
| struct resource *r; |
| int portnr, ret; |
| int baudrate; |
| |
| /* |
| * Check the mandatory baud rate parameter in the DT node early |
| * so that we can easily exit with the error. |
| */ |
| if (pdev->dev.of_node) { |
| struct device_node *np = pdev->dev.of_node; |
| |
| ret = of_property_read_u32(np, "current-speed", &baudrate); |
| if (ret) |
| return ret; |
| } else { |
| baudrate = 115200; |
| } |
| |
| portnr = pl011_find_free_port(); |
| if (portnr < 0) |
| return portnr; |
| |
| uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port), |
| GFP_KERNEL); |
| if (!uap) |
| return -ENOMEM; |
| |
| ret = platform_get_irq(pdev, 0); |
| if (ret < 0) |
| return ret; |
| uap->port.irq = ret; |
| |
| #ifdef CONFIG_ACPI_SPCR_TABLE |
| if (qdf2400_e44_present) { |
| dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n"); |
| uap->vendor = &vendor_qdt_qdf2400_e44; |
| } else |
| #endif |
| uap->vendor = &vendor_sbsa; |
| |
| uap->reg_offset = uap->vendor->reg_offset; |
| uap->fifosize = 32; |
| uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; |
| uap->port.ops = &sbsa_uart_pops; |
| uap->fixed_baud = baudrate; |
| |
| snprintf(uap->type, sizeof(uap->type), "SBSA"); |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| |
| ret = pl011_setup_port(&pdev->dev, uap, r, portnr); |
| if (ret) |
| return ret; |
| |
| platform_set_drvdata(pdev, uap); |
| |
| return pl011_register_port(uap); |
| } |
| |
| static int sbsa_uart_remove(struct platform_device *pdev) |
| { |
| struct uart_amba_port *uap = platform_get_drvdata(pdev); |
| |
| uart_remove_one_port(&amba_reg, &uap->port); |
| pl011_unregister_port(uap); |
| return 0; |
| } |
| |
| static const struct of_device_id sbsa_uart_of_match[] = { |
| { .compatible = "arm,sbsa-uart", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, sbsa_uart_of_match); |
| |
| static const struct acpi_device_id sbsa_uart_acpi_match[] = { |
| { "ARMH0011", 0 }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match); |
| |
| static struct platform_driver arm_sbsa_uart_platform_driver = { |
| .probe = sbsa_uart_probe, |
| .remove = sbsa_uart_remove, |
| .driver = { |
| .name = "sbsa-uart", |
| .of_match_table = of_match_ptr(sbsa_uart_of_match), |
| .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match), |
| .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), |
| }, |
| }; |
| |
| static const struct amba_id pl011_ids[] = { |
| { |
| .id = 0x00041011, |
| .mask = 0x000fffff, |
| .data = &vendor_arm, |
| }, |
| { |
| .id = 0x00380802, |
| .mask = 0x00ffffff, |
| .data = &vendor_st, |
| }, |
| { |
| .id = AMBA_LINUX_ID(0x00, 0x1, 0xffe), |
| .mask = 0x00ffffff, |
| .data = &vendor_zte, |
| }, |
| { 0, 0 }, |
| }; |
| |
| MODULE_DEVICE_TABLE(amba, pl011_ids); |
| |
| static struct amba_driver pl011_driver = { |
| .drv = { |
| .name = "uart-pl011", |
| .pm = &pl011_dev_pm_ops, |
| .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), |
| }, |
| .id_table = pl011_ids, |
| .probe = pl011_probe, |
| .remove = pl011_remove, |
| }; |
| |
| static int __init pl011_init(void) |
| { |
| printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); |
| |
| if (platform_driver_register(&arm_sbsa_uart_platform_driver)) |
| pr_warn("could not register SBSA UART platform driver\n"); |
| return amba_driver_register(&pl011_driver); |
| } |
| |
| static void __exit pl011_exit(void) |
| { |
| platform_driver_unregister(&arm_sbsa_uart_platform_driver); |
| amba_driver_unregister(&pl011_driver); |
| } |
| |
| /* |
| * While this can be a module, if builtin it's most likely the console |
| * So let's leave module_exit but move module_init to an earlier place |
| */ |
| arch_initcall(pl011_init); |
| module_exit(pl011_exit); |
| |
| MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); |
| MODULE_DESCRIPTION("ARM AMBA serial port driver"); |
| MODULE_LICENSE("GPL"); |