| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * Author: Adrian Hunter |
| */ |
| |
| #include "ubifs.h" |
| |
| /* |
| * An orphan is an inode number whose inode node has been committed to the index |
| * with a link count of zero. That happens when an open file is deleted |
| * (unlinked) and then a commit is run. In the normal course of events the inode |
| * would be deleted when the file is closed. However in the case of an unclean |
| * unmount, orphans need to be accounted for. After an unclean unmount, the |
| * orphans' inodes must be deleted which means either scanning the entire index |
| * looking for them, or keeping a list on flash somewhere. This unit implements |
| * the latter approach. |
| * |
| * The orphan area is a fixed number of LEBs situated between the LPT area and |
| * the main area. The number of orphan area LEBs is specified when the file |
| * system is created. The minimum number is 1. The size of the orphan area |
| * should be so that it can hold the maximum number of orphans that are expected |
| * to ever exist at one time. |
| * |
| * The number of orphans that can fit in a LEB is: |
| * |
| * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64) |
| * |
| * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough. |
| * |
| * Orphans are accumulated in a rb-tree. When an inode's link count drops to |
| * zero, the inode number is added to the rb-tree. It is removed from the tree |
| * when the inode is deleted. Any new orphans that are in the orphan tree when |
| * the commit is run, are written to the orphan area in 1 or more orphan nodes. |
| * If the orphan area is full, it is consolidated to make space. There is |
| * always enough space because validation prevents the user from creating more |
| * than the maximum number of orphans allowed. |
| */ |
| |
| static int dbg_check_orphans(struct ubifs_info *c); |
| |
| static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum, |
| struct ubifs_orphan *parent_orphan) |
| { |
| struct ubifs_orphan *orphan, *o; |
| struct rb_node **p, *parent = NULL; |
| |
| orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS); |
| if (!orphan) |
| return ERR_PTR(-ENOMEM); |
| orphan->inum = inum; |
| orphan->new = 1; |
| INIT_LIST_HEAD(&orphan->child_list); |
| |
| spin_lock(&c->orphan_lock); |
| if (c->tot_orphans >= c->max_orphans) { |
| spin_unlock(&c->orphan_lock); |
| kfree(orphan); |
| return ERR_PTR(-ENFILE); |
| } |
| p = &c->orph_tree.rb_node; |
| while (*p) { |
| parent = *p; |
| o = rb_entry(parent, struct ubifs_orphan, rb); |
| if (inum < o->inum) |
| p = &(*p)->rb_left; |
| else if (inum > o->inum) |
| p = &(*p)->rb_right; |
| else { |
| ubifs_err(c, "orphaned twice"); |
| spin_unlock(&c->orphan_lock); |
| kfree(orphan); |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| c->tot_orphans += 1; |
| c->new_orphans += 1; |
| rb_link_node(&orphan->rb, parent, p); |
| rb_insert_color(&orphan->rb, &c->orph_tree); |
| list_add_tail(&orphan->list, &c->orph_list); |
| list_add_tail(&orphan->new_list, &c->orph_new); |
| |
| if (parent_orphan) { |
| list_add_tail(&orphan->child_list, |
| &parent_orphan->child_list); |
| } |
| |
| spin_unlock(&c->orphan_lock); |
| dbg_gen("ino %lu", (unsigned long)inum); |
| return orphan; |
| } |
| |
| static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum) |
| { |
| struct ubifs_orphan *o; |
| struct rb_node *p; |
| |
| p = c->orph_tree.rb_node; |
| while (p) { |
| o = rb_entry(p, struct ubifs_orphan, rb); |
| if (inum < o->inum) |
| p = p->rb_left; |
| else if (inum > o->inum) |
| p = p->rb_right; |
| else { |
| return o; |
| } |
| } |
| return NULL; |
| } |
| |
| static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o) |
| { |
| rb_erase(&o->rb, &c->orph_tree); |
| list_del(&o->list); |
| c->tot_orphans -= 1; |
| |
| if (o->new) { |
| list_del(&o->new_list); |
| c->new_orphans -= 1; |
| } |
| |
| kfree(o); |
| } |
| |
| static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph) |
| { |
| if (orph->del) { |
| dbg_gen("deleted twice ino %lu", (unsigned long)orph->inum); |
| return; |
| } |
| |
| if (orph->cmt) { |
| orph->del = 1; |
| orph->dnext = c->orph_dnext; |
| c->orph_dnext = orph; |
| dbg_gen("delete later ino %lu", (unsigned long)orph->inum); |
| return; |
| } |
| |
| __orphan_drop(c, orph); |
| } |
| |
| /** |
| * ubifs_add_orphan - add an orphan. |
| * @c: UBIFS file-system description object |
| * @inum: orphan inode number |
| * |
| * Add an orphan. This function is called when an inodes link count drops to |
| * zero. |
| */ |
| int ubifs_add_orphan(struct ubifs_info *c, ino_t inum) |
| { |
| int err = 0; |
| ino_t xattr_inum; |
| union ubifs_key key; |
| struct ubifs_dent_node *xent, *pxent = NULL; |
| struct fscrypt_name nm = {0}; |
| struct ubifs_orphan *xattr_orphan; |
| struct ubifs_orphan *orphan; |
| |
| orphan = orphan_add(c, inum, NULL); |
| if (IS_ERR(orphan)) |
| return PTR_ERR(orphan); |
| |
| lowest_xent_key(c, &key, inum); |
| while (1) { |
| xent = ubifs_tnc_next_ent(c, &key, &nm); |
| if (IS_ERR(xent)) { |
| err = PTR_ERR(xent); |
| if (err == -ENOENT) |
| break; |
| return err; |
| } |
| |
| fname_name(&nm) = xent->name; |
| fname_len(&nm) = le16_to_cpu(xent->nlen); |
| xattr_inum = le64_to_cpu(xent->inum); |
| |
| xattr_orphan = orphan_add(c, xattr_inum, orphan); |
| if (IS_ERR(xattr_orphan)) { |
| kfree(xent); |
| return PTR_ERR(xattr_orphan); |
| } |
| |
| kfree(pxent); |
| pxent = xent; |
| key_read(c, &xent->key, &key); |
| } |
| kfree(pxent); |
| |
| return 0; |
| } |
| |
| /** |
| * ubifs_delete_orphan - delete an orphan. |
| * @c: UBIFS file-system description object |
| * @inum: orphan inode number |
| * |
| * Delete an orphan. This function is called when an inode is deleted. |
| */ |
| void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum) |
| { |
| struct ubifs_orphan *orph, *child_orph, *tmp_o; |
| |
| spin_lock(&c->orphan_lock); |
| |
| orph = lookup_orphan(c, inum); |
| if (!orph) { |
| spin_unlock(&c->orphan_lock); |
| ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum); |
| dump_stack(); |
| |
| return; |
| } |
| |
| list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) { |
| list_del(&child_orph->child_list); |
| orphan_delete(c, child_orph); |
| } |
| |
| orphan_delete(c, orph); |
| |
| spin_unlock(&c->orphan_lock); |
| } |
| |
| /** |
| * ubifs_orphan_start_commit - start commit of orphans. |
| * @c: UBIFS file-system description object |
| * |
| * Start commit of orphans. |
| */ |
| int ubifs_orphan_start_commit(struct ubifs_info *c) |
| { |
| struct ubifs_orphan *orphan, **last; |
| |
| spin_lock(&c->orphan_lock); |
| last = &c->orph_cnext; |
| list_for_each_entry(orphan, &c->orph_new, new_list) { |
| ubifs_assert(c, orphan->new); |
| ubifs_assert(c, !orphan->cmt); |
| orphan->new = 0; |
| orphan->cmt = 1; |
| *last = orphan; |
| last = &orphan->cnext; |
| } |
| *last = NULL; |
| c->cmt_orphans = c->new_orphans; |
| c->new_orphans = 0; |
| dbg_cmt("%d orphans to commit", c->cmt_orphans); |
| INIT_LIST_HEAD(&c->orph_new); |
| if (c->tot_orphans == 0) |
| c->no_orphs = 1; |
| else |
| c->no_orphs = 0; |
| spin_unlock(&c->orphan_lock); |
| return 0; |
| } |
| |
| /** |
| * avail_orphs - calculate available space. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns the number of orphans that can be written in the |
| * available space. |
| */ |
| static int avail_orphs(struct ubifs_info *c) |
| { |
| int avail_lebs, avail, gap; |
| |
| avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1; |
| avail = avail_lebs * |
| ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); |
| gap = c->leb_size - c->ohead_offs; |
| if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64)) |
| avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); |
| return avail; |
| } |
| |
| /** |
| * tot_avail_orphs - calculate total space. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns the number of orphans that can be written in half |
| * the total space. That leaves half the space for adding new orphans. |
| */ |
| static int tot_avail_orphs(struct ubifs_info *c) |
| { |
| int avail_lebs, avail; |
| |
| avail_lebs = c->orph_lebs; |
| avail = avail_lebs * |
| ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); |
| return avail / 2; |
| } |
| |
| /** |
| * do_write_orph_node - write a node to the orphan head. |
| * @c: UBIFS file-system description object |
| * @len: length of node |
| * @atomic: write atomically |
| * |
| * This function writes a node to the orphan head from the orphan buffer. If |
| * %atomic is not zero, then the write is done atomically. On success, %0 is |
| * returned, otherwise a negative error code is returned. |
| */ |
| static int do_write_orph_node(struct ubifs_info *c, int len, int atomic) |
| { |
| int err = 0; |
| |
| if (atomic) { |
| ubifs_assert(c, c->ohead_offs == 0); |
| ubifs_prepare_node(c, c->orph_buf, len, 1); |
| len = ALIGN(len, c->min_io_size); |
| err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len); |
| } else { |
| if (c->ohead_offs == 0) { |
| /* Ensure LEB has been unmapped */ |
| err = ubifs_leb_unmap(c, c->ohead_lnum); |
| if (err) |
| return err; |
| } |
| err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum, |
| c->ohead_offs); |
| } |
| return err; |
| } |
| |
| /** |
| * write_orph_node - write an orphan node. |
| * @c: UBIFS file-system description object |
| * @atomic: write atomically |
| * |
| * This function builds an orphan node from the cnext list and writes it to the |
| * orphan head. On success, %0 is returned, otherwise a negative error code |
| * is returned. |
| */ |
| static int write_orph_node(struct ubifs_info *c, int atomic) |
| { |
| struct ubifs_orphan *orphan, *cnext; |
| struct ubifs_orph_node *orph; |
| int gap, err, len, cnt, i; |
| |
| ubifs_assert(c, c->cmt_orphans > 0); |
| gap = c->leb_size - c->ohead_offs; |
| if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) { |
| c->ohead_lnum += 1; |
| c->ohead_offs = 0; |
| gap = c->leb_size; |
| if (c->ohead_lnum > c->orph_last) { |
| /* |
| * We limit the number of orphans so that this should |
| * never happen. |
| */ |
| ubifs_err(c, "out of space in orphan area"); |
| return -EINVAL; |
| } |
| } |
| cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); |
| if (cnt > c->cmt_orphans) |
| cnt = c->cmt_orphans; |
| len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64); |
| ubifs_assert(c, c->orph_buf); |
| orph = c->orph_buf; |
| orph->ch.node_type = UBIFS_ORPH_NODE; |
| spin_lock(&c->orphan_lock); |
| cnext = c->orph_cnext; |
| for (i = 0; i < cnt; i++) { |
| orphan = cnext; |
| ubifs_assert(c, orphan->cmt); |
| orph->inos[i] = cpu_to_le64(orphan->inum); |
| orphan->cmt = 0; |
| cnext = orphan->cnext; |
| orphan->cnext = NULL; |
| } |
| c->orph_cnext = cnext; |
| c->cmt_orphans -= cnt; |
| spin_unlock(&c->orphan_lock); |
| if (c->cmt_orphans) |
| orph->cmt_no = cpu_to_le64(c->cmt_no); |
| else |
| /* Mark the last node of the commit */ |
| orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63)); |
| ubifs_assert(c, c->ohead_offs + len <= c->leb_size); |
| ubifs_assert(c, c->ohead_lnum >= c->orph_first); |
| ubifs_assert(c, c->ohead_lnum <= c->orph_last); |
| err = do_write_orph_node(c, len, atomic); |
| c->ohead_offs += ALIGN(len, c->min_io_size); |
| c->ohead_offs = ALIGN(c->ohead_offs, 8); |
| return err; |
| } |
| |
| /** |
| * write_orph_nodes - write orphan nodes until there are no more to commit. |
| * @c: UBIFS file-system description object |
| * @atomic: write atomically |
| * |
| * This function writes orphan nodes for all the orphans to commit. On success, |
| * %0 is returned, otherwise a negative error code is returned. |
| */ |
| static int write_orph_nodes(struct ubifs_info *c, int atomic) |
| { |
| int err; |
| |
| while (c->cmt_orphans > 0) { |
| err = write_orph_node(c, atomic); |
| if (err) |
| return err; |
| } |
| if (atomic) { |
| int lnum; |
| |
| /* Unmap any unused LEBs after consolidation */ |
| for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) { |
| err = ubifs_leb_unmap(c, lnum); |
| if (err) |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * consolidate - consolidate the orphan area. |
| * @c: UBIFS file-system description object |
| * |
| * This function enables consolidation by putting all the orphans into the list |
| * to commit. The list is in the order that the orphans were added, and the |
| * LEBs are written atomically in order, so at no time can orphans be lost by |
| * an unclean unmount. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int consolidate(struct ubifs_info *c) |
| { |
| int tot_avail = tot_avail_orphs(c), err = 0; |
| |
| spin_lock(&c->orphan_lock); |
| dbg_cmt("there is space for %d orphans and there are %d", |
| tot_avail, c->tot_orphans); |
| if (c->tot_orphans - c->new_orphans <= tot_avail) { |
| struct ubifs_orphan *orphan, **last; |
| int cnt = 0; |
| |
| /* Change the cnext list to include all non-new orphans */ |
| last = &c->orph_cnext; |
| list_for_each_entry(orphan, &c->orph_list, list) { |
| if (orphan->new) |
| continue; |
| orphan->cmt = 1; |
| *last = orphan; |
| last = &orphan->cnext; |
| cnt += 1; |
| } |
| *last = NULL; |
| ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans); |
| c->cmt_orphans = cnt; |
| c->ohead_lnum = c->orph_first; |
| c->ohead_offs = 0; |
| } else { |
| /* |
| * We limit the number of orphans so that this should |
| * never happen. |
| */ |
| ubifs_err(c, "out of space in orphan area"); |
| err = -EINVAL; |
| } |
| spin_unlock(&c->orphan_lock); |
| return err; |
| } |
| |
| /** |
| * commit_orphans - commit orphans. |
| * @c: UBIFS file-system description object |
| * |
| * This function commits orphans to flash. On success, %0 is returned, |
| * otherwise a negative error code is returned. |
| */ |
| static int commit_orphans(struct ubifs_info *c) |
| { |
| int avail, atomic = 0, err; |
| |
| ubifs_assert(c, c->cmt_orphans > 0); |
| avail = avail_orphs(c); |
| if (avail < c->cmt_orphans) { |
| /* Not enough space to write new orphans, so consolidate */ |
| err = consolidate(c); |
| if (err) |
| return err; |
| atomic = 1; |
| } |
| err = write_orph_nodes(c, atomic); |
| return err; |
| } |
| |
| /** |
| * erase_deleted - erase the orphans marked for deletion. |
| * @c: UBIFS file-system description object |
| * |
| * During commit, the orphans being committed cannot be deleted, so they are |
| * marked for deletion and deleted by this function. Also, the recovery |
| * adds killed orphans to the deletion list, and therefore they are deleted |
| * here too. |
| */ |
| static void erase_deleted(struct ubifs_info *c) |
| { |
| struct ubifs_orphan *orphan, *dnext; |
| |
| spin_lock(&c->orphan_lock); |
| dnext = c->orph_dnext; |
| while (dnext) { |
| orphan = dnext; |
| dnext = orphan->dnext; |
| ubifs_assert(c, !orphan->new); |
| ubifs_assert(c, orphan->del); |
| rb_erase(&orphan->rb, &c->orph_tree); |
| list_del(&orphan->list); |
| c->tot_orphans -= 1; |
| dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum); |
| kfree(orphan); |
| } |
| c->orph_dnext = NULL; |
| spin_unlock(&c->orphan_lock); |
| } |
| |
| /** |
| * ubifs_orphan_end_commit - end commit of orphans. |
| * @c: UBIFS file-system description object |
| * |
| * End commit of orphans. |
| */ |
| int ubifs_orphan_end_commit(struct ubifs_info *c) |
| { |
| int err; |
| |
| if (c->cmt_orphans != 0) { |
| err = commit_orphans(c); |
| if (err) |
| return err; |
| } |
| erase_deleted(c); |
| err = dbg_check_orphans(c); |
| return err; |
| } |
| |
| /** |
| * ubifs_clear_orphans - erase all LEBs used for orphans. |
| * @c: UBIFS file-system description object |
| * |
| * If recovery is not required, then the orphans from the previous session |
| * are not needed. This function locates the LEBs used to record |
| * orphans, and un-maps them. |
| */ |
| int ubifs_clear_orphans(struct ubifs_info *c) |
| { |
| int lnum, err; |
| |
| for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { |
| err = ubifs_leb_unmap(c, lnum); |
| if (err) |
| return err; |
| } |
| c->ohead_lnum = c->orph_first; |
| c->ohead_offs = 0; |
| return 0; |
| } |
| |
| /** |
| * insert_dead_orphan - insert an orphan. |
| * @c: UBIFS file-system description object |
| * @inum: orphan inode number |
| * |
| * This function is a helper to the 'do_kill_orphans()' function. The orphan |
| * must be kept until the next commit, so it is added to the rb-tree and the |
| * deletion list. |
| */ |
| static int insert_dead_orphan(struct ubifs_info *c, ino_t inum) |
| { |
| struct ubifs_orphan *orphan, *o; |
| struct rb_node **p, *parent = NULL; |
| |
| orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL); |
| if (!orphan) |
| return -ENOMEM; |
| orphan->inum = inum; |
| |
| p = &c->orph_tree.rb_node; |
| while (*p) { |
| parent = *p; |
| o = rb_entry(parent, struct ubifs_orphan, rb); |
| if (inum < o->inum) |
| p = &(*p)->rb_left; |
| else if (inum > o->inum) |
| p = &(*p)->rb_right; |
| else { |
| /* Already added - no problem */ |
| kfree(orphan); |
| return 0; |
| } |
| } |
| c->tot_orphans += 1; |
| rb_link_node(&orphan->rb, parent, p); |
| rb_insert_color(&orphan->rb, &c->orph_tree); |
| list_add_tail(&orphan->list, &c->orph_list); |
| orphan->del = 1; |
| orphan->dnext = c->orph_dnext; |
| c->orph_dnext = orphan; |
| dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum, |
| c->new_orphans, c->tot_orphans); |
| return 0; |
| } |
| |
| /** |
| * do_kill_orphans - remove orphan inodes from the index. |
| * @c: UBIFS file-system description object |
| * @sleb: scanned LEB |
| * @last_cmt_no: cmt_no of last orphan node read is passed and returned here |
| * @outofdate: whether the LEB is out of date is returned here |
| * @last_flagged: whether the end orphan node is encountered |
| * |
| * This function is a helper to the 'kill_orphans()' function. It goes through |
| * every orphan node in a LEB and for every inode number recorded, removes |
| * all keys for that inode from the TNC. |
| */ |
| static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
| unsigned long long *last_cmt_no, int *outofdate, |
| int *last_flagged) |
| { |
| struct ubifs_scan_node *snod; |
| struct ubifs_orph_node *orph; |
| struct ubifs_ino_node *ino = NULL; |
| unsigned long long cmt_no; |
| ino_t inum; |
| int i, n, err, first = 1; |
| |
| ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); |
| if (!ino) |
| return -ENOMEM; |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| if (snod->type != UBIFS_ORPH_NODE) { |
| ubifs_err(c, "invalid node type %d in orphan area at %d:%d", |
| snod->type, sleb->lnum, snod->offs); |
| ubifs_dump_node(c, snod->node); |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| orph = snod->node; |
| |
| /* Check commit number */ |
| cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX; |
| /* |
| * The commit number on the master node may be less, because |
| * of a failed commit. If there are several failed commits in a |
| * row, the commit number written on orphan nodes will continue |
| * to increase (because the commit number is adjusted here) even |
| * though the commit number on the master node stays the same |
| * because the master node has not been re-written. |
| */ |
| if (cmt_no > c->cmt_no) |
| c->cmt_no = cmt_no; |
| if (cmt_no < *last_cmt_no && *last_flagged) { |
| /* |
| * The last orphan node had a higher commit number and |
| * was flagged as the last written for that commit |
| * number. That makes this orphan node, out of date. |
| */ |
| if (!first) { |
| ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d", |
| cmt_no, sleb->lnum, snod->offs); |
| ubifs_dump_node(c, snod->node); |
| err = -EINVAL; |
| goto out_free; |
| } |
| dbg_rcvry("out of date LEB %d", sleb->lnum); |
| *outofdate = 1; |
| err = 0; |
| goto out_free; |
| } |
| |
| if (first) |
| first = 0; |
| |
| n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; |
| for (i = 0; i < n; i++) { |
| union ubifs_key key1, key2; |
| |
| inum = le64_to_cpu(orph->inos[i]); |
| |
| ino_key_init(c, &key1, inum); |
| err = ubifs_tnc_lookup(c, &key1, ino); |
| if (err && err != -ENOENT) |
| goto out_free; |
| |
| /* |
| * Check whether an inode can really get deleted. |
| * linkat() with O_TMPFILE allows rebirth of an inode. |
| */ |
| if (err == 0 && ino->nlink == 0) { |
| dbg_rcvry("deleting orphaned inode %lu", |
| (unsigned long)inum); |
| |
| lowest_ino_key(c, &key1, inum); |
| highest_ino_key(c, &key2, inum); |
| |
| err = ubifs_tnc_remove_range(c, &key1, &key2); |
| if (err) |
| goto out_ro; |
| } |
| |
| err = insert_dead_orphan(c, inum); |
| if (err) |
| goto out_free; |
| } |
| |
| *last_cmt_no = cmt_no; |
| if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) { |
| dbg_rcvry("last orph node for commit %llu at %d:%d", |
| cmt_no, sleb->lnum, snod->offs); |
| *last_flagged = 1; |
| } else |
| *last_flagged = 0; |
| } |
| |
| err = 0; |
| out_free: |
| kfree(ino); |
| return err; |
| |
| out_ro: |
| ubifs_ro_mode(c, err); |
| kfree(ino); |
| return err; |
| } |
| |
| /** |
| * kill_orphans - remove all orphan inodes from the index. |
| * @c: UBIFS file-system description object |
| * |
| * If recovery is required, then orphan inodes recorded during the previous |
| * session (which ended with an unclean unmount) must be deleted from the index. |
| * This is done by updating the TNC, but since the index is not updated until |
| * the next commit, the LEBs where the orphan information is recorded are not |
| * erased until the next commit. |
| */ |
| static int kill_orphans(struct ubifs_info *c) |
| { |
| unsigned long long last_cmt_no = 0; |
| int lnum, err = 0, outofdate = 0, last_flagged = 0; |
| |
| c->ohead_lnum = c->orph_first; |
| c->ohead_offs = 0; |
| /* Check no-orphans flag and skip this if no orphans */ |
| if (c->no_orphs) { |
| dbg_rcvry("no orphans"); |
| return 0; |
| } |
| /* |
| * Orph nodes always start at c->orph_first and are written to each |
| * successive LEB in turn. Generally unused LEBs will have been unmapped |
| * but may contain out of date orphan nodes if the unmap didn't go |
| * through. In addition, the last orphan node written for each commit is |
| * marked (top bit of orph->cmt_no is set to 1). It is possible that |
| * there are orphan nodes from the next commit (i.e. the commit did not |
| * complete successfully). In that case, no orphans will have been lost |
| * due to the way that orphans are written, and any orphans added will |
| * be valid orphans anyway and so can be deleted. |
| */ |
| for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { |
| struct ubifs_scan_leb *sleb; |
| |
| dbg_rcvry("LEB %d", lnum); |
| sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); |
| if (IS_ERR(sleb)) { |
| if (PTR_ERR(sleb) == -EUCLEAN) |
| sleb = ubifs_recover_leb(c, lnum, 0, |
| c->sbuf, -1); |
| if (IS_ERR(sleb)) { |
| err = PTR_ERR(sleb); |
| break; |
| } |
| } |
| err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate, |
| &last_flagged); |
| if (err || outofdate) { |
| ubifs_scan_destroy(sleb); |
| break; |
| } |
| if (sleb->endpt) { |
| c->ohead_lnum = lnum; |
| c->ohead_offs = sleb->endpt; |
| } |
| ubifs_scan_destroy(sleb); |
| } |
| return err; |
| } |
| |
| /** |
| * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them. |
| * @c: UBIFS file-system description object |
| * @unclean: indicates recovery from unclean unmount |
| * @read_only: indicates read only mount |
| * |
| * This function is called when mounting to erase orphans from the previous |
| * session. If UBIFS was not unmounted cleanly, then the inodes recorded as |
| * orphans are deleted. |
| */ |
| int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only) |
| { |
| int err = 0; |
| |
| c->max_orphans = tot_avail_orphs(c); |
| |
| if (!read_only) { |
| c->orph_buf = vmalloc(c->leb_size); |
| if (!c->orph_buf) |
| return -ENOMEM; |
| } |
| |
| if (unclean) |
| err = kill_orphans(c); |
| else if (!read_only) |
| err = ubifs_clear_orphans(c); |
| |
| return err; |
| } |
| |
| /* |
| * Everything below is related to debugging. |
| */ |
| |
| struct check_orphan { |
| struct rb_node rb; |
| ino_t inum; |
| }; |
| |
| struct check_info { |
| unsigned long last_ino; |
| unsigned long tot_inos; |
| unsigned long missing; |
| unsigned long long leaf_cnt; |
| struct ubifs_ino_node *node; |
| struct rb_root root; |
| }; |
| |
| static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum) |
| { |
| bool found = false; |
| |
| spin_lock(&c->orphan_lock); |
| found = !!lookup_orphan(c, inum); |
| spin_unlock(&c->orphan_lock); |
| |
| return found; |
| } |
| |
| static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum) |
| { |
| struct check_orphan *orphan, *o; |
| struct rb_node **p, *parent = NULL; |
| |
| orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS); |
| if (!orphan) |
| return -ENOMEM; |
| orphan->inum = inum; |
| |
| p = &root->rb_node; |
| while (*p) { |
| parent = *p; |
| o = rb_entry(parent, struct check_orphan, rb); |
| if (inum < o->inum) |
| p = &(*p)->rb_left; |
| else if (inum > o->inum) |
| p = &(*p)->rb_right; |
| else { |
| kfree(orphan); |
| return 0; |
| } |
| } |
| rb_link_node(&orphan->rb, parent, p); |
| rb_insert_color(&orphan->rb, root); |
| return 0; |
| } |
| |
| static int dbg_find_check_orphan(struct rb_root *root, ino_t inum) |
| { |
| struct check_orphan *o; |
| struct rb_node *p; |
| |
| p = root->rb_node; |
| while (p) { |
| o = rb_entry(p, struct check_orphan, rb); |
| if (inum < o->inum) |
| p = p->rb_left; |
| else if (inum > o->inum) |
| p = p->rb_right; |
| else |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void dbg_free_check_tree(struct rb_root *root) |
| { |
| struct check_orphan *o, *n; |
| |
| rbtree_postorder_for_each_entry_safe(o, n, root, rb) |
| kfree(o); |
| } |
| |
| static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr, |
| void *priv) |
| { |
| struct check_info *ci = priv; |
| ino_t inum; |
| int err; |
| |
| inum = key_inum(c, &zbr->key); |
| if (inum != ci->last_ino) { |
| /* Lowest node type is the inode node, so it comes first */ |
| if (key_type(c, &zbr->key) != UBIFS_INO_KEY) |
| ubifs_err(c, "found orphan node ino %lu, type %d", |
| (unsigned long)inum, key_type(c, &zbr->key)); |
| ci->last_ino = inum; |
| ci->tot_inos += 1; |
| err = ubifs_tnc_read_node(c, zbr, ci->node); |
| if (err) { |
| ubifs_err(c, "node read failed, error %d", err); |
| return err; |
| } |
| if (ci->node->nlink == 0) |
| /* Must be recorded as an orphan */ |
| if (!dbg_find_check_orphan(&ci->root, inum) && |
| !dbg_find_orphan(c, inum)) { |
| ubifs_err(c, "missing orphan, ino %lu", |
| (unsigned long)inum); |
| ci->missing += 1; |
| } |
| } |
| ci->leaf_cnt += 1; |
| return 0; |
| } |
| |
| static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb) |
| { |
| struct ubifs_scan_node *snod; |
| struct ubifs_orph_node *orph; |
| ino_t inum; |
| int i, n, err; |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| cond_resched(); |
| if (snod->type != UBIFS_ORPH_NODE) |
| continue; |
| orph = snod->node; |
| n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; |
| for (i = 0; i < n; i++) { |
| inum = le64_to_cpu(orph->inos[i]); |
| err = dbg_ins_check_orphan(&ci->root, inum); |
| if (err) |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) |
| { |
| int lnum, err = 0; |
| void *buf; |
| |
| /* Check no-orphans flag and skip this if no orphans */ |
| if (c->no_orphs) |
| return 0; |
| |
| buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); |
| if (!buf) { |
| ubifs_err(c, "cannot allocate memory to check orphans"); |
| return 0; |
| } |
| |
| for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { |
| struct ubifs_scan_leb *sleb; |
| |
| sleb = ubifs_scan(c, lnum, 0, buf, 0); |
| if (IS_ERR(sleb)) { |
| err = PTR_ERR(sleb); |
| break; |
| } |
| |
| err = dbg_read_orphans(ci, sleb); |
| ubifs_scan_destroy(sleb); |
| if (err) |
| break; |
| } |
| |
| vfree(buf); |
| return err; |
| } |
| |
| static int dbg_check_orphans(struct ubifs_info *c) |
| { |
| struct check_info ci; |
| int err; |
| |
| if (!dbg_is_chk_orph(c)) |
| return 0; |
| |
| ci.last_ino = 0; |
| ci.tot_inos = 0; |
| ci.missing = 0; |
| ci.leaf_cnt = 0; |
| ci.root = RB_ROOT; |
| ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); |
| if (!ci.node) { |
| ubifs_err(c, "out of memory"); |
| return -ENOMEM; |
| } |
| |
| err = dbg_scan_orphans(c, &ci); |
| if (err) |
| goto out; |
| |
| err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci); |
| if (err) { |
| ubifs_err(c, "cannot scan TNC, error %d", err); |
| goto out; |
| } |
| |
| if (ci.missing) { |
| ubifs_err(c, "%lu missing orphan(s)", ci.missing); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| dbg_cmt("last inode number is %lu", ci.last_ino); |
| dbg_cmt("total number of inodes is %lu", ci.tot_inos); |
| dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt); |
| |
| out: |
| dbg_free_check_tree(&ci.root); |
| kfree(ci.node); |
| return err; |
| } |