| /* |
| * MSM 7k/8k High speed uart driver |
| * |
| * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved. |
| * Copyright (c) 2008 Google Inc. |
| * Modified: Nick Pelly <npelly@google.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * See the GNU General Public License for more details. |
| * |
| * Has optional support for uart power management independent of linux |
| * suspend/resume: |
| * |
| * RX wakeup. |
| * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the |
| * UART RX pin). This should only be used if there is not a wakeup |
| * GPIO on the UART CTS, and the first RX byte is known (for example, with the |
| * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will |
| * always be lost. RTS will be asserted even while the UART is off in this mode |
| * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq. |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/serial.h> |
| #include <linux/serial_core.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/clk.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/wait.h> |
| #include <linux/workqueue.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/irq.h> |
| |
| #include <mach/hardware.h> |
| #include <mach/dma.h> |
| #include <linux/platform_data/msm_serial_hs.h> |
| |
| /* HSUART Registers */ |
| #define UARTDM_MR1_ADDR 0x0 |
| #define UARTDM_MR2_ADDR 0x4 |
| |
| /* Data Mover result codes */ |
| #define RSLT_FIFO_CNTR_BMSK (0xE << 28) |
| #define RSLT_VLD BIT(1) |
| |
| /* write only register */ |
| #define UARTDM_CSR_ADDR 0x8 |
| #define UARTDM_CSR_115200 0xFF |
| #define UARTDM_CSR_57600 0xEE |
| #define UARTDM_CSR_38400 0xDD |
| #define UARTDM_CSR_28800 0xCC |
| #define UARTDM_CSR_19200 0xBB |
| #define UARTDM_CSR_14400 0xAA |
| #define UARTDM_CSR_9600 0x99 |
| #define UARTDM_CSR_7200 0x88 |
| #define UARTDM_CSR_4800 0x77 |
| #define UARTDM_CSR_3600 0x66 |
| #define UARTDM_CSR_2400 0x55 |
| #define UARTDM_CSR_1200 0x44 |
| #define UARTDM_CSR_600 0x33 |
| #define UARTDM_CSR_300 0x22 |
| #define UARTDM_CSR_150 0x11 |
| #define UARTDM_CSR_75 0x00 |
| |
| /* write only register */ |
| #define UARTDM_TF_ADDR 0x70 |
| #define UARTDM_TF2_ADDR 0x74 |
| #define UARTDM_TF3_ADDR 0x78 |
| #define UARTDM_TF4_ADDR 0x7C |
| |
| /* write only register */ |
| #define UARTDM_CR_ADDR 0x10 |
| #define UARTDM_IMR_ADDR 0x14 |
| |
| #define UARTDM_IPR_ADDR 0x18 |
| #define UARTDM_TFWR_ADDR 0x1c |
| #define UARTDM_RFWR_ADDR 0x20 |
| #define UARTDM_HCR_ADDR 0x24 |
| #define UARTDM_DMRX_ADDR 0x34 |
| #define UARTDM_IRDA_ADDR 0x38 |
| #define UARTDM_DMEN_ADDR 0x3c |
| |
| /* UART_DM_NO_CHARS_FOR_TX */ |
| #define UARTDM_NCF_TX_ADDR 0x40 |
| |
| #define UARTDM_BADR_ADDR 0x44 |
| |
| #define UARTDM_SIM_CFG_ADDR 0x80 |
| /* Read Only register */ |
| #define UARTDM_SR_ADDR 0x8 |
| |
| /* Read Only register */ |
| #define UARTDM_RF_ADDR 0x70 |
| #define UARTDM_RF2_ADDR 0x74 |
| #define UARTDM_RF3_ADDR 0x78 |
| #define UARTDM_RF4_ADDR 0x7C |
| |
| /* Read Only register */ |
| #define UARTDM_MISR_ADDR 0x10 |
| |
| /* Read Only register */ |
| #define UARTDM_ISR_ADDR 0x14 |
| #define UARTDM_RX_TOTAL_SNAP_ADDR 0x38 |
| |
| #define UARTDM_RXFS_ADDR 0x50 |
| |
| /* Register field Mask Mapping */ |
| #define UARTDM_SR_PAR_FRAME_BMSK BIT(5) |
| #define UARTDM_SR_OVERRUN_BMSK BIT(4) |
| #define UARTDM_SR_TXEMT_BMSK BIT(3) |
| #define UARTDM_SR_TXRDY_BMSK BIT(2) |
| #define UARTDM_SR_RXRDY_BMSK BIT(0) |
| |
| #define UARTDM_CR_TX_DISABLE_BMSK BIT(3) |
| #define UARTDM_CR_RX_DISABLE_BMSK BIT(1) |
| #define UARTDM_CR_TX_EN_BMSK BIT(2) |
| #define UARTDM_CR_RX_EN_BMSK BIT(0) |
| |
| /* UARTDM_CR channel_comman bit value (register field is bits 8:4) */ |
| #define RESET_RX 0x10 |
| #define RESET_TX 0x20 |
| #define RESET_ERROR_STATUS 0x30 |
| #define RESET_BREAK_INT 0x40 |
| #define START_BREAK 0x50 |
| #define STOP_BREAK 0x60 |
| #define RESET_CTS 0x70 |
| #define RESET_STALE_INT 0x80 |
| #define RFR_LOW 0xD0 |
| #define RFR_HIGH 0xE0 |
| #define CR_PROTECTION_EN 0x100 |
| #define STALE_EVENT_ENABLE 0x500 |
| #define STALE_EVENT_DISABLE 0x600 |
| #define FORCE_STALE_EVENT 0x400 |
| #define CLEAR_TX_READY 0x300 |
| #define RESET_TX_ERROR 0x800 |
| #define RESET_TX_DONE 0x810 |
| |
| #define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00 |
| #define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f |
| #define UARTDM_MR1_CTS_CTL_BMSK 0x40 |
| #define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80 |
| |
| #define UARTDM_MR2_ERROR_MODE_BMSK 0x40 |
| #define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30 |
| |
| /* bits per character configuration */ |
| #define FIVE_BPC (0 << 4) |
| #define SIX_BPC (1 << 4) |
| #define SEVEN_BPC (2 << 4) |
| #define EIGHT_BPC (3 << 4) |
| |
| #define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc |
| #define STOP_BIT_ONE (1 << 2) |
| #define STOP_BIT_TWO (3 << 2) |
| |
| #define UARTDM_MR2_PARITY_MODE_BMSK 0x3 |
| |
| /* Parity configuration */ |
| #define NO_PARITY 0x0 |
| #define EVEN_PARITY 0x1 |
| #define ODD_PARITY 0x2 |
| #define SPACE_PARITY 0x3 |
| |
| #define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80 |
| #define UARTDM_IPR_STALE_LSB_BMSK 0x1f |
| |
| /* These can be used for both ISR and IMR register */ |
| #define UARTDM_ISR_TX_READY_BMSK BIT(7) |
| #define UARTDM_ISR_CURRENT_CTS_BMSK BIT(6) |
| #define UARTDM_ISR_DELTA_CTS_BMSK BIT(5) |
| #define UARTDM_ISR_RXLEV_BMSK BIT(4) |
| #define UARTDM_ISR_RXSTALE_BMSK BIT(3) |
| #define UARTDM_ISR_RXBREAK_BMSK BIT(2) |
| #define UARTDM_ISR_RXHUNT_BMSK BIT(1) |
| #define UARTDM_ISR_TXLEV_BMSK BIT(0) |
| |
| /* Field definitions for UART_DM_DMEN*/ |
| #define UARTDM_TX_DM_EN_BMSK 0x1 |
| #define UARTDM_RX_DM_EN_BMSK 0x2 |
| |
| #define UART_FIFOSIZE 64 |
| #define UARTCLK 7372800 |
| |
| /* Rx DMA request states */ |
| enum flush_reason { |
| FLUSH_NONE, |
| FLUSH_DATA_READY, |
| FLUSH_DATA_INVALID, /* values after this indicate invalid data */ |
| FLUSH_IGNORE = FLUSH_DATA_INVALID, |
| FLUSH_STOP, |
| FLUSH_SHUTDOWN, |
| }; |
| |
| /* UART clock states */ |
| enum msm_hs_clk_states_e { |
| MSM_HS_CLK_PORT_OFF, /* port not in use */ |
| MSM_HS_CLK_OFF, /* clock disabled */ |
| MSM_HS_CLK_REQUEST_OFF, /* disable after TX and RX flushed */ |
| MSM_HS_CLK_ON, /* clock enabled */ |
| }; |
| |
| /* Track the forced RXSTALE flush during clock off sequence. |
| * These states are only valid during MSM_HS_CLK_REQUEST_OFF */ |
| enum msm_hs_clk_req_off_state_e { |
| CLK_REQ_OFF_START, |
| CLK_REQ_OFF_RXSTALE_ISSUED, |
| CLK_REQ_OFF_FLUSH_ISSUED, |
| CLK_REQ_OFF_RXSTALE_FLUSHED, |
| }; |
| |
| /** |
| * struct msm_hs_tx |
| * @tx_ready_int_en: ok to dma more tx? |
| * @dma_in_flight: tx dma in progress |
| * @xfer: top level DMA command pointer structure |
| * @command_ptr: third level command struct pointer |
| * @command_ptr_ptr: second level command list struct pointer |
| * @mapped_cmd_ptr: DMA view of third level command struct |
| * @mapped_cmd_ptr_ptr: DMA view of second level command list struct |
| * @tx_count: number of bytes to transfer in DMA transfer |
| * @dma_base: DMA view of UART xmit buffer |
| * |
| * This structure describes a single Tx DMA transaction. MSM DMA |
| * commands have two levels of indirection. The top level command |
| * ptr points to a list of command ptr which in turn points to a |
| * single DMA 'command'. In our case each Tx transaction consists |
| * of a single second level pointer pointing to a 'box type' command. |
| */ |
| struct msm_hs_tx { |
| unsigned int tx_ready_int_en; |
| unsigned int dma_in_flight; |
| struct msm_dmov_cmd xfer; |
| dmov_box *command_ptr; |
| u32 *command_ptr_ptr; |
| dma_addr_t mapped_cmd_ptr; |
| dma_addr_t mapped_cmd_ptr_ptr; |
| int tx_count; |
| dma_addr_t dma_base; |
| }; |
| |
| /** |
| * struct msm_hs_rx |
| * @flush: Rx DMA request state |
| * @xfer: top level DMA command pointer structure |
| * @cmdptr_dmaaddr: DMA view of second level command structure |
| * @command_ptr: third level DMA command pointer structure |
| * @command_ptr_ptr: second level DMA command list pointer |
| * @mapped_cmd_ptr: DMA view of the third level command structure |
| * @wait: wait for DMA completion before shutdown |
| * @buffer: destination buffer for RX DMA |
| * @rbuffer: DMA view of buffer |
| * @pool: dma pool out of which coherent rx buffer is allocated |
| * @tty_work: private work-queue for tty flip buffer push task |
| * |
| * This structure describes a single Rx DMA transaction. Rx DMA |
| * transactions use box mode DMA commands. |
| */ |
| struct msm_hs_rx { |
| enum flush_reason flush; |
| struct msm_dmov_cmd xfer; |
| dma_addr_t cmdptr_dmaaddr; |
| dmov_box *command_ptr; |
| u32 *command_ptr_ptr; |
| dma_addr_t mapped_cmd_ptr; |
| wait_queue_head_t wait; |
| dma_addr_t rbuffer; |
| unsigned char *buffer; |
| struct dma_pool *pool; |
| struct work_struct tty_work; |
| }; |
| |
| /** |
| * struct msm_hs_rx_wakeup |
| * @irq: IRQ line to be configured as interrupt source on Rx activity |
| * @ignore: boolean value. 1 = ignore the wakeup interrupt |
| * @rx_to_inject: extra character to be inserted to Rx tty on wakeup |
| * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character |
| * |
| * This is an optional structure required for UART Rx GPIO IRQ based |
| * wakeup from low power state. UART wakeup can be triggered by RX activity |
| * (using a wakeup GPIO on the UART RX pin). This should only be used if |
| * there is not a wakeup GPIO on the UART CTS, and the first RX byte is |
| * known (eg., with the Bluetooth Texas Instruments HCILL protocol), |
| * since the first RX byte will always be lost. RTS will be asserted even |
| * while the UART is clocked off in this mode of operation. |
| */ |
| struct msm_hs_rx_wakeup { |
| int irq; /* < 0 indicates low power wakeup disabled */ |
| unsigned char ignore; |
| unsigned char inject_rx; |
| char rx_to_inject; |
| }; |
| |
| /** |
| * struct msm_hs_port |
| * @uport: embedded uart port structure |
| * @imr_reg: shadow value of UARTDM_IMR |
| * @clk: uart input clock handle |
| * @tx: Tx transaction related data structure |
| * @rx: Rx transaction related data structure |
| * @dma_tx_channel: Tx DMA command channel |
| * @dma_rx_channel Rx DMA command channel |
| * @dma_tx_crci: Tx channel rate control interface number |
| * @dma_rx_crci: Rx channel rate control interface number |
| * @clk_off_timer: Timer to poll DMA event completion before clock off |
| * @clk_off_delay: clk_off_timer poll interval |
| * @clk_state: overall clock state |
| * @clk_req_off_state: post flush clock states |
| * @rx_wakeup: optional rx_wakeup feature related data |
| * @exit_lpm_cb: optional callback to exit low power mode |
| * |
| * Low level serial port structure. |
| */ |
| struct msm_hs_port { |
| struct uart_port uport; |
| unsigned long imr_reg; |
| struct clk *clk; |
| struct msm_hs_tx tx; |
| struct msm_hs_rx rx; |
| |
| int dma_tx_channel; |
| int dma_rx_channel; |
| int dma_tx_crci; |
| int dma_rx_crci; |
| |
| struct hrtimer clk_off_timer; |
| ktime_t clk_off_delay; |
| enum msm_hs_clk_states_e clk_state; |
| enum msm_hs_clk_req_off_state_e clk_req_off_state; |
| |
| struct msm_hs_rx_wakeup rx_wakeup; |
| void (*exit_lpm_cb)(struct uart_port *); |
| }; |
| |
| #define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */ |
| #define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE |
| #define UARTDM_RX_BUF_SIZE 512 |
| |
| #define UARTDM_NR 2 |
| |
| static struct msm_hs_port q_uart_port[UARTDM_NR]; |
| static struct platform_driver msm_serial_hs_platform_driver; |
| static struct uart_driver msm_hs_driver; |
| static struct uart_ops msm_hs_ops; |
| static struct workqueue_struct *msm_hs_workqueue; |
| |
| #define UARTDM_TO_MSM(uart_port) \ |
| container_of((uart_port), struct msm_hs_port, uport) |
| |
| static unsigned int use_low_power_rx_wakeup(struct msm_hs_port |
| *msm_uport) |
| { |
| return (msm_uport->rx_wakeup.irq >= 0); |
| } |
| |
| static unsigned int msm_hs_read(struct uart_port *uport, |
| unsigned int offset) |
| { |
| return ioread32(uport->membase + offset); |
| } |
| |
| static void msm_hs_write(struct uart_port *uport, unsigned int offset, |
| unsigned int value) |
| { |
| iowrite32(value, uport->membase + offset); |
| } |
| |
| static void msm_hs_release_port(struct uart_port *port) |
| { |
| iounmap(port->membase); |
| } |
| |
| static int msm_hs_request_port(struct uart_port *port) |
| { |
| port->membase = ioremap(port->mapbase, PAGE_SIZE); |
| if (unlikely(!port->membase)) |
| return -ENOMEM; |
| |
| /* configure the CR Protection to Enable */ |
| msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN); |
| return 0; |
| } |
| |
| static int msm_hs_remove(struct platform_device *pdev) |
| { |
| |
| struct msm_hs_port *msm_uport; |
| struct device *dev; |
| |
| if (pdev->id < 0 || pdev->id >= UARTDM_NR) { |
| printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id); |
| return -EINVAL; |
| } |
| |
| msm_uport = &q_uart_port[pdev->id]; |
| dev = msm_uport->uport.dev; |
| |
| dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box), |
| DMA_TO_DEVICE); |
| dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer, |
| msm_uport->rx.rbuffer); |
| dma_pool_destroy(msm_uport->rx.pool); |
| |
| dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32), |
| DMA_TO_DEVICE); |
| dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32), |
| DMA_TO_DEVICE); |
| dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box), |
| DMA_TO_DEVICE); |
| |
| uart_remove_one_port(&msm_hs_driver, &msm_uport->uport); |
| clk_put(msm_uport->clk); |
| |
| /* Free the tx resources */ |
| kfree(msm_uport->tx.command_ptr); |
| kfree(msm_uport->tx.command_ptr_ptr); |
| |
| /* Free the rx resources */ |
| kfree(msm_uport->rx.command_ptr); |
| kfree(msm_uport->rx.command_ptr_ptr); |
| |
| iounmap(msm_uport->uport.membase); |
| |
| return 0; |
| } |
| |
| static int msm_hs_init_clk_locked(struct uart_port *uport) |
| { |
| int ret; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| ret = clk_enable(msm_uport->clk); |
| if (ret) { |
| printk(KERN_ERR "Error could not turn on UART clk\n"); |
| return ret; |
| } |
| |
| /* Set up the MREG/NREG/DREG/MNDREG */ |
| ret = clk_set_rate(msm_uport->clk, uport->uartclk); |
| if (ret) { |
| printk(KERN_WARNING "Error setting clock rate on UART\n"); |
| clk_disable(msm_uport->clk); |
| return ret; |
| } |
| |
| msm_uport->clk_state = MSM_HS_CLK_ON; |
| return 0; |
| } |
| |
| /* Enable and Disable clocks (Used for power management) */ |
| static void msm_hs_pm(struct uart_port *uport, unsigned int state, |
| unsigned int oldstate) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (use_low_power_rx_wakeup(msm_uport) || |
| msm_uport->exit_lpm_cb) |
| return; /* ignore linux PM states, |
| use msm_hs_request_clock API */ |
| |
| switch (state) { |
| case 0: |
| clk_enable(msm_uport->clk); |
| break; |
| case 3: |
| clk_disable(msm_uport->clk); |
| break; |
| default: |
| dev_err(uport->dev, "msm_serial: Unknown PM state %d\n", |
| state); |
| } |
| } |
| |
| /* |
| * programs the UARTDM_CSR register with correct bit rates |
| * |
| * Interrupts should be disabled before we are called, as |
| * we modify Set Baud rate |
| * Set receive stale interrupt level, dependent on Bit Rate |
| * Goal is to have around 8 ms before indicate stale. |
| * roundup (((Bit Rate * .008) / 10) + 1 |
| */ |
| static void msm_hs_set_bps_locked(struct uart_port *uport, |
| unsigned int bps) |
| { |
| unsigned long rxstale; |
| unsigned long data; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| switch (bps) { |
| case 300: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75); |
| rxstale = 1; |
| break; |
| case 600: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150); |
| rxstale = 1; |
| break; |
| case 1200: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300); |
| rxstale = 1; |
| break; |
| case 2400: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600); |
| rxstale = 1; |
| break; |
| case 4800: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200); |
| rxstale = 1; |
| break; |
| case 9600: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400); |
| rxstale = 2; |
| break; |
| case 14400: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600); |
| rxstale = 3; |
| break; |
| case 19200: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800); |
| rxstale = 4; |
| break; |
| case 28800: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200); |
| rxstale = 6; |
| break; |
| case 38400: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600); |
| rxstale = 8; |
| break; |
| case 57600: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400); |
| rxstale = 16; |
| break; |
| case 76800: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200); |
| rxstale = 16; |
| break; |
| case 115200: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800); |
| rxstale = 31; |
| break; |
| case 230400: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600); |
| rxstale = 31; |
| break; |
| case 460800: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200); |
| rxstale = 31; |
| break; |
| case 4000000: |
| case 3686400: |
| case 3200000: |
| case 3500000: |
| case 3000000: |
| case 2500000: |
| case 1500000: |
| case 1152000: |
| case 1000000: |
| case 921600: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200); |
| rxstale = 31; |
| break; |
| default: |
| msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400); |
| /* default to 9600 */ |
| bps = 9600; |
| rxstale = 2; |
| break; |
| } |
| if (bps > 460800) |
| uport->uartclk = bps * 16; |
| else |
| uport->uartclk = UARTCLK; |
| |
| if (clk_set_rate(msm_uport->clk, uport->uartclk)) { |
| printk(KERN_WARNING "Error setting clock rate on UART\n"); |
| return; |
| } |
| |
| data = rxstale & UARTDM_IPR_STALE_LSB_BMSK; |
| data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2); |
| |
| msm_hs_write(uport, UARTDM_IPR_ADDR, data); |
| } |
| |
| /* |
| * termios : new ktermios |
| * oldtermios: old ktermios previous setting |
| * |
| * Configure the serial port |
| */ |
| static void msm_hs_set_termios(struct uart_port *uport, |
| struct ktermios *termios, |
| struct ktermios *oldtermios) |
| { |
| unsigned int bps; |
| unsigned long data; |
| unsigned long flags; |
| unsigned int c_cflag = termios->c_cflag; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| clk_enable(msm_uport->clk); |
| |
| /* 300 is the minimum baud support by the driver */ |
| bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000); |
| |
| /* Temporary remapping 200 BAUD to 3.2 mbps */ |
| if (bps == 200) |
| bps = 3200000; |
| |
| msm_hs_set_bps_locked(uport, bps); |
| |
| data = msm_hs_read(uport, UARTDM_MR2_ADDR); |
| data &= ~UARTDM_MR2_PARITY_MODE_BMSK; |
| /* set parity */ |
| if (PARENB == (c_cflag & PARENB)) { |
| if (PARODD == (c_cflag & PARODD)) |
| data |= ODD_PARITY; |
| else if (CMSPAR == (c_cflag & CMSPAR)) |
| data |= SPACE_PARITY; |
| else |
| data |= EVEN_PARITY; |
| } |
| |
| /* Set bits per char */ |
| data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK; |
| |
| switch (c_cflag & CSIZE) { |
| case CS5: |
| data |= FIVE_BPC; |
| break; |
| case CS6: |
| data |= SIX_BPC; |
| break; |
| case CS7: |
| data |= SEVEN_BPC; |
| break; |
| default: |
| data |= EIGHT_BPC; |
| break; |
| } |
| /* stop bits */ |
| if (c_cflag & CSTOPB) { |
| data |= STOP_BIT_TWO; |
| } else { |
| /* otherwise 1 stop bit */ |
| data |= STOP_BIT_ONE; |
| } |
| data |= UARTDM_MR2_ERROR_MODE_BMSK; |
| /* write parity/bits per char/stop bit configuration */ |
| msm_hs_write(uport, UARTDM_MR2_ADDR, data); |
| |
| /* Configure HW flow control */ |
| data = msm_hs_read(uport, UARTDM_MR1_ADDR); |
| |
| data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK); |
| |
| if (c_cflag & CRTSCTS) { |
| data |= UARTDM_MR1_CTS_CTL_BMSK; |
| data |= UARTDM_MR1_RX_RDY_CTL_BMSK; |
| } |
| |
| msm_hs_write(uport, UARTDM_MR1_ADDR, data); |
| |
| uport->ignore_status_mask = termios->c_iflag & INPCK; |
| uport->ignore_status_mask |= termios->c_iflag & IGNPAR; |
| uport->read_status_mask = (termios->c_cflag & CREAD); |
| |
| msm_hs_write(uport, UARTDM_IMR_ADDR, 0); |
| |
| /* Set Transmit software time out */ |
| uart_update_timeout(uport, c_cflag, bps); |
| |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX); |
| |
| if (msm_uport->rx.flush == FLUSH_NONE) { |
| msm_uport->rx.flush = FLUSH_IGNORE; |
| msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1); |
| } |
| |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| |
| clk_disable(msm_uport->clk); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| |
| /* |
| * Standard API, Transmitter |
| * Any character in the transmit shift register is sent |
| */ |
| static unsigned int msm_hs_tx_empty(struct uart_port *uport) |
| { |
| unsigned int data; |
| unsigned int ret = 0; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| clk_enable(msm_uport->clk); |
| |
| data = msm_hs_read(uport, UARTDM_SR_ADDR); |
| if (data & UARTDM_SR_TXEMT_BMSK) |
| ret = TIOCSER_TEMT; |
| |
| clk_disable(msm_uport->clk); |
| |
| return ret; |
| } |
| |
| /* |
| * Standard API, Stop transmitter. |
| * Any character in the transmit shift register is sent as |
| * well as the current data mover transfer . |
| */ |
| static void msm_hs_stop_tx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_uport->tx.tx_ready_int_en = 0; |
| } |
| |
| /* |
| * Standard API, Stop receiver as soon as possible. |
| * |
| * Function immediately terminates the operation of the |
| * channel receiver and any incoming characters are lost. None |
| * of the receiver status bits are affected by this command and |
| * characters that are already in the receive FIFO there. |
| */ |
| static void msm_hs_stop_rx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned int data; |
| |
| clk_enable(msm_uport->clk); |
| |
| /* disable dlink */ |
| data = msm_hs_read(uport, UARTDM_DMEN_ADDR); |
| data &= ~UARTDM_RX_DM_EN_BMSK; |
| msm_hs_write(uport, UARTDM_DMEN_ADDR, data); |
| |
| /* Disable the receiver */ |
| if (msm_uport->rx.flush == FLUSH_NONE) |
| msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1); |
| |
| if (msm_uport->rx.flush != FLUSH_SHUTDOWN) |
| msm_uport->rx.flush = FLUSH_STOP; |
| |
| clk_disable(msm_uport->clk); |
| } |
| |
| /* Transmit the next chunk of data */ |
| static void msm_hs_submit_tx_locked(struct uart_port *uport) |
| { |
| int left; |
| int tx_count; |
| dma_addr_t src_addr; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct circ_buf *tx_buf = &msm_uport->uport.state->xmit; |
| |
| if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) { |
| msm_hs_stop_tx_locked(uport); |
| return; |
| } |
| |
| tx->dma_in_flight = 1; |
| |
| tx_count = uart_circ_chars_pending(tx_buf); |
| |
| if (UARTDM_TX_BUF_SIZE < tx_count) |
| tx_count = UARTDM_TX_BUF_SIZE; |
| |
| left = UART_XMIT_SIZE - tx_buf->tail; |
| |
| if (tx_count > left) |
| tx_count = left; |
| |
| src_addr = tx->dma_base + tx_buf->tail; |
| dma_sync_single_for_device(uport->dev, src_addr, tx_count, |
| DMA_TO_DEVICE); |
| |
| tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) | |
| ((tx_count + 15) >> 4); |
| tx->command_ptr->src_row_addr = src_addr; |
| |
| dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| |
| *tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr); |
| |
| dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| |
| /* Save tx_count to use in Callback */ |
| tx->tx_count = tx_count; |
| msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count); |
| |
| /* Disable the tx_ready interrupt */ |
| msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer); |
| } |
| |
| /* Start to receive the next chunk of data */ |
| static void msm_hs_start_rx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT); |
| msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE); |
| msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE); |
| msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| |
| msm_uport->rx.flush = FLUSH_NONE; |
| msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer); |
| |
| /* might have finished RX and be ready to clock off */ |
| hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay, |
| HRTIMER_MODE_REL); |
| } |
| |
| /* Enable the transmitter Interrupt */ |
| static void msm_hs_start_tx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| clk_enable(msm_uport->clk); |
| |
| if (msm_uport->exit_lpm_cb) |
| msm_uport->exit_lpm_cb(uport); |
| |
| if (msm_uport->tx.tx_ready_int_en == 0) { |
| msm_uport->tx.tx_ready_int_en = 1; |
| msm_hs_submit_tx_locked(uport); |
| } |
| |
| clk_disable(msm_uport->clk); |
| } |
| |
| /* |
| * This routine is called when we are done with a DMA transfer |
| * |
| * This routine is registered with Data mover when we set |
| * up a Data Mover transfer. It is called from Data mover ISR |
| * when the DMA transfer is done. |
| */ |
| static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, |
| struct msm_dmov_errdata *err) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport; |
| |
| /* DMA did not finish properly */ |
| WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) && |
| !(result & RSLT_VLD)); |
| |
| msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer); |
| |
| spin_lock_irqsave(&msm_uport->uport.lock, flags); |
| clk_enable(msm_uport->clk); |
| |
| msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK; |
| msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| |
| clk_disable(msm_uport->clk); |
| spin_unlock_irqrestore(&msm_uport->uport.lock, flags); |
| } |
| |
| /* |
| * This routine is called when we are done with a DMA transfer or the |
| * a flush has been sent to the data mover driver. |
| * |
| * This routine is registered with Data mover when we set up a Data Mover |
| * transfer. It is called from Data mover ISR when the DMA transfer is done. |
| */ |
| static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, |
| struct msm_dmov_errdata *err) |
| { |
| int retval; |
| int rx_count; |
| unsigned long status; |
| unsigned int error_f = 0; |
| unsigned long flags; |
| unsigned int flush; |
| struct tty_struct *tty; |
| struct tty_port *port; |
| struct uart_port *uport; |
| struct msm_hs_port *msm_uport; |
| |
| msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer); |
| uport = &msm_uport->uport; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| clk_enable(msm_uport->clk); |
| |
| port = &uport->state->port; |
| tty = port->tty; |
| |
| msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE); |
| |
| status = msm_hs_read(uport, UARTDM_SR_ADDR); |
| |
| /* overflow is not connect to data in a FIFO */ |
| if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) && |
| (uport->read_status_mask & CREAD))) { |
| tty_insert_flip_char(port, 0, TTY_OVERRUN); |
| uport->icount.buf_overrun++; |
| error_f = 1; |
| } |
| |
| if (!(uport->ignore_status_mask & INPCK)) |
| status = status & ~(UARTDM_SR_PAR_FRAME_BMSK); |
| |
| if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) { |
| /* Can not tell difference between parity & frame error */ |
| uport->icount.parity++; |
| error_f = 1; |
| if (uport->ignore_status_mask & IGNPAR) |
| tty_insert_flip_char(port, 0, TTY_PARITY); |
| } |
| |
| if (error_f) |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS); |
| |
| if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED) |
| msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED; |
| |
| flush = msm_uport->rx.flush; |
| if (flush == FLUSH_IGNORE) |
| msm_hs_start_rx_locked(uport); |
| if (flush == FLUSH_STOP) |
| msm_uport->rx.flush = FLUSH_SHUTDOWN; |
| if (flush >= FLUSH_DATA_INVALID) |
| goto out; |
| |
| rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR); |
| |
| if (0 != (uport->read_status_mask & CREAD)) { |
| retval = tty_insert_flip_string(tty, msm_uport->rx.buffer, |
| rx_count); |
| BUG_ON(retval != rx_count); |
| } |
| |
| msm_hs_start_rx_locked(uport); |
| |
| out: |
| clk_disable(msm_uport->clk); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| if (flush < FLUSH_DATA_INVALID) |
| queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work); |
| } |
| |
| static void msm_hs_tty_flip_buffer_work(struct work_struct *work) |
| { |
| struct msm_hs_port *msm_uport = |
| container_of(work, struct msm_hs_port, rx.tty_work); |
| struct tty_struct *tty = msm_uport->uport.state->port.tty; |
| |
| tty_flip_buffer_push(tty); |
| } |
| |
| /* |
| * Standard API, Current states of modem control inputs |
| * |
| * Since CTS can be handled entirely by HARDWARE we always |
| * indicate clear to send and count on the TX FIFO to block when |
| * it fills up. |
| * |
| * - TIOCM_DCD |
| * - TIOCM_CTS |
| * - TIOCM_DSR |
| * - TIOCM_RI |
| * (Unsupported) DCD and DSR will return them high. RI will return low. |
| */ |
| static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport) |
| { |
| return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS; |
| } |
| |
| /* |
| * True enables UART auto RFR, which indicates we are ready for data if the RX |
| * buffer is not full. False disables auto RFR, and deasserts RFR to indicate |
| * we are not ready for data. Must be called with UART clock on. |
| */ |
| static void set_rfr_locked(struct uart_port *uport, int auto_rfr) |
| { |
| unsigned int data; |
| |
| data = msm_hs_read(uport, UARTDM_MR1_ADDR); |
| |
| if (auto_rfr) { |
| /* enable auto ready-for-receiving */ |
| data |= UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_hs_write(uport, UARTDM_MR1_ADDR, data); |
| } else { |
| /* disable auto ready-for-receiving */ |
| data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_hs_write(uport, UARTDM_MR1_ADDR, data); |
| /* RFR is active low, set high */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH); |
| } |
| } |
| |
| /* |
| * Standard API, used to set or clear RFR |
| */ |
| static void msm_hs_set_mctrl_locked(struct uart_port *uport, |
| unsigned int mctrl) |
| { |
| unsigned int auto_rfr; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| clk_enable(msm_uport->clk); |
| |
| auto_rfr = TIOCM_RTS & mctrl ? 1 : 0; |
| set_rfr_locked(uport, auto_rfr); |
| |
| clk_disable(msm_uport->clk); |
| } |
| |
| /* Standard API, Enable modem status (CTS) interrupt */ |
| static void msm_hs_enable_ms_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| clk_enable(msm_uport->clk); |
| |
| /* Enable DELTA_CTS Interrupt */ |
| msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| |
| clk_disable(msm_uport->clk); |
| |
| } |
| |
| /* |
| * Standard API, Break Signal |
| * |
| * Control the transmission of a break signal. ctl eq 0 => break |
| * signal terminate ctl ne 0 => start break signal |
| */ |
| static void msm_hs_break_ctl(struct uart_port *uport, int ctl) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| clk_enable(msm_uport->clk); |
| msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK); |
| clk_disable(msm_uport->clk); |
| } |
| |
| static void msm_hs_config_port(struct uart_port *uport, int cfg_flags) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| if (cfg_flags & UART_CONFIG_TYPE) { |
| uport->type = PORT_MSM; |
| msm_hs_request_port(uport); |
| } |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| |
| /* Handle CTS changes (Called from interrupt handler) */ |
| static void msm_hs_handle_delta_cts_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| clk_enable(msm_uport->clk); |
| |
| /* clear interrupt */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS); |
| uport->icount.cts++; |
| |
| clk_disable(msm_uport->clk); |
| |
| /* clear the IOCTL TIOCMIWAIT if called */ |
| wake_up_interruptible(&uport->state->port.delta_msr_wait); |
| } |
| |
| /* check if the TX path is flushed, and if so clock off |
| * returns 0 did not clock off, need to retry (still sending final byte) |
| * -1 did not clock off, do not retry |
| * 1 if we clocked off |
| */ |
| static int msm_hs_check_clock_off_locked(struct uart_port *uport) |
| { |
| unsigned long sr_status; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| |
| /* Cancel if tx tty buffer is not empty, dma is in flight, |
| * or tx fifo is not empty, or rx fifo is not empty */ |
| if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF || |
| !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight || |
| (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) || |
| !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK)) { |
| return -1; |
| } |
| |
| /* Make sure the uart is finished with the last byte */ |
| sr_status = msm_hs_read(uport, UARTDM_SR_ADDR); |
| if (!(sr_status & UARTDM_SR_TXEMT_BMSK)) |
| return 0; /* retry */ |
| |
| /* Make sure forced RXSTALE flush complete */ |
| switch (msm_uport->clk_req_off_state) { |
| case CLK_REQ_OFF_START: |
| msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED; |
| msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT); |
| return 0; /* RXSTALE flush not complete - retry */ |
| case CLK_REQ_OFF_RXSTALE_ISSUED: |
| case CLK_REQ_OFF_FLUSH_ISSUED: |
| return 0; /* RXSTALE flush not complete - retry */ |
| case CLK_REQ_OFF_RXSTALE_FLUSHED: |
| break; /* continue */ |
| } |
| |
| if (msm_uport->rx.flush != FLUSH_SHUTDOWN) { |
| if (msm_uport->rx.flush == FLUSH_NONE) |
| msm_hs_stop_rx_locked(uport); |
| return 0; /* come back later to really clock off */ |
| } |
| |
| /* we really want to clock off */ |
| clk_disable(msm_uport->clk); |
| msm_uport->clk_state = MSM_HS_CLK_OFF; |
| |
| if (use_low_power_rx_wakeup(msm_uport)) { |
| msm_uport->rx_wakeup.ignore = 1; |
| enable_irq(msm_uport->rx_wakeup.irq); |
| } |
| return 1; |
| } |
| |
| static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer) |
| { |
| unsigned long flags; |
| int ret = HRTIMER_NORESTART; |
| struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port, |
| clk_off_timer); |
| struct uart_port *uport = &msm_uport->uport; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| if (!msm_hs_check_clock_off_locked(uport)) { |
| hrtimer_forward_now(timer, msm_uport->clk_off_delay); |
| ret = HRTIMER_RESTART; |
| } |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| return ret; |
| } |
| |
| static irqreturn_t msm_hs_isr(int irq, void *dev) |
| { |
| unsigned long flags; |
| unsigned long isr_status; |
| struct msm_hs_port *msm_uport = dev; |
| struct uart_port *uport = &msm_uport->uport; |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR); |
| |
| /* Uart RX starting */ |
| if (isr_status & UARTDM_ISR_RXLEV_BMSK) { |
| msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| } |
| /* Stale rx interrupt */ |
| if (isr_status & UARTDM_ISR_RXSTALE_BMSK) { |
| msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT); |
| |
| if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED) |
| msm_uport->clk_req_off_state = |
| CLK_REQ_OFF_FLUSH_ISSUED; |
| if (rx->flush == FLUSH_NONE) { |
| rx->flush = FLUSH_DATA_READY; |
| msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1); |
| } |
| } |
| /* tx ready interrupt */ |
| if (isr_status & UARTDM_ISR_TX_READY_BMSK) { |
| /* Clear TX Ready */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY); |
| |
| if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) { |
| msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, |
| msm_uport->imr_reg); |
| } |
| |
| /* Complete DMA TX transactions and submit new transactions */ |
| tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE; |
| |
| tx->dma_in_flight = 0; |
| |
| uport->icount.tx += tx->tx_count; |
| if (tx->tx_ready_int_en) |
| msm_hs_submit_tx_locked(uport); |
| |
| if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS) |
| uart_write_wakeup(uport); |
| } |
| if (isr_status & UARTDM_ISR_TXLEV_BMSK) { |
| /* TX FIFO is empty */ |
| msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| if (!msm_hs_check_clock_off_locked(uport)) |
| hrtimer_start(&msm_uport->clk_off_timer, |
| msm_uport->clk_off_delay, |
| HRTIMER_MODE_REL); |
| } |
| |
| /* Change in CTS interrupt */ |
| if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK) |
| msm_hs_handle_delta_cts_locked(uport); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| void msm_hs_request_clock_off_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (msm_uport->clk_state == MSM_HS_CLK_ON) { |
| msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF; |
| msm_uport->clk_req_off_state = CLK_REQ_OFF_START; |
| if (!use_low_power_rx_wakeup(msm_uport)) |
| set_rfr_locked(uport, 0); |
| msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| } |
| } |
| |
| /** |
| * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart |
| * clock once pending TX is flushed and Rx DMA command is terminated. |
| * @uport: uart_port structure for the device instance. |
| * |
| * This functions puts the device into a partially active low power mode. It |
| * waits to complete all pending tx transactions, flushes ongoing Rx DMA |
| * command and terminates UART side Rx transaction, puts UART HW in non DMA |
| * mode and then clocks off the device. A client calls this when no UART |
| * data is expected. msm_request_clock_on() must be called before any further |
| * UART can be sent or received. |
| */ |
| void msm_hs_request_clock_off(struct uart_port *uport) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_request_clock_off_locked(uport); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| |
| void msm_hs_request_clock_on_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned int data; |
| |
| switch (msm_uport->clk_state) { |
| case MSM_HS_CLK_OFF: |
| clk_enable(msm_uport->clk); |
| disable_irq_nosync(msm_uport->rx_wakeup.irq); |
| /* fall-through */ |
| case MSM_HS_CLK_REQUEST_OFF: |
| if (msm_uport->rx.flush == FLUSH_STOP || |
| msm_uport->rx.flush == FLUSH_SHUTDOWN) { |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX); |
| data = msm_hs_read(uport, UARTDM_DMEN_ADDR); |
| data |= UARTDM_RX_DM_EN_BMSK; |
| msm_hs_write(uport, UARTDM_DMEN_ADDR, data); |
| } |
| hrtimer_try_to_cancel(&msm_uport->clk_off_timer); |
| if (msm_uport->rx.flush == FLUSH_SHUTDOWN) |
| msm_hs_start_rx_locked(uport); |
| if (!use_low_power_rx_wakeup(msm_uport)) |
| set_rfr_locked(uport, 1); |
| if (msm_uport->rx.flush == FLUSH_STOP) |
| msm_uport->rx.flush = FLUSH_IGNORE; |
| msm_uport->clk_state = MSM_HS_CLK_ON; |
| break; |
| case MSM_HS_CLK_ON: |
| break; |
| case MSM_HS_CLK_PORT_OFF: |
| break; |
| } |
| } |
| |
| /** |
| * msm_hs_request_clock_on - Switch the device from partially active low |
| * power mode to fully active (i.e. clock on) mode. |
| * @uport: uart_port structure for the device. |
| * |
| * This function switches on the input clock, puts UART HW into DMA mode |
| * and enqueues an Rx DMA command if the device was in partially active |
| * mode. It has no effect if called with the device in inactive state. |
| */ |
| void msm_hs_request_clock_on(struct uart_port *uport) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_request_clock_on_locked(uport); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| |
| static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev) |
| { |
| unsigned int wakeup = 0; |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = dev; |
| struct uart_port *uport = &msm_uport->uport; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| if (msm_uport->clk_state == MSM_HS_CLK_OFF) { |
| /* ignore the first irq - it is a pending irq that occurred |
| * before enable_irq() */ |
| if (msm_uport->rx_wakeup.ignore) |
| msm_uport->rx_wakeup.ignore = 0; |
| else |
| wakeup = 1; |
| } |
| |
| if (wakeup) { |
| /* the uart was clocked off during an rx, wake up and |
| * optionally inject char into tty rx */ |
| msm_hs_request_clock_on_locked(uport); |
| if (msm_uport->rx_wakeup.inject_rx) { |
| tty_insert_flip_char(&uport->state->port, |
| msm_uport->rx_wakeup.rx_to_inject, |
| TTY_NORMAL); |
| queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work); |
| } |
| } |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const char *msm_hs_type(struct uart_port *port) |
| { |
| return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL; |
| } |
| |
| /* Called when port is opened */ |
| static int msm_hs_startup(struct uart_port *uport) |
| { |
| int ret; |
| int rfr_level; |
| unsigned long flags; |
| unsigned int data; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| |
| rfr_level = uport->fifosize; |
| if (rfr_level > 16) |
| rfr_level -= 16; |
| |
| tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE, |
| DMA_TO_DEVICE); |
| |
| /* do not let tty layer execute RX in global workqueue, use a |
| * dedicated workqueue managed by this driver */ |
| uport->state->port.tty->low_latency = 1; |
| |
| /* turn on uart clk */ |
| ret = msm_hs_init_clk_locked(uport); |
| if (unlikely(ret)) { |
| printk(KERN_ERR "Turning uartclk failed!\n"); |
| goto err_msm_hs_init_clk; |
| } |
| |
| /* Set auto RFR Level */ |
| data = msm_hs_read(uport, UARTDM_MR1_ADDR); |
| data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK; |
| data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK; |
| data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2)); |
| data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level); |
| msm_hs_write(uport, UARTDM_MR1_ADDR, data); |
| |
| /* Make sure RXSTALE count is non-zero */ |
| data = msm_hs_read(uport, UARTDM_IPR_ADDR); |
| if (!data) { |
| data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK; |
| msm_hs_write(uport, UARTDM_IPR_ADDR, data); |
| } |
| |
| /* Enable Data Mover Mode */ |
| data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK; |
| msm_hs_write(uport, UARTDM_DMEN_ADDR, data); |
| |
| /* Reset TX */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS); |
| msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW); |
| /* Turn on Uart Receiver */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK); |
| |
| /* Turn on Uart Transmitter */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK); |
| |
| /* Initialize the tx */ |
| tx->tx_ready_int_en = 0; |
| tx->dma_in_flight = 0; |
| |
| tx->xfer.complete_func = msm_hs_dmov_tx_callback; |
| tx->xfer.execute_func = NULL; |
| |
| tx->command_ptr->cmd = CMD_LC | |
| CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX; |
| |
| tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16) |
| | (MSM_UARTDM_BURST_SIZE); |
| |
| tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16); |
| |
| tx->command_ptr->dst_row_addr = |
| msm_uport->uport.mapbase + UARTDM_TF_ADDR; |
| |
| |
| /* Turn on Uart Receive */ |
| rx->xfer.complete_func = msm_hs_dmov_rx_callback; |
| rx->xfer.execute_func = NULL; |
| |
| rx->command_ptr->cmd = CMD_LC | |
| CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX; |
| |
| rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16) |
| | (MSM_UARTDM_BURST_SIZE); |
| rx->command_ptr->row_offset = MSM_UARTDM_BURST_SIZE; |
| rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR; |
| |
| |
| msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK; |
| /* Enable reading the current CTS, no harm even if CTS is ignored */ |
| msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK; |
| |
| msm_hs_write(uport, UARTDM_TFWR_ADDR, 0); /* TXLEV on empty TX fifo */ |
| |
| |
| ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH, |
| "msm_hs_uart", msm_uport); |
| if (unlikely(ret)) { |
| printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n"); |
| goto err_request_irq; |
| } |
| if (use_low_power_rx_wakeup(msm_uport)) { |
| ret = request_irq(msm_uport->rx_wakeup.irq, |
| msm_hs_rx_wakeup_isr, |
| IRQF_TRIGGER_FALLING, |
| "msm_hs_rx_wakeup", msm_uport); |
| if (unlikely(ret)) { |
| printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n"); |
| free_irq(uport->irq, msm_uport); |
| goto err_request_irq; |
| } |
| disable_irq(msm_uport->rx_wakeup.irq); |
| } |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| msm_hs_write(uport, UARTDM_RFWR_ADDR, 0); |
| msm_hs_start_rx_locked(uport); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| ret = pm_runtime_set_active(uport->dev); |
| if (ret) |
| dev_err(uport->dev, "set active error:%d\n", ret); |
| pm_runtime_enable(uport->dev); |
| |
| return 0; |
| |
| err_request_irq: |
| err_msm_hs_init_clk: |
| dma_unmap_single(uport->dev, tx->dma_base, |
| UART_XMIT_SIZE, DMA_TO_DEVICE); |
| return ret; |
| } |
| |
| /* Initialize tx and rx data structures */ |
| static int uartdm_init_port(struct uart_port *uport) |
| { |
| int ret = 0; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| |
| /* Allocate the command pointer. Needs to be 64 bit aligned */ |
| tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA); |
| if (!tx->command_ptr) |
| return -ENOMEM; |
| |
| tx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA); |
| if (!tx->command_ptr_ptr) { |
| ret = -ENOMEM; |
| goto err_tx_command_ptr_ptr; |
| } |
| |
| tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev, |
| tx->command_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr); |
| |
| init_waitqueue_head(&rx->wait); |
| |
| rx->pool = dma_pool_create("rx_buffer_pool", uport->dev, |
| UARTDM_RX_BUF_SIZE, 16, 0); |
| if (!rx->pool) { |
| pr_err("%s(): cannot allocate rx_buffer_pool", __func__); |
| ret = -ENOMEM; |
| goto err_dma_pool_create; |
| } |
| |
| rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer); |
| if (!rx->buffer) { |
| pr_err("%s(): cannot allocate rx->buffer", __func__); |
| ret = -ENOMEM; |
| goto err_dma_pool_alloc; |
| } |
| |
| /* Allocate the command pointer. Needs to be 64 bit aligned */ |
| rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA); |
| if (!rx->command_ptr) { |
| pr_err("%s(): cannot allocate rx->command_ptr", __func__); |
| ret = -ENOMEM; |
| goto err_rx_command_ptr; |
| } |
| |
| rx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA); |
| if (!rx->command_ptr_ptr) { |
| pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__); |
| ret = -ENOMEM; |
| goto err_rx_command_ptr_ptr; |
| } |
| |
| rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) | |
| (UARTDM_RX_BUF_SIZE >> 4); |
| |
| rx->command_ptr->dst_row_addr = rx->rbuffer; |
| |
| rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| |
| *rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr); |
| |
| rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr); |
| |
| INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work); |
| |
| return ret; |
| |
| err_rx_command_ptr_ptr: |
| kfree(rx->command_ptr); |
| err_rx_command_ptr: |
| dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer, |
| msm_uport->rx.rbuffer); |
| err_dma_pool_alloc: |
| dma_pool_destroy(msm_uport->rx.pool); |
| err_dma_pool_create: |
| dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| kfree(msm_uport->tx.command_ptr_ptr); |
| err_tx_command_ptr_ptr: |
| kfree(msm_uport->tx.command_ptr); |
| return ret; |
| } |
| |
| static int msm_hs_probe(struct platform_device *pdev) |
| { |
| int ret; |
| struct uart_port *uport; |
| struct msm_hs_port *msm_uport; |
| struct resource *resource; |
| const struct msm_serial_hs_platform_data *pdata = |
| pdev->dev.platform_data; |
| |
| if (pdev->id < 0 || pdev->id >= UARTDM_NR) { |
| printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id); |
| return -EINVAL; |
| } |
| |
| msm_uport = &q_uart_port[pdev->id]; |
| uport = &msm_uport->uport; |
| |
| uport->dev = &pdev->dev; |
| |
| resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (unlikely(!resource)) |
| return -ENXIO; |
| |
| uport->mapbase = resource->start; |
| uport->irq = platform_get_irq(pdev, 0); |
| if (unlikely(uport->irq < 0)) |
| return -ENXIO; |
| |
| if (unlikely(irq_set_irq_wake(uport->irq, 1))) |
| return -ENXIO; |
| |
| if (pdata == NULL || pdata->rx_wakeup_irq < 0) |
| msm_uport->rx_wakeup.irq = -1; |
| else { |
| msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq; |
| msm_uport->rx_wakeup.ignore = 1; |
| msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup; |
| msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject; |
| |
| if (unlikely(msm_uport->rx_wakeup.irq < 0)) |
| return -ENXIO; |
| |
| if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1))) |
| return -ENXIO; |
| } |
| |
| if (pdata == NULL) |
| msm_uport->exit_lpm_cb = NULL; |
| else |
| msm_uport->exit_lpm_cb = pdata->exit_lpm_cb; |
| |
| resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| "uartdm_channels"); |
| if (unlikely(!resource)) |
| return -ENXIO; |
| |
| msm_uport->dma_tx_channel = resource->start; |
| msm_uport->dma_rx_channel = resource->end; |
| |
| resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| "uartdm_crci"); |
| if (unlikely(!resource)) |
| return -ENXIO; |
| |
| msm_uport->dma_tx_crci = resource->start; |
| msm_uport->dma_rx_crci = resource->end; |
| |
| uport->iotype = UPIO_MEM; |
| uport->fifosize = UART_FIFOSIZE; |
| uport->ops = &msm_hs_ops; |
| uport->flags = UPF_BOOT_AUTOCONF; |
| uport->uartclk = UARTCLK; |
| msm_uport->imr_reg = 0x0; |
| msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk"); |
| if (IS_ERR(msm_uport->clk)) |
| return PTR_ERR(msm_uport->clk); |
| |
| ret = uartdm_init_port(uport); |
| if (unlikely(ret)) |
| return ret; |
| |
| msm_uport->clk_state = MSM_HS_CLK_PORT_OFF; |
| hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| msm_uport->clk_off_timer.function = msm_hs_clk_off_retry; |
| msm_uport->clk_off_delay = ktime_set(0, 1000000); /* 1ms */ |
| |
| uport->line = pdev->id; |
| return uart_add_one_port(&msm_hs_driver, uport); |
| } |
| |
| static int __init msm_serial_hs_init(void) |
| { |
| int ret, i; |
| |
| /* Init all UARTS as non-configured */ |
| for (i = 0; i < UARTDM_NR; i++) |
| q_uart_port[i].uport.type = PORT_UNKNOWN; |
| |
| msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs"); |
| if (unlikely(!msm_hs_workqueue)) |
| return -ENOMEM; |
| |
| ret = uart_register_driver(&msm_hs_driver); |
| if (unlikely(ret)) { |
| printk(KERN_ERR "%s failed to load\n", __func__); |
| goto err_uart_register_driver; |
| } |
| |
| ret = platform_driver_register(&msm_serial_hs_platform_driver); |
| if (ret) { |
| printk(KERN_ERR "%s failed to load\n", __func__); |
| goto err_platform_driver_register; |
| } |
| |
| return ret; |
| |
| err_platform_driver_register: |
| uart_unregister_driver(&msm_hs_driver); |
| err_uart_register_driver: |
| destroy_workqueue(msm_hs_workqueue); |
| return ret; |
| } |
| module_init(msm_serial_hs_init); |
| |
| /* |
| * Called by the upper layer when port is closed. |
| * - Disables the port |
| * - Unhook the ISR |
| */ |
| static void msm_hs_shutdown(struct uart_port *uport) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| BUG_ON(msm_uport->rx.flush < FLUSH_STOP); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| clk_enable(msm_uport->clk); |
| |
| /* Disable the transmitter */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK); |
| /* Disable the receiver */ |
| msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK); |
| |
| pm_runtime_disable(uport->dev); |
| pm_runtime_set_suspended(uport->dev); |
| |
| /* Free the interrupt */ |
| free_irq(uport->irq, msm_uport); |
| if (use_low_power_rx_wakeup(msm_uport)) |
| free_irq(msm_uport->rx_wakeup.irq, msm_uport); |
| |
| msm_uport->imr_reg = 0; |
| msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); |
| |
| wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN); |
| |
| clk_disable(msm_uport->clk); /* to balance local clk_enable() */ |
| if (msm_uport->clk_state != MSM_HS_CLK_OFF) |
| clk_disable(msm_uport->clk); /* to balance clk_state */ |
| msm_uport->clk_state = MSM_HS_CLK_PORT_OFF; |
| |
| dma_unmap_single(uport->dev, msm_uport->tx.dma_base, |
| UART_XMIT_SIZE, DMA_TO_DEVICE); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| if (cancel_work_sync(&msm_uport->rx.tty_work)) |
| msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work); |
| } |
| |
| static void __exit msm_serial_hs_exit(void) |
| { |
| flush_workqueue(msm_hs_workqueue); |
| destroy_workqueue(msm_hs_workqueue); |
| platform_driver_unregister(&msm_serial_hs_platform_driver); |
| uart_unregister_driver(&msm_hs_driver); |
| } |
| module_exit(msm_serial_hs_exit); |
| |
| #ifdef CONFIG_PM_RUNTIME |
| static int msm_hs_runtime_idle(struct device *dev) |
| { |
| /* |
| * returning success from idle results in runtime suspend to be |
| * called |
| */ |
| return 0; |
| } |
| |
| static int msm_hs_runtime_resume(struct device *dev) |
| { |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; |
| |
| msm_hs_request_clock_on(&msm_uport->uport); |
| return 0; |
| } |
| |
| static int msm_hs_runtime_suspend(struct device *dev) |
| { |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; |
| |
| msm_hs_request_clock_off(&msm_uport->uport); |
| return 0; |
| } |
| #else |
| #define msm_hs_runtime_idle NULL |
| #define msm_hs_runtime_resume NULL |
| #define msm_hs_runtime_suspend NULL |
| #endif |
| |
| static const struct dev_pm_ops msm_hs_dev_pm_ops = { |
| .runtime_suspend = msm_hs_runtime_suspend, |
| .runtime_resume = msm_hs_runtime_resume, |
| .runtime_idle = msm_hs_runtime_idle, |
| }; |
| |
| static struct platform_driver msm_serial_hs_platform_driver = { |
| .probe = msm_hs_probe, |
| .remove = msm_hs_remove, |
| .driver = { |
| .name = "msm_serial_hs", |
| .owner = THIS_MODULE, |
| .pm = &msm_hs_dev_pm_ops, |
| }, |
| }; |
| |
| static struct uart_driver msm_hs_driver = { |
| .owner = THIS_MODULE, |
| .driver_name = "msm_serial_hs", |
| .dev_name = "ttyHS", |
| .nr = UARTDM_NR, |
| .cons = 0, |
| }; |
| |
| static struct uart_ops msm_hs_ops = { |
| .tx_empty = msm_hs_tx_empty, |
| .set_mctrl = msm_hs_set_mctrl_locked, |
| .get_mctrl = msm_hs_get_mctrl_locked, |
| .stop_tx = msm_hs_stop_tx_locked, |
| .start_tx = msm_hs_start_tx_locked, |
| .stop_rx = msm_hs_stop_rx_locked, |
| .enable_ms = msm_hs_enable_ms_locked, |
| .break_ctl = msm_hs_break_ctl, |
| .startup = msm_hs_startup, |
| .shutdown = msm_hs_shutdown, |
| .set_termios = msm_hs_set_termios, |
| .pm = msm_hs_pm, |
| .type = msm_hs_type, |
| .config_port = msm_hs_config_port, |
| .release_port = msm_hs_release_port, |
| .request_port = msm_hs_request_port, |
| }; |
| |
| MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset"); |
| MODULE_VERSION("1.2"); |
| MODULE_LICENSE("GPL v2"); |