| /* |
| * Copyright (C) 2015, 2016 ARM Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/list_sort.h> |
| |
| #include "vgic.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include "../trace.h" |
| |
| #ifdef CONFIG_DEBUG_SPINLOCK |
| #define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p) |
| #else |
| #define DEBUG_SPINLOCK_BUG_ON(p) |
| #endif |
| |
| struct vgic_global __section(.hyp.text) kvm_vgic_global_state; |
| |
| /* |
| * Locking order is always: |
| * vgic_cpu->ap_list_lock |
| * vgic_irq->irq_lock |
| * |
| * (that is, always take the ap_list_lock before the struct vgic_irq lock). |
| * |
| * When taking more than one ap_list_lock at the same time, always take the |
| * lowest numbered VCPU's ap_list_lock first, so: |
| * vcpuX->vcpu_id < vcpuY->vcpu_id: |
| * spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); |
| * spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); |
| */ |
| |
| struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, |
| u32 intid) |
| { |
| /* SGIs and PPIs */ |
| if (intid <= VGIC_MAX_PRIVATE) |
| return &vcpu->arch.vgic_cpu.private_irqs[intid]; |
| |
| /* SPIs */ |
| if (intid <= VGIC_MAX_SPI) |
| return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; |
| |
| /* LPIs are not yet covered */ |
| if (intid >= VGIC_MIN_LPI) |
| return NULL; |
| |
| WARN(1, "Looking up struct vgic_irq for reserved INTID"); |
| return NULL; |
| } |
| |
| /** |
| * kvm_vgic_target_oracle - compute the target vcpu for an irq |
| * |
| * @irq: The irq to route. Must be already locked. |
| * |
| * Based on the current state of the interrupt (enabled, pending, |
| * active, vcpu and target_vcpu), compute the next vcpu this should be |
| * given to. Return NULL if this shouldn't be injected at all. |
| * |
| * Requires the IRQ lock to be held. |
| */ |
| static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) |
| { |
| DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock)); |
| |
| /* If the interrupt is active, it must stay on the current vcpu */ |
| if (irq->active) |
| return irq->vcpu ? : irq->target_vcpu; |
| |
| /* |
| * If the IRQ is not active but enabled and pending, we should direct |
| * it to its configured target VCPU. |
| * If the distributor is disabled, pending interrupts shouldn't be |
| * forwarded. |
| */ |
| if (irq->enabled && irq->pending) { |
| if (unlikely(irq->target_vcpu && |
| !irq->target_vcpu->kvm->arch.vgic.enabled)) |
| return NULL; |
| |
| return irq->target_vcpu; |
| } |
| |
| /* If neither active nor pending and enabled, then this IRQ should not |
| * be queued to any VCPU. |
| */ |
| return NULL; |
| } |
| |
| /* |
| * The order of items in the ap_lists defines how we'll pack things in LRs as |
| * well, the first items in the list being the first things populated in the |
| * LRs. |
| * |
| * A hard rule is that active interrupts can never be pushed out of the LRs |
| * (and therefore take priority) since we cannot reliably trap on deactivation |
| * of IRQs and therefore they have to be present in the LRs. |
| * |
| * Otherwise things should be sorted by the priority field and the GIC |
| * hardware support will take care of preemption of priority groups etc. |
| * |
| * Return negative if "a" sorts before "b", 0 to preserve order, and positive |
| * to sort "b" before "a". |
| */ |
| static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); |
| struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); |
| bool penda, pendb; |
| int ret; |
| |
| spin_lock(&irqa->irq_lock); |
| spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); |
| |
| if (irqa->active || irqb->active) { |
| ret = (int)irqb->active - (int)irqa->active; |
| goto out; |
| } |
| |
| penda = irqa->enabled && irqa->pending; |
| pendb = irqb->enabled && irqb->pending; |
| |
| if (!penda || !pendb) { |
| ret = (int)pendb - (int)penda; |
| goto out; |
| } |
| |
| /* Both pending and enabled, sort by priority */ |
| ret = irqa->priority - irqb->priority; |
| out: |
| spin_unlock(&irqb->irq_lock); |
| spin_unlock(&irqa->irq_lock); |
| return ret; |
| } |
| |
| /* Must be called with the ap_list_lock held */ |
| static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| |
| DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock)); |
| |
| list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); |
| } |
| |
| /* |
| * Only valid injection if changing level for level-triggered IRQs or for a |
| * rising edge. |
| */ |
| static bool vgic_validate_injection(struct vgic_irq *irq, bool level) |
| { |
| switch (irq->config) { |
| case VGIC_CONFIG_LEVEL: |
| return irq->line_level != level; |
| case VGIC_CONFIG_EDGE: |
| return level; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. |
| * Do the queuing if necessary, taking the right locks in the right order. |
| * Returns true when the IRQ was queued, false otherwise. |
| * |
| * Needs to be entered with the IRQ lock already held, but will return |
| * with all locks dropped. |
| */ |
| bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq) |
| { |
| struct kvm_vcpu *vcpu; |
| |
| DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock)); |
| |
| retry: |
| vcpu = vgic_target_oracle(irq); |
| if (irq->vcpu || !vcpu) { |
| /* |
| * If this IRQ is already on a VCPU's ap_list, then it |
| * cannot be moved or modified and there is no more work for |
| * us to do. |
| * |
| * Otherwise, if the irq is not pending and enabled, it does |
| * not need to be inserted into an ap_list and there is also |
| * no more work for us to do. |
| */ |
| spin_unlock(&irq->irq_lock); |
| return false; |
| } |
| |
| /* |
| * We must unlock the irq lock to take the ap_list_lock where |
| * we are going to insert this new pending interrupt. |
| */ |
| spin_unlock(&irq->irq_lock); |
| |
| /* someone can do stuff here, which we re-check below */ |
| |
| spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); |
| spin_lock(&irq->irq_lock); |
| |
| /* |
| * Did something change behind our backs? |
| * |
| * There are two cases: |
| * 1) The irq lost its pending state or was disabled behind our |
| * backs and/or it was queued to another VCPU's ap_list. |
| * 2) Someone changed the affinity on this irq behind our |
| * backs and we are now holding the wrong ap_list_lock. |
| * |
| * In both cases, drop the locks and retry. |
| */ |
| |
| if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { |
| spin_unlock(&irq->irq_lock); |
| spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); |
| |
| spin_lock(&irq->irq_lock); |
| goto retry; |
| } |
| |
| list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); |
| irq->vcpu = vcpu; |
| |
| spin_unlock(&irq->irq_lock); |
| spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); |
| |
| kvm_vcpu_kick(vcpu); |
| |
| return true; |
| } |
| |
| static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, |
| unsigned int intid, bool level, |
| bool mapped_irq) |
| { |
| struct kvm_vcpu *vcpu; |
| struct vgic_irq *irq; |
| int ret; |
| |
| trace_vgic_update_irq_pending(cpuid, intid, level); |
| |
| vcpu = kvm_get_vcpu(kvm, cpuid); |
| if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) |
| return -EINVAL; |
| |
| irq = vgic_get_irq(kvm, vcpu, intid); |
| if (!irq) |
| return -EINVAL; |
| |
| if (irq->hw != mapped_irq) |
| return -EINVAL; |
| |
| spin_lock(&irq->irq_lock); |
| |
| if (!vgic_validate_injection(irq, level)) { |
| /* Nothing to see here, move along... */ |
| spin_unlock(&irq->irq_lock); |
| return 0; |
| } |
| |
| if (irq->config == VGIC_CONFIG_LEVEL) { |
| irq->line_level = level; |
| irq->pending = level || irq->soft_pending; |
| } else { |
| irq->pending = true; |
| } |
| |
| vgic_queue_irq_unlock(kvm, irq); |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic |
| * @kvm: The VM structure pointer |
| * @cpuid: The CPU for PPIs |
| * @intid: The INTID to inject a new state to. |
| * @level: Edge-triggered: true: to trigger the interrupt |
| * false: to ignore the call |
| * Level-sensitive true: raise the input signal |
| * false: lower the input signal |
| * |
| * The VGIC is not concerned with devices being active-LOW or active-HIGH for |
| * level-sensitive interrupts. You can think of the level parameter as 1 |
| * being HIGH and 0 being LOW and all devices being active-HIGH. |
| */ |
| int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid, |
| bool level) |
| { |
| return vgic_update_irq_pending(kvm, cpuid, intid, level, false); |
| } |