| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include <linux/iversion.h> |
| |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_inode.h" |
| #include "xfs_dir2.h" |
| #include "xfs_attr.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_errortag.h" |
| #include "xfs_error.h" |
| #include "xfs_quota.h" |
| #include "xfs_filestream.h" |
| #include "xfs_trace.h" |
| #include "xfs_icache.h" |
| #include "xfs_symlink.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_log.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_reflink.h" |
| |
| kmem_zone_t *xfs_inode_zone; |
| |
| /* |
| * Used in xfs_itruncate_extents(). This is the maximum number of extents |
| * freed from a file in a single transaction. |
| */ |
| #define XFS_ITRUNC_MAX_EXTENTS 2 |
| |
| STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); |
| STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); |
| |
| /* |
| * helper function to extract extent size hint from inode |
| */ |
| xfs_extlen_t |
| xfs_get_extsz_hint( |
| struct xfs_inode *ip) |
| { |
| /* |
| * No point in aligning allocations if we need to COW to actually |
| * write to them. |
| */ |
| if (xfs_is_always_cow_inode(ip)) |
| return 0; |
| if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) |
| return ip->i_extsize; |
| if (XFS_IS_REALTIME_INODE(ip)) |
| return ip->i_mount->m_sb.sb_rextsize; |
| return 0; |
| } |
| |
| /* |
| * Helper function to extract CoW extent size hint from inode. |
| * Between the extent size hint and the CoW extent size hint, we |
| * return the greater of the two. If the value is zero (automatic), |
| * use the default size. |
| */ |
| xfs_extlen_t |
| xfs_get_cowextsz_hint( |
| struct xfs_inode *ip) |
| { |
| xfs_extlen_t a, b; |
| |
| a = 0; |
| if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) |
| a = ip->i_cowextsize; |
| b = xfs_get_extsz_hint(ip); |
| |
| a = max(a, b); |
| if (a == 0) |
| return XFS_DEFAULT_COWEXTSZ_HINT; |
| return a; |
| } |
| |
| /* |
| * These two are wrapper routines around the xfs_ilock() routine used to |
| * centralize some grungy code. They are used in places that wish to lock the |
| * inode solely for reading the extents. The reason these places can't just |
| * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to |
| * bringing in of the extents from disk for a file in b-tree format. If the |
| * inode is in b-tree format, then we need to lock the inode exclusively until |
| * the extents are read in. Locking it exclusively all the time would limit |
| * our parallelism unnecessarily, though. What we do instead is check to see |
| * if the extents have been read in yet, and only lock the inode exclusively |
| * if they have not. |
| * |
| * The functions return a value which should be given to the corresponding |
| * xfs_iunlock() call. |
| */ |
| uint |
| xfs_ilock_data_map_shared( |
| struct xfs_inode *ip) |
| { |
| uint lock_mode = XFS_ILOCK_SHARED; |
| |
| if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && |
| (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) |
| lock_mode = XFS_ILOCK_EXCL; |
| xfs_ilock(ip, lock_mode); |
| return lock_mode; |
| } |
| |
| uint |
| xfs_ilock_attr_map_shared( |
| struct xfs_inode *ip) |
| { |
| uint lock_mode = XFS_ILOCK_SHARED; |
| |
| if (ip->i_afp && |
| ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && |
| (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) |
| lock_mode = XFS_ILOCK_EXCL; |
| xfs_ilock(ip, lock_mode); |
| return lock_mode; |
| } |
| |
| /* |
| * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 |
| * multi-reader locks: i_mmap_lock and the i_lock. This routine allows |
| * various combinations of the locks to be obtained. |
| * |
| * The 3 locks should always be ordered so that the IO lock is obtained first, |
| * the mmap lock second and the ilock last in order to prevent deadlock. |
| * |
| * Basic locking order: |
| * |
| * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock |
| * |
| * mmap_lock locking order: |
| * |
| * i_rwsem -> page lock -> mmap_lock |
| * mmap_lock -> i_mmap_lock -> page_lock |
| * |
| * The difference in mmap_lock locking order mean that we cannot hold the |
| * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can |
| * fault in pages during copy in/out (for buffered IO) or require the mmap_lock |
| * in get_user_pages() to map the user pages into the kernel address space for |
| * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because |
| * page faults already hold the mmap_lock. |
| * |
| * Hence to serialise fully against both syscall and mmap based IO, we need to |
| * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both |
| * taken in places where we need to invalidate the page cache in a race |
| * free manner (e.g. truncate, hole punch and other extent manipulation |
| * functions). |
| */ |
| void |
| xfs_ilock( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| trace_xfs_ilock(ip, lock_flags, _RET_IP_); |
| |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| down_write_nested(&VFS_I(ip)->i_rwsem, |
| XFS_IOLOCK_DEP(lock_flags)); |
| } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| down_read_nested(&VFS_I(ip)->i_rwsem, |
| XFS_IOLOCK_DEP(lock_flags)); |
| } |
| |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| else if (lock_flags & XFS_ILOCK_SHARED) |
| mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| } |
| |
| /* |
| * This is just like xfs_ilock(), except that the caller |
| * is guaranteed not to sleep. It returns 1 if it gets |
| * the requested locks and 0 otherwise. If the IO lock is |
| * obtained but the inode lock cannot be, then the IO lock |
| * is dropped before returning. |
| * |
| * ip -- the inode being locked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be locked. See the comment for xfs_ilock() for a list |
| * of valid values. |
| */ |
| int |
| xfs_ilock_nowait( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); |
| |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) |
| goto out; |
| } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) |
| goto out; |
| } |
| |
| if (lock_flags & XFS_MMAPLOCK_EXCL) { |
| if (!mrtryupdate(&ip->i_mmaplock)) |
| goto out_undo_iolock; |
| } else if (lock_flags & XFS_MMAPLOCK_SHARED) { |
| if (!mrtryaccess(&ip->i_mmaplock)) |
| goto out_undo_iolock; |
| } |
| |
| if (lock_flags & XFS_ILOCK_EXCL) { |
| if (!mrtryupdate(&ip->i_lock)) |
| goto out_undo_mmaplock; |
| } else if (lock_flags & XFS_ILOCK_SHARED) { |
| if (!mrtryaccess(&ip->i_lock)) |
| goto out_undo_mmaplock; |
| } |
| return 1; |
| |
| out_undo_mmaplock: |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrunlock_excl(&ip->i_mmaplock); |
| else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| mrunlock_shared(&ip->i_mmaplock); |
| out_undo_iolock: |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| up_write(&VFS_I(ip)->i_rwsem); |
| else if (lock_flags & XFS_IOLOCK_SHARED) |
| up_read(&VFS_I(ip)->i_rwsem); |
| out: |
| return 0; |
| } |
| |
| /* |
| * xfs_iunlock() is used to drop the inode locks acquired with |
| * xfs_ilock() and xfs_ilock_nowait(). The caller must pass |
| * in the flags given to xfs_ilock() or xfs_ilock_nowait() so |
| * that we know which locks to drop. |
| * |
| * ip -- the inode being unlocked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be unlocked. See the comment for xfs_ilock() for a list |
| * of valid values for this parameter. |
| * |
| */ |
| void |
| xfs_iunlock( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| ASSERT(lock_flags != 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| up_write(&VFS_I(ip)->i_rwsem); |
| else if (lock_flags & XFS_IOLOCK_SHARED) |
| up_read(&VFS_I(ip)->i_rwsem); |
| |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrunlock_excl(&ip->i_mmaplock); |
| else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| mrunlock_shared(&ip->i_mmaplock); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrunlock_excl(&ip->i_lock); |
| else if (lock_flags & XFS_ILOCK_SHARED) |
| mrunlock_shared(&ip->i_lock); |
| |
| trace_xfs_iunlock(ip, lock_flags, _RET_IP_); |
| } |
| |
| /* |
| * give up write locks. the i/o lock cannot be held nested |
| * if it is being demoted. |
| */ |
| void |
| xfs_ilock_demote( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & |
| ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrdemote(&ip->i_lock); |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrdemote(&ip->i_mmaplock); |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| downgrade_write(&VFS_I(ip)->i_rwsem); |
| |
| trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); |
| } |
| |
| #if defined(DEBUG) || defined(XFS_WARN) |
| int |
| xfs_isilocked( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { |
| if (!(lock_flags & XFS_ILOCK_SHARED)) |
| return !!ip->i_lock.mr_writer; |
| return rwsem_is_locked(&ip->i_lock.mr_lock); |
| } |
| |
| if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { |
| if (!(lock_flags & XFS_MMAPLOCK_SHARED)) |
| return !!ip->i_mmaplock.mr_writer; |
| return rwsem_is_locked(&ip->i_mmaplock.mr_lock); |
| } |
| |
| if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { |
| if (!(lock_flags & XFS_IOLOCK_SHARED)) |
| return !debug_locks || |
| lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); |
| return rwsem_is_locked(&VFS_I(ip)->i_rwsem); |
| } |
| |
| ASSERT(0); |
| return 0; |
| } |
| #endif |
| |
| /* |
| * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when |
| * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined |
| * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build |
| * errors and warnings. |
| */ |
| #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) |
| static bool |
| xfs_lockdep_subclass_ok( |
| int subclass) |
| { |
| return subclass < MAX_LOCKDEP_SUBCLASSES; |
| } |
| #else |
| #define xfs_lockdep_subclass_ok(subclass) (true) |
| #endif |
| |
| /* |
| * Bump the subclass so xfs_lock_inodes() acquires each lock with a different |
| * value. This can be called for any type of inode lock combination, including |
| * parent locking. Care must be taken to ensure we don't overrun the subclass |
| * storage fields in the class mask we build. |
| */ |
| static inline int |
| xfs_lock_inumorder(int lock_mode, int subclass) |
| { |
| int class = 0; |
| |
| ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | |
| XFS_ILOCK_RTSUM))); |
| ASSERT(xfs_lockdep_subclass_ok(subclass)); |
| |
| if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { |
| ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); |
| class += subclass << XFS_IOLOCK_SHIFT; |
| } |
| |
| if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { |
| ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); |
| class += subclass << XFS_MMAPLOCK_SHIFT; |
| } |
| |
| if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { |
| ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); |
| class += subclass << XFS_ILOCK_SHIFT; |
| } |
| |
| return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; |
| } |
| |
| /* |
| * The following routine will lock n inodes in exclusive mode. We assume the |
| * caller calls us with the inodes in i_ino order. |
| * |
| * We need to detect deadlock where an inode that we lock is in the AIL and we |
| * start waiting for another inode that is locked by a thread in a long running |
| * transaction (such as truncate). This can result in deadlock since the long |
| * running trans might need to wait for the inode we just locked in order to |
| * push the tail and free space in the log. |
| * |
| * xfs_lock_inodes() can only be used to lock one type of lock at a time - |
| * the iolock, the mmaplock or the ilock, but not more than one at a time. If we |
| * lock more than one at a time, lockdep will report false positives saying we |
| * have violated locking orders. |
| */ |
| static void |
| xfs_lock_inodes( |
| struct xfs_inode **ips, |
| int inodes, |
| uint lock_mode) |
| { |
| int attempts = 0, i, j, try_lock; |
| struct xfs_log_item *lp; |
| |
| /* |
| * Currently supports between 2 and 5 inodes with exclusive locking. We |
| * support an arbitrary depth of locking here, but absolute limits on |
| * inodes depend on the type of locking and the limits placed by |
| * lockdep annotations in xfs_lock_inumorder. These are all checked by |
| * the asserts. |
| */ |
| ASSERT(ips && inodes >= 2 && inodes <= 5); |
| ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | |
| XFS_ILOCK_EXCL)); |
| ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | |
| XFS_ILOCK_SHARED))); |
| ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || |
| inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); |
| ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || |
| inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); |
| |
| if (lock_mode & XFS_IOLOCK_EXCL) { |
| ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); |
| } else if (lock_mode & XFS_MMAPLOCK_EXCL) |
| ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); |
| |
| try_lock = 0; |
| i = 0; |
| again: |
| for (; i < inodes; i++) { |
| ASSERT(ips[i]); |
| |
| if (i && (ips[i] == ips[i - 1])) /* Already locked */ |
| continue; |
| |
| /* |
| * If try_lock is not set yet, make sure all locked inodes are |
| * not in the AIL. If any are, set try_lock to be used later. |
| */ |
| if (!try_lock) { |
| for (j = (i - 1); j >= 0 && !try_lock; j--) { |
| lp = &ips[j]->i_itemp->ili_item; |
| if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) |
| try_lock++; |
| } |
| } |
| |
| /* |
| * If any of the previous locks we have locked is in the AIL, |
| * we must TRY to get the second and subsequent locks. If |
| * we can't get any, we must release all we have |
| * and try again. |
| */ |
| if (!try_lock) { |
| xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); |
| continue; |
| } |
| |
| /* try_lock means we have an inode locked that is in the AIL. */ |
| ASSERT(i != 0); |
| if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) |
| continue; |
| |
| /* |
| * Unlock all previous guys and try again. xfs_iunlock will try |
| * to push the tail if the inode is in the AIL. |
| */ |
| attempts++; |
| for (j = i - 1; j >= 0; j--) { |
| /* |
| * Check to see if we've already unlocked this one. Not |
| * the first one going back, and the inode ptr is the |
| * same. |
| */ |
| if (j != (i - 1) && ips[j] == ips[j + 1]) |
| continue; |
| |
| xfs_iunlock(ips[j], lock_mode); |
| } |
| |
| if ((attempts % 5) == 0) { |
| delay(1); /* Don't just spin the CPU */ |
| } |
| i = 0; |
| try_lock = 0; |
| goto again; |
| } |
| } |
| |
| /* |
| * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - |
| * the mmaplock or the ilock, but not more than one type at a time. If we lock |
| * more than one at a time, lockdep will report false positives saying we have |
| * violated locking orders. The iolock must be double-locked separately since |
| * we use i_rwsem for that. We now support taking one lock EXCL and the other |
| * SHARED. |
| */ |
| void |
| xfs_lock_two_inodes( |
| struct xfs_inode *ip0, |
| uint ip0_mode, |
| struct xfs_inode *ip1, |
| uint ip1_mode) |
| { |
| struct xfs_inode *temp; |
| uint mode_temp; |
| int attempts = 0; |
| struct xfs_log_item *lp; |
| |
| ASSERT(hweight32(ip0_mode) == 1); |
| ASSERT(hweight32(ip1_mode) == 1); |
| ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
| ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
| ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| |
| ASSERT(ip0->i_ino != ip1->i_ino); |
| |
| if (ip0->i_ino > ip1->i_ino) { |
| temp = ip0; |
| ip0 = ip1; |
| ip1 = temp; |
| mode_temp = ip0_mode; |
| ip0_mode = ip1_mode; |
| ip1_mode = mode_temp; |
| } |
| |
| again: |
| xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); |
| |
| /* |
| * If the first lock we have locked is in the AIL, we must TRY to get |
| * the second lock. If we can't get it, we must release the first one |
| * and try again. |
| */ |
| lp = &ip0->i_itemp->ili_item; |
| if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { |
| if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { |
| xfs_iunlock(ip0, ip0_mode); |
| if ((++attempts % 5) == 0) |
| delay(1); /* Don't just spin the CPU */ |
| goto again; |
| } |
| } else { |
| xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); |
| } |
| } |
| |
| uint |
| xfs_ip2xflags( |
| struct xfs_inode *ip) |
| { |
| uint flags = 0; |
| |
| if (ip->i_diflags & XFS_DIFLAG_ANY) { |
| if (ip->i_diflags & XFS_DIFLAG_REALTIME) |
| flags |= FS_XFLAG_REALTIME; |
| if (ip->i_diflags & XFS_DIFLAG_PREALLOC) |
| flags |= FS_XFLAG_PREALLOC; |
| if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) |
| flags |= FS_XFLAG_IMMUTABLE; |
| if (ip->i_diflags & XFS_DIFLAG_APPEND) |
| flags |= FS_XFLAG_APPEND; |
| if (ip->i_diflags & XFS_DIFLAG_SYNC) |
| flags |= FS_XFLAG_SYNC; |
| if (ip->i_diflags & XFS_DIFLAG_NOATIME) |
| flags |= FS_XFLAG_NOATIME; |
| if (ip->i_diflags & XFS_DIFLAG_NODUMP) |
| flags |= FS_XFLAG_NODUMP; |
| if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) |
| flags |= FS_XFLAG_RTINHERIT; |
| if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) |
| flags |= FS_XFLAG_PROJINHERIT; |
| if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) |
| flags |= FS_XFLAG_NOSYMLINKS; |
| if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) |
| flags |= FS_XFLAG_EXTSIZE; |
| if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) |
| flags |= FS_XFLAG_EXTSZINHERIT; |
| if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) |
| flags |= FS_XFLAG_NODEFRAG; |
| if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) |
| flags |= FS_XFLAG_FILESTREAM; |
| } |
| |
| if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { |
| if (ip->i_diflags2 & XFS_DIFLAG2_DAX) |
| flags |= FS_XFLAG_DAX; |
| if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) |
| flags |= FS_XFLAG_COWEXTSIZE; |
| } |
| |
| if (XFS_IFORK_Q(ip)) |
| flags |= FS_XFLAG_HASATTR; |
| return flags; |
| } |
| |
| /* |
| * Lookups up an inode from "name". If ci_name is not NULL, then a CI match |
| * is allowed, otherwise it has to be an exact match. If a CI match is found, |
| * ci_name->name will point to a the actual name (caller must free) or |
| * will be set to NULL if an exact match is found. |
| */ |
| int |
| xfs_lookup( |
| xfs_inode_t *dp, |
| struct xfs_name *name, |
| xfs_inode_t **ipp, |
| struct xfs_name *ci_name) |
| { |
| xfs_ino_t inum; |
| int error; |
| |
| trace_xfs_lookup(dp, name); |
| |
| if (XFS_FORCED_SHUTDOWN(dp->i_mount)) |
| return -EIO; |
| |
| error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); |
| if (error) |
| goto out_unlock; |
| |
| error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); |
| if (error) |
| goto out_free_name; |
| |
| return 0; |
| |
| out_free_name: |
| if (ci_name) |
| kmem_free(ci_name->name); |
| out_unlock: |
| *ipp = NULL; |
| return error; |
| } |
| |
| /* Propagate di_flags from a parent inode to a child inode. */ |
| static void |
| xfs_inode_inherit_flags( |
| struct xfs_inode *ip, |
| const struct xfs_inode *pip) |
| { |
| unsigned int di_flags = 0; |
| umode_t mode = VFS_I(ip)->i_mode; |
| |
| if (S_ISDIR(mode)) { |
| if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) |
| di_flags |= XFS_DIFLAG_RTINHERIT; |
| if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { |
| di_flags |= XFS_DIFLAG_EXTSZINHERIT; |
| ip->i_extsize = pip->i_extsize; |
| } |
| if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) |
| di_flags |= XFS_DIFLAG_PROJINHERIT; |
| } else if (S_ISREG(mode)) { |
| if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && |
| xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) |
| di_flags |= XFS_DIFLAG_REALTIME; |
| if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { |
| di_flags |= XFS_DIFLAG_EXTSIZE; |
| ip->i_extsize = pip->i_extsize; |
| } |
| } |
| if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && |
| xfs_inherit_noatime) |
| di_flags |= XFS_DIFLAG_NOATIME; |
| if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && |
| xfs_inherit_nodump) |
| di_flags |= XFS_DIFLAG_NODUMP; |
| if ((pip->i_diflags & XFS_DIFLAG_SYNC) && |
| xfs_inherit_sync) |
| di_flags |= XFS_DIFLAG_SYNC; |
| if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && |
| xfs_inherit_nosymlinks) |
| di_flags |= XFS_DIFLAG_NOSYMLINKS; |
| if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && |
| xfs_inherit_nodefrag) |
| di_flags |= XFS_DIFLAG_NODEFRAG; |
| if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) |
| di_flags |= XFS_DIFLAG_FILESTREAM; |
| |
| ip->i_diflags |= di_flags; |
| } |
| |
| /* Propagate di_flags2 from a parent inode to a child inode. */ |
| static void |
| xfs_inode_inherit_flags2( |
| struct xfs_inode *ip, |
| const struct xfs_inode *pip) |
| { |
| if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { |
| ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; |
| ip->i_cowextsize = pip->i_cowextsize; |
| } |
| if (pip->i_diflags2 & XFS_DIFLAG2_DAX) |
| ip->i_diflags2 |= XFS_DIFLAG2_DAX; |
| } |
| |
| /* |
| * Initialise a newly allocated inode and return the in-core inode to the |
| * caller locked exclusively. |
| */ |
| static int |
| xfs_init_new_inode( |
| struct user_namespace *mnt_userns, |
| struct xfs_trans *tp, |
| struct xfs_inode *pip, |
| xfs_ino_t ino, |
| umode_t mode, |
| xfs_nlink_t nlink, |
| dev_t rdev, |
| prid_t prid, |
| bool init_xattrs, |
| struct xfs_inode **ipp) |
| { |
| struct inode *dir = pip ? VFS_I(pip) : NULL; |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_inode *ip; |
| unsigned int flags; |
| int error; |
| struct timespec64 tv; |
| struct inode *inode; |
| |
| /* |
| * Protect against obviously corrupt allocation btree records. Later |
| * xfs_iget checks will catch re-allocation of other active in-memory |
| * and on-disk inodes. If we don't catch reallocating the parent inode |
| * here we will deadlock in xfs_iget() so we have to do these checks |
| * first. |
| */ |
| if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { |
| xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Get the in-core inode with the lock held exclusively to prevent |
| * others from looking at until we're done. |
| */ |
| error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); |
| if (error) |
| return error; |
| |
| ASSERT(ip != NULL); |
| inode = VFS_I(ip); |
| set_nlink(inode, nlink); |
| inode->i_rdev = rdev; |
| ip->i_projid = prid; |
| |
| if (dir && !(dir->i_mode & S_ISGID) && |
| (mp->m_flags & XFS_MOUNT_GRPID)) { |
| inode->i_uid = fsuid_into_mnt(mnt_userns); |
| inode->i_gid = dir->i_gid; |
| inode->i_mode = mode; |
| } else { |
| inode_init_owner(mnt_userns, inode, dir, mode); |
| } |
| |
| /* |
| * If the group ID of the new file does not match the effective group |
| * ID or one of the supplementary group IDs, the S_ISGID bit is cleared |
| * (and only if the irix_sgid_inherit compatibility variable is set). |
| */ |
| if (irix_sgid_inherit && |
| (inode->i_mode & S_ISGID) && |
| !in_group_p(i_gid_into_mnt(mnt_userns, inode))) |
| inode->i_mode &= ~S_ISGID; |
| |
| ip->i_disk_size = 0; |
| ip->i_df.if_nextents = 0; |
| ASSERT(ip->i_nblocks == 0); |
| |
| tv = current_time(inode); |
| inode->i_mtime = tv; |
| inode->i_atime = tv; |
| inode->i_ctime = tv; |
| |
| ip->i_extsize = 0; |
| ip->i_diflags = 0; |
| |
| if (xfs_sb_version_has_v3inode(&mp->m_sb)) { |
| inode_set_iversion(inode, 1); |
| ip->i_cowextsize = 0; |
| ip->i_crtime = tv; |
| } |
| |
| flags = XFS_ILOG_CORE; |
| switch (mode & S_IFMT) { |
| case S_IFIFO: |
| case S_IFCHR: |
| case S_IFBLK: |
| case S_IFSOCK: |
| ip->i_df.if_format = XFS_DINODE_FMT_DEV; |
| ip->i_df.if_flags = 0; |
| flags |= XFS_ILOG_DEV; |
| break; |
| case S_IFREG: |
| case S_IFDIR: |
| if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) |
| xfs_inode_inherit_flags(ip, pip); |
| if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) |
| xfs_inode_inherit_flags2(ip, pip); |
| /* FALLTHROUGH */ |
| case S_IFLNK: |
| ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; |
| ip->i_df.if_flags = XFS_IFEXTENTS; |
| ip->i_df.if_bytes = 0; |
| ip->i_df.if_u1.if_root = NULL; |
| break; |
| default: |
| ASSERT(0); |
| } |
| |
| /* |
| * If we need to create attributes immediately after allocating the |
| * inode, initialise an empty attribute fork right now. We use the |
| * default fork offset for attributes here as we don't know exactly what |
| * size or how many attributes we might be adding. We can do this |
| * safely here because we know the data fork is completely empty and |
| * this saves us from needing to run a separate transaction to set the |
| * fork offset in the immediate future. |
| */ |
| if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) { |
| ip->i_forkoff = xfs_default_attroffset(ip) >> 3; |
| ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); |
| ip->i_afp->if_flags = XFS_IFEXTENTS; |
| } |
| |
| /* |
| * Log the new values stuffed into the inode. |
| */ |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_log_inode(tp, ip, flags); |
| |
| /* now that we have an i_mode we can setup the inode structure */ |
| xfs_setup_inode(ip); |
| |
| *ipp = ip; |
| return 0; |
| } |
| |
| /* |
| * Allocates a new inode from disk and return a pointer to the incore copy. This |
| * routine will internally commit the current transaction and allocate a new one |
| * if we needed to allocate more on-disk free inodes to perform the requested |
| * operation. |
| * |
| * If we are allocating quota inodes, we do not have a parent inode to attach to |
| * or associate with (i.e. dp == NULL) because they are not linked into the |
| * directory structure - they are attached directly to the superblock - and so |
| * have no parent. |
| */ |
| int |
| xfs_dir_ialloc( |
| struct user_namespace *mnt_userns, |
| struct xfs_trans **tpp, |
| struct xfs_inode *dp, |
| umode_t mode, |
| xfs_nlink_t nlink, |
| dev_t rdev, |
| prid_t prid, |
| bool init_xattrs, |
| struct xfs_inode **ipp) |
| { |
| struct xfs_buf *agibp; |
| xfs_ino_t parent_ino = dp ? dp->i_ino : 0; |
| xfs_ino_t ino; |
| int error; |
| |
| ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); |
| |
| /* |
| * Call the space management code to pick the on-disk inode to be |
| * allocated. |
| */ |
| error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp); |
| if (error) |
| return error; |
| |
| if (!agibp) |
| return -ENOSPC; |
| |
| /* Allocate an inode from the selected AG */ |
| error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino); |
| if (error) |
| return error; |
| ASSERT(ino != NULLFSINO); |
| |
| return xfs_init_new_inode(mnt_userns, *tpp, dp, ino, mode, nlink, rdev, |
| prid, init_xattrs, ipp); |
| } |
| |
| /* |
| * Decrement the link count on an inode & log the change. If this causes the |
| * link count to go to zero, move the inode to AGI unlinked list so that it can |
| * be freed when the last active reference goes away via xfs_inactive(). |
| */ |
| static int /* error */ |
| xfs_droplink( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip) |
| { |
| xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| |
| drop_nlink(VFS_I(ip)); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| if (VFS_I(ip)->i_nlink) |
| return 0; |
| |
| return xfs_iunlink(tp, ip); |
| } |
| |
| /* |
| * Increment the link count on an inode & log the change. |
| */ |
| static void |
| xfs_bumplink( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip) |
| { |
| xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| |
| inc_nlink(VFS_I(ip)); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| } |
| |
| int |
| xfs_create( |
| struct user_namespace *mnt_userns, |
| xfs_inode_t *dp, |
| struct xfs_name *name, |
| umode_t mode, |
| dev_t rdev, |
| bool init_xattrs, |
| xfs_inode_t **ipp) |
| { |
| int is_dir = S_ISDIR(mode); |
| struct xfs_mount *mp = dp->i_mount; |
| struct xfs_inode *ip = NULL; |
| struct xfs_trans *tp = NULL; |
| int error; |
| bool unlock_dp_on_error = false; |
| prid_t prid; |
| struct xfs_dquot *udqp = NULL; |
| struct xfs_dquot *gdqp = NULL; |
| struct xfs_dquot *pdqp = NULL; |
| struct xfs_trans_res *tres; |
| uint resblks; |
| |
| trace_xfs_create(dp, name); |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| prid = xfs_get_initial_prid(dp); |
| |
| /* |
| * Make sure that we have allocated dquot(s) on disk. |
| */ |
| error = xfs_qm_vop_dqalloc(dp, fsuid_into_mnt(mnt_userns), |
| fsgid_into_mnt(mnt_userns), prid, |
| XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| &udqp, &gdqp, &pdqp); |
| if (error) |
| return error; |
| |
| if (is_dir) { |
| resblks = XFS_MKDIR_SPACE_RES(mp, name->len); |
| tres = &M_RES(mp)->tr_mkdir; |
| } else { |
| resblks = XFS_CREATE_SPACE_RES(mp, name->len); |
| tres = &M_RES(mp)->tr_create; |
| } |
| |
| /* |
| * Initially assume that the file does not exist and |
| * reserve the resources for that case. If that is not |
| * the case we'll drop the one we have and get a more |
| * appropriate transaction later. |
| */ |
| error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, |
| &tp); |
| if (error == -ENOSPC) { |
| /* flush outstanding delalloc blocks and retry */ |
| xfs_flush_inodes(mp); |
| error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, |
| resblks, &tp); |
| } |
| if (error) |
| goto out_release_dquots; |
| |
| xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); |
| unlock_dp_on_error = true; |
| |
| error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, |
| XFS_IEXT_DIR_MANIP_CNT(mp)); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * A newly created regular or special file just has one directory |
| * entry pointing to them, but a directory also the "." entry |
| * pointing to itself. |
| */ |
| error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, is_dir ? 2 : 1, rdev, |
| prid, init_xattrs, &ip); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * Now we join the directory inode to the transaction. We do not do it |
| * earlier because xfs_dir_ialloc might commit the previous transaction |
| * (and release all the locks). An error from here on will result in |
| * the transaction cancel unlocking dp so don't do it explicitly in the |
| * error path. |
| */ |
| xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| unlock_dp_on_error = false; |
| |
| error = xfs_dir_createname(tp, dp, name, ip->i_ino, |
| resblks - XFS_IALLOC_SPACE_RES(mp)); |
| if (error) { |
| ASSERT(error != -ENOSPC); |
| goto out_trans_cancel; |
| } |
| xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| |
| if (is_dir) { |
| error = xfs_dir_init(tp, ip, dp); |
| if (error) |
| goto out_trans_cancel; |
| |
| xfs_bumplink(tp, dp); |
| } |
| |
| /* |
| * If this is a synchronous mount, make sure that the |
| * create transaction goes to disk before returning to |
| * the user. |
| */ |
| if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| /* |
| * Attach the dquot(s) to the inodes and modify them incore. |
| * These ids of the inode couldn't have changed since the new |
| * inode has been locked ever since it was created. |
| */ |
| xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto out_release_inode; |
| |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| *ipp = ip; |
| return 0; |
| |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| out_release_inode: |
| /* |
| * Wait until after the current transaction is aborted to finish the |
| * setup of the inode and release the inode. This prevents recursive |
| * transactions and deadlocks from xfs_inactive. |
| */ |
| if (ip) { |
| xfs_finish_inode_setup(ip); |
| xfs_irele(ip); |
| } |
| out_release_dquots: |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| if (unlock_dp_on_error) |
| xfs_iunlock(dp, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| int |
| xfs_create_tmpfile( |
| struct user_namespace *mnt_userns, |
| struct xfs_inode *dp, |
| umode_t mode, |
| struct xfs_inode **ipp) |
| { |
| struct xfs_mount *mp = dp->i_mount; |
| struct xfs_inode *ip = NULL; |
| struct xfs_trans *tp = NULL; |
| int error; |
| prid_t prid; |
| struct xfs_dquot *udqp = NULL; |
| struct xfs_dquot *gdqp = NULL; |
| struct xfs_dquot *pdqp = NULL; |
| struct xfs_trans_res *tres; |
| uint resblks; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| prid = xfs_get_initial_prid(dp); |
| |
| /* |
| * Make sure that we have allocated dquot(s) on disk. |
| */ |
| error = xfs_qm_vop_dqalloc(dp, fsuid_into_mnt(mnt_userns), |
| fsgid_into_mnt(mnt_userns), prid, |
| XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| &udqp, &gdqp, &pdqp); |
| if (error) |
| return error; |
| |
| resblks = XFS_IALLOC_SPACE_RES(mp); |
| tres = &M_RES(mp)->tr_create_tmpfile; |
| |
| error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, |
| &tp); |
| if (error) |
| goto out_release_dquots; |
| |
| error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, 0, 0, prid, |
| false, &ip); |
| if (error) |
| goto out_trans_cancel; |
| |
| if (mp->m_flags & XFS_MOUNT_WSYNC) |
| xfs_trans_set_sync(tp); |
| |
| /* |
| * Attach the dquot(s) to the inodes and modify them incore. |
| * These ids of the inode couldn't have changed since the new |
| * inode has been locked ever since it was created. |
| */ |
| xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| |
| error = xfs_iunlink(tp, ip); |
| if (error) |
| goto out_trans_cancel; |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto out_release_inode; |
| |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| *ipp = ip; |
| return 0; |
| |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| out_release_inode: |
| /* |
| * Wait until after the current transaction is aborted to finish the |
| * setup of the inode and release the inode. This prevents recursive |
| * transactions and deadlocks from xfs_inactive. |
| */ |
| if (ip) { |
| xfs_finish_inode_setup(ip); |
| xfs_irele(ip); |
| } |
| out_release_dquots: |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| return error; |
| } |
| |
| int |
| xfs_link( |
| xfs_inode_t *tdp, |
| xfs_inode_t *sip, |
| struct xfs_name *target_name) |
| { |
| xfs_mount_t *mp = tdp->i_mount; |
| xfs_trans_t *tp; |
| int error; |
| int resblks; |
| |
| trace_xfs_link(tdp, target_name); |
| |
| ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| error = xfs_qm_dqattach(sip); |
| if (error) |
| goto std_return; |
| |
| error = xfs_qm_dqattach(tdp); |
| if (error) |
| goto std_return; |
| |
| resblks = XFS_LINK_SPACE_RES(mp, target_name->len); |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| resblks = 0; |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); |
| } |
| if (error) |
| goto std_return; |
| |
| xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); |
| |
| error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, |
| XFS_IEXT_DIR_MANIP_CNT(mp)); |
| if (error) |
| goto error_return; |
| |
| /* |
| * If we are using project inheritance, we only allow hard link |
| * creation in our tree when the project IDs are the same; else |
| * the tree quota mechanism could be circumvented. |
| */ |
| if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && |
| tdp->i_projid != sip->i_projid)) { |
| error = -EXDEV; |
| goto error_return; |
| } |
| |
| if (!resblks) { |
| error = xfs_dir_canenter(tp, tdp, target_name); |
| if (error) |
| goto error_return; |
| } |
| |
| /* |
| * Handle initial link state of O_TMPFILE inode |
| */ |
| if (VFS_I(sip)->i_nlink == 0) { |
| error = xfs_iunlink_remove(tp, sip); |
| if (error) |
| goto error_return; |
| } |
| |
| error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, |
| resblks); |
| if (error) |
| goto error_return; |
| xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); |
| |
| xfs_bumplink(tp, sip); |
| |
| /* |
| * If this is a synchronous mount, make sure that the |
| * link transaction goes to disk before returning to |
| * the user. |
| */ |
| if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| return xfs_trans_commit(tp); |
| |
| error_return: |
| xfs_trans_cancel(tp); |
| std_return: |
| return error; |
| } |
| |
| /* Clear the reflink flag and the cowblocks tag if possible. */ |
| static void |
| xfs_itruncate_clear_reflink_flags( |
| struct xfs_inode *ip) |
| { |
| struct xfs_ifork *dfork; |
| struct xfs_ifork *cfork; |
| |
| if (!xfs_is_reflink_inode(ip)) |
| return; |
| dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); |
| cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| if (dfork->if_bytes == 0 && cfork->if_bytes == 0) |
| ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; |
| if (cfork->if_bytes == 0) |
| xfs_inode_clear_cowblocks_tag(ip); |
| } |
| |
| /* |
| * Free up the underlying blocks past new_size. The new size must be smaller |
| * than the current size. This routine can be used both for the attribute and |
| * data fork, and does not modify the inode size, which is left to the caller. |
| * |
| * The transaction passed to this routine must have made a permanent log |
| * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the |
| * given transaction and start new ones, so make sure everything involved in |
| * the transaction is tidy before calling here. Some transaction will be |
| * returned to the caller to be committed. The incoming transaction must |
| * already include the inode, and both inode locks must be held exclusively. |
| * The inode must also be "held" within the transaction. On return the inode |
| * will be "held" within the returned transaction. This routine does NOT |
| * require any disk space to be reserved for it within the transaction. |
| * |
| * If we get an error, we must return with the inode locked and linked into the |
| * current transaction. This keeps things simple for the higher level code, |
| * because it always knows that the inode is locked and held in the transaction |
| * that returns to it whether errors occur or not. We don't mark the inode |
| * dirty on error so that transactions can be easily aborted if possible. |
| */ |
| int |
| xfs_itruncate_extents_flags( |
| struct xfs_trans **tpp, |
| struct xfs_inode *ip, |
| int whichfork, |
| xfs_fsize_t new_size, |
| int flags) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp = *tpp; |
| xfs_fileoff_t first_unmap_block; |
| xfs_filblks_t unmap_len; |
| int error = 0; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(!atomic_read(&VFS_I(ip)->i_count) || |
| xfs_isilocked(ip, XFS_IOLOCK_EXCL)); |
| ASSERT(new_size <= XFS_ISIZE(ip)); |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| ASSERT(ip->i_itemp != NULL); |
| ASSERT(ip->i_itemp->ili_lock_flags == 0); |
| ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); |
| |
| trace_xfs_itruncate_extents_start(ip, new_size); |
| |
| flags |= xfs_bmapi_aflag(whichfork); |
| |
| /* |
| * Since it is possible for space to become allocated beyond |
| * the end of the file (in a crash where the space is allocated |
| * but the inode size is not yet updated), simply remove any |
| * blocks which show up between the new EOF and the maximum |
| * possible file size. |
| * |
| * We have to free all the blocks to the bmbt maximum offset, even if |
| * the page cache can't scale that far. |
| */ |
| first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| if (!xfs_verify_fileoff(mp, first_unmap_block)) { |
| WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); |
| return 0; |
| } |
| |
| unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; |
| while (unmap_len > 0) { |
| ASSERT(tp->t_firstblock == NULLFSBLOCK); |
| error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, |
| flags, XFS_ITRUNC_MAX_EXTENTS); |
| if (error) |
| goto out; |
| |
| /* free the just unmapped extents */ |
| error = xfs_defer_finish(&tp); |
| if (error) |
| goto out; |
| } |
| |
| if (whichfork == XFS_DATA_FORK) { |
| /* Remove all pending CoW reservations. */ |
| error = xfs_reflink_cancel_cow_blocks(ip, &tp, |
| first_unmap_block, XFS_MAX_FILEOFF, true); |
| if (error) |
| goto out; |
| |
| xfs_itruncate_clear_reflink_flags(ip); |
| } |
| |
| /* |
| * Always re-log the inode so that our permanent transaction can keep |
| * on rolling it forward in the log. |
| */ |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| trace_xfs_itruncate_extents_end(ip, new_size); |
| |
| out: |
| *tpp = tp; |
| return error; |
| } |
| |
| int |
| xfs_release( |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp = ip->i_mount; |
| int error; |
| |
| if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) |
| return 0; |
| |
| /* If this is a read-only mount, don't do this (would generate I/O) */ |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return 0; |
| |
| if (!XFS_FORCED_SHUTDOWN(mp)) { |
| int truncated; |
| |
| /* |
| * If we previously truncated this file and removed old data |
| * in the process, we want to initiate "early" writeout on |
| * the last close. This is an attempt to combat the notorious |
| * NULL files problem which is particularly noticeable from a |
| * truncate down, buffered (re-)write (delalloc), followed by |
| * a crash. What we are effectively doing here is |
| * significantly reducing the time window where we'd otherwise |
| * be exposed to that problem. |
| */ |
| truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); |
| if (truncated) { |
| xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); |
| if (ip->i_delayed_blks > 0) { |
| error = filemap_flush(VFS_I(ip)->i_mapping); |
| if (error) |
| return error; |
| } |
| } |
| } |
| |
| if (VFS_I(ip)->i_nlink == 0) |
| return 0; |
| |
| if (xfs_can_free_eofblocks(ip, false)) { |
| |
| /* |
| * Check if the inode is being opened, written and closed |
| * frequently and we have delayed allocation blocks outstanding |
| * (e.g. streaming writes from the NFS server), truncating the |
| * blocks past EOF will cause fragmentation to occur. |
| * |
| * In this case don't do the truncation, but we have to be |
| * careful how we detect this case. Blocks beyond EOF show up as |
| * i_delayed_blks even when the inode is clean, so we need to |
| * truncate them away first before checking for a dirty release. |
| * Hence on the first dirty close we will still remove the |
| * speculative allocation, but after that we will leave it in |
| * place. |
| */ |
| if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) |
| return 0; |
| /* |
| * If we can't get the iolock just skip truncating the blocks |
| * past EOF because we could deadlock with the mmap_lock |
| * otherwise. We'll get another chance to drop them once the |
| * last reference to the inode is dropped, so we'll never leak |
| * blocks permanently. |
| */ |
| if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| error = xfs_free_eofblocks(ip); |
| xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| if (error) |
| return error; |
| } |
| |
| /* delalloc blocks after truncation means it really is dirty */ |
| if (ip->i_delayed_blks) |
| xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); |
| } |
| return 0; |
| } |
| |
| /* |
| * xfs_inactive_truncate |
| * |
| * Called to perform a truncate when an inode becomes unlinked. |
| */ |
| STATIC int |
| xfs_inactive_truncate( |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); |
| if (error) { |
| ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| return error; |
| } |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, 0); |
| |
| /* |
| * Log the inode size first to prevent stale data exposure in the event |
| * of a system crash before the truncate completes. See the related |
| * comment in xfs_vn_setattr_size() for details. |
| */ |
| ip->i_disk_size = 0; |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); |
| if (error) |
| goto error_trans_cancel; |
| |
| ASSERT(ip->i_df.if_nextents == 0); |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto error_unlock; |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return 0; |
| |
| error_trans_cancel: |
| xfs_trans_cancel(tp); |
| error_unlock: |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| /* |
| * xfs_inactive_ifree() |
| * |
| * Perform the inode free when an inode is unlinked. |
| */ |
| STATIC int |
| xfs_inactive_ifree( |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| /* |
| * We try to use a per-AG reservation for any block needed by the finobt |
| * tree, but as the finobt feature predates the per-AG reservation |
| * support a degraded file system might not have enough space for the |
| * reservation at mount time. In that case try to dip into the reserved |
| * pool and pray. |
| * |
| * Send a warning if the reservation does happen to fail, as the inode |
| * now remains allocated and sits on the unlinked list until the fs is |
| * repaired. |
| */ |
| if (unlikely(mp->m_finobt_nores)) { |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, |
| XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, |
| &tp); |
| } else { |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); |
| } |
| if (error) { |
| if (error == -ENOSPC) { |
| xfs_warn_ratelimited(mp, |
| "Failed to remove inode(s) from unlinked list. " |
| "Please free space, unmount and run xfs_repair."); |
| } else { |
| ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| } |
| return error; |
| } |
| |
| /* |
| * We do not hold the inode locked across the entire rolling transaction |
| * here. We only need to hold it for the first transaction that |
| * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the |
| * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode |
| * here breaks the relationship between cluster buffer invalidation and |
| * stale inode invalidation on cluster buffer item journal commit |
| * completion, and can result in leaving dirty stale inodes hanging |
| * around in memory. |
| * |
| * We have no need for serialising this inode operation against other |
| * operations - we freed the inode and hence reallocation is required |
| * and that will serialise on reallocating the space the deferops need |
| * to free. Hence we can unlock the inode on the first commit of |
| * the transaction rather than roll it right through the deferops. This |
| * avoids relogging the XFS_ISTALE inode. |
| * |
| * We check that xfs_ifree() hasn't grown an internal transaction roll |
| * by asserting that the inode is still locked when it returns. |
| */ |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| |
| error = xfs_ifree(tp, ip); |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| if (error) { |
| /* |
| * If we fail to free the inode, shut down. The cancel |
| * might do that, we need to make sure. Otherwise the |
| * inode might be lost for a long time or forever. |
| */ |
| if (!XFS_FORCED_SHUTDOWN(mp)) { |
| xfs_notice(mp, "%s: xfs_ifree returned error %d", |
| __func__, error); |
| xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
| } |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| /* |
| * Credit the quota account(s). The inode is gone. |
| */ |
| xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); |
| |
| /* |
| * Just ignore errors at this point. There is nothing we can do except |
| * to try to keep going. Make sure it's not a silent error. |
| */ |
| error = xfs_trans_commit(tp); |
| if (error) |
| xfs_notice(mp, "%s: xfs_trans_commit returned error %d", |
| __func__, error); |
| |
| return 0; |
| } |
| |
| /* |
| * xfs_inactive |
| * |
| * This is called when the vnode reference count for the vnode |
| * goes to zero. If the file has been unlinked, then it must |
| * now be truncated. Also, we clear all of the read-ahead state |
| * kept for the inode here since the file is now closed. |
| */ |
| void |
| xfs_inactive( |
| xfs_inode_t *ip) |
| { |
| struct xfs_mount *mp; |
| int error; |
| int truncate = 0; |
| |
| /* |
| * If the inode is already free, then there can be nothing |
| * to clean up here. |
| */ |
| if (VFS_I(ip)->i_mode == 0) { |
| ASSERT(ip->i_df.if_broot_bytes == 0); |
| return; |
| } |
| |
| mp = ip->i_mount; |
| ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); |
| |
| /* If this is a read-only mount, don't do this (would generate I/O) */ |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return; |
| |
| /* Metadata inodes require explicit resource cleanup. */ |
| if (xfs_is_metadata_inode(ip)) |
| return; |
| |
| /* Try to clean out the cow blocks if there are any. */ |
| if (xfs_inode_has_cow_data(ip)) |
| xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); |
| |
| if (VFS_I(ip)->i_nlink != 0) { |
| /* |
| * force is true because we are evicting an inode from the |
| * cache. Post-eof blocks must be freed, lest we end up with |
| * broken free space accounting. |
| * |
| * Note: don't bother with iolock here since lockdep complains |
| * about acquiring it in reclaim context. We have the only |
| * reference to the inode at this point anyways. |
| */ |
| if (xfs_can_free_eofblocks(ip, true)) |
| xfs_free_eofblocks(ip); |
| |
| return; |
| } |
| |
| if (S_ISREG(VFS_I(ip)->i_mode) && |
| (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || |
| ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) |
| truncate = 1; |
| |
| error = xfs_qm_dqattach(ip); |
| if (error) |
| return; |
| |
| if (S_ISLNK(VFS_I(ip)->i_mode)) |
| error = xfs_inactive_symlink(ip); |
| else if (truncate) |
| error = xfs_inactive_truncate(ip); |
| if (error) |
| return; |
| |
| /* |
| * If there are attributes associated with the file then blow them away |
| * now. The code calls a routine that recursively deconstructs the |
| * attribute fork. If also blows away the in-core attribute fork. |
| */ |
| if (XFS_IFORK_Q(ip)) { |
| error = xfs_attr_inactive(ip); |
| if (error) |
| return; |
| } |
| |
| ASSERT(!ip->i_afp); |
| ASSERT(ip->i_forkoff == 0); |
| |
| /* |
| * Free the inode. |
| */ |
| error = xfs_inactive_ifree(ip); |
| if (error) |
| return; |
| |
| /* |
| * Release the dquots held by inode, if any. |
| */ |
| xfs_qm_dqdetach(ip); |
| } |
| |
| /* |
| * In-Core Unlinked List Lookups |
| * ============================= |
| * |
| * Every inode is supposed to be reachable from some other piece of metadata |
| * with the exception of the root directory. Inodes with a connection to a |
| * file descriptor but not linked from anywhere in the on-disk directory tree |
| * are collectively known as unlinked inodes, though the filesystem itself |
| * maintains links to these inodes so that on-disk metadata are consistent. |
| * |
| * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI |
| * header contains a number of buckets that point to an inode, and each inode |
| * record has a pointer to the next inode in the hash chain. This |
| * singly-linked list causes scaling problems in the iunlink remove function |
| * because we must walk that list to find the inode that points to the inode |
| * being removed from the unlinked hash bucket list. |
| * |
| * What if we modelled the unlinked list as a collection of records capturing |
| * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd |
| * have a fast way to look up unlinked list predecessors, which avoids the |
| * slow list walk. That's exactly what we do here (in-core) with a per-AG |
| * rhashtable. |
| * |
| * Because this is a backref cache, we ignore operational failures since the |
| * iunlink code can fall back to the slow bucket walk. The only errors that |
| * should bubble out are for obviously incorrect situations. |
| * |
| * All users of the backref cache MUST hold the AGI buffer lock to serialize |
| * access or have otherwise provided for concurrency control. |
| */ |
| |
| /* Capture a "X.next_unlinked = Y" relationship. */ |
| struct xfs_iunlink { |
| struct rhash_head iu_rhash_head; |
| xfs_agino_t iu_agino; /* X */ |
| xfs_agino_t iu_next_unlinked; /* Y */ |
| }; |
| |
| /* Unlinked list predecessor lookup hashtable construction */ |
| static int |
| xfs_iunlink_obj_cmpfn( |
| struct rhashtable_compare_arg *arg, |
| const void *obj) |
| { |
| const xfs_agino_t *key = arg->key; |
| const struct xfs_iunlink *iu = obj; |
| |
| if (iu->iu_next_unlinked != *key) |
| return 1; |
| return 0; |
| } |
| |
| static const struct rhashtable_params xfs_iunlink_hash_params = { |
| .min_size = XFS_AGI_UNLINKED_BUCKETS, |
| .key_len = sizeof(xfs_agino_t), |
| .key_offset = offsetof(struct xfs_iunlink, |
| iu_next_unlinked), |
| .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), |
| .automatic_shrinking = true, |
| .obj_cmpfn = xfs_iunlink_obj_cmpfn, |
| }; |
| |
| /* |
| * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such |
| * relation is found. |
| */ |
| static xfs_agino_t |
| xfs_iunlink_lookup_backref( |
| struct xfs_perag *pag, |
| xfs_agino_t agino) |
| { |
| struct xfs_iunlink *iu; |
| |
| iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, |
| xfs_iunlink_hash_params); |
| return iu ? iu->iu_agino : NULLAGINO; |
| } |
| |
| /* |
| * Take ownership of an iunlink cache entry and insert it into the hash table. |
| * If successful, the entry will be owned by the cache; if not, it is freed. |
| * Either way, the caller does not own @iu after this call. |
| */ |
| static int |
| xfs_iunlink_insert_backref( |
| struct xfs_perag *pag, |
| struct xfs_iunlink *iu) |
| { |
| int error; |
| |
| error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, |
| &iu->iu_rhash_head, xfs_iunlink_hash_params); |
| /* |
| * Fail loudly if there already was an entry because that's a sign of |
| * corruption of in-memory data. Also fail loudly if we see an error |
| * code we didn't anticipate from the rhashtable code. Currently we |
| * only anticipate ENOMEM. |
| */ |
| if (error) { |
| WARN(error != -ENOMEM, "iunlink cache insert error %d", error); |
| kmem_free(iu); |
| } |
| /* |
| * Absorb any runtime errors that aren't a result of corruption because |
| * this is a cache and we can always fall back to bucket list scanning. |
| */ |
| if (error != 0 && error != -EEXIST) |
| error = 0; |
| return error; |
| } |
| |
| /* Remember that @prev_agino.next_unlinked = @this_agino. */ |
| static int |
| xfs_iunlink_add_backref( |
| struct xfs_perag *pag, |
| xfs_agino_t prev_agino, |
| xfs_agino_t this_agino) |
| { |
| struct xfs_iunlink *iu; |
| |
| if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) |
| return 0; |
| |
| iu = kmem_zalloc(sizeof(*iu), KM_NOFS); |
| iu->iu_agino = prev_agino; |
| iu->iu_next_unlinked = this_agino; |
| |
| return xfs_iunlink_insert_backref(pag, iu); |
| } |
| |
| /* |
| * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. |
| * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there |
| * wasn't any such entry then we don't bother. |
| */ |
| static int |
| xfs_iunlink_change_backref( |
| struct xfs_perag *pag, |
| xfs_agino_t agino, |
| xfs_agino_t next_unlinked) |
| { |
| struct xfs_iunlink *iu; |
| int error; |
| |
| /* Look up the old entry; if there wasn't one then exit. */ |
| iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, |
| xfs_iunlink_hash_params); |
| if (!iu) |
| return 0; |
| |
| /* |
| * Remove the entry. This shouldn't ever return an error, but if we |
| * couldn't remove the old entry we don't want to add it again to the |
| * hash table, and if the entry disappeared on us then someone's |
| * violated the locking rules and we need to fail loudly. Either way |
| * we cannot remove the inode because internal state is or would have |
| * been corrupt. |
| */ |
| error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, |
| &iu->iu_rhash_head, xfs_iunlink_hash_params); |
| if (error) |
| return error; |
| |
| /* If there is no new next entry just free our item and return. */ |
| if (next_unlinked == NULLAGINO) { |
| kmem_free(iu); |
| return 0; |
| } |
| |
| /* Update the entry and re-add it to the hash table. */ |
| iu->iu_next_unlinked = next_unlinked; |
| return xfs_iunlink_insert_backref(pag, iu); |
| } |
| |
| /* Set up the in-core predecessor structures. */ |
| int |
| xfs_iunlink_init( |
| struct xfs_perag *pag) |
| { |
| return rhashtable_init(&pag->pagi_unlinked_hash, |
| &xfs_iunlink_hash_params); |
| } |
| |
| /* Free the in-core predecessor structures. */ |
| static void |
| xfs_iunlink_free_item( |
| void *ptr, |
| void *arg) |
| { |
| struct xfs_iunlink *iu = ptr; |
| bool *freed_anything = arg; |
| |
| *freed_anything = true; |
| kmem_free(iu); |
| } |
| |
| void |
| xfs_iunlink_destroy( |
| struct xfs_perag *pag) |
| { |
| bool freed_anything = false; |
| |
| rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, |
| xfs_iunlink_free_item, &freed_anything); |
| |
| ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); |
| } |
| |
| /* |
| * Point the AGI unlinked bucket at an inode and log the results. The caller |
| * is responsible for validating the old value. |
| */ |
| STATIC int |
| xfs_iunlink_update_bucket( |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| struct xfs_buf *agibp, |
| unsigned int bucket_index, |
| xfs_agino_t new_agino) |
| { |
| struct xfs_agi *agi = agibp->b_addr; |
| xfs_agino_t old_value; |
| int offset; |
| |
| ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); |
| |
| old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, |
| old_value, new_agino); |
| |
| /* |
| * We should never find the head of the list already set to the value |
| * passed in because either we're adding or removing ourselves from the |
| * head of the list. |
| */ |
| if (old_value == new_agino) { |
| xfs_buf_mark_corrupt(agibp); |
| return -EFSCORRUPTED; |
| } |
| |
| agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); |
| offset = offsetof(struct xfs_agi, agi_unlinked) + |
| (sizeof(xfs_agino_t) * bucket_index); |
| xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); |
| return 0; |
| } |
| |
| /* Set an on-disk inode's next_unlinked pointer. */ |
| STATIC void |
| xfs_iunlink_update_dinode( |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| xfs_agino_t agino, |
| struct xfs_buf *ibp, |
| struct xfs_dinode *dip, |
| struct xfs_imap *imap, |
| xfs_agino_t next_agino) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| int offset; |
| |
| ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); |
| |
| trace_xfs_iunlink_update_dinode(mp, agno, agino, |
| be32_to_cpu(dip->di_next_unlinked), next_agino); |
| |
| dip->di_next_unlinked = cpu_to_be32(next_agino); |
| offset = imap->im_boffset + |
| offsetof(struct xfs_dinode, di_next_unlinked); |
| |
| /* need to recalc the inode CRC if appropriate */ |
| xfs_dinode_calc_crc(mp, dip); |
| xfs_trans_inode_buf(tp, ibp); |
| xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); |
| } |
| |
| /* Set an in-core inode's unlinked pointer and return the old value. */ |
| STATIC int |
| xfs_iunlink_update_inode( |
| struct xfs_trans *tp, |
| struct xfs_inode *ip, |
| xfs_agnumber_t agno, |
| xfs_agino_t next_agino, |
| xfs_agino_t *old_next_agino) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_dinode *dip; |
| struct xfs_buf *ibp; |
| xfs_agino_t old_value; |
| int error; |
| |
| ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); |
| |
| error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); |
| if (error) |
| return error; |
| dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); |
| |
| /* Make sure the old pointer isn't garbage. */ |
| old_value = be32_to_cpu(dip->di_next_unlinked); |
| if (!xfs_verify_agino_or_null(mp, agno, old_value)) { |
| xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, |
| sizeof(*dip), __this_address); |
| error = -EFSCORRUPTED; |
| goto out; |
| } |
| |
| /* |
| * Since we're updating a linked list, we should never find that the |
| * current pointer is the same as the new value, unless we're |
| * terminating the list. |
| */ |
| *old_next_agino = old_value; |
| if (old_value == next_agino) { |
| if (next_agino != NULLAGINO) { |
| xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, |
| dip, sizeof(*dip), __this_address); |
| error = -EFSCORRUPTED; |
| } |
| goto out; |
| } |
| |
| /* Ok, update the new pointer. */ |
| xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), |
| ibp, dip, &ip->i_imap, next_agino); |
| return 0; |
| out: |
| xfs_trans_brelse(tp, ibp); |
| return error; |
| } |
| |
| /* |
| * This is called when the inode's link count has gone to 0 or we are creating |
| * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. |
| * |
| * We place the on-disk inode on a list in the AGI. It will be pulled from this |
| * list when the inode is freed. |
| */ |
| STATIC int |
| xfs_iunlink( |
| struct xfs_trans *tp, |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_agi *agi; |
| struct xfs_buf *agibp; |
| xfs_agino_t next_agino; |
| xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| int error; |
| |
| ASSERT(VFS_I(ip)->i_nlink == 0); |
| ASSERT(VFS_I(ip)->i_mode != 0); |
| trace_xfs_iunlink(ip); |
| |
| /* Get the agi buffer first. It ensures lock ordering on the list. */ |
| error = xfs_read_agi(mp, tp, agno, &agibp); |
| if (error) |
| return error; |
| agi = agibp->b_addr; |
| |
| /* |
| * Get the index into the agi hash table for the list this inode will |
| * go on. Make sure the pointer isn't garbage and that this inode |
| * isn't already on the list. |
| */ |
| next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| if (next_agino == agino || |
| !xfs_verify_agino_or_null(mp, agno, next_agino)) { |
| xfs_buf_mark_corrupt(agibp); |
| return -EFSCORRUPTED; |
| } |
| |
| if (next_agino != NULLAGINO) { |
| xfs_agino_t old_agino; |
| |
| /* |
| * There is already another inode in the bucket, so point this |
| * inode to the current head of the list. |
| */ |
| error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, |
| &old_agino); |
| if (error) |
| return error; |
| ASSERT(old_agino == NULLAGINO); |
| |
| /* |
| * agino has been unlinked, add a backref from the next inode |
| * back to agino. |
| */ |
| error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino); |
| if (error) |
| return error; |
| } |
| |
| /* Point the head of the list to point to this inode. */ |
| return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); |
| } |
| |
| /* Return the imap, dinode pointer, and buffer for an inode. */ |
| STATIC int |
| xfs_iunlink_map_ino( |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| xfs_agino_t agino, |
| struct xfs_imap *imap, |
| struct xfs_dinode **dipp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| int error; |
| |
| imap->im_blkno = 0; |
| error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); |
| if (error) { |
| xfs_warn(mp, "%s: xfs_imap returned error %d.", |
| __func__, error); |
| return error; |
| } |
| |
| error = xfs_imap_to_bp(mp, tp, imap, bpp); |
| if (error) { |
| xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", |
| __func__, error); |
| return error; |
| } |
| |
| *dipp = xfs_buf_offset(*bpp, imap->im_boffset); |
| return 0; |
| } |
| |
| /* |
| * Walk the unlinked chain from @head_agino until we find the inode that |
| * points to @target_agino. Return the inode number, map, dinode pointer, |
| * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. |
| * |
| * @tp, @pag, @head_agino, and @target_agino are input parameters. |
| * @agino, @imap, @dipp, and @bpp are all output parameters. |
| * |
| * Do not call this function if @target_agino is the head of the list. |
| */ |
| STATIC int |
| xfs_iunlink_map_prev( |
| struct xfs_trans *tp, |
| xfs_agnumber_t agno, |
| xfs_agino_t head_agino, |
| xfs_agino_t target_agino, |
| xfs_agino_t *agino, |
| struct xfs_imap *imap, |
| struct xfs_dinode **dipp, |
| struct xfs_buf **bpp, |
| struct xfs_perag *pag) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| xfs_agino_t next_agino; |
| int error; |
| |
| ASSERT(head_agino != target_agino); |
| *bpp = NULL; |
| |
| /* See if our backref cache can find it faster. */ |
| *agino = xfs_iunlink_lookup_backref(pag, target_agino); |
| if (*agino != NULLAGINO) { |
| error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); |
| if (error) |
| return error; |
| |
| if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) |
| return 0; |
| |
| /* |
| * If we get here the cache contents were corrupt, so drop the |
| * buffer and fall back to walking the bucket list. |
| */ |
| xfs_trans_brelse(tp, *bpp); |
| *bpp = NULL; |
| WARN_ON_ONCE(1); |
| } |
| |
| trace_xfs_iunlink_map_prev_fallback(mp, agno); |
| |
| /* Otherwise, walk the entire bucket until we find it. */ |
| next_agino = head_agino; |
| while (next_agino != target_agino) { |
| xfs_agino_t unlinked_agino; |
| |
| if (*bpp) |
| xfs_trans_brelse(tp, *bpp); |
| |
| *agino = next_agino; |
| error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, |
| bpp); |
| if (error) |
| return error; |
| |
| unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); |
| /* |
| * Make sure this pointer is valid and isn't an obvious |
| * infinite loop. |
| */ |
| if (!xfs_verify_agino(mp, agno, unlinked_agino) || |
| next_agino == unlinked_agino) { |
| XFS_CORRUPTION_ERROR(__func__, |
| XFS_ERRLEVEL_LOW, mp, |
| *dipp, sizeof(**dipp)); |
| error = -EFSCORRUPTED; |
| return error; |
| } |
| next_agino = unlinked_agino; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Pull the on-disk inode from the AGI unlinked list. |
| */ |
| STATIC int |
| xfs_iunlink_remove( |
| struct xfs_trans *tp, |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_agi *agi; |
| struct xfs_buf *agibp; |
| struct xfs_buf *last_ibp; |
| struct xfs_dinode *last_dip = NULL; |
| xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| xfs_agino_t next_agino; |
| xfs_agino_t head_agino; |
| short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| int error; |
| |
| trace_xfs_iunlink_remove(ip); |
| |
| /* Get the agi buffer first. It ensures lock ordering on the list. */ |
| error = xfs_read_agi(mp, tp, agno, &agibp); |
| if (error) |
| return error; |
| agi = agibp->b_addr; |
| |
| /* |
| * Get the index into the agi hash table for the list this inode will |
| * go on. Make sure the head pointer isn't garbage. |
| */ |
| head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| if (!xfs_verify_agino(mp, agno, head_agino)) { |
| XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
| agi, sizeof(*agi)); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Set our inode's next_unlinked pointer to NULL and then return |
| * the old pointer value so that we can update whatever was previous |
| * to us in the list to point to whatever was next in the list. |
| */ |
| error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); |
| if (error) |
| return error; |
| |
| /* |
| * If there was a backref pointing from the next inode back to this |
| * one, remove it because we've removed this inode from the list. |
| * |
| * Later, if this inode was in the middle of the list we'll update |
| * this inode's backref to point from the next inode. |
| */ |
| if (next_agino != NULLAGINO) { |
| error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, |
| NULLAGINO); |
| if (error) |
| return error; |
| } |
| |
| if (head_agino != agino) { |
| struct xfs_imap imap; |
| xfs_agino_t prev_agino; |
| |
| /* We need to search the list for the inode being freed. */ |
| error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, |
| &prev_agino, &imap, &last_dip, &last_ibp, |
| agibp->b_pag); |
| if (error) |
| return error; |
| |
| /* Point the previous inode on the list to the next inode. */ |
| xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, |
| last_dip, &imap, next_agino); |
| |
| /* |
| * Now we deal with the backref for this inode. If this inode |
| * pointed at a real inode, change the backref that pointed to |
| * us to point to our old next. If this inode was the end of |
| * the list, delete the backref that pointed to us. Note that |
| * change_backref takes care of deleting the backref if |
| * next_agino is NULLAGINO. |
| */ |
| return xfs_iunlink_change_backref(agibp->b_pag, agino, |
| next_agino); |
| } |
| |
| /* Point the head of the list to the next unlinked inode. */ |
| return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, |
| next_agino); |
| } |
| |
| /* |
| * Look up the inode number specified and if it is not already marked XFS_ISTALE |
| * mark it stale. We should only find clean inodes in this lookup that aren't |
| * already stale. |
| */ |
| static void |
| xfs_ifree_mark_inode_stale( |
| struct xfs_buf *bp, |
| struct xfs_inode *free_ip, |
| xfs_ino_t inum) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_perag *pag = bp->b_pag; |
| struct xfs_inode_log_item *iip; |
| struct xfs_inode *ip; |
| |
| retry: |
| rcu_read_lock(); |
| ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); |
| |
| /* Inode not in memory, nothing to do */ |
| if (!ip) { |
| rcu_read_unlock(); |
| return; |
| } |
| |
| /* |
| * because this is an RCU protected lookup, we could find a recently |
| * freed or even reallocated inode during the lookup. We need to check |
| * under the i_flags_lock for a valid inode here. Skip it if it is not |
| * valid, the wrong inode or stale. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) |
| goto out_iflags_unlock; |
| |
| /* |
| * Don't try to lock/unlock the current inode, but we _cannot_ skip the |
| * other inodes that we did not find in the list attached to the buffer |
| * and are not already marked stale. If we can't lock it, back off and |
| * retry. |
| */ |
| if (ip != free_ip) { |
| if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
| spin_unlock(&ip->i_flags_lock); |
| rcu_read_unlock(); |
| delay(1); |
| goto retry; |
| } |
| } |
| ip->i_flags |= XFS_ISTALE; |
| |
| /* |
| * If the inode is flushing, it is already attached to the buffer. All |
| * we needed to do here is mark the inode stale so buffer IO completion |
| * will remove it from the AIL. |
| */ |
| iip = ip->i_itemp; |
| if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { |
| ASSERT(!list_empty(&iip->ili_item.li_bio_list)); |
| ASSERT(iip->ili_last_fields); |
| goto out_iunlock; |
| } |
| |
| /* |
| * Inodes not attached to the buffer can be released immediately. |
| * Everything else has to go through xfs_iflush_abort() on journal |
| * commit as the flock synchronises removal of the inode from the |
| * cluster buffer against inode reclaim. |
| */ |
| if (!iip || list_empty(&iip->ili_item.li_bio_list)) |
| goto out_iunlock; |
| |
| __xfs_iflags_set(ip, XFS_IFLUSHING); |
| spin_unlock(&ip->i_flags_lock); |
| rcu_read_unlock(); |
| |
| /* we have a dirty inode in memory that has not yet been flushed. */ |
| spin_lock(&iip->ili_lock); |
| iip->ili_last_fields = iip->ili_fields; |
| iip->ili_fields = 0; |
| iip->ili_fsync_fields = 0; |
| spin_unlock(&iip->ili_lock); |
| ASSERT(iip->ili_last_fields); |
| |
| if (ip != free_ip) |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return; |
| |
| out_iunlock: |
| if (ip != free_ip) |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| out_iflags_unlock: |
| spin_unlock(&ip->i_flags_lock); |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * A big issue when freeing the inode cluster is that we _cannot_ skip any |
| * inodes that are in memory - they all must be marked stale and attached to |
| * the cluster buffer. |
| */ |
| STATIC int |
| xfs_ifree_cluster( |
| struct xfs_inode *free_ip, |
| struct xfs_trans *tp, |
| struct xfs_icluster *xic) |
| { |
| struct xfs_mount *mp = free_ip->i_mount; |
| struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| struct xfs_buf *bp; |
| xfs_daddr_t blkno; |
| xfs_ino_t inum = xic->first_ino; |
| int nbufs; |
| int i, j; |
| int ioffset; |
| int error; |
| |
| nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; |
| |
| for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { |
| /* |
| * The allocation bitmap tells us which inodes of the chunk were |
| * physically allocated. Skip the cluster if an inode falls into |
| * a sparse region. |
| */ |
| ioffset = inum - xic->first_ino; |
| if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { |
| ASSERT(ioffset % igeo->inodes_per_cluster == 0); |
| continue; |
| } |
| |
| blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
| XFS_INO_TO_AGBNO(mp, inum)); |
| |
| /* |
| * We obtain and lock the backing buffer first in the process |
| * here to ensure dirty inodes attached to the buffer remain in |
| * the flushing state while we mark them stale. |
| * |
| * If we scan the in-memory inodes first, then buffer IO can |
| * complete before we get a lock on it, and hence we may fail |
| * to mark all the active inodes on the buffer stale. |
| */ |
| error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, |
| mp->m_bsize * igeo->blocks_per_cluster, |
| XBF_UNMAPPED, &bp); |
| if (error) |
| return error; |
| |
| /* |
| * This buffer may not have been correctly initialised as we |
| * didn't read it from disk. That's not important because we are |
| * only using to mark the buffer as stale in the log, and to |
| * attach stale cached inodes on it. That means it will never be |
| * dispatched for IO. If it is, we want to know about it, and we |
| * want it to fail. We can acheive this by adding a write |
| * verifier to the buffer. |
| */ |
| bp->b_ops = &xfs_inode_buf_ops; |
| |
| /* |
| * Now we need to set all the cached clean inodes as XFS_ISTALE, |
| * too. This requires lookups, and will skip inodes that we've |
| * already marked XFS_ISTALE. |
| */ |
| for (i = 0; i < igeo->inodes_per_cluster; i++) |
| xfs_ifree_mark_inode_stale(bp, free_ip, inum + i); |
| |
| xfs_trans_stale_inode_buf(tp, bp); |
| xfs_trans_binval(tp, bp); |
| } |
| return 0; |
| } |
| |
| /* |
| * This is called to return an inode to the inode free list. |
| * The inode should already be truncated to 0 length and have |
| * no pages associated with it. This routine also assumes that |
| * the inode is already a part of the transaction. |
| * |
| * The on-disk copy of the inode will have been added to the list |
| * of unlinked inodes in the AGI. We need to remove the inode from |
| * that list atomically with respect to freeing it here. |
| */ |
| int |
| xfs_ifree( |
| struct xfs_trans *tp, |
| struct xfs_inode *ip) |
| { |
| int error; |
| struct xfs_icluster xic = { 0 }; |
| struct xfs_inode_log_item *iip = ip->i_itemp; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(VFS_I(ip)->i_nlink == 0); |
| ASSERT(ip->i_df.if_nextents == 0); |
| ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); |
| ASSERT(ip->i_nblocks == 0); |
| |
| /* |
| * Pull the on-disk inode from the AGI unlinked list. |
| */ |
| error = xfs_iunlink_remove(tp, ip); |
| if (error) |
| return error; |
| |
| error = xfs_difree(tp, ip->i_ino, &xic); |
| if (error) |
| return error; |
| |
| /* |
| * Free any local-format data sitting around before we reset the |
| * data fork to extents format. Note that the attr fork data has |
| * already been freed by xfs_attr_inactive. |
| */ |
| if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { |
| kmem_free(ip->i_df.if_u1.if_data); |
| ip->i_df.if_u1.if_data = NULL; |
| ip->i_df.if_bytes = 0; |
| } |
| |
| VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ |
| ip->i_diflags = 0; |
| ip->i_diflags2 = ip->i_mount->m_ino_geo.new_diflags2; |
| ip->i_forkoff = 0; /* mark the attr fork not in use */ |
| ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; |
| if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) |
| xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); |
| |
| /* Don't attempt to replay owner changes for a deleted inode */ |
| spin_lock(&iip->ili_lock); |
| iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); |
| spin_unlock(&iip->ili_lock); |
| |
| /* |
| * Bump the generation count so no one will be confused |
| * by reincarnations of this inode. |
| */ |
| VFS_I(ip)->i_generation++; |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| if (xic.deleted) |
| error = xfs_ifree_cluster(ip, tp, &xic); |
| |
| return error; |
| } |
| |
| /* |
| * This is called to unpin an inode. The caller must have the inode locked |
| * in at least shared mode so that the buffer cannot be subsequently pinned |
| * once someone is waiting for it to be unpinned. |
| */ |
| static void |
| xfs_iunpin( |
| struct xfs_inode *ip) |
| { |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| |
| trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
| |
| /* Give the log a push to start the unpinning I/O */ |
| xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); |
| |
| } |
| |
| static void |
| __xfs_iunpin_wait( |
| struct xfs_inode *ip) |
| { |
| wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); |
| DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); |
| |
| xfs_iunpin(ip); |
| |
| do { |
| prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| if (xfs_ipincount(ip)) |
| io_schedule(); |
| } while (xfs_ipincount(ip)); |
| finish_wait(wq, &wait.wq_entry); |
| } |
| |
| void |
| xfs_iunpin_wait( |
| struct xfs_inode *ip) |
| { |
| if (xfs_ipincount(ip)) |
| __xfs_iunpin_wait(ip); |
| } |
| |
| /* |
| * Removing an inode from the namespace involves removing the directory entry |
| * and dropping the link count on the inode. Removing the directory entry can |
| * result in locking an AGF (directory blocks were freed) and removing a link |
| * count can result in placing the inode on an unlinked list which results in |
| * locking an AGI. |
| * |
| * The big problem here is that we have an ordering constraint on AGF and AGI |
| * locking - inode allocation locks the AGI, then can allocate a new extent for |
| * new inodes, locking the AGF after the AGI. Similarly, freeing the inode |
| * removes the inode from the unlinked list, requiring that we lock the AGI |
| * first, and then freeing the inode can result in an inode chunk being freed |
| * and hence freeing disk space requiring that we lock an AGF. |
| * |
| * Hence the ordering that is imposed by other parts of the code is AGI before |
| * AGF. This means we cannot remove the directory entry before we drop the inode |
| * reference count and put it on the unlinked list as this results in a lock |
| * order of AGF then AGI, and this can deadlock against inode allocation and |
| * freeing. Therefore we must drop the link counts before we remove the |
| * directory entry. |
| * |
| * This is still safe from a transactional point of view - it is not until we |
| * get to xfs_defer_finish() that we have the possibility of multiple |
| * transactions in this operation. Hence as long as we remove the directory |
| * entry and drop the link count in the first transaction of the remove |
| * operation, there are no transactional constraints on the ordering here. |
| */ |
| int |
| xfs_remove( |
| xfs_inode_t *dp, |
| struct xfs_name *name, |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp = dp->i_mount; |
| xfs_trans_t *tp = NULL; |
| int is_dir = S_ISDIR(VFS_I(ip)->i_mode); |
| int error = 0; |
| uint resblks; |
| |
| trace_xfs_remove(dp, name); |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| error = xfs_qm_dqattach(dp); |
| if (error) |
| goto std_return; |
| |
| error = xfs_qm_dqattach(ip); |
| if (error) |
| goto std_return; |
| |
| /* |
| * We try to get the real space reservation first, |
| * allowing for directory btree deletion(s) implying |
| * possible bmap insert(s). If we can't get the space |
| * reservation then we use 0 instead, and avoid the bmap |
| * btree insert(s) in the directory code by, if the bmap |
| * insert tries to happen, instead trimming the LAST |
| * block from the directory. |
| */ |
| resblks = XFS_REMOVE_SPACE_RES(mp); |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| resblks = 0; |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, |
| &tp); |
| } |
| if (error) { |
| ASSERT(error != -ENOSPC); |
| goto std_return; |
| } |
| |
| xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| |
| /* |
| * If we're removing a directory perform some additional validation. |
| */ |
| if (is_dir) { |
| ASSERT(VFS_I(ip)->i_nlink >= 2); |
| if (VFS_I(ip)->i_nlink != 2) { |
| error = -ENOTEMPTY; |
| goto out_trans_cancel; |
| } |
| if (!xfs_dir_isempty(ip)) { |
| error = -ENOTEMPTY; |
| goto out_trans_cancel; |
| } |
| |
| /* Drop the link from ip's "..". */ |
| error = xfs_droplink(tp, dp); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* Drop the "." link from ip to self. */ |
| error = xfs_droplink(tp, ip); |
| if (error) |
| goto out_trans_cancel; |
| } else { |
| /* |
| * When removing a non-directory we need to log the parent |
| * inode here. For a directory this is done implicitly |
| * by the xfs_droplink call for the ".." entry. |
| */ |
| xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| } |
| xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| |
| /* Drop the link from dp to ip. */ |
| error = xfs_droplink(tp, ip); |
| if (error) |
| goto out_trans_cancel; |
| |
| error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); |
| if (error) { |
| ASSERT(error != -ENOENT); |
| goto out_trans_cancel; |
| } |
| |
| /* |
| * If this is a synchronous mount, make sure that the |
| * remove transaction goes to disk before returning to |
| * the user. |
| */ |
| if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto std_return; |
| |
| if (is_dir && xfs_inode_is_filestream(ip)) |
| xfs_filestream_deassociate(ip); |
| |
| return 0; |
| |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| std_return: |
| return error; |
| } |
| |
| /* |
| * Enter all inodes for a rename transaction into a sorted array. |
| */ |
| #define __XFS_SORT_INODES 5 |
| STATIC void |
| xfs_sort_for_rename( |
| struct xfs_inode *dp1, /* in: old (source) directory inode */ |
| struct xfs_inode *dp2, /* in: new (target) directory inode */ |
| struct xfs_inode *ip1, /* in: inode of old entry */ |
| struct xfs_inode *ip2, /* in: inode of new entry */ |
| struct xfs_inode *wip, /* in: whiteout inode */ |
| struct xfs_inode **i_tab,/* out: sorted array of inodes */ |
| int *num_inodes) /* in/out: inodes in array */ |
| { |
| int i, j; |
| |
| ASSERT(*num_inodes == __XFS_SORT_INODES); |
| memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); |
| |
| /* |
| * i_tab contains a list of pointers to inodes. We initialize |
| * the table here & we'll sort it. We will then use it to |
| * order the acquisition of the inode locks. |
| * |
| * Note that the table may contain duplicates. e.g., dp1 == dp2. |
| */ |
| i = 0; |
| i_tab[i++] = dp1; |
| i_tab[i++] = dp2; |
| i_tab[i++] = ip1; |
| if (ip2) |
| i_tab[i++] = ip2; |
| if (wip) |
| i_tab[i++] = wip; |
| *num_inodes = i; |
| |
| /* |
| * Sort the elements via bubble sort. (Remember, there are at |
| * most 5 elements to sort, so this is adequate.) |
| */ |
| for (i = 0; i < *num_inodes; i++) { |
| for (j = 1; j < *num_inodes; j++) { |
| if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { |
| struct xfs_inode *temp = i_tab[j]; |
| i_tab[j] = i_tab[j-1]; |
| i_tab[j-1] = temp; |
| } |
| } |
| } |
| } |
| |
| static int |
| xfs_finish_rename( |
| struct xfs_trans *tp) |
| { |
| /* |
| * If this is a synchronous mount, make sure that the rename transaction |
| * goes to disk before returning to the user. |
| */ |
| if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| return xfs_trans_commit(tp); |
| } |
| |
| /* |
| * xfs_cross_rename() |
| * |
| * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall |
| */ |
| STATIC int |
| xfs_cross_rename( |
| struct xfs_trans *tp, |
| struct xfs_inode *dp1, |
| struct xfs_name *name1, |
| struct xfs_inode *ip1, |
| struct xfs_inode *dp2, |
| struct xfs_name *name2, |
| struct xfs_inode *ip2, |
| int spaceres) |
| { |
| int error = 0; |
| int ip1_flags = 0; |
| int ip2_flags = 0; |
| int dp2_flags = 0; |
| |
| /* Swap inode number for dirent in first parent */ |
| error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* Swap inode number for dirent in second parent */ |
| error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* |
| * If we're renaming one or more directories across different parents, |
| * update the respective ".." entries (and link counts) to match the new |
| * parents. |
| */ |
| if (dp1 != dp2) { |
| dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| |
| if (S_ISDIR(VFS_I(ip2)->i_mode)) { |
| error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, |
| dp1->i_ino, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* transfer ip2 ".." reference to dp1 */ |
| if (!S_ISDIR(VFS_I(ip1)->i_mode)) { |
| error = xfs_droplink(tp, dp2); |
| if (error) |
| goto out_trans_abort; |
| xfs_bumplink(tp, dp1); |
| } |
| |
| /* |
| * Although ip1 isn't changed here, userspace needs |
| * to be warned about the change, so that applications |
| * relying on it (like backup ones), will properly |
| * notify the change |
| */ |
| ip1_flags |= XFS_ICHGTIME_CHG; |
| ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| } |
| |
| if (S_ISDIR(VFS_I(ip1)->i_mode)) { |
| error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, |
| dp2->i_ino, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* transfer ip1 ".." reference to dp2 */ |
| if (!S_ISDIR(VFS_I(ip2)->i_mode)) { |
| error = xfs_droplink(tp, dp1); |
| if (error) |
| goto out_trans_abort; |
| xfs_bumplink(tp, dp2); |
| } |
| |
| /* |
| * Although ip2 isn't changed here, userspace needs |
| * to be warned about the change, so that applications |
| * relying on it (like backup ones), will properly |
| * notify the change |
| */ |
| ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| ip2_flags |= XFS_ICHGTIME_CHG; |
| } |
| } |
| |
| if (ip1_flags) { |
| xfs_trans_ichgtime(tp, ip1, ip1_flags); |
| xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); |
| } |
| if (ip2_flags) { |
| xfs_trans_ichgtime(tp, ip2, ip2_flags); |
| xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); |
| } |
| if (dp2_flags) { |
| xfs_trans_ichgtime(tp, dp2, dp2_flags); |
| xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); |
| } |
| xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); |
| return xfs_finish_rename(tp); |
| |
| out_trans_abort: |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| /* |
| * xfs_rename_alloc_whiteout() |
| * |
| * Return a referenced, unlinked, unlocked inode that can be used as a |
| * whiteout in a rename transaction. We use a tmpfile inode here so that if we |
| * crash between allocating the inode and linking it into the rename transaction |
| * recovery will free the inode and we won't leak it. |
| */ |
| static int |
| xfs_rename_alloc_whiteout( |
| struct user_namespace *mnt_userns, |
| struct xfs_inode *dp, |
| struct xfs_inode **wip) |
| { |
| struct xfs_inode *tmpfile; |
| int error; |
| |
| error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, |
| &tmpfile); |
| if (error) |
| return error; |
| |
| /* |
| * Prepare the tmpfile inode as if it were created through the VFS. |
| * Complete the inode setup and flag it as linkable. nlink is already |
| * zero, so we can skip the drop_nlink. |
| */ |
| xfs_setup_iops(tmpfile); |
| xfs_finish_inode_setup(tmpfile); |
| VFS_I(tmpfile)->i_state |= I_LINKABLE; |
| |
| *wip = tmpfile; |
| return 0; |
| } |
| |
| /* |
| * xfs_rename |
| */ |
| int |
| xfs_rename( |
| struct user_namespace *mnt_userns, |
| struct xfs_inode *src_dp, |
| struct xfs_name *src_name, |
| struct xfs_inode *src_ip, |
| struct xfs_inode *target_dp, |
| struct xfs_name *target_name, |
| struct xfs_inode *target_ip, |
| unsigned int flags) |
| { |
| struct xfs_mount *mp = src_dp->i_mount; |
| struct xfs_trans *tp; |
| struct xfs_inode *wip = NULL; /* whiteout inode */ |
| struct xfs_inode *inodes[__XFS_SORT_INODES]; |
| int i; |
| int num_inodes = __XFS_SORT_INODES; |
| bool new_parent = (src_dp != target_dp); |
| bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); |
| int spaceres; |
| int error; |
| |
| trace_xfs_rename(src_dp, target_dp, src_name, target_name); |
| |
| if ((flags & RENAME_EXCHANGE) && !target_ip) |
| return -EINVAL; |
| |
| /* |
| * If we are doing a whiteout operation, allocate the whiteout inode |
| * we will be placing at the target and ensure the type is set |
| * appropriately. |
| */ |
| if (flags & RENAME_WHITEOUT) { |
| ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); |
| error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); |
| if (error) |
| return error; |
| |
| /* setup target dirent info as whiteout */ |
| src_name->type = XFS_DIR3_FT_CHRDEV; |
| } |
| |
| xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, |
| inodes, &num_inodes); |
| |
| spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| spaceres = 0; |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, |
| &tp); |
| } |
| if (error) |
| goto out_release_wip; |
| |
| /* |
| * Attach the dquots to the inodes |
| */ |
| error = xfs_qm_vop_rename_dqattach(inodes); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * Lock all the participating inodes. Depending upon whether |
| * the target_name exists in the target directory, and |
| * whether the target directory is the same as the source |
| * directory, we can lock from 2 to 4 inodes. |
| */ |
| xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); |
| |
| /* |
| * Join all the inodes to the transaction. From this point on, |
| * we can rely on either trans_commit or trans_cancel to unlock |
| * them. |
| */ |
| xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); |
| if (new_parent) |
| xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); |
| if (target_ip) |
| xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); |
| if (wip) |
| xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); |
| |
| /* |
| * If we are using project inheritance, we only allow renames |
| * into our tree when the project IDs are the same; else the |
| * tree quota mechanism would be circumvented. |
| */ |
| if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && |
| target_dp->i_projid != src_ip->i_projid)) { |
| error = -EXDEV; |
| goto out_trans_cancel; |
| } |
| |
| /* RENAME_EXCHANGE is unique from here on. */ |
| if (flags & RENAME_EXCHANGE) |
| return xfs_cross_rename(tp, src_dp, src_name, src_ip, |
| target_dp, target_name, target_ip, |
| spaceres); |
| |
| /* |
| * Check for expected errors before we dirty the transaction |
| * so we can return an error without a transaction abort. |
| * |
| * Extent count overflow check: |
| * |
| * From the perspective of src_dp, a rename operation is essentially a |
| * directory entry remove operation. Hence the only place where we check |
| * for extent count overflow for src_dp is in |
| * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns |
| * -ENOSPC when it detects a possible extent count overflow and in |
| * response, the higher layers of directory handling code do the |
| * following: |
| * 1. Data/Free blocks: XFS lets these blocks linger until a |
| * future remove operation removes them. |
| * 2. Dabtree blocks: XFS swaps the blocks with the last block in the |
| * Leaf space and unmaps the last block. |
| * |
| * For target_dp, there are two cases depending on whether the |
| * destination directory entry exists or not. |
| * |
| * When destination directory entry does not exist (i.e. target_ip == |
| * NULL), extent count overflow check is performed only when transaction |
| * has a non-zero sized space reservation associated with it. With a |
| * zero-sized space reservation, XFS allows a rename operation to |
| * continue only when the directory has sufficient free space in its |
| * data/leaf/free space blocks to hold the new entry. |
| * |
| * When destination directory entry exists (i.e. target_ip != NULL), all |
| * we need to do is change the inode number associated with the already |
| * existing entry. Hence there is no need to perform an extent count |
| * overflow check. |
| */ |
| if (target_ip == NULL) { |
| /* |
| * If there's no space reservation, check the entry will |
| * fit before actually inserting it. |
| */ |
| if (!spaceres) { |
| error = xfs_dir_canenter(tp, target_dp, target_name); |
| if (error) |
| goto out_trans_cancel; |
| } else { |
| error = xfs_iext_count_may_overflow(target_dp, |
| XFS_DATA_FORK, |
| XFS_IEXT_DIR_MANIP_CNT(mp)); |
| if (error) |
| goto out_trans_cancel; |
| } |
| } else { |
| /* |
| * If target exists and it's a directory, check that whether |
| * it can be destroyed. |
| */ |
| if (S_ISDIR(VFS_I(target_ip)->i_mode) && |
| (!xfs_dir_isempty(target_ip) || |
| (VFS_I(target_ip)->i_nlink > 2))) { |
| error = -EEXIST; |
| goto out_trans_cancel; |
| } |
| } |
| |
| /* |
| * Lock the AGI buffers we need to handle bumping the nlink of the |
| * whiteout inode off the unlinked list and to handle dropping the |
| * nlink of the target inode. Per locking order rules, do this in |
| * increasing AG order and before directory block allocation tries to |
| * grab AGFs because we grab AGIs before AGFs. |
| * |
| * The (vfs) caller must ensure that if src is a directory then |
| * target_ip is either null or an empty directory. |
| */ |
| for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { |
| if (inodes[i] == wip || |
| (inodes[i] == target_ip && |
| (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { |
| struct xfs_buf *bp; |
| xfs_agnumber_t agno; |
| |
| agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); |
| error = xfs_read_agi(mp, tp, agno, &bp); |
| if (error) |
| goto out_trans_cancel; |
| } |
| } |
| |
| /* |
| * Directory entry creation below may acquire the AGF. Remove |
| * the whiteout from the unlinked list first to preserve correct |
| * AGI/AGF locking order. This dirties the transaction so failures |
| * after this point will abort and log recovery will clean up the |
| * mess. |
| * |
| * For whiteouts, we need to bump the link count on the whiteout |
| * inode. After this point, we have a real link, clear the tmpfile |
| * state flag from the inode so it doesn't accidentally get misused |
| * in future. |
| */ |
| if (wip) { |
| ASSERT(VFS_I(wip)->i_nlink == 0); |
| error = xfs_iunlink_remove(tp, wip); |
| if (error) |
| goto out_trans_cancel; |
| |
| xfs_bumplink(tp, wip); |
| VFS_I(wip)->i_state &= ~I_LINKABLE; |
| } |
| |
| /* |
| * Set up the target. |
| */ |
| if (target_ip == NULL) { |
| /* |
| * If target does not exist and the rename crosses |
| * directories, adjust the target directory link count |
| * to account for the ".." reference from the new entry. |
| */ |
| error = xfs_dir_createname(tp, target_dp, target_name, |
| src_ip->i_ino, spaceres); |
| if (error) |
| goto out_trans_cancel; |
| |
| xfs_trans_ichgtime(tp, target_dp, |
| XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| |
| if (new_parent && src_is_directory) { |
| xfs_bumplink(tp, target_dp); |
| } |
| } else { /* target_ip != NULL */ |
| /* |
| * Link the source inode under the target name. |
| * If the source inode is a directory and we are moving |
| * it across directories, its ".." entry will be |
| * inconsistent until we replace that down below. |
| * |
| * In case there is already an entry with the same |
| * name at the destination directory, remove it first. |
| */ |
| error = xfs_dir_replace(tp, target_dp, target_name, |
| src_ip->i_ino, spaceres); |
| if (error) |
| goto out_trans_cancel; |
| |
| xfs_trans_ichgtime(tp, target_dp, |
| XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| |
| /* |
| * Decrement the link count on the target since the target |
| * dir no longer points to it. |
| */ |
| error = xfs_droplink(tp, target_ip); |
| if (error) |
| goto out_trans_cancel; |
| |
| if (src_is_directory) { |
| /* |
| * Drop the link from the old "." entry. |
| */ |
| error = xfs_droplink(tp, target_ip); |
| if (error) |
| goto out_trans_cancel; |
| } |
| } /* target_ip != NULL */ |
| |
| /* |
| * Remove the source. |
| */ |
| if (new_parent && src_is_directory) { |
| /* |
| * Rewrite the ".." entry to point to the new |
| * directory. |
| */ |
| error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, |
| target_dp->i_ino, spaceres); |
| ASSERT(error != -EEXIST); |
| if (error) |
| goto out_trans_cancel; |
| } |
| |
| /* |
| * We always want to hit the ctime on the source inode. |
| * |
| * This isn't strictly required by the standards since the source |
| * inode isn't really being changed, but old unix file systems did |
| * it and some incremental backup programs won't work without it. |
| */ |
| xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); |
| |
| /* |
| * Adjust the link count on src_dp. This is necessary when |
| * renaming a directory, either within one parent when |
| * the target existed, or across two parent directories. |
| */ |
| if (src_is_directory && (new_parent || target_ip != NULL)) { |
| |
| /* |
| * Decrement link count on src_directory since the |
| * entry that's moved no longer points to it. |
| */ |
| error = xfs_droplink(tp, src_dp); |
| if (error) |
| goto out_trans_cancel; |
| } |
| |
| /* |
| * For whiteouts, we only need to update the source dirent with the |
| * inode number of the whiteout inode rather than removing it |
| * altogether. |
| */ |
| if (wip) { |
| error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, |
| spaceres); |
| } else { |
| /* |
| * NOTE: We don't need to check for extent count overflow here |
| * because the dir remove name code will leave the dir block in |
| * place if the extent count would overflow. |
| */ |
| error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, |
| spaceres); |
| } |
| |
| if (error) |
| goto out_trans_cancel; |
| |
| xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); |
| if (new_parent) |
| xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); |
| |
| error = xfs_finish_rename(tp); |
| if (wip) |
| xfs_irele(wip); |
| return error; |
| |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| out_release_wip: |
| if (wip) |
| xfs_irele(wip); |
| return error; |
| } |
| |
| static int |
| xfs_iflush( |
| struct xfs_inode *ip, |
| struct xfs_buf *bp) |
| { |
| struct xfs_inode_log_item *iip = ip->i_itemp; |
| struct xfs_dinode *dip; |
| struct xfs_mount *mp = ip->i_mount; |
| int error; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); |
| ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || |
| ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
| ASSERT(iip->ili_item.li_buf == bp); |
| |
| dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); |
| |
| /* |
| * We don't flush the inode if any of the following checks fail, but we |
| * do still update the log item and attach to the backing buffer as if |
| * the flush happened. This is a formality to facilitate predictable |
| * error handling as the caller will shutdown and fail the buffer. |
| */ |
| error = -EFSCORRUPTED; |
| if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), |
| mp, XFS_ERRTAG_IFLUSH_1)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, |
| __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); |
| goto flush_out; |
| } |
| if (S_ISREG(VFS_I(ip)->i_mode)) { |
| if (XFS_TEST_ERROR( |
| ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && |
| ip->i_df.if_format != XFS_DINODE_FMT_BTREE, |
| mp, XFS_ERRTAG_IFLUSH_3)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: Bad regular inode %Lu, ptr "PTR_FMT, |
| __func__, ip->i_ino, ip); |
| goto flush_out; |
| } |
| } else if (S_ISDIR(VFS_I(ip)->i_mode)) { |
| if (XFS_TEST_ERROR( |
| ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && |
| ip->i_df.if_format != XFS_DINODE_FMT_BTREE && |
| ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, |
| mp, XFS_ERRTAG_IFLUSH_4)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: Bad directory inode %Lu, ptr "PTR_FMT, |
| __func__, ip->i_ino, ip); |
| goto flush_out; |
| } |
| } |
| if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > |
| ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: detected corrupt incore inode %Lu, " |
| "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, |
| __func__, ip->i_ino, |
| ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), |
| ip->i_nblocks, ip); |
| goto flush_out; |
| } |
| if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, |
| mp, XFS_ERRTAG_IFLUSH_6)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, |
| __func__, ip->i_ino, ip->i_forkoff, ip); |
| goto flush_out; |
| } |
| |
| /* |
| * Inode item log recovery for v2 inodes are dependent on the flushiter |
| * count for correct sequencing. We bump the flush iteration count so |
| * we can detect flushes which postdate a log record during recovery. |
| * This is redundant as we now log every change and hence this can't |
| * happen but we need to still do it to ensure backwards compatibility |
| * with old kernels that predate logging all inode changes. |
| */ |
| if (!xfs_sb_version_has_v3inode(&mp->m_sb)) |
| ip->i_flushiter++; |
| |
| /* |
| * If there are inline format data / attr forks attached to this inode, |
| * make sure they are not corrupt. |
| */ |
| if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && |
| xfs_ifork_verify_local_data(ip)) |
| goto flush_out; |
| if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && |
| xfs_ifork_verify_local_attr(ip)) |
| goto flush_out; |
| |
| /* |
| * Copy the dirty parts of the inode into the on-disk inode. We always |
| * copy out the core of the inode, because if the inode is dirty at all |
| * the core must be. |
| */ |
| xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); |
| |
| /* Wrap, we never let the log put out DI_MAX_FLUSH */ |
| if (!xfs_sb_version_has_v3inode(&mp->m_sb)) { |
| if (ip->i_flushiter == DI_MAX_FLUSH) |
| ip->i_flushiter = 0; |
| } |
| |
| xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); |
| if (XFS_IFORK_Q(ip)) |
| xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); |
| |
| /* |
| * We've recorded everything logged in the inode, so we'd like to clear |
| * the ili_fields bits so we don't log and flush things unnecessarily. |
| * However, we can't stop logging all this information until the data |
| * we've copied into the disk buffer is written to disk. If we did we |
| * might overwrite the copy of the inode in the log with all the data |
| * after re-logging only part of it, and in the face of a crash we |
| * wouldn't have all the data we need to recover. |
| * |
| * What we do is move the bits to the ili_last_fields field. When |
| * logging the inode, these bits are moved back to the ili_fields field. |
| * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since |
| * we know that the information those bits represent is permanently on |
| * disk. As long as the flush completes before the inode is logged |
| * again, then both ili_fields and ili_last_fields will be cleared. |
| */ |
| error = 0; |
| flush_out: |
| spin_lock(&iip->ili_lock); |
| iip->ili_last_fields = iip->ili_fields; |
| iip->ili_fields = 0; |
| iip->ili_fsync_fields = 0; |
| spin_unlock(&iip->ili_lock); |
| |
| /* |
| * Store the current LSN of the inode so that we can tell whether the |
| * item has moved in the AIL from xfs_buf_inode_iodone(). |
| */ |
| xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
| &iip->ili_item.li_lsn); |
| |
| /* generate the checksum. */ |
| xfs_dinode_calc_crc(mp, dip); |
| return error; |
| } |
| |
| /* |
| * Non-blocking flush of dirty inode metadata into the backing buffer. |
| * |
| * The caller must have a reference to the inode and hold the cluster buffer |
| * locked. The function will walk across all the inodes on the cluster buffer it |
| * can find and lock without blocking, and flush them to the cluster buffer. |
| * |
| * On successful flushing of at least one inode, the caller must write out the |
| * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and |
| * the caller needs to release the buffer. On failure, the filesystem will be |
| * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED |
| * will be returned. |
| */ |
| int |
| xfs_iflush_cluster( |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = bp->b_mount; |
| struct xfs_log_item *lip, *n; |
| struct xfs_inode *ip; |
| struct xfs_inode_log_item *iip; |
| int clcount = 0; |
| int error = 0; |
| |
| /* |
| * We must use the safe variant here as on shutdown xfs_iflush_abort() |
| * can remove itself from the list. |
| */ |
| list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { |
| iip = (struct xfs_inode_log_item *)lip; |
| ip = iip->ili_inode; |
| |
| /* |
| * Quick and dirty check to avoid locks if possible. |
| */ |
| if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) |
| continue; |
| if (xfs_ipincount(ip)) |
| continue; |
| |
| /* |
| * The inode is still attached to the buffer, which means it is |
| * dirty but reclaim might try to grab it. Check carefully for |
| * that, and grab the ilock while still holding the i_flags_lock |
| * to guarantee reclaim will not be able to reclaim this inode |
| * once we drop the i_flags_lock. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); |
| if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { |
| spin_unlock(&ip->i_flags_lock); |
| continue; |
| } |
| |
| /* |
| * ILOCK will pin the inode against reclaim and prevent |
| * concurrent transactions modifying the inode while we are |
| * flushing the inode. If we get the lock, set the flushing |
| * state before we drop the i_flags_lock. |
| */ |
| if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { |
| spin_unlock(&ip->i_flags_lock); |
| continue; |
| } |
| __xfs_iflags_set(ip, XFS_IFLUSHING); |
| spin_unlock(&ip->i_flags_lock); |
| |
| /* |
| * Abort flushing this inode if we are shut down because the |
| * inode may not currently be in the AIL. This can occur when |
| * log I/O failure unpins the inode without inserting into the |
| * AIL, leaving a dirty/unpinned inode attached to the buffer |
| * that otherwise looks like it should be flushed. |
| */ |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| xfs_iunpin_wait(ip); |
| xfs_iflush_abort(ip); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| error = -EIO; |
| continue; |
| } |
| |
| /* don't block waiting on a log force to unpin dirty inodes */ |
| if (xfs_ipincount(ip)) { |
| xfs_iflags_clear(ip, XFS_IFLUSHING); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| continue; |
| } |
| |
| if (!xfs_inode_clean(ip)) |
| error = xfs_iflush(ip, bp); |
| else |
| xfs_iflags_clear(ip, XFS_IFLUSHING); |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| if (error) |
| break; |
| clcount++; |
| } |
| |
| if (error) { |
| bp->b_flags |= XBF_ASYNC; |
| xfs_buf_ioend_fail(bp); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| return error; |
| } |
| |
| if (!clcount) |
| return -EAGAIN; |
| |
| XFS_STATS_INC(mp, xs_icluster_flushcnt); |
| XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); |
| return 0; |
| |
| } |
| |
| /* Release an inode. */ |
| void |
| xfs_irele( |
| struct xfs_inode *ip) |
| { |
| trace_xfs_irele(ip, _RET_IP_); |
| iput(VFS_I(ip)); |
| } |
| |
| /* |
| * Ensure all commited transactions touching the inode are written to the log. |
| */ |
| int |
| xfs_log_force_inode( |
| struct xfs_inode *ip) |
| { |
| xfs_lsn_t lsn = 0; |
| |
| xfs_ilock(ip, XFS_ILOCK_SHARED); |
| if (xfs_ipincount(ip)) |
| lsn = ip->i_itemp->ili_last_lsn; |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| |
| if (!lsn) |
| return 0; |
| return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); |
| } |
| |
| /* |
| * Grab the exclusive iolock for a data copy from src to dest, making sure to |
| * abide vfs locking order (lowest pointer value goes first) and breaking the |
| * layout leases before proceeding. The loop is needed because we cannot call |
| * the blocking break_layout() with the iolocks held, and therefore have to |
| * back out both locks. |
| */ |
| static int |
| xfs_iolock_two_inodes_and_break_layout( |
| struct inode *src, |
| struct inode *dest) |
| { |
| int error; |
| |
| if (src > dest) |
| swap(src, dest); |
| |
| retry: |
| /* Wait to break both inodes' layouts before we start locking. */ |
| error = break_layout(src, true); |
| if (error) |
| return error; |
| if (src != dest) { |
| error = break_layout(dest, true); |
| if (error) |
| return error; |
| } |
| |
| /* Lock one inode and make sure nobody got in and leased it. */ |
| inode_lock(src); |
| error = break_layout(src, false); |
| if (error) { |
| inode_unlock(src); |
| if (error == -EWOULDBLOCK) |
| goto retry; |
| return error; |
| } |
| |
| if (src == dest) |
| return 0; |
| |
| /* Lock the other inode and make sure nobody got in and leased it. */ |
| inode_lock_nested(dest, I_MUTEX_NONDIR2); |
| error = break_layout(dest, false); |
| if (error) { |
| inode_unlock(src); |
| inode_unlock(dest); |
| if (error == -EWOULDBLOCK) |
| goto retry; |
| return error; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Lock two inodes so that userspace cannot initiate I/O via file syscalls or |
| * mmap activity. |
| */ |
| int |
| xfs_ilock2_io_mmap( |
| struct xfs_inode *ip1, |
| struct xfs_inode *ip2) |
| { |
| int ret; |
| |
| ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); |
| if (ret) |
| return ret; |
| if (ip1 == ip2) |
| xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); |
| else |
| xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, |
| ip2, XFS_MMAPLOCK_EXCL); |
| return 0; |
| } |
| |
| /* Unlock both inodes to allow IO and mmap activity. */ |
| void |
| xfs_iunlock2_io_mmap( |
| struct xfs_inode *ip1, |
| struct xfs_inode *ip2) |
| { |
| bool same_inode = (ip1 == ip2); |
| |
| xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); |
| if (!same_inode) |
| xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); |
| inode_unlock(VFS_I(ip2)); |
| if (!same_inode) |
| inode_unlock(VFS_I(ip1)); |
| } |