| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/bitops.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| |
| #include <asm/cpu_entry_area.h> |
| #include <asm/perf_event.h> |
| #include <asm/tlbflush.h> |
| #include <asm/insn.h> |
| #include <asm/io.h> |
| |
| #include "../perf_event.h" |
| |
| /* Waste a full page so it can be mapped into the cpu_entry_area */ |
| DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); |
| |
| /* The size of a BTS record in bytes: */ |
| #define BTS_RECORD_SIZE 24 |
| |
| #define PEBS_FIXUP_SIZE PAGE_SIZE |
| |
| /* |
| * pebs_record_32 for p4 and core not supported |
| |
| struct pebs_record_32 { |
| u32 flags, ip; |
| u32 ax, bc, cx, dx; |
| u32 si, di, bp, sp; |
| }; |
| |
| */ |
| |
| union intel_x86_pebs_dse { |
| u64 val; |
| struct { |
| unsigned int ld_dse:4; |
| unsigned int ld_stlb_miss:1; |
| unsigned int ld_locked:1; |
| unsigned int ld_data_blk:1; |
| unsigned int ld_addr_blk:1; |
| unsigned int ld_reserved:24; |
| }; |
| struct { |
| unsigned int st_l1d_hit:1; |
| unsigned int st_reserved1:3; |
| unsigned int st_stlb_miss:1; |
| unsigned int st_locked:1; |
| unsigned int st_reserved2:26; |
| }; |
| struct { |
| unsigned int st_lat_dse:4; |
| unsigned int st_lat_stlb_miss:1; |
| unsigned int st_lat_locked:1; |
| unsigned int ld_reserved3:26; |
| }; |
| }; |
| |
| |
| /* |
| * Map PEBS Load Latency Data Source encodings to generic |
| * memory data source information |
| */ |
| #define P(a, b) PERF_MEM_S(a, b) |
| #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) |
| #define LEVEL(x) P(LVLNUM, x) |
| #define REM P(REMOTE, REMOTE) |
| #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) |
| |
| /* Version for Sandy Bridge and later */ |
| static u64 pebs_data_source[] = { |
| P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ |
| OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ |
| OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ |
| OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ |
| OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ |
| OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ |
| OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ |
| OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ |
| OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ |
| OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ |
| OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ |
| OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ |
| OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ |
| OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ |
| OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ |
| OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ |
| }; |
| |
| /* Patch up minor differences in the bits */ |
| void __init intel_pmu_pebs_data_source_nhm(void) |
| { |
| pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); |
| pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| } |
| |
| void __init intel_pmu_pebs_data_source_skl(bool pmem) |
| { |
| u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); |
| |
| pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); |
| pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); |
| pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); |
| pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); |
| pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); |
| } |
| |
| static u64 precise_store_data(u64 status) |
| { |
| union intel_x86_pebs_dse dse; |
| u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); |
| |
| dse.val = status; |
| |
| /* |
| * bit 4: TLB access |
| * 1 = stored missed 2nd level TLB |
| * |
| * so it either hit the walker or the OS |
| * otherwise hit 2nd level TLB |
| */ |
| if (dse.st_stlb_miss) |
| val |= P(TLB, MISS); |
| else |
| val |= P(TLB, HIT); |
| |
| /* |
| * bit 0: hit L1 data cache |
| * if not set, then all we know is that |
| * it missed L1D |
| */ |
| if (dse.st_l1d_hit) |
| val |= P(LVL, HIT); |
| else |
| val |= P(LVL, MISS); |
| |
| /* |
| * bit 5: Locked prefix |
| */ |
| if (dse.st_locked) |
| val |= P(LOCK, LOCKED); |
| |
| return val; |
| } |
| |
| static u64 precise_datala_hsw(struct perf_event *event, u64 status) |
| { |
| union perf_mem_data_src dse; |
| |
| dse.val = PERF_MEM_NA; |
| |
| if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) |
| dse.mem_op = PERF_MEM_OP_STORE; |
| else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) |
| dse.mem_op = PERF_MEM_OP_LOAD; |
| |
| /* |
| * L1 info only valid for following events: |
| * |
| * MEM_UOPS_RETIRED.STLB_MISS_STORES |
| * MEM_UOPS_RETIRED.LOCK_STORES |
| * MEM_UOPS_RETIRED.SPLIT_STORES |
| * MEM_UOPS_RETIRED.ALL_STORES |
| */ |
| if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { |
| if (status & 1) |
| dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; |
| else |
| dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; |
| } |
| return dse.val; |
| } |
| |
| static u64 load_latency_data(u64 status) |
| { |
| union intel_x86_pebs_dse dse; |
| u64 val; |
| |
| dse.val = status; |
| |
| /* |
| * use the mapping table for bit 0-3 |
| */ |
| val = pebs_data_source[dse.ld_dse]; |
| |
| /* |
| * Nehalem models do not support TLB, Lock infos |
| */ |
| if (x86_pmu.pebs_no_tlb) { |
| val |= P(TLB, NA) | P(LOCK, NA); |
| return val; |
| } |
| /* |
| * bit 4: TLB access |
| * 0 = did not miss 2nd level TLB |
| * 1 = missed 2nd level TLB |
| */ |
| if (dse.ld_stlb_miss) |
| val |= P(TLB, MISS) | P(TLB, L2); |
| else |
| val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); |
| |
| /* |
| * bit 5: locked prefix |
| */ |
| if (dse.ld_locked) |
| val |= P(LOCK, LOCKED); |
| |
| /* |
| * Ice Lake and earlier models do not support block infos. |
| */ |
| if (!x86_pmu.pebs_block) { |
| val |= P(BLK, NA); |
| return val; |
| } |
| /* |
| * bit 6: load was blocked since its data could not be forwarded |
| * from a preceding store |
| */ |
| if (dse.ld_data_blk) |
| val |= P(BLK, DATA); |
| |
| /* |
| * bit 7: load was blocked due to potential address conflict with |
| * a preceding store |
| */ |
| if (dse.ld_addr_blk) |
| val |= P(BLK, ADDR); |
| |
| if (!dse.ld_data_blk && !dse.ld_addr_blk) |
| val |= P(BLK, NA); |
| |
| return val; |
| } |
| |
| static u64 store_latency_data(u64 status) |
| { |
| union intel_x86_pebs_dse dse; |
| u64 val; |
| |
| dse.val = status; |
| |
| /* |
| * use the mapping table for bit 0-3 |
| */ |
| val = pebs_data_source[dse.st_lat_dse]; |
| |
| /* |
| * bit 4: TLB access |
| * 0 = did not miss 2nd level TLB |
| * 1 = missed 2nd level TLB |
| */ |
| if (dse.st_lat_stlb_miss) |
| val |= P(TLB, MISS) | P(TLB, L2); |
| else |
| val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); |
| |
| /* |
| * bit 5: locked prefix |
| */ |
| if (dse.st_lat_locked) |
| val |= P(LOCK, LOCKED); |
| |
| val |= P(BLK, NA); |
| |
| return val; |
| } |
| |
| struct pebs_record_core { |
| u64 flags, ip; |
| u64 ax, bx, cx, dx; |
| u64 si, di, bp, sp; |
| u64 r8, r9, r10, r11; |
| u64 r12, r13, r14, r15; |
| }; |
| |
| struct pebs_record_nhm { |
| u64 flags, ip; |
| u64 ax, bx, cx, dx; |
| u64 si, di, bp, sp; |
| u64 r8, r9, r10, r11; |
| u64 r12, r13, r14, r15; |
| u64 status, dla, dse, lat; |
| }; |
| |
| /* |
| * Same as pebs_record_nhm, with two additional fields. |
| */ |
| struct pebs_record_hsw { |
| u64 flags, ip; |
| u64 ax, bx, cx, dx; |
| u64 si, di, bp, sp; |
| u64 r8, r9, r10, r11; |
| u64 r12, r13, r14, r15; |
| u64 status, dla, dse, lat; |
| u64 real_ip, tsx_tuning; |
| }; |
| |
| union hsw_tsx_tuning { |
| struct { |
| u32 cycles_last_block : 32, |
| hle_abort : 1, |
| rtm_abort : 1, |
| instruction_abort : 1, |
| non_instruction_abort : 1, |
| retry : 1, |
| data_conflict : 1, |
| capacity_writes : 1, |
| capacity_reads : 1; |
| }; |
| u64 value; |
| }; |
| |
| #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL |
| |
| /* Same as HSW, plus TSC */ |
| |
| struct pebs_record_skl { |
| u64 flags, ip; |
| u64 ax, bx, cx, dx; |
| u64 si, di, bp, sp; |
| u64 r8, r9, r10, r11; |
| u64 r12, r13, r14, r15; |
| u64 status, dla, dse, lat; |
| u64 real_ip, tsx_tuning; |
| u64 tsc; |
| }; |
| |
| void init_debug_store_on_cpu(int cpu) |
| { |
| struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; |
| |
| if (!ds) |
| return; |
| |
| wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, |
| (u32)((u64)(unsigned long)ds), |
| (u32)((u64)(unsigned long)ds >> 32)); |
| } |
| |
| void fini_debug_store_on_cpu(int cpu) |
| { |
| if (!per_cpu(cpu_hw_events, cpu).ds) |
| return; |
| |
| wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); |
| } |
| |
| static DEFINE_PER_CPU(void *, insn_buffer); |
| |
| static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) |
| { |
| unsigned long start = (unsigned long)cea; |
| phys_addr_t pa; |
| size_t msz = 0; |
| |
| pa = virt_to_phys(addr); |
| |
| preempt_disable(); |
| for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) |
| cea_set_pte(cea, pa, prot); |
| |
| /* |
| * This is a cross-CPU update of the cpu_entry_area, we must shoot down |
| * all TLB entries for it. |
| */ |
| flush_tlb_kernel_range(start, start + size); |
| preempt_enable(); |
| } |
| |
| static void ds_clear_cea(void *cea, size_t size) |
| { |
| unsigned long start = (unsigned long)cea; |
| size_t msz = 0; |
| |
| preempt_disable(); |
| for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) |
| cea_set_pte(cea, 0, PAGE_NONE); |
| |
| flush_tlb_kernel_range(start, start + size); |
| preempt_enable(); |
| } |
| |
| static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) |
| { |
| unsigned int order = get_order(size); |
| int node = cpu_to_node(cpu); |
| struct page *page; |
| |
| page = __alloc_pages_node(node, flags | __GFP_ZERO, order); |
| return page ? page_address(page) : NULL; |
| } |
| |
| static void dsfree_pages(const void *buffer, size_t size) |
| { |
| if (buffer) |
| free_pages((unsigned long)buffer, get_order(size)); |
| } |
| |
| static int alloc_pebs_buffer(int cpu) |
| { |
| struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| struct debug_store *ds = hwev->ds; |
| size_t bsiz = x86_pmu.pebs_buffer_size; |
| int max, node = cpu_to_node(cpu); |
| void *buffer, *insn_buff, *cea; |
| |
| if (!x86_pmu.pebs) |
| return 0; |
| |
| buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); |
| if (unlikely(!buffer)) |
| return -ENOMEM; |
| |
| /* |
| * HSW+ already provides us the eventing ip; no need to allocate this |
| * buffer then. |
| */ |
| if (x86_pmu.intel_cap.pebs_format < 2) { |
| insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); |
| if (!insn_buff) { |
| dsfree_pages(buffer, bsiz); |
| return -ENOMEM; |
| } |
| per_cpu(insn_buffer, cpu) = insn_buff; |
| } |
| hwev->ds_pebs_vaddr = buffer; |
| /* Update the cpu entry area mapping */ |
| cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; |
| ds->pebs_buffer_base = (unsigned long) cea; |
| ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); |
| ds->pebs_index = ds->pebs_buffer_base; |
| max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); |
| ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; |
| return 0; |
| } |
| |
| static void release_pebs_buffer(int cpu) |
| { |
| struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| void *cea; |
| |
| if (!x86_pmu.pebs) |
| return; |
| |
| kfree(per_cpu(insn_buffer, cpu)); |
| per_cpu(insn_buffer, cpu) = NULL; |
| |
| /* Clear the fixmap */ |
| cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; |
| ds_clear_cea(cea, x86_pmu.pebs_buffer_size); |
| dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); |
| hwev->ds_pebs_vaddr = NULL; |
| } |
| |
| static int alloc_bts_buffer(int cpu) |
| { |
| struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| struct debug_store *ds = hwev->ds; |
| void *buffer, *cea; |
| int max; |
| |
| if (!x86_pmu.bts) |
| return 0; |
| |
| buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); |
| if (unlikely(!buffer)) { |
| WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); |
| return -ENOMEM; |
| } |
| hwev->ds_bts_vaddr = buffer; |
| /* Update the fixmap */ |
| cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; |
| ds->bts_buffer_base = (unsigned long) cea; |
| ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); |
| ds->bts_index = ds->bts_buffer_base; |
| max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; |
| ds->bts_absolute_maximum = ds->bts_buffer_base + |
| max * BTS_RECORD_SIZE; |
| ds->bts_interrupt_threshold = ds->bts_absolute_maximum - |
| (max / 16) * BTS_RECORD_SIZE; |
| return 0; |
| } |
| |
| static void release_bts_buffer(int cpu) |
| { |
| struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| void *cea; |
| |
| if (!x86_pmu.bts) |
| return; |
| |
| /* Clear the fixmap */ |
| cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; |
| ds_clear_cea(cea, BTS_BUFFER_SIZE); |
| dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); |
| hwev->ds_bts_vaddr = NULL; |
| } |
| |
| static int alloc_ds_buffer(int cpu) |
| { |
| struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; |
| |
| memset(ds, 0, sizeof(*ds)); |
| per_cpu(cpu_hw_events, cpu).ds = ds; |
| return 0; |
| } |
| |
| static void release_ds_buffer(int cpu) |
| { |
| per_cpu(cpu_hw_events, cpu).ds = NULL; |
| } |
| |
| void release_ds_buffers(void) |
| { |
| int cpu; |
| |
| if (!x86_pmu.bts && !x86_pmu.pebs) |
| return; |
| |
| for_each_possible_cpu(cpu) |
| release_ds_buffer(cpu); |
| |
| for_each_possible_cpu(cpu) { |
| /* |
| * Again, ignore errors from offline CPUs, they will no longer |
| * observe cpu_hw_events.ds and not program the DS_AREA when |
| * they come up. |
| */ |
| fini_debug_store_on_cpu(cpu); |
| } |
| |
| for_each_possible_cpu(cpu) { |
| release_pebs_buffer(cpu); |
| release_bts_buffer(cpu); |
| } |
| } |
| |
| void reserve_ds_buffers(void) |
| { |
| int bts_err = 0, pebs_err = 0; |
| int cpu; |
| |
| x86_pmu.bts_active = 0; |
| x86_pmu.pebs_active = 0; |
| |
| if (!x86_pmu.bts && !x86_pmu.pebs) |
| return; |
| |
| if (!x86_pmu.bts) |
| bts_err = 1; |
| |
| if (!x86_pmu.pebs) |
| pebs_err = 1; |
| |
| for_each_possible_cpu(cpu) { |
| if (alloc_ds_buffer(cpu)) { |
| bts_err = 1; |
| pebs_err = 1; |
| } |
| |
| if (!bts_err && alloc_bts_buffer(cpu)) |
| bts_err = 1; |
| |
| if (!pebs_err && alloc_pebs_buffer(cpu)) |
| pebs_err = 1; |
| |
| if (bts_err && pebs_err) |
| break; |
| } |
| |
| if (bts_err) { |
| for_each_possible_cpu(cpu) |
| release_bts_buffer(cpu); |
| } |
| |
| if (pebs_err) { |
| for_each_possible_cpu(cpu) |
| release_pebs_buffer(cpu); |
| } |
| |
| if (bts_err && pebs_err) { |
| for_each_possible_cpu(cpu) |
| release_ds_buffer(cpu); |
| } else { |
| if (x86_pmu.bts && !bts_err) |
| x86_pmu.bts_active = 1; |
| |
| if (x86_pmu.pebs && !pebs_err) |
| x86_pmu.pebs_active = 1; |
| |
| for_each_possible_cpu(cpu) { |
| /* |
| * Ignores wrmsr_on_cpu() errors for offline CPUs they |
| * will get this call through intel_pmu_cpu_starting(). |
| */ |
| init_debug_store_on_cpu(cpu); |
| } |
| } |
| } |
| |
| /* |
| * BTS |
| */ |
| |
| struct event_constraint bts_constraint = |
| EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); |
| |
| void intel_pmu_enable_bts(u64 config) |
| { |
| unsigned long debugctlmsr; |
| |
| debugctlmsr = get_debugctlmsr(); |
| |
| debugctlmsr |= DEBUGCTLMSR_TR; |
| debugctlmsr |= DEBUGCTLMSR_BTS; |
| if (config & ARCH_PERFMON_EVENTSEL_INT) |
| debugctlmsr |= DEBUGCTLMSR_BTINT; |
| |
| if (!(config & ARCH_PERFMON_EVENTSEL_OS)) |
| debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; |
| |
| if (!(config & ARCH_PERFMON_EVENTSEL_USR)) |
| debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; |
| |
| update_debugctlmsr(debugctlmsr); |
| } |
| |
| void intel_pmu_disable_bts(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| unsigned long debugctlmsr; |
| |
| if (!cpuc->ds) |
| return; |
| |
| debugctlmsr = get_debugctlmsr(); |
| |
| debugctlmsr &= |
| ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | |
| DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); |
| |
| update_debugctlmsr(debugctlmsr); |
| } |
| |
| int intel_pmu_drain_bts_buffer(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct debug_store *ds = cpuc->ds; |
| struct bts_record { |
| u64 from; |
| u64 to; |
| u64 flags; |
| }; |
| struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; |
| struct bts_record *at, *base, *top; |
| struct perf_output_handle handle; |
| struct perf_event_header header; |
| struct perf_sample_data data; |
| unsigned long skip = 0; |
| struct pt_regs regs; |
| |
| if (!event) |
| return 0; |
| |
| if (!x86_pmu.bts_active) |
| return 0; |
| |
| base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; |
| top = (struct bts_record *)(unsigned long)ds->bts_index; |
| |
| if (top <= base) |
| return 0; |
| |
| memset(®s, 0, sizeof(regs)); |
| |
| ds->bts_index = ds->bts_buffer_base; |
| |
| perf_sample_data_init(&data, 0, event->hw.last_period); |
| |
| /* |
| * BTS leaks kernel addresses in branches across the cpl boundary, |
| * such as traps or system calls, so unless the user is asking for |
| * kernel tracing (and right now it's not possible), we'd need to |
| * filter them out. But first we need to count how many of those we |
| * have in the current batch. This is an extra O(n) pass, however, |
| * it's much faster than the other one especially considering that |
| * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the |
| * alloc_bts_buffer()). |
| */ |
| for (at = base; at < top; at++) { |
| /* |
| * Note that right now *this* BTS code only works if |
| * attr::exclude_kernel is set, but let's keep this extra |
| * check here in case that changes. |
| */ |
| if (event->attr.exclude_kernel && |
| (kernel_ip(at->from) || kernel_ip(at->to))) |
| skip++; |
| } |
| |
| /* |
| * Prepare a generic sample, i.e. fill in the invariant fields. |
| * We will overwrite the from and to address before we output |
| * the sample. |
| */ |
| rcu_read_lock(); |
| perf_prepare_sample(&header, &data, event, ®s); |
| |
| if (perf_output_begin(&handle, &data, event, |
| header.size * (top - base - skip))) |
| goto unlock; |
| |
| for (at = base; at < top; at++) { |
| /* Filter out any records that contain kernel addresses. */ |
| if (event->attr.exclude_kernel && |
| (kernel_ip(at->from) || kernel_ip(at->to))) |
| continue; |
| |
| data.ip = at->from; |
| data.addr = at->to; |
| |
| perf_output_sample(&handle, &header, &data, event); |
| } |
| |
| perf_output_end(&handle); |
| |
| /* There's new data available. */ |
| event->hw.interrupts++; |
| event->pending_kill = POLL_IN; |
| unlock: |
| rcu_read_unlock(); |
| return 1; |
| } |
| |
| static inline void intel_pmu_drain_pebs_buffer(void) |
| { |
| struct perf_sample_data data; |
| |
| x86_pmu.drain_pebs(NULL, &data); |
| } |
| |
| /* |
| * PEBS |
| */ |
| struct event_constraint intel_core2_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ |
| /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_atom_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ |
| /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01), |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_slm_pebs_event_constraints[] = { |
| /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1), |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_glm_pebs_event_constraints[] = { |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_nehalem_pebs_event_constraints[] = { |
| INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ |
| INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ |
| /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_westmere_pebs_event_constraints[] = { |
| INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ |
| /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_snb_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ |
| INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ |
| /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_ivb_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ |
| INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ |
| /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_hsw_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_bdw_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf), |
| /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| |
| struct event_constraint intel_skl_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2), |
| /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f), |
| INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ |
| /* Allow all events as PEBS with no flags */ |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_icl_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */ |
| |
| INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), /* MEM_INST_RETIRED.LOAD */ |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), /* MEM_INST_RETIRED.STORE */ |
| |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */ |
| |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ |
| |
| /* |
| * Everything else is handled by PMU_FL_PEBS_ALL, because we |
| * need the full constraints from the main table. |
| */ |
| |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint intel_spr_pebs_event_constraints[] = { |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), |
| INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), |
| |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe), |
| INTEL_PLD_CONSTRAINT(0x1cd, 0xfe), |
| INTEL_PSD_CONSTRAINT(0x2cd, 0x1), |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), |
| INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), |
| |
| INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), |
| |
| INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), |
| |
| /* |
| * Everything else is handled by PMU_FL_PEBS_ALL, because we |
| * need the full constraints from the main table. |
| */ |
| |
| EVENT_CONSTRAINT_END |
| }; |
| |
| struct event_constraint *intel_pebs_constraints(struct perf_event *event) |
| { |
| struct event_constraint *c; |
| |
| if (!event->attr.precise_ip) |
| return NULL; |
| |
| if (x86_pmu.pebs_constraints) { |
| for_each_event_constraint(c, x86_pmu.pebs_constraints) { |
| if (constraint_match(c, event->hw.config)) { |
| event->hw.flags |= c->flags; |
| return c; |
| } |
| } |
| } |
| |
| /* |
| * Extended PEBS support |
| * Makes the PEBS code search the normal constraints. |
| */ |
| if (x86_pmu.flags & PMU_FL_PEBS_ALL) |
| return NULL; |
| |
| return &emptyconstraint; |
| } |
| |
| /* |
| * We need the sched_task callback even for per-cpu events when we use |
| * the large interrupt threshold, such that we can provide PID and TID |
| * to PEBS samples. |
| */ |
| static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) |
| { |
| if (cpuc->n_pebs == cpuc->n_pebs_via_pt) |
| return false; |
| |
| return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); |
| } |
| |
| void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (!sched_in && pebs_needs_sched_cb(cpuc)) |
| intel_pmu_drain_pebs_buffer(); |
| } |
| |
| static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) |
| { |
| struct debug_store *ds = cpuc->ds; |
| u64 threshold; |
| int reserved; |
| |
| if (cpuc->n_pebs_via_pt) |
| return; |
| |
| if (x86_pmu.flags & PMU_FL_PEBS_ALL) |
| reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed; |
| else |
| reserved = x86_pmu.max_pebs_events; |
| |
| if (cpuc->n_pebs == cpuc->n_large_pebs) { |
| threshold = ds->pebs_absolute_maximum - |
| reserved * cpuc->pebs_record_size; |
| } else { |
| threshold = ds->pebs_buffer_base + cpuc->pebs_record_size; |
| } |
| |
| ds->pebs_interrupt_threshold = threshold; |
| } |
| |
| static void adaptive_pebs_record_size_update(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| u64 pebs_data_cfg = cpuc->pebs_data_cfg; |
| int sz = sizeof(struct pebs_basic); |
| |
| if (pebs_data_cfg & PEBS_DATACFG_MEMINFO) |
| sz += sizeof(struct pebs_meminfo); |
| if (pebs_data_cfg & PEBS_DATACFG_GP) |
| sz += sizeof(struct pebs_gprs); |
| if (pebs_data_cfg & PEBS_DATACFG_XMMS) |
| sz += sizeof(struct pebs_xmm); |
| if (pebs_data_cfg & PEBS_DATACFG_LBRS) |
| sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry); |
| |
| cpuc->pebs_record_size = sz; |
| } |
| |
| #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \ |
| PERF_SAMPLE_PHYS_ADDR | \ |
| PERF_SAMPLE_WEIGHT_TYPE | \ |
| PERF_SAMPLE_TRANSACTION | \ |
| PERF_SAMPLE_DATA_PAGE_SIZE) |
| |
| static u64 pebs_update_adaptive_cfg(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| u64 sample_type = attr->sample_type; |
| u64 pebs_data_cfg = 0; |
| bool gprs, tsx_weight; |
| |
| if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) && |
| attr->precise_ip > 1) |
| return pebs_data_cfg; |
| |
| if (sample_type & PERF_PEBS_MEMINFO_TYPE) |
| pebs_data_cfg |= PEBS_DATACFG_MEMINFO; |
| |
| /* |
| * We need GPRs when: |
| * + user requested them |
| * + precise_ip < 2 for the non event IP |
| * + For RTM TSX weight we need GPRs for the abort code. |
| */ |
| gprs = (sample_type & PERF_SAMPLE_REGS_INTR) && |
| (attr->sample_regs_intr & PEBS_GP_REGS); |
| |
| tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) && |
| ((attr->config & INTEL_ARCH_EVENT_MASK) == |
| x86_pmu.rtm_abort_event); |
| |
| if (gprs || (attr->precise_ip < 2) || tsx_weight) |
| pebs_data_cfg |= PEBS_DATACFG_GP; |
| |
| if ((sample_type & PERF_SAMPLE_REGS_INTR) && |
| (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK)) |
| pebs_data_cfg |= PEBS_DATACFG_XMMS; |
| |
| if (sample_type & PERF_SAMPLE_BRANCH_STACK) { |
| /* |
| * For now always log all LBRs. Could configure this |
| * later. |
| */ |
| pebs_data_cfg |= PEBS_DATACFG_LBRS | |
| ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT); |
| } |
| |
| return pebs_data_cfg; |
| } |
| |
| static void |
| pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, |
| struct perf_event *event, bool add) |
| { |
| struct pmu *pmu = event->ctx->pmu; |
| /* |
| * Make sure we get updated with the first PEBS |
| * event. It will trigger also during removal, but |
| * that does not hurt: |
| */ |
| bool update = cpuc->n_pebs == 1; |
| |
| if (needed_cb != pebs_needs_sched_cb(cpuc)) { |
| if (!needed_cb) |
| perf_sched_cb_inc(pmu); |
| else |
| perf_sched_cb_dec(pmu); |
| |
| update = true; |
| } |
| |
| /* |
| * The PEBS record doesn't shrink on pmu::del(). Doing so would require |
| * iterating all remaining PEBS events to reconstruct the config. |
| */ |
| if (x86_pmu.intel_cap.pebs_baseline && add) { |
| u64 pebs_data_cfg; |
| |
| /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */ |
| if (cpuc->n_pebs == 1) { |
| cpuc->pebs_data_cfg = 0; |
| cpuc->pebs_record_size = sizeof(struct pebs_basic); |
| } |
| |
| pebs_data_cfg = pebs_update_adaptive_cfg(event); |
| |
| /* Update pebs_record_size if new event requires more data. */ |
| if (pebs_data_cfg & ~cpuc->pebs_data_cfg) { |
| cpuc->pebs_data_cfg |= pebs_data_cfg; |
| adaptive_pebs_record_size_update(); |
| update = true; |
| } |
| } |
| |
| if (update) |
| pebs_update_threshold(cpuc); |
| } |
| |
| void intel_pmu_pebs_add(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| bool needed_cb = pebs_needs_sched_cb(cpuc); |
| |
| cpuc->n_pebs++; |
| if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) |
| cpuc->n_large_pebs++; |
| if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) |
| cpuc->n_pebs_via_pt++; |
| |
| pebs_update_state(needed_cb, cpuc, event, true); |
| } |
| |
| static void intel_pmu_pebs_via_pt_disable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (!is_pebs_pt(event)) |
| return; |
| |
| if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK)) |
| cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK; |
| } |
| |
| static void intel_pmu_pebs_via_pt_enable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| struct debug_store *ds = cpuc->ds; |
| |
| if (!is_pebs_pt(event)) |
| return; |
| |
| if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) |
| cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD; |
| |
| cpuc->pebs_enabled |= PEBS_OUTPUT_PT; |
| |
| wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]); |
| } |
| |
| void intel_pmu_pebs_enable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| struct debug_store *ds = cpuc->ds; |
| |
| hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; |
| |
| cpuc->pebs_enabled |= 1ULL << hwc->idx; |
| |
| if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5)) |
| cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); |
| else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) |
| cpuc->pebs_enabled |= 1ULL << 63; |
| |
| if (x86_pmu.intel_cap.pebs_baseline) { |
| hwc->config |= ICL_EVENTSEL_ADAPTIVE; |
| if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) { |
| wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg); |
| cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg; |
| } |
| } |
| |
| /* |
| * Use auto-reload if possible to save a MSR write in the PMI. |
| * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. |
| */ |
| if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { |
| unsigned int idx = hwc->idx; |
| |
| if (idx >= INTEL_PMC_IDX_FIXED) |
| idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); |
| ds->pebs_event_reset[idx] = |
| (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; |
| } else { |
| ds->pebs_event_reset[hwc->idx] = 0; |
| } |
| |
| intel_pmu_pebs_via_pt_enable(event); |
| } |
| |
| void intel_pmu_pebs_del(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| bool needed_cb = pebs_needs_sched_cb(cpuc); |
| |
| cpuc->n_pebs--; |
| if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) |
| cpuc->n_large_pebs--; |
| if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT) |
| cpuc->n_pebs_via_pt--; |
| |
| pebs_update_state(needed_cb, cpuc, event, false); |
| } |
| |
| void intel_pmu_pebs_disable(struct perf_event *event) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (cpuc->n_pebs == cpuc->n_large_pebs && |
| cpuc->n_pebs != cpuc->n_pebs_via_pt) |
| intel_pmu_drain_pebs_buffer(); |
| |
| cpuc->pebs_enabled &= ~(1ULL << hwc->idx); |
| |
| if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && |
| (x86_pmu.version < 5)) |
| cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); |
| else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) |
| cpuc->pebs_enabled &= ~(1ULL << 63); |
| |
| intel_pmu_pebs_via_pt_disable(event); |
| |
| if (cpuc->enabled) |
| wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); |
| |
| hwc->config |= ARCH_PERFMON_EVENTSEL_INT; |
| } |
| |
| void intel_pmu_pebs_enable_all(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (cpuc->pebs_enabled) |
| wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); |
| } |
| |
| void intel_pmu_pebs_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (cpuc->pebs_enabled) |
| wrmsrl(MSR_IA32_PEBS_ENABLE, 0); |
| } |
| |
| static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| unsigned long from = cpuc->lbr_entries[0].from; |
| unsigned long old_to, to = cpuc->lbr_entries[0].to; |
| unsigned long ip = regs->ip; |
| int is_64bit = 0; |
| void *kaddr; |
| int size; |
| |
| /* |
| * We don't need to fixup if the PEBS assist is fault like |
| */ |
| if (!x86_pmu.intel_cap.pebs_trap) |
| return 1; |
| |
| /* |
| * No LBR entry, no basic block, no rewinding |
| */ |
| if (!cpuc->lbr_stack.nr || !from || !to) |
| return 0; |
| |
| /* |
| * Basic blocks should never cross user/kernel boundaries |
| */ |
| if (kernel_ip(ip) != kernel_ip(to)) |
| return 0; |
| |
| /* |
| * unsigned math, either ip is before the start (impossible) or |
| * the basic block is larger than 1 page (sanity) |
| */ |
| if ((ip - to) > PEBS_FIXUP_SIZE) |
| return 0; |
| |
| /* |
| * We sampled a branch insn, rewind using the LBR stack |
| */ |
| if (ip == to) { |
| set_linear_ip(regs, from); |
| return 1; |
| } |
| |
| size = ip - to; |
| if (!kernel_ip(ip)) { |
| int bytes; |
| u8 *buf = this_cpu_read(insn_buffer); |
| |
| /* 'size' must fit our buffer, see above */ |
| bytes = copy_from_user_nmi(buf, (void __user *)to, size); |
| if (bytes != 0) |
| return 0; |
| |
| kaddr = buf; |
| } else { |
| kaddr = (void *)to; |
| } |
| |
| do { |
| struct insn insn; |
| |
| old_to = to; |
| |
| #ifdef CONFIG_X86_64 |
| is_64bit = kernel_ip(to) || any_64bit_mode(regs); |
| #endif |
| insn_init(&insn, kaddr, size, is_64bit); |
| |
| /* |
| * Make sure there was not a problem decoding the instruction. |
| * This is doubly important because we have an infinite loop if |
| * insn.length=0. |
| */ |
| if (insn_get_length(&insn)) |
| break; |
| |
| to += insn.length; |
| kaddr += insn.length; |
| size -= insn.length; |
| } while (to < ip); |
| |
| if (to == ip) { |
| set_linear_ip(regs, old_to); |
| return 1; |
| } |
| |
| /* |
| * Even though we decoded the basic block, the instruction stream |
| * never matched the given IP, either the TO or the IP got corrupted. |
| */ |
| return 0; |
| } |
| |
| static inline u64 intel_get_tsx_weight(u64 tsx_tuning) |
| { |
| if (tsx_tuning) { |
| union hsw_tsx_tuning tsx = { .value = tsx_tuning }; |
| return tsx.cycles_last_block; |
| } |
| return 0; |
| } |
| |
| static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax) |
| { |
| u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; |
| |
| /* For RTM XABORTs also log the abort code from AX */ |
| if ((txn & PERF_TXN_TRANSACTION) && (ax & 1)) |
| txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; |
| return txn; |
| } |
| |
| static inline u64 get_pebs_status(void *n) |
| { |
| if (x86_pmu.intel_cap.pebs_format < 4) |
| return ((struct pebs_record_nhm *)n)->status; |
| return ((struct pebs_basic *)n)->applicable_counters; |
| } |
| |
| #define PERF_X86_EVENT_PEBS_HSW_PREC \ |
| (PERF_X86_EVENT_PEBS_ST_HSW | \ |
| PERF_X86_EVENT_PEBS_LD_HSW | \ |
| PERF_X86_EVENT_PEBS_NA_HSW) |
| |
| static u64 get_data_src(struct perf_event *event, u64 aux) |
| { |
| u64 val = PERF_MEM_NA; |
| int fl = event->hw.flags; |
| bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); |
| |
| if (fl & PERF_X86_EVENT_PEBS_LDLAT) |
| val = load_latency_data(aux); |
| else if (fl & PERF_X86_EVENT_PEBS_STLAT) |
| val = store_latency_data(aux); |
| else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) |
| val = precise_datala_hsw(event, aux); |
| else if (fst) |
| val = precise_store_data(aux); |
| return val; |
| } |
| |
| #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \ |
| PERF_SAMPLE_PHYS_ADDR | \ |
| PERF_SAMPLE_DATA_PAGE_SIZE) |
| |
| static void setup_pebs_fixed_sample_data(struct perf_event *event, |
| struct pt_regs *iregs, void *__pebs, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| /* |
| * We cast to the biggest pebs_record but are careful not to |
| * unconditionally access the 'extra' entries. |
| */ |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct pebs_record_skl *pebs = __pebs; |
| u64 sample_type; |
| int fll; |
| |
| if (pebs == NULL) |
| return; |
| |
| sample_type = event->attr.sample_type; |
| fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT; |
| |
| perf_sample_data_init(data, 0, event->hw.last_period); |
| |
| data->period = event->hw.last_period; |
| |
| /* |
| * Use latency for weight (only avail with PEBS-LL) |
| */ |
| if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) |
| data->weight.full = pebs->lat; |
| |
| /* |
| * data.data_src encodes the data source |
| */ |
| if (sample_type & PERF_SAMPLE_DATA_SRC) |
| data->data_src.val = get_data_src(event, pebs->dse); |
| |
| /* |
| * We must however always use iregs for the unwinder to stay sane; the |
| * record BP,SP,IP can point into thin air when the record is from a |
| * previous PMI context or an (I)RET happened between the record and |
| * PMI. |
| */ |
| if (sample_type & PERF_SAMPLE_CALLCHAIN) |
| data->callchain = perf_callchain(event, iregs); |
| |
| /* |
| * We use the interrupt regs as a base because the PEBS record does not |
| * contain a full regs set, specifically it seems to lack segment |
| * descriptors, which get used by things like user_mode(). |
| * |
| * In the simple case fix up only the IP for PERF_SAMPLE_IP. |
| */ |
| *regs = *iregs; |
| |
| /* |
| * Initialize regs_>flags from PEBS, |
| * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), |
| * i.e., do not rely on it being zero: |
| */ |
| regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; |
| |
| if (sample_type & PERF_SAMPLE_REGS_INTR) { |
| regs->ax = pebs->ax; |
| regs->bx = pebs->bx; |
| regs->cx = pebs->cx; |
| regs->dx = pebs->dx; |
| regs->si = pebs->si; |
| regs->di = pebs->di; |
| |
| regs->bp = pebs->bp; |
| regs->sp = pebs->sp; |
| |
| #ifndef CONFIG_X86_32 |
| regs->r8 = pebs->r8; |
| regs->r9 = pebs->r9; |
| regs->r10 = pebs->r10; |
| regs->r11 = pebs->r11; |
| regs->r12 = pebs->r12; |
| regs->r13 = pebs->r13; |
| regs->r14 = pebs->r14; |
| regs->r15 = pebs->r15; |
| #endif |
| } |
| |
| if (event->attr.precise_ip > 1) { |
| /* |
| * Haswell and later processors have an 'eventing IP' |
| * (real IP) which fixes the off-by-1 skid in hardware. |
| * Use it when precise_ip >= 2 : |
| */ |
| if (x86_pmu.intel_cap.pebs_format >= 2) { |
| set_linear_ip(regs, pebs->real_ip); |
| regs->flags |= PERF_EFLAGS_EXACT; |
| } else { |
| /* Otherwise, use PEBS off-by-1 IP: */ |
| set_linear_ip(regs, pebs->ip); |
| |
| /* |
| * With precise_ip >= 2, try to fix up the off-by-1 IP |
| * using the LBR. If successful, the fixup function |
| * corrects regs->ip and calls set_linear_ip() on regs: |
| */ |
| if (intel_pmu_pebs_fixup_ip(regs)) |
| regs->flags |= PERF_EFLAGS_EXACT; |
| } |
| } else { |
| /* |
| * When precise_ip == 1, return the PEBS off-by-1 IP, |
| * no fixup attempted: |
| */ |
| set_linear_ip(regs, pebs->ip); |
| } |
| |
| |
| if ((sample_type & PERF_SAMPLE_ADDR_TYPE) && |
| x86_pmu.intel_cap.pebs_format >= 1) |
| data->addr = pebs->dla; |
| |
| if (x86_pmu.intel_cap.pebs_format >= 2) { |
| /* Only set the TSX weight when no memory weight. */ |
| if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) |
| data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning); |
| |
| if (sample_type & PERF_SAMPLE_TRANSACTION) |
| data->txn = intel_get_tsx_transaction(pebs->tsx_tuning, |
| pebs->ax); |
| } |
| |
| /* |
| * v3 supplies an accurate time stamp, so we use that |
| * for the time stamp. |
| * |
| * We can only do this for the default trace clock. |
| */ |
| if (x86_pmu.intel_cap.pebs_format >= 3 && |
| event->attr.use_clockid == 0) |
| data->time = native_sched_clock_from_tsc(pebs->tsc); |
| |
| if (has_branch_stack(event)) |
| data->br_stack = &cpuc->lbr_stack; |
| } |
| |
| static void adaptive_pebs_save_regs(struct pt_regs *regs, |
| struct pebs_gprs *gprs) |
| { |
| regs->ax = gprs->ax; |
| regs->bx = gprs->bx; |
| regs->cx = gprs->cx; |
| regs->dx = gprs->dx; |
| regs->si = gprs->si; |
| regs->di = gprs->di; |
| regs->bp = gprs->bp; |
| regs->sp = gprs->sp; |
| #ifndef CONFIG_X86_32 |
| regs->r8 = gprs->r8; |
| regs->r9 = gprs->r9; |
| regs->r10 = gprs->r10; |
| regs->r11 = gprs->r11; |
| regs->r12 = gprs->r12; |
| regs->r13 = gprs->r13; |
| regs->r14 = gprs->r14; |
| regs->r15 = gprs->r15; |
| #endif |
| } |
| |
| #define PEBS_LATENCY_MASK 0xffff |
| #define PEBS_CACHE_LATENCY_OFFSET 32 |
| |
| /* |
| * With adaptive PEBS the layout depends on what fields are configured. |
| */ |
| |
| static void setup_pebs_adaptive_sample_data(struct perf_event *event, |
| struct pt_regs *iregs, void *__pebs, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct pebs_basic *basic = __pebs; |
| void *next_record = basic + 1; |
| u64 sample_type; |
| u64 format_size; |
| struct pebs_meminfo *meminfo = NULL; |
| struct pebs_gprs *gprs = NULL; |
| struct x86_perf_regs *perf_regs; |
| |
| if (basic == NULL) |
| return; |
| |
| perf_regs = container_of(regs, struct x86_perf_regs, regs); |
| perf_regs->xmm_regs = NULL; |
| |
| sample_type = event->attr.sample_type; |
| format_size = basic->format_size; |
| perf_sample_data_init(data, 0, event->hw.last_period); |
| data->period = event->hw.last_period; |
| |
| if (event->attr.use_clockid == 0) |
| data->time = native_sched_clock_from_tsc(basic->tsc); |
| |
| /* |
| * We must however always use iregs for the unwinder to stay sane; the |
| * record BP,SP,IP can point into thin air when the record is from a |
| * previous PMI context or an (I)RET happened between the record and |
| * PMI. |
| */ |
| if (sample_type & PERF_SAMPLE_CALLCHAIN) |
| data->callchain = perf_callchain(event, iregs); |
| |
| *regs = *iregs; |
| /* The ip in basic is EventingIP */ |
| set_linear_ip(regs, basic->ip); |
| regs->flags = PERF_EFLAGS_EXACT; |
| |
| /* |
| * The record for MEMINFO is in front of GP |
| * But PERF_SAMPLE_TRANSACTION needs gprs->ax. |
| * Save the pointer here but process later. |
| */ |
| if (format_size & PEBS_DATACFG_MEMINFO) { |
| meminfo = next_record; |
| next_record = meminfo + 1; |
| } |
| |
| if (format_size & PEBS_DATACFG_GP) { |
| gprs = next_record; |
| next_record = gprs + 1; |
| |
| if (event->attr.precise_ip < 2) { |
| set_linear_ip(regs, gprs->ip); |
| regs->flags &= ~PERF_EFLAGS_EXACT; |
| } |
| |
| if (sample_type & PERF_SAMPLE_REGS_INTR) |
| adaptive_pebs_save_regs(regs, gprs); |
| } |
| |
| if (format_size & PEBS_DATACFG_MEMINFO) { |
| if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { |
| u64 weight = meminfo->latency; |
| |
| if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) { |
| data->weight.var2_w = weight & PEBS_LATENCY_MASK; |
| weight >>= PEBS_CACHE_LATENCY_OFFSET; |
| } |
| |
| /* |
| * Although meminfo::latency is defined as a u64, |
| * only the lower 32 bits include the valid data |
| * in practice on Ice Lake and earlier platforms. |
| */ |
| if (sample_type & PERF_SAMPLE_WEIGHT) { |
| data->weight.full = weight ?: |
| intel_get_tsx_weight(meminfo->tsx_tuning); |
| } else { |
| data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?: |
| intel_get_tsx_weight(meminfo->tsx_tuning); |
| } |
| } |
| |
| if (sample_type & PERF_SAMPLE_DATA_SRC) |
| data->data_src.val = get_data_src(event, meminfo->aux); |
| |
| if (sample_type & PERF_SAMPLE_ADDR_TYPE) |
| data->addr = meminfo->address; |
| |
| if (sample_type & PERF_SAMPLE_TRANSACTION) |
| data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning, |
| gprs ? gprs->ax : 0); |
| } |
| |
| if (format_size & PEBS_DATACFG_XMMS) { |
| struct pebs_xmm *xmm = next_record; |
| |
| next_record = xmm + 1; |
| perf_regs->xmm_regs = xmm->xmm; |
| } |
| |
| if (format_size & PEBS_DATACFG_LBRS) { |
| struct lbr_entry *lbr = next_record; |
| int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT) |
| & 0xff) + 1; |
| next_record = next_record + num_lbr * sizeof(struct lbr_entry); |
| |
| if (has_branch_stack(event)) { |
| intel_pmu_store_pebs_lbrs(lbr); |
| data->br_stack = &cpuc->lbr_stack; |
| } |
| } |
| |
| WARN_ONCE(next_record != __pebs + (format_size >> 48), |
| "PEBS record size %llu, expected %llu, config %llx\n", |
| format_size >> 48, |
| (u64)(next_record - __pebs), |
| basic->format_size); |
| } |
| |
| static inline void * |
| get_next_pebs_record_by_bit(void *base, void *top, int bit) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| void *at; |
| u64 pebs_status; |
| |
| /* |
| * fmt0 does not have a status bitfield (does not use |
| * perf_record_nhm format) |
| */ |
| if (x86_pmu.intel_cap.pebs_format < 1) |
| return base; |
| |
| if (base == NULL) |
| return NULL; |
| |
| for (at = base; at < top; at += cpuc->pebs_record_size) { |
| unsigned long status = get_pebs_status(at); |
| |
| if (test_bit(bit, (unsigned long *)&status)) { |
| /* PEBS v3 has accurate status bits */ |
| if (x86_pmu.intel_cap.pebs_format >= 3) |
| return at; |
| |
| if (status == (1 << bit)) |
| return at; |
| |
| /* clear non-PEBS bit and re-check */ |
| pebs_status = status & cpuc->pebs_enabled; |
| pebs_status &= PEBS_COUNTER_MASK; |
| if (pebs_status == (1 << bit)) |
| return at; |
| } |
| } |
| return NULL; |
| } |
| |
| void intel_pmu_auto_reload_read(struct perf_event *event) |
| { |
| WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); |
| |
| perf_pmu_disable(event->pmu); |
| intel_pmu_drain_pebs_buffer(); |
| perf_pmu_enable(event->pmu); |
| } |
| |
| /* |
| * Special variant of intel_pmu_save_and_restart() for auto-reload. |
| */ |
| static int |
| intel_pmu_save_and_restart_reload(struct perf_event *event, int count) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int shift = 64 - x86_pmu.cntval_bits; |
| u64 period = hwc->sample_period; |
| u64 prev_raw_count, new_raw_count; |
| s64 new, old; |
| |
| WARN_ON(!period); |
| |
| /* |
| * drain_pebs() only happens when the PMU is disabled. |
| */ |
| WARN_ON(this_cpu_read(cpu_hw_events.enabled)); |
| |
| prev_raw_count = local64_read(&hwc->prev_count); |
| rdpmcl(hwc->event_base_rdpmc, new_raw_count); |
| local64_set(&hwc->prev_count, new_raw_count); |
| |
| /* |
| * Since the counter increments a negative counter value and |
| * overflows on the sign switch, giving the interval: |
| * |
| * [-period, 0] |
| * |
| * the difference between two consequtive reads is: |
| * |
| * A) value2 - value1; |
| * when no overflows have happened in between, |
| * |
| * B) (0 - value1) + (value2 - (-period)); |
| * when one overflow happened in between, |
| * |
| * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); |
| * when @n overflows happened in between. |
| * |
| * Here A) is the obvious difference, B) is the extension to the |
| * discrete interval, where the first term is to the top of the |
| * interval and the second term is from the bottom of the next |
| * interval and C) the extension to multiple intervals, where the |
| * middle term is the whole intervals covered. |
| * |
| * An equivalent of C, by reduction, is: |
| * |
| * value2 - value1 + n * period |
| */ |
| new = ((s64)(new_raw_count << shift) >> shift); |
| old = ((s64)(prev_raw_count << shift) >> shift); |
| local64_add(new - old + count * period, &event->count); |
| |
| local64_set(&hwc->period_left, -new); |
| |
| perf_event_update_userpage(event); |
| |
| return 0; |
| } |
| |
| static __always_inline void |
| __intel_pmu_pebs_event(struct perf_event *event, |
| struct pt_regs *iregs, |
| struct perf_sample_data *data, |
| void *base, void *top, |
| int bit, int count, |
| void (*setup_sample)(struct perf_event *, |
| struct pt_regs *, |
| void *, |
| struct perf_sample_data *, |
| struct pt_regs *)) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| struct x86_perf_regs perf_regs; |
| struct pt_regs *regs = &perf_regs.regs; |
| void *at = get_next_pebs_record_by_bit(base, top, bit); |
| static struct pt_regs dummy_iregs; |
| |
| if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { |
| /* |
| * Now, auto-reload is only enabled in fixed period mode. |
| * The reload value is always hwc->sample_period. |
| * May need to change it, if auto-reload is enabled in |
| * freq mode later. |
| */ |
| intel_pmu_save_and_restart_reload(event, count); |
| } else if (!intel_pmu_save_and_restart(event)) |
| return; |
| |
| if (!iregs) |
| iregs = &dummy_iregs; |
| |
| while (count > 1) { |
| setup_sample(event, iregs, at, data, regs); |
| perf_event_output(event, data, regs); |
| at += cpuc->pebs_record_size; |
| at = get_next_pebs_record_by_bit(at, top, bit); |
| count--; |
| } |
| |
| setup_sample(event, iregs, at, data, regs); |
| if (iregs == &dummy_iregs) { |
| /* |
| * The PEBS records may be drained in the non-overflow context, |
| * e.g., large PEBS + context switch. Perf should treat the |
| * last record the same as other PEBS records, and doesn't |
| * invoke the generic overflow handler. |
| */ |
| perf_event_output(event, data, regs); |
| } else { |
| /* |
| * All but the last records are processed. |
| * The last one is left to be able to call the overflow handler. |
| */ |
| if (perf_event_overflow(event, data, regs)) |
| x86_pmu_stop(event, 0); |
| } |
| } |
| |
| static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct debug_store *ds = cpuc->ds; |
| struct perf_event *event = cpuc->events[0]; /* PMC0 only */ |
| struct pebs_record_core *at, *top; |
| int n; |
| |
| if (!x86_pmu.pebs_active) |
| return; |
| |
| at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; |
| top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; |
| |
| /* |
| * Whatever else happens, drain the thing |
| */ |
| ds->pebs_index = ds->pebs_buffer_base; |
| |
| if (!test_bit(0, cpuc->active_mask)) |
| return; |
| |
| WARN_ON_ONCE(!event); |
| |
| if (!event->attr.precise_ip) |
| return; |
| |
| n = top - at; |
| if (n <= 0) { |
| if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| intel_pmu_save_and_restart_reload(event, 0); |
| return; |
| } |
| |
| __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n, |
| setup_pebs_fixed_sample_data); |
| } |
| |
| static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size) |
| { |
| struct perf_event *event; |
| int bit; |
| |
| /* |
| * The drain_pebs() could be called twice in a short period |
| * for auto-reload event in pmu::read(). There are no |
| * overflows have happened in between. |
| * It needs to call intel_pmu_save_and_restart_reload() to |
| * update the event->count for this case. |
| */ |
| for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) { |
| event = cpuc->events[bit]; |
| if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| intel_pmu_save_and_restart_reload(event, 0); |
| } |
| } |
| |
| static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct debug_store *ds = cpuc->ds; |
| struct perf_event *event; |
| void *base, *at, *top; |
| short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| int bit, i, size; |
| u64 mask; |
| |
| if (!x86_pmu.pebs_active) |
| return; |
| |
| base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; |
| top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; |
| |
| ds->pebs_index = ds->pebs_buffer_base; |
| |
| mask = (1ULL << x86_pmu.max_pebs_events) - 1; |
| size = x86_pmu.max_pebs_events; |
| if (x86_pmu.flags & PMU_FL_PEBS_ALL) { |
| mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; |
| size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; |
| } |
| |
| if (unlikely(base >= top)) { |
| intel_pmu_pebs_event_update_no_drain(cpuc, size); |
| return; |
| } |
| |
| for (at = base; at < top; at += x86_pmu.pebs_record_size) { |
| struct pebs_record_nhm *p = at; |
| u64 pebs_status; |
| |
| pebs_status = p->status & cpuc->pebs_enabled; |
| pebs_status &= mask; |
| |
| /* PEBS v3 has more accurate status bits */ |
| if (x86_pmu.intel_cap.pebs_format >= 3) { |
| for_each_set_bit(bit, (unsigned long *)&pebs_status, size) |
| counts[bit]++; |
| |
| continue; |
| } |
| |
| /* |
| * On some CPUs the PEBS status can be zero when PEBS is |
| * racing with clearing of GLOBAL_STATUS. |
| * |
| * Normally we would drop that record, but in the |
| * case when there is only a single active PEBS event |
| * we can assume it's for that event. |
| */ |
| if (!pebs_status && cpuc->pebs_enabled && |
| !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) |
| pebs_status = cpuc->pebs_enabled; |
| |
| bit = find_first_bit((unsigned long *)&pebs_status, |
| x86_pmu.max_pebs_events); |
| if (bit >= x86_pmu.max_pebs_events) |
| continue; |
| |
| /* |
| * The PEBS hardware does not deal well with the situation |
| * when events happen near to each other and multiple bits |
| * are set. But it should happen rarely. |
| * |
| * If these events include one PEBS and multiple non-PEBS |
| * events, it doesn't impact PEBS record. The record will |
| * be handled normally. (slow path) |
| * |
| * If these events include two or more PEBS events, the |
| * records for the events can be collapsed into a single |
| * one, and it's not possible to reconstruct all events |
| * that caused the PEBS record. It's called collision. |
| * If collision happened, the record will be dropped. |
| */ |
| if (pebs_status != (1ULL << bit)) { |
| for_each_set_bit(i, (unsigned long *)&pebs_status, size) |
| error[i]++; |
| continue; |
| } |
| |
| counts[bit]++; |
| } |
| |
| for_each_set_bit(bit, (unsigned long *)&mask, size) { |
| if ((counts[bit] == 0) && (error[bit] == 0)) |
| continue; |
| |
| event = cpuc->events[bit]; |
| if (WARN_ON_ONCE(!event)) |
| continue; |
| |
| if (WARN_ON_ONCE(!event->attr.precise_ip)) |
| continue; |
| |
| /* log dropped samples number */ |
| if (error[bit]) { |
| perf_log_lost_samples(event, error[bit]); |
| |
| if (iregs && perf_event_account_interrupt(event)) |
| x86_pmu_stop(event, 0); |
| } |
| |
| if (counts[bit]) { |
| __intel_pmu_pebs_event(event, iregs, data, base, |
| top, bit, counts[bit], |
| setup_pebs_fixed_sample_data); |
| } |
| } |
| } |
| |
| static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data) |
| { |
| short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct debug_store *ds = cpuc->ds; |
| struct perf_event *event; |
| void *base, *at, *top; |
| int bit, size; |
| u64 mask; |
| |
| if (!x86_pmu.pebs_active) |
| return; |
| |
| base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base; |
| top = (struct pebs_basic *)(unsigned long)ds->pebs_index; |
| |
| ds->pebs_index = ds->pebs_buffer_base; |
| |
| mask = ((1ULL << x86_pmu.max_pebs_events) - 1) | |
| (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED); |
| size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; |
| |
| if (unlikely(base >= top)) { |
| intel_pmu_pebs_event_update_no_drain(cpuc, size); |
| return; |
| } |
| |
| for (at = base; at < top; at += cpuc->pebs_record_size) { |
| u64 pebs_status; |
| |
| pebs_status = get_pebs_status(at) & cpuc->pebs_enabled; |
| pebs_status &= mask; |
| |
| for_each_set_bit(bit, (unsigned long *)&pebs_status, size) |
| counts[bit]++; |
| } |
| |
| for_each_set_bit(bit, (unsigned long *)&mask, size) { |
| if (counts[bit] == 0) |
| continue; |
| |
| event = cpuc->events[bit]; |
| if (WARN_ON_ONCE(!event)) |
| continue; |
| |
| if (WARN_ON_ONCE(!event->attr.precise_ip)) |
| continue; |
| |
| __intel_pmu_pebs_event(event, iregs, data, base, |
| top, bit, counts[bit], |
| setup_pebs_adaptive_sample_data); |
| } |
| } |
| |
| /* |
| * BTS, PEBS probe and setup |
| */ |
| |
| void __init intel_ds_init(void) |
| { |
| /* |
| * No support for 32bit formats |
| */ |
| if (!boot_cpu_has(X86_FEATURE_DTES64)) |
| return; |
| |
| x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); |
| x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); |
| x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; |
| if (x86_pmu.version <= 4) |
| x86_pmu.pebs_no_isolation = 1; |
| |
| if (x86_pmu.pebs) { |
| char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; |
| char *pebs_qual = ""; |
| int format = x86_pmu.intel_cap.pebs_format; |
| |
| if (format < 4) |
| x86_pmu.intel_cap.pebs_baseline = 0; |
| |
| switch (format) { |
| case 0: |
| pr_cont("PEBS fmt0%c, ", pebs_type); |
| x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); |
| /* |
| * Using >PAGE_SIZE buffers makes the WRMSR to |
| * PERF_GLOBAL_CTRL in intel_pmu_enable_all() |
| * mysteriously hang on Core2. |
| * |
| * As a workaround, we don't do this. |
| */ |
| x86_pmu.pebs_buffer_size = PAGE_SIZE; |
| x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; |
| break; |
| |
| case 1: |
| pr_cont("PEBS fmt1%c, ", pebs_type); |
| x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); |
| x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| break; |
| |
| case 2: |
| pr_cont("PEBS fmt2%c, ", pebs_type); |
| x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); |
| x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| break; |
| |
| case 3: |
| pr_cont("PEBS fmt3%c, ", pebs_type); |
| x86_pmu.pebs_record_size = |
| sizeof(struct pebs_record_skl); |
| x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; |
| break; |
| |
| case 4: |
| x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl; |
| x86_pmu.pebs_record_size = sizeof(struct pebs_basic); |
| if (x86_pmu.intel_cap.pebs_baseline) { |
| x86_pmu.large_pebs_flags |= |
| PERF_SAMPLE_BRANCH_STACK | |
| PERF_SAMPLE_TIME; |
| x86_pmu.flags |= PMU_FL_PEBS_ALL; |
| pebs_qual = "-baseline"; |
| x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS; |
| } else { |
| /* Only basic record supported */ |
| x86_pmu.large_pebs_flags &= |
| ~(PERF_SAMPLE_ADDR | |
| PERF_SAMPLE_TIME | |
| PERF_SAMPLE_DATA_SRC | |
| PERF_SAMPLE_TRANSACTION | |
| PERF_SAMPLE_REGS_USER | |
| PERF_SAMPLE_REGS_INTR); |
| } |
| pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual); |
| |
| if (x86_pmu.intel_cap.pebs_output_pt_available) { |
| pr_cont("PEBS-via-PT, "); |
| x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT; |
| } |
| |
| break; |
| |
| default: |
| pr_cont("no PEBS fmt%d%c, ", format, pebs_type); |
| x86_pmu.pebs = 0; |
| } |
| } |
| } |
| |
| void perf_restore_debug_store(void) |
| { |
| struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); |
| |
| if (!x86_pmu.bts && !x86_pmu.pebs) |
| return; |
| |
| wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); |
| } |