| /* |
| * This file is part of wl1271 |
| * |
| * Copyright (C) 2008-2009 Nokia Corporation |
| * |
| * Contact: Luciano Coelho <luciano.coelho@nokia.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA |
| * 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/crc7.h> |
| #include <linux/spi/spi.h> |
| |
| #include "wl1271.h" |
| #include "wl12xx_80211.h" |
| #include "wl1271_spi.h" |
| |
| static int wl1271_translate_reg_addr(struct wl1271 *wl, int addr) |
| { |
| return addr - wl->physical_reg_addr + wl->virtual_reg_addr; |
| } |
| |
| static int wl1271_translate_mem_addr(struct wl1271 *wl, int addr) |
| { |
| return addr - wl->physical_mem_addr + wl->virtual_mem_addr; |
| } |
| |
| |
| void wl1271_spi_reset(struct wl1271 *wl) |
| { |
| u8 *cmd; |
| struct spi_transfer t; |
| struct spi_message m; |
| |
| cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL); |
| if (!cmd) { |
| wl1271_error("could not allocate cmd for spi reset"); |
| return; |
| } |
| |
| memset(&t, 0, sizeof(t)); |
| spi_message_init(&m); |
| |
| memset(cmd, 0xff, WSPI_INIT_CMD_LEN); |
| |
| t.tx_buf = cmd; |
| t.len = WSPI_INIT_CMD_LEN; |
| spi_message_add_tail(&t, &m); |
| |
| spi_sync(wl->spi, &m); |
| |
| wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN); |
| } |
| |
| void wl1271_spi_init(struct wl1271 *wl) |
| { |
| u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd; |
| struct spi_transfer t; |
| struct spi_message m; |
| |
| cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL); |
| if (!cmd) { |
| wl1271_error("could not allocate cmd for spi init"); |
| return; |
| } |
| |
| memset(crc, 0, sizeof(crc)); |
| memset(&t, 0, sizeof(t)); |
| spi_message_init(&m); |
| |
| /* |
| * Set WSPI_INIT_COMMAND |
| * the data is being send from the MSB to LSB |
| */ |
| cmd[2] = 0xff; |
| cmd[3] = 0xff; |
| cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX; |
| cmd[0] = 0; |
| cmd[7] = 0; |
| cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3; |
| cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN; |
| |
| if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0) |
| cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY; |
| else |
| cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY; |
| |
| cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS |
| | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS; |
| |
| crc[0] = cmd[1]; |
| crc[1] = cmd[0]; |
| crc[2] = cmd[7]; |
| crc[3] = cmd[6]; |
| crc[4] = cmd[5]; |
| |
| cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1; |
| cmd[4] |= WSPI_INIT_CMD_END; |
| |
| t.tx_buf = cmd; |
| t.len = WSPI_INIT_CMD_LEN; |
| spi_message_add_tail(&t, &m); |
| |
| spi_sync(wl->spi, &m); |
| |
| wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN); |
| } |
| |
| /* Set the SPI partitions to access the chip addresses |
| * |
| * There are two VIRTUAL (SPI) partitions (the memory partition and the |
| * registers partition), which are mapped to two different areas of the |
| * PHYSICAL (hardware) memory. This function also makes other checks to |
| * ensure that the partitions are not overlapping. In the diagram below, the |
| * memory partition comes before the register partition, but the opposite is |
| * also supported. |
| * |
| * PHYSICAL address |
| * space |
| * |
| * | | |
| * ...+----+--> mem_start |
| * VIRTUAL address ... | | |
| * space ... | | [PART_0] |
| * ... | | |
| * 0x00000000 <--+----+... ...+----+--> mem_start + mem_size |
| * | | ... | | |
| * |MEM | ... | | |
| * | | ... | | |
| * part_size <--+----+... | | {unused area) |
| * | | ... | | |
| * |REG | ... | | |
| * part_size | | ... | | |
| * + <--+----+... ...+----+--> reg_start |
| * reg_size ... | | |
| * ... | | [PART_1] |
| * ... | | |
| * ...+----+--> reg_start + reg_size |
| * | | |
| * |
| */ |
| int wl1271_set_partition(struct wl1271 *wl, |
| u32 mem_start, u32 mem_size, |
| u32 reg_start, u32 reg_size) |
| { |
| struct wl1271_partition *partition; |
| struct spi_transfer t; |
| struct spi_message m; |
| size_t len, cmd_len; |
| u32 *cmd; |
| int addr; |
| |
| cmd_len = sizeof(u32) + 2 * sizeof(struct wl1271_partition); |
| cmd = kzalloc(cmd_len, GFP_KERNEL); |
| if (!cmd) |
| return -ENOMEM; |
| |
| spi_message_init(&m); |
| memset(&t, 0, sizeof(t)); |
| |
| partition = (struct wl1271_partition *) (cmd + 1); |
| addr = HW_ACCESS_PART0_SIZE_ADDR; |
| len = 2 * sizeof(struct wl1271_partition); |
| |
| *cmd |= WSPI_CMD_WRITE; |
| *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; |
| *cmd |= addr & WSPI_CMD_BYTE_ADDR; |
| |
| wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", |
| mem_start, mem_size); |
| wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", |
| reg_start, reg_size); |
| |
| /* Make sure that the two partitions together don't exceed the |
| * address range */ |
| if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) { |
| wl1271_debug(DEBUG_SPI, "Total size exceeds maximum virtual" |
| " address range. Truncating partition[0]."); |
| mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size; |
| wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", |
| mem_start, mem_size); |
| wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", |
| reg_start, reg_size); |
| } |
| |
| if ((mem_start < reg_start) && |
| ((mem_start + mem_size) > reg_start)) { |
| /* Guarantee that the memory partition doesn't overlap the |
| * registers partition */ |
| wl1271_debug(DEBUG_SPI, "End of partition[0] is " |
| "overlapping partition[1]. Adjusted."); |
| mem_size = reg_start - mem_start; |
| wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", |
| mem_start, mem_size); |
| wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", |
| reg_start, reg_size); |
| } else if ((reg_start < mem_start) && |
| ((reg_start + reg_size) > mem_start)) { |
| /* Guarantee that the register partition doesn't overlap the |
| * memory partition */ |
| wl1271_debug(DEBUG_SPI, "End of partition[1] is" |
| " overlapping partition[0]. Adjusted."); |
| reg_size = mem_start - reg_start; |
| wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", |
| mem_start, mem_size); |
| wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", |
| reg_start, reg_size); |
| } |
| |
| partition[0].start = mem_start; |
| partition[0].size = mem_size; |
| partition[1].start = reg_start; |
| partition[1].size = reg_size; |
| |
| wl->physical_mem_addr = mem_start; |
| wl->physical_reg_addr = reg_start; |
| |
| wl->virtual_mem_addr = 0; |
| wl->virtual_reg_addr = mem_size; |
| |
| t.tx_buf = cmd; |
| t.len = cmd_len; |
| spi_message_add_tail(&t, &m); |
| |
| spi_sync(wl->spi, &m); |
| |
| kfree(cmd); |
| |
| return 0; |
| } |
| |
| #define WL1271_BUSY_WORD_TIMEOUT 1000 |
| |
| void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len) |
| { |
| struct spi_transfer t[1]; |
| struct spi_message m; |
| u32 *busy_buf; |
| int num_busy_bytes = 0; |
| |
| wl1271_info("spi read BUSY!"); |
| |
| /* |
| * Look for the non-busy word in the read buffer, and if found, |
| * read in the remaining data into the buffer. |
| */ |
| busy_buf = (u32 *)buf; |
| for (; (u32)busy_buf < (u32)buf + len; busy_buf++) { |
| num_busy_bytes += sizeof(u32); |
| if (*busy_buf & 0x1) { |
| spi_message_init(&m); |
| memset(t, 0, sizeof(t)); |
| memmove(buf, busy_buf, len - num_busy_bytes); |
| t[0].rx_buf = buf + (len - num_busy_bytes); |
| t[0].len = num_busy_bytes; |
| spi_message_add_tail(&t[0], &m); |
| spi_sync(wl->spi, &m); |
| return; |
| } |
| } |
| |
| /* |
| * Read further busy words from SPI until a non-busy word is |
| * encountered, then read the data itself into the buffer. |
| */ |
| wl1271_info("spi read BUSY-polling needed!"); |
| |
| num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT; |
| busy_buf = wl->buffer_busyword; |
| while (num_busy_bytes) { |
| num_busy_bytes--; |
| spi_message_init(&m); |
| memset(t, 0, sizeof(t)); |
| t[0].rx_buf = busy_buf; |
| t[0].len = sizeof(u32); |
| spi_message_add_tail(&t[0], &m); |
| spi_sync(wl->spi, &m); |
| |
| if (*busy_buf & 0x1) { |
| spi_message_init(&m); |
| memset(t, 0, sizeof(t)); |
| t[0].rx_buf = buf; |
| t[0].len = len; |
| spi_message_add_tail(&t[0], &m); |
| spi_sync(wl->spi, &m); |
| return; |
| } |
| } |
| |
| /* The SPI bus is unresponsive, the read failed. */ |
| memset(buf, 0, len); |
| wl1271_error("SPI read busy-word timeout!\n"); |
| } |
| |
| void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf, |
| size_t len, bool fixed) |
| { |
| struct spi_transfer t[3]; |
| struct spi_message m; |
| u32 *busy_buf; |
| u32 *cmd; |
| |
| cmd = &wl->buffer_cmd; |
| busy_buf = wl->buffer_busyword; |
| |
| *cmd = 0; |
| *cmd |= WSPI_CMD_READ; |
| *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; |
| *cmd |= addr & WSPI_CMD_BYTE_ADDR; |
| |
| if (fixed) |
| *cmd |= WSPI_CMD_FIXED; |
| |
| spi_message_init(&m); |
| memset(t, 0, sizeof(t)); |
| |
| t[0].tx_buf = cmd; |
| t[0].len = 4; |
| spi_message_add_tail(&t[0], &m); |
| |
| /* Busy and non busy words read */ |
| t[1].rx_buf = busy_buf; |
| t[1].len = WL1271_BUSY_WORD_LEN; |
| spi_message_add_tail(&t[1], &m); |
| |
| t[2].rx_buf = buf; |
| t[2].len = len; |
| spi_message_add_tail(&t[2], &m); |
| |
| spi_sync(wl->spi, &m); |
| |
| /* Check busy words */ |
| if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1)) |
| wl1271_spi_read_busy(wl, buf, len); |
| |
| wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd)); |
| wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len); |
| } |
| |
| void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf, |
| size_t len, bool fixed) |
| { |
| struct spi_transfer t[2]; |
| struct spi_message m; |
| u32 *cmd; |
| |
| cmd = &wl->buffer_cmd; |
| |
| *cmd = 0; |
| *cmd |= WSPI_CMD_WRITE; |
| *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; |
| *cmd |= addr & WSPI_CMD_BYTE_ADDR; |
| |
| if (fixed) |
| *cmd |= WSPI_CMD_FIXED; |
| |
| spi_message_init(&m); |
| memset(t, 0, sizeof(t)); |
| |
| t[0].tx_buf = cmd; |
| t[0].len = sizeof(*cmd); |
| spi_message_add_tail(&t[0], &m); |
| |
| t[1].tx_buf = buf; |
| t[1].len = len; |
| spi_message_add_tail(&t[1], &m); |
| |
| spi_sync(wl->spi, &m); |
| |
| wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd)); |
| wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len); |
| } |
| |
| void wl1271_spi_mem_read(struct wl1271 *wl, int addr, void *buf, |
| size_t len) |
| { |
| int physical; |
| |
| physical = wl1271_translate_mem_addr(wl, addr); |
| |
| wl1271_spi_read(wl, physical, buf, len, false); |
| } |
| |
| void wl1271_spi_mem_write(struct wl1271 *wl, int addr, void *buf, |
| size_t len) |
| { |
| int physical; |
| |
| physical = wl1271_translate_mem_addr(wl, addr); |
| |
| wl1271_spi_write(wl, physical, buf, len, false); |
| } |
| |
| void wl1271_spi_reg_read(struct wl1271 *wl, int addr, void *buf, size_t len, |
| bool fixed) |
| { |
| int physical; |
| |
| physical = wl1271_translate_reg_addr(wl, addr); |
| |
| wl1271_spi_read(wl, physical, buf, len, fixed); |
| } |
| |
| void wl1271_spi_reg_write(struct wl1271 *wl, int addr, void *buf, size_t len, |
| bool fixed) |
| { |
| int physical; |
| |
| physical = wl1271_translate_reg_addr(wl, addr); |
| |
| wl1271_spi_write(wl, physical, buf, len, fixed); |
| } |
| |
| u32 wl1271_mem_read32(struct wl1271 *wl, int addr) |
| { |
| return wl1271_read32(wl, wl1271_translate_mem_addr(wl, addr)); |
| } |
| |
| void wl1271_mem_write32(struct wl1271 *wl, int addr, u32 val) |
| { |
| wl1271_write32(wl, wl1271_translate_mem_addr(wl, addr), val); |
| } |
| |
| u32 wl1271_reg_read32(struct wl1271 *wl, int addr) |
| { |
| return wl1271_read32(wl, wl1271_translate_reg_addr(wl, addr)); |
| } |
| |
| void wl1271_reg_write32(struct wl1271 *wl, int addr, u32 val) |
| { |
| wl1271_write32(wl, wl1271_translate_reg_addr(wl, addr), val); |
| } |