| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* XDP user-space ring structure |
| * Copyright(c) 2018 Intel Corporation. |
| */ |
| |
| #ifndef _LINUX_XSK_QUEUE_H |
| #define _LINUX_XSK_QUEUE_H |
| |
| #include <linux/types.h> |
| #include <linux/if_xdp.h> |
| #include <net/xdp_sock.h> |
| |
| #include "xsk.h" |
| |
| struct xdp_ring { |
| u32 producer ____cacheline_aligned_in_smp; |
| u32 consumer ____cacheline_aligned_in_smp; |
| u32 flags; |
| }; |
| |
| /* Used for the RX and TX queues for packets */ |
| struct xdp_rxtx_ring { |
| struct xdp_ring ptrs; |
| struct xdp_desc desc[] ____cacheline_aligned_in_smp; |
| }; |
| |
| /* Used for the fill and completion queues for buffers */ |
| struct xdp_umem_ring { |
| struct xdp_ring ptrs; |
| u64 desc[] ____cacheline_aligned_in_smp; |
| }; |
| |
| struct xsk_queue { |
| u64 chunk_mask; |
| u64 umem_size; |
| u32 ring_mask; |
| u32 nentries; |
| u32 cached_prod; |
| u32 cached_cons; |
| struct xdp_ring *ring; |
| u64 invalid_descs; |
| }; |
| |
| /* The structure of the shared state of the rings are the same as the |
| * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion |
| * ring, the kernel is the producer and user space is the consumer. For |
| * the Tx and fill rings, the kernel is the consumer and user space is |
| * the producer. |
| * |
| * producer consumer |
| * |
| * if (LOAD ->consumer) { LOAD ->producer |
| * (A) smp_rmb() (C) |
| * STORE $data LOAD $data |
| * smp_wmb() (B) smp_mb() (D) |
| * STORE ->producer STORE ->consumer |
| * } |
| * |
| * (A) pairs with (D), and (B) pairs with (C). |
| * |
| * Starting with (B), it protects the data from being written after |
| * the producer pointer. If this barrier was missing, the consumer |
| * could observe the producer pointer being set and thus load the data |
| * before the producer has written the new data. The consumer would in |
| * this case load the old data. |
| * |
| * (C) protects the consumer from speculatively loading the data before |
| * the producer pointer actually has been read. If we do not have this |
| * barrier, some architectures could load old data as speculative loads |
| * are not discarded as the CPU does not know there is a dependency |
| * between ->producer and data. |
| * |
| * (A) is a control dependency that separates the load of ->consumer |
| * from the stores of $data. In case ->consumer indicates there is no |
| * room in the buffer to store $data we do not. So no barrier is needed. |
| * |
| * (D) protects the load of the data to be observed to happen after the |
| * store of the consumer pointer. If we did not have this memory |
| * barrier, the producer could observe the consumer pointer being set |
| * and overwrite the data with a new value before the consumer got the |
| * chance to read the old value. The consumer would thus miss reading |
| * the old entry and very likely read the new entry twice, once right |
| * now and again after circling through the ring. |
| */ |
| |
| /* The operations on the rings are the following: |
| * |
| * producer consumer |
| * |
| * RESERVE entries PEEK in the ring for entries |
| * WRITE data into the ring READ data from the ring |
| * SUBMIT entries RELEASE entries |
| * |
| * The producer reserves one or more entries in the ring. It can then |
| * fill in these entries and finally submit them so that they can be |
| * seen and read by the consumer. |
| * |
| * The consumer peeks into the ring to see if the producer has written |
| * any new entries. If so, the producer can then read these entries |
| * and when it is done reading them release them back to the producer |
| * so that the producer can use these slots to fill in new entries. |
| * |
| * The function names below reflect these operations. |
| */ |
| |
| /* Functions that read and validate content from consumer rings. */ |
| |
| static inline bool xskq_cons_crosses_non_contig_pg(struct xdp_umem *umem, |
| u64 addr, |
| u64 length) |
| { |
| bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE; |
| bool next_pg_contig = |
| (unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr & |
| XSK_NEXT_PG_CONTIG_MASK; |
| |
| return cross_pg && !next_pg_contig; |
| } |
| |
| static inline bool xskq_cons_is_valid_unaligned(struct xsk_queue *q, |
| u64 addr, |
| u64 length, |
| struct xdp_umem *umem) |
| { |
| u64 base_addr = xsk_umem_extract_addr(addr); |
| |
| addr = xsk_umem_add_offset_to_addr(addr); |
| if (base_addr >= q->umem_size || addr >= q->umem_size || |
| xskq_cons_crosses_non_contig_pg(umem, addr, length)) { |
| q->invalid_descs++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline bool xskq_cons_is_valid_addr(struct xsk_queue *q, u64 addr) |
| { |
| if (addr >= q->umem_size) { |
| q->invalid_descs++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline bool xskq_cons_read_addr(struct xsk_queue *q, u64 *addr, |
| struct xdp_umem *umem) |
| { |
| struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; |
| |
| while (q->cached_cons != q->cached_prod) { |
| u32 idx = q->cached_cons & q->ring_mask; |
| |
| *addr = ring->desc[idx] & q->chunk_mask; |
| |
| if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) { |
| if (xskq_cons_is_valid_unaligned(q, *addr, |
| umem->chunk_size_nohr, |
| umem)) |
| return true; |
| goto out; |
| } |
| |
| if (xskq_cons_is_valid_addr(q, *addr)) |
| return true; |
| |
| out: |
| q->cached_cons++; |
| } |
| |
| return false; |
| } |
| |
| static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, |
| struct xdp_desc *d, |
| struct xdp_umem *umem) |
| { |
| if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) { |
| if (!xskq_cons_is_valid_unaligned(q, d->addr, d->len, umem)) |
| return false; |
| |
| if (d->len > umem->chunk_size_nohr || d->options) { |
| q->invalid_descs++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| if (!xskq_cons_is_valid_addr(q, d->addr)) |
| return false; |
| |
| if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) || |
| d->options) { |
| q->invalid_descs++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline bool xskq_cons_read_desc(struct xsk_queue *q, |
| struct xdp_desc *desc, |
| struct xdp_umem *umem) |
| { |
| while (q->cached_cons != q->cached_prod) { |
| struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; |
| u32 idx = q->cached_cons & q->ring_mask; |
| |
| *desc = ring->desc[idx]; |
| if (xskq_cons_is_valid_desc(q, desc, umem)) |
| return true; |
| |
| q->cached_cons++; |
| } |
| |
| return false; |
| } |
| |
| /* Functions for consumers */ |
| |
| static inline void __xskq_cons_release(struct xsk_queue *q) |
| { |
| smp_mb(); /* D, matches A */ |
| WRITE_ONCE(q->ring->consumer, q->cached_cons); |
| } |
| |
| static inline void __xskq_cons_peek(struct xsk_queue *q) |
| { |
| /* Refresh the local pointer */ |
| q->cached_prod = READ_ONCE(q->ring->producer); |
| smp_rmb(); /* C, matches B */ |
| } |
| |
| static inline void xskq_cons_get_entries(struct xsk_queue *q) |
| { |
| __xskq_cons_release(q); |
| __xskq_cons_peek(q); |
| } |
| |
| static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) |
| { |
| u32 entries = q->cached_prod - q->cached_cons; |
| |
| if (entries >= cnt) |
| return true; |
| |
| __xskq_cons_peek(q); |
| entries = q->cached_prod - q->cached_cons; |
| |
| return entries >= cnt; |
| } |
| |
| static inline bool xskq_cons_peek_addr(struct xsk_queue *q, u64 *addr, |
| struct xdp_umem *umem) |
| { |
| if (q->cached_prod == q->cached_cons) |
| xskq_cons_get_entries(q); |
| return xskq_cons_read_addr(q, addr, umem); |
| } |
| |
| static inline bool xskq_cons_peek_desc(struct xsk_queue *q, |
| struct xdp_desc *desc, |
| struct xdp_umem *umem) |
| { |
| if (q->cached_prod == q->cached_cons) |
| xskq_cons_get_entries(q); |
| return xskq_cons_read_desc(q, desc, umem); |
| } |
| |
| static inline void xskq_cons_release(struct xsk_queue *q) |
| { |
| /* To improve performance, only update local state here. |
| * Reflect this to global state when we get new entries |
| * from the ring in xskq_cons_get_entries() and whenever |
| * Rx or Tx processing are completed in the NAPI loop. |
| */ |
| q->cached_cons++; |
| } |
| |
| static inline bool xskq_cons_is_full(struct xsk_queue *q) |
| { |
| /* No barriers needed since data is not accessed */ |
| return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) == |
| q->nentries; |
| } |
| |
| /* Functions for producers */ |
| |
| static inline bool xskq_prod_is_full(struct xsk_queue *q) |
| { |
| u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); |
| |
| if (free_entries) |
| return false; |
| |
| /* Refresh the local tail pointer */ |
| q->cached_cons = READ_ONCE(q->ring->consumer); |
| free_entries = q->nentries - (q->cached_prod - q->cached_cons); |
| |
| return !free_entries; |
| } |
| |
| static inline int xskq_prod_reserve(struct xsk_queue *q) |
| { |
| if (xskq_prod_is_full(q)) |
| return -ENOSPC; |
| |
| /* A, matches D */ |
| q->cached_prod++; |
| return 0; |
| } |
| |
| static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) |
| { |
| struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; |
| |
| if (xskq_prod_is_full(q)) |
| return -ENOSPC; |
| |
| /* A, matches D */ |
| ring->desc[q->cached_prod++ & q->ring_mask] = addr; |
| return 0; |
| } |
| |
| static inline int xskq_prod_reserve_desc(struct xsk_queue *q, |
| u64 addr, u32 len) |
| { |
| struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; |
| u32 idx; |
| |
| if (xskq_prod_is_full(q)) |
| return -ENOSPC; |
| |
| /* A, matches D */ |
| idx = q->cached_prod++ & q->ring_mask; |
| ring->desc[idx].addr = addr; |
| ring->desc[idx].len = len; |
| |
| return 0; |
| } |
| |
| static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) |
| { |
| smp_wmb(); /* B, matches C */ |
| |
| WRITE_ONCE(q->ring->producer, idx); |
| } |
| |
| static inline void xskq_prod_submit(struct xsk_queue *q) |
| { |
| __xskq_prod_submit(q, q->cached_prod); |
| } |
| |
| static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr) |
| { |
| struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; |
| u32 idx = q->ring->producer; |
| |
| ring->desc[idx++ & q->ring_mask] = addr; |
| |
| __xskq_prod_submit(q, idx); |
| } |
| |
| static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) |
| { |
| __xskq_prod_submit(q, q->ring->producer + nb_entries); |
| } |
| |
| static inline bool xskq_prod_is_empty(struct xsk_queue *q) |
| { |
| /* No barriers needed since data is not accessed */ |
| return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); |
| } |
| |
| /* For both producers and consumers */ |
| |
| static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) |
| { |
| return q ? q->invalid_descs : 0; |
| } |
| |
| void xskq_set_umem(struct xsk_queue *q, u64 umem_size, u64 chunk_mask); |
| struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); |
| void xskq_destroy(struct xsk_queue *q_ops); |
| |
| /* Executed by the core when the entire UMEM gets freed */ |
| void xsk_reuseq_destroy(struct xdp_umem *umem); |
| |
| #endif /* _LINUX_XSK_QUEUE_H */ |