| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * PCI Bus Services, see include/linux/pci.h for further explanation. |
| * |
| * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, |
| * David Mosberger-Tang |
| * |
| * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/dmi.h> |
| #include <linux/init.h> |
| #include <linux/msi.h> |
| #include <linux/of.h> |
| #include <linux/pci.h> |
| #include <linux/pm.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/log2.h> |
| #include <linux/logic_pio.h> |
| #include <linux/pm_wakeup.h> |
| #include <linux/interrupt.h> |
| #include <linux/device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pci_hotplug.h> |
| #include <linux/vmalloc.h> |
| #include <asm/dma.h> |
| #include <linux/aer.h> |
| #include "pci.h" |
| |
| DEFINE_MUTEX(pci_slot_mutex); |
| |
| const char *pci_power_names[] = { |
| "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", |
| }; |
| EXPORT_SYMBOL_GPL(pci_power_names); |
| |
| int isa_dma_bridge_buggy; |
| EXPORT_SYMBOL(isa_dma_bridge_buggy); |
| |
| int pci_pci_problems; |
| EXPORT_SYMBOL(pci_pci_problems); |
| |
| unsigned int pci_pm_d3hot_delay; |
| |
| static void pci_pme_list_scan(struct work_struct *work); |
| |
| static LIST_HEAD(pci_pme_list); |
| static DEFINE_MUTEX(pci_pme_list_mutex); |
| static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); |
| |
| struct pci_pme_device { |
| struct list_head list; |
| struct pci_dev *dev; |
| }; |
| |
| #define PME_TIMEOUT 1000 /* How long between PME checks */ |
| |
| static void pci_dev_d3_sleep(struct pci_dev *dev) |
| { |
| unsigned int delay = dev->d3hot_delay; |
| |
| if (delay < pci_pm_d3hot_delay) |
| delay = pci_pm_d3hot_delay; |
| |
| if (delay) |
| msleep(delay); |
| } |
| |
| #ifdef CONFIG_PCI_DOMAINS |
| int pci_domains_supported = 1; |
| #endif |
| |
| #define DEFAULT_CARDBUS_IO_SIZE (256) |
| #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) |
| /* pci=cbmemsize=nnM,cbiosize=nn can override this */ |
| unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; |
| unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; |
| |
| #define DEFAULT_HOTPLUG_IO_SIZE (256) |
| #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) |
| #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) |
| /* hpiosize=nn can override this */ |
| unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; |
| /* |
| * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, |
| * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; |
| * pci=hpmemsize=nnM overrides both |
| */ |
| unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; |
| unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; |
| |
| #define DEFAULT_HOTPLUG_BUS_SIZE 1 |
| unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; |
| |
| |
| /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ |
| #ifdef CONFIG_PCIE_BUS_TUNE_OFF |
| enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; |
| #elif defined CONFIG_PCIE_BUS_SAFE |
| enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; |
| #elif defined CONFIG_PCIE_BUS_PERFORMANCE |
| enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; |
| #elif defined CONFIG_PCIE_BUS_PEER2PEER |
| enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; |
| #else |
| enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; |
| #endif |
| |
| /* |
| * The default CLS is used if arch didn't set CLS explicitly and not |
| * all pci devices agree on the same value. Arch can override either |
| * the dfl or actual value as it sees fit. Don't forget this is |
| * measured in 32-bit words, not bytes. |
| */ |
| u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; |
| u8 pci_cache_line_size; |
| |
| /* |
| * If we set up a device for bus mastering, we need to check the latency |
| * timer as certain BIOSes forget to set it properly. |
| */ |
| unsigned int pcibios_max_latency = 255; |
| |
| /* If set, the PCIe ARI capability will not be used. */ |
| static bool pcie_ari_disabled; |
| |
| /* If set, the PCIe ATS capability will not be used. */ |
| static bool pcie_ats_disabled; |
| |
| /* If set, the PCI config space of each device is printed during boot. */ |
| bool pci_early_dump; |
| |
| bool pci_ats_disabled(void) |
| { |
| return pcie_ats_disabled; |
| } |
| EXPORT_SYMBOL_GPL(pci_ats_disabled); |
| |
| /* Disable bridge_d3 for all PCIe ports */ |
| static bool pci_bridge_d3_disable; |
| /* Force bridge_d3 for all PCIe ports */ |
| static bool pci_bridge_d3_force; |
| |
| static int __init pcie_port_pm_setup(char *str) |
| { |
| if (!strcmp(str, "off")) |
| pci_bridge_d3_disable = true; |
| else if (!strcmp(str, "force")) |
| pci_bridge_d3_force = true; |
| return 1; |
| } |
| __setup("pcie_port_pm=", pcie_port_pm_setup); |
| |
| /* Time to wait after a reset for device to become responsive */ |
| #define PCIE_RESET_READY_POLL_MS 60000 |
| |
| /** |
| * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children |
| * @bus: pointer to PCI bus structure to search |
| * |
| * Given a PCI bus, returns the highest PCI bus number present in the set |
| * including the given PCI bus and its list of child PCI buses. |
| */ |
| unsigned char pci_bus_max_busnr(struct pci_bus *bus) |
| { |
| struct pci_bus *tmp; |
| unsigned char max, n; |
| |
| max = bus->busn_res.end; |
| list_for_each_entry(tmp, &bus->children, node) { |
| n = pci_bus_max_busnr(tmp); |
| if (n > max) |
| max = n; |
| } |
| return max; |
| } |
| EXPORT_SYMBOL_GPL(pci_bus_max_busnr); |
| |
| /** |
| * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS |
| * @pdev: the PCI device |
| * |
| * Returns error bits set in PCI_STATUS and clears them. |
| */ |
| int pci_status_get_and_clear_errors(struct pci_dev *pdev) |
| { |
| u16 status; |
| int ret; |
| |
| ret = pci_read_config_word(pdev, PCI_STATUS, &status); |
| if (ret != PCIBIOS_SUCCESSFUL) |
| return -EIO; |
| |
| status &= PCI_STATUS_ERROR_BITS; |
| if (status) |
| pci_write_config_word(pdev, PCI_STATUS, status); |
| |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); |
| |
| #ifdef CONFIG_HAS_IOMEM |
| void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) |
| { |
| struct resource *res = &pdev->resource[bar]; |
| |
| /* |
| * Make sure the BAR is actually a memory resource, not an IO resource |
| */ |
| if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { |
| pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); |
| return NULL; |
| } |
| return ioremap(res->start, resource_size(res)); |
| } |
| EXPORT_SYMBOL_GPL(pci_ioremap_bar); |
| |
| void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) |
| { |
| /* |
| * Make sure the BAR is actually a memory resource, not an IO resource |
| */ |
| if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { |
| WARN_ON(1); |
| return NULL; |
| } |
| return ioremap_wc(pci_resource_start(pdev, bar), |
| pci_resource_len(pdev, bar)); |
| } |
| EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); |
| #endif |
| |
| /** |
| * pci_dev_str_match_path - test if a path string matches a device |
| * @dev: the PCI device to test |
| * @path: string to match the device against |
| * @endptr: pointer to the string after the match |
| * |
| * Test if a string (typically from a kernel parameter) formatted as a |
| * path of device/function addresses matches a PCI device. The string must |
| * be of the form: |
| * |
| * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* |
| * |
| * A path for a device can be obtained using 'lspci -t'. Using a path |
| * is more robust against bus renumbering than using only a single bus, |
| * device and function address. |
| * |
| * Returns 1 if the string matches the device, 0 if it does not and |
| * a negative error code if it fails to parse the string. |
| */ |
| static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, |
| const char **endptr) |
| { |
| int ret; |
| int seg, bus, slot, func; |
| char *wpath, *p; |
| char end; |
| |
| *endptr = strchrnul(path, ';'); |
| |
| wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); |
| if (!wpath) |
| return -ENOMEM; |
| |
| while (1) { |
| p = strrchr(wpath, '/'); |
| if (!p) |
| break; |
| ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); |
| if (ret != 2) { |
| ret = -EINVAL; |
| goto free_and_exit; |
| } |
| |
| if (dev->devfn != PCI_DEVFN(slot, func)) { |
| ret = 0; |
| goto free_and_exit; |
| } |
| |
| /* |
| * Note: we don't need to get a reference to the upstream |
| * bridge because we hold a reference to the top level |
| * device which should hold a reference to the bridge, |
| * and so on. |
| */ |
| dev = pci_upstream_bridge(dev); |
| if (!dev) { |
| ret = 0; |
| goto free_and_exit; |
| } |
| |
| *p = 0; |
| } |
| |
| ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, |
| &func, &end); |
| if (ret != 4) { |
| seg = 0; |
| ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); |
| if (ret != 3) { |
| ret = -EINVAL; |
| goto free_and_exit; |
| } |
| } |
| |
| ret = (seg == pci_domain_nr(dev->bus) && |
| bus == dev->bus->number && |
| dev->devfn == PCI_DEVFN(slot, func)); |
| |
| free_and_exit: |
| kfree(wpath); |
| return ret; |
| } |
| |
| /** |
| * pci_dev_str_match - test if a string matches a device |
| * @dev: the PCI device to test |
| * @p: string to match the device against |
| * @endptr: pointer to the string after the match |
| * |
| * Test if a string (typically from a kernel parameter) matches a specified |
| * PCI device. The string may be of one of the following formats: |
| * |
| * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* |
| * pci:<vendor>:<device>[:<subvendor>:<subdevice>] |
| * |
| * The first format specifies a PCI bus/device/function address which |
| * may change if new hardware is inserted, if motherboard firmware changes, |
| * or due to changes caused in kernel parameters. If the domain is |
| * left unspecified, it is taken to be 0. In order to be robust against |
| * bus renumbering issues, a path of PCI device/function numbers may be used |
| * to address the specific device. The path for a device can be determined |
| * through the use of 'lspci -t'. |
| * |
| * The second format matches devices using IDs in the configuration |
| * space which may match multiple devices in the system. A value of 0 |
| * for any field will match all devices. (Note: this differs from |
| * in-kernel code that uses PCI_ANY_ID which is ~0; this is for |
| * legacy reasons and convenience so users don't have to specify |
| * FFFFFFFFs on the command line.) |
| * |
| * Returns 1 if the string matches the device, 0 if it does not and |
| * a negative error code if the string cannot be parsed. |
| */ |
| static int pci_dev_str_match(struct pci_dev *dev, const char *p, |
| const char **endptr) |
| { |
| int ret; |
| int count; |
| unsigned short vendor, device, subsystem_vendor, subsystem_device; |
| |
| if (strncmp(p, "pci:", 4) == 0) { |
| /* PCI vendor/device (subvendor/subdevice) IDs are specified */ |
| p += 4; |
| ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, |
| &subsystem_vendor, &subsystem_device, &count); |
| if (ret != 4) { |
| ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); |
| if (ret != 2) |
| return -EINVAL; |
| |
| subsystem_vendor = 0; |
| subsystem_device = 0; |
| } |
| |
| p += count; |
| |
| if ((!vendor || vendor == dev->vendor) && |
| (!device || device == dev->device) && |
| (!subsystem_vendor || |
| subsystem_vendor == dev->subsystem_vendor) && |
| (!subsystem_device || |
| subsystem_device == dev->subsystem_device)) |
| goto found; |
| } else { |
| /* |
| * PCI Bus, Device, Function IDs are specified |
| * (optionally, may include a path of devfns following it) |
| */ |
| ret = pci_dev_str_match_path(dev, p, &p); |
| if (ret < 0) |
| return ret; |
| else if (ret) |
| goto found; |
| } |
| |
| *endptr = p; |
| return 0; |
| |
| found: |
| *endptr = p; |
| return 1; |
| } |
| |
| static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, |
| u8 pos, int cap, int *ttl) |
| { |
| u8 id; |
| u16 ent; |
| |
| pci_bus_read_config_byte(bus, devfn, pos, &pos); |
| |
| while ((*ttl)--) { |
| if (pos < 0x40) |
| break; |
| pos &= ~3; |
| pci_bus_read_config_word(bus, devfn, pos, &ent); |
| |
| id = ent & 0xff; |
| if (id == 0xff) |
| break; |
| if (id == cap) |
| return pos; |
| pos = (ent >> 8); |
| } |
| return 0; |
| } |
| |
| static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, |
| u8 pos, int cap) |
| { |
| int ttl = PCI_FIND_CAP_TTL; |
| |
| return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); |
| } |
| |
| u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) |
| { |
| return __pci_find_next_cap(dev->bus, dev->devfn, |
| pos + PCI_CAP_LIST_NEXT, cap); |
| } |
| EXPORT_SYMBOL_GPL(pci_find_next_capability); |
| |
| static u8 __pci_bus_find_cap_start(struct pci_bus *bus, |
| unsigned int devfn, u8 hdr_type) |
| { |
| u16 status; |
| |
| pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); |
| if (!(status & PCI_STATUS_CAP_LIST)) |
| return 0; |
| |
| switch (hdr_type) { |
| case PCI_HEADER_TYPE_NORMAL: |
| case PCI_HEADER_TYPE_BRIDGE: |
| return PCI_CAPABILITY_LIST; |
| case PCI_HEADER_TYPE_CARDBUS: |
| return PCI_CB_CAPABILITY_LIST; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pci_find_capability - query for devices' capabilities |
| * @dev: PCI device to query |
| * @cap: capability code |
| * |
| * Tell if a device supports a given PCI capability. |
| * Returns the address of the requested capability structure within the |
| * device's PCI configuration space or 0 in case the device does not |
| * support it. Possible values for @cap include: |
| * |
| * %PCI_CAP_ID_PM Power Management |
| * %PCI_CAP_ID_AGP Accelerated Graphics Port |
| * %PCI_CAP_ID_VPD Vital Product Data |
| * %PCI_CAP_ID_SLOTID Slot Identification |
| * %PCI_CAP_ID_MSI Message Signalled Interrupts |
| * %PCI_CAP_ID_CHSWP CompactPCI HotSwap |
| * %PCI_CAP_ID_PCIX PCI-X |
| * %PCI_CAP_ID_EXP PCI Express |
| */ |
| u8 pci_find_capability(struct pci_dev *dev, int cap) |
| { |
| u8 pos; |
| |
| pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); |
| if (pos) |
| pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); |
| |
| return pos; |
| } |
| EXPORT_SYMBOL(pci_find_capability); |
| |
| /** |
| * pci_bus_find_capability - query for devices' capabilities |
| * @bus: the PCI bus to query |
| * @devfn: PCI device to query |
| * @cap: capability code |
| * |
| * Like pci_find_capability() but works for PCI devices that do not have a |
| * pci_dev structure set up yet. |
| * |
| * Returns the address of the requested capability structure within the |
| * device's PCI configuration space or 0 in case the device does not |
| * support it. |
| */ |
| u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) |
| { |
| u8 hdr_type, pos; |
| |
| pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); |
| |
| pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); |
| if (pos) |
| pos = __pci_find_next_cap(bus, devfn, pos, cap); |
| |
| return pos; |
| } |
| EXPORT_SYMBOL(pci_bus_find_capability); |
| |
| /** |
| * pci_find_next_ext_capability - Find an extended capability |
| * @dev: PCI device to query |
| * @start: address at which to start looking (0 to start at beginning of list) |
| * @cap: capability code |
| * |
| * Returns the address of the next matching extended capability structure |
| * within the device's PCI configuration space or 0 if the device does |
| * not support it. Some capabilities can occur several times, e.g., the |
| * vendor-specific capability, and this provides a way to find them all. |
| */ |
| u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) |
| { |
| u32 header; |
| int ttl; |
| u16 pos = PCI_CFG_SPACE_SIZE; |
| |
| /* minimum 8 bytes per capability */ |
| ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; |
| |
| if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) |
| return 0; |
| |
| if (start) |
| pos = start; |
| |
| if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) |
| return 0; |
| |
| /* |
| * If we have no capabilities, this is indicated by cap ID, |
| * cap version and next pointer all being 0. |
| */ |
| if (header == 0) |
| return 0; |
| |
| while (ttl-- > 0) { |
| if (PCI_EXT_CAP_ID(header) == cap && pos != start) |
| return pos; |
| |
| pos = PCI_EXT_CAP_NEXT(header); |
| if (pos < PCI_CFG_SPACE_SIZE) |
| break; |
| |
| if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) |
| break; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); |
| |
| /** |
| * pci_find_ext_capability - Find an extended capability |
| * @dev: PCI device to query |
| * @cap: capability code |
| * |
| * Returns the address of the requested extended capability structure |
| * within the device's PCI configuration space or 0 if the device does |
| * not support it. Possible values for @cap include: |
| * |
| * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting |
| * %PCI_EXT_CAP_ID_VC Virtual Channel |
| * %PCI_EXT_CAP_ID_DSN Device Serial Number |
| * %PCI_EXT_CAP_ID_PWR Power Budgeting |
| */ |
| u16 pci_find_ext_capability(struct pci_dev *dev, int cap) |
| { |
| return pci_find_next_ext_capability(dev, 0, cap); |
| } |
| EXPORT_SYMBOL_GPL(pci_find_ext_capability); |
| |
| /** |
| * pci_get_dsn - Read and return the 8-byte Device Serial Number |
| * @dev: PCI device to query |
| * |
| * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial |
| * Number. |
| * |
| * Returns the DSN, or zero if the capability does not exist. |
| */ |
| u64 pci_get_dsn(struct pci_dev *dev) |
| { |
| u32 dword; |
| u64 dsn; |
| int pos; |
| |
| pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); |
| if (!pos) |
| return 0; |
| |
| /* |
| * The Device Serial Number is two dwords offset 4 bytes from the |
| * capability position. The specification says that the first dword is |
| * the lower half, and the second dword is the upper half. |
| */ |
| pos += 4; |
| pci_read_config_dword(dev, pos, &dword); |
| dsn = (u64)dword; |
| pci_read_config_dword(dev, pos + 4, &dword); |
| dsn |= ((u64)dword) << 32; |
| |
| return dsn; |
| } |
| EXPORT_SYMBOL_GPL(pci_get_dsn); |
| |
| static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) |
| { |
| int rc, ttl = PCI_FIND_CAP_TTL; |
| u8 cap, mask; |
| |
| if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) |
| mask = HT_3BIT_CAP_MASK; |
| else |
| mask = HT_5BIT_CAP_MASK; |
| |
| pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, |
| PCI_CAP_ID_HT, &ttl); |
| while (pos) { |
| rc = pci_read_config_byte(dev, pos + 3, &cap); |
| if (rc != PCIBIOS_SUCCESSFUL) |
| return 0; |
| |
| if ((cap & mask) == ht_cap) |
| return pos; |
| |
| pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, |
| pos + PCI_CAP_LIST_NEXT, |
| PCI_CAP_ID_HT, &ttl); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pci_find_next_ht_capability - query a device's HyperTransport capabilities |
| * @dev: PCI device to query |
| * @pos: Position from which to continue searching |
| * @ht_cap: HyperTransport capability code |
| * |
| * To be used in conjunction with pci_find_ht_capability() to search for |
| * all capabilities matching @ht_cap. @pos should always be a value returned |
| * from pci_find_ht_capability(). |
| * |
| * NB. To be 100% safe against broken PCI devices, the caller should take |
| * steps to avoid an infinite loop. |
| */ |
| u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) |
| { |
| return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); |
| } |
| EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); |
| |
| /** |
| * pci_find_ht_capability - query a device's HyperTransport capabilities |
| * @dev: PCI device to query |
| * @ht_cap: HyperTransport capability code |
| * |
| * Tell if a device supports a given HyperTransport capability. |
| * Returns an address within the device's PCI configuration space |
| * or 0 in case the device does not support the request capability. |
| * The address points to the PCI capability, of type PCI_CAP_ID_HT, |
| * which has a HyperTransport capability matching @ht_cap. |
| */ |
| u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) |
| { |
| u8 pos; |
| |
| pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); |
| if (pos) |
| pos = __pci_find_next_ht_cap(dev, pos, ht_cap); |
| |
| return pos; |
| } |
| EXPORT_SYMBOL_GPL(pci_find_ht_capability); |
| |
| /** |
| * pci_find_parent_resource - return resource region of parent bus of given |
| * region |
| * @dev: PCI device structure contains resources to be searched |
| * @res: child resource record for which parent is sought |
| * |
| * For given resource region of given device, return the resource region of |
| * parent bus the given region is contained in. |
| */ |
| struct resource *pci_find_parent_resource(const struct pci_dev *dev, |
| struct resource *res) |
| { |
| const struct pci_bus *bus = dev->bus; |
| struct resource *r; |
| int i; |
| |
| pci_bus_for_each_resource(bus, r, i) { |
| if (!r) |
| continue; |
| if (resource_contains(r, res)) { |
| |
| /* |
| * If the window is prefetchable but the BAR is |
| * not, the allocator made a mistake. |
| */ |
| if (r->flags & IORESOURCE_PREFETCH && |
| !(res->flags & IORESOURCE_PREFETCH)) |
| return NULL; |
| |
| /* |
| * If we're below a transparent bridge, there may |
| * be both a positively-decoded aperture and a |
| * subtractively-decoded region that contain the BAR. |
| * We want the positively-decoded one, so this depends |
| * on pci_bus_for_each_resource() giving us those |
| * first. |
| */ |
| return r; |
| } |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(pci_find_parent_resource); |
| |
| /** |
| * pci_find_resource - Return matching PCI device resource |
| * @dev: PCI device to query |
| * @res: Resource to look for |
| * |
| * Goes over standard PCI resources (BARs) and checks if the given resource |
| * is partially or fully contained in any of them. In that case the |
| * matching resource is returned, %NULL otherwise. |
| */ |
| struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| struct resource *r = &dev->resource[i]; |
| |
| if (r->start && resource_contains(r, res)) |
| return r; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(pci_find_resource); |
| |
| /** |
| * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos |
| * @dev: the PCI device to operate on |
| * @pos: config space offset of status word |
| * @mask: mask of bit(s) to care about in status word |
| * |
| * Return 1 when mask bit(s) in status word clear, 0 otherwise. |
| */ |
| int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) |
| { |
| int i; |
| |
| /* Wait for Transaction Pending bit clean */ |
| for (i = 0; i < 4; i++) { |
| u16 status; |
| if (i) |
| msleep((1 << (i - 1)) * 100); |
| |
| pci_read_config_word(dev, pos, &status); |
| if (!(status & mask)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int pci_acs_enable; |
| |
| /** |
| * pci_request_acs - ask for ACS to be enabled if supported |
| */ |
| void pci_request_acs(void) |
| { |
| pci_acs_enable = 1; |
| } |
| |
| static const char *disable_acs_redir_param; |
| |
| /** |
| * pci_disable_acs_redir - disable ACS redirect capabilities |
| * @dev: the PCI device |
| * |
| * For only devices specified in the disable_acs_redir parameter. |
| */ |
| static void pci_disable_acs_redir(struct pci_dev *dev) |
| { |
| int ret = 0; |
| const char *p; |
| int pos; |
| u16 ctrl; |
| |
| if (!disable_acs_redir_param) |
| return; |
| |
| p = disable_acs_redir_param; |
| while (*p) { |
| ret = pci_dev_str_match(dev, p, &p); |
| if (ret < 0) { |
| pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", |
| disable_acs_redir_param); |
| |
| break; |
| } else if (ret == 1) { |
| /* Found a match */ |
| break; |
| } |
| |
| if (*p != ';' && *p != ',') { |
| /* End of param or invalid format */ |
| break; |
| } |
| p++; |
| } |
| |
| if (ret != 1) |
| return; |
| |
| if (!pci_dev_specific_disable_acs_redir(dev)) |
| return; |
| |
| pos = dev->acs_cap; |
| if (!pos) { |
| pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); |
| return; |
| } |
| |
| pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); |
| |
| /* P2P Request & Completion Redirect */ |
| ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); |
| |
| pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); |
| |
| pci_info(dev, "disabled ACS redirect\n"); |
| } |
| |
| /** |
| * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities |
| * @dev: the PCI device |
| */ |
| static void pci_std_enable_acs(struct pci_dev *dev) |
| { |
| int pos; |
| u16 cap; |
| u16 ctrl; |
| |
| pos = dev->acs_cap; |
| if (!pos) |
| return; |
| |
| pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); |
| pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); |
| |
| /* Source Validation */ |
| ctrl |= (cap & PCI_ACS_SV); |
| |
| /* P2P Request Redirect */ |
| ctrl |= (cap & PCI_ACS_RR); |
| |
| /* P2P Completion Redirect */ |
| ctrl |= (cap & PCI_ACS_CR); |
| |
| /* Upstream Forwarding */ |
| ctrl |= (cap & PCI_ACS_UF); |
| |
| /* Enable Translation Blocking for external devices */ |
| if (dev->external_facing || dev->untrusted) |
| ctrl |= (cap & PCI_ACS_TB); |
| |
| pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); |
| } |
| |
| /** |
| * pci_enable_acs - enable ACS if hardware support it |
| * @dev: the PCI device |
| */ |
| static void pci_enable_acs(struct pci_dev *dev) |
| { |
| if (!pci_acs_enable) |
| goto disable_acs_redir; |
| |
| if (!pci_dev_specific_enable_acs(dev)) |
| goto disable_acs_redir; |
| |
| pci_std_enable_acs(dev); |
| |
| disable_acs_redir: |
| /* |
| * Note: pci_disable_acs_redir() must be called even if ACS was not |
| * enabled by the kernel because it may have been enabled by |
| * platform firmware. So if we are told to disable it, we should |
| * always disable it after setting the kernel's default |
| * preferences. |
| */ |
| pci_disable_acs_redir(dev); |
| } |
| |
| /** |
| * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) |
| * @dev: PCI device to have its BARs restored |
| * |
| * Restore the BAR values for a given device, so as to make it |
| * accessible by its driver. |
| */ |
| static void pci_restore_bars(struct pci_dev *dev) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) |
| pci_update_resource(dev, i); |
| } |
| |
| static const struct pci_platform_pm_ops *pci_platform_pm; |
| |
| int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) |
| { |
| if (!ops->is_manageable || !ops->set_state || !ops->get_state || |
| !ops->choose_state || !ops->set_wakeup || !ops->need_resume) |
| return -EINVAL; |
| pci_platform_pm = ops; |
| return 0; |
| } |
| |
| static inline bool platform_pci_power_manageable(struct pci_dev *dev) |
| { |
| return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; |
| } |
| |
| static inline int platform_pci_set_power_state(struct pci_dev *dev, |
| pci_power_t t) |
| { |
| return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; |
| } |
| |
| static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) |
| { |
| return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; |
| } |
| |
| static inline void platform_pci_refresh_power_state(struct pci_dev *dev) |
| { |
| if (pci_platform_pm && pci_platform_pm->refresh_state) |
| pci_platform_pm->refresh_state(dev); |
| } |
| |
| static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) |
| { |
| return pci_platform_pm ? |
| pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; |
| } |
| |
| static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) |
| { |
| return pci_platform_pm ? |
| pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; |
| } |
| |
| static inline bool platform_pci_need_resume(struct pci_dev *dev) |
| { |
| return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; |
| } |
| |
| static inline bool platform_pci_bridge_d3(struct pci_dev *dev) |
| { |
| if (pci_platform_pm && pci_platform_pm->bridge_d3) |
| return pci_platform_pm->bridge_d3(dev); |
| return false; |
| } |
| |
| /** |
| * pci_raw_set_power_state - Use PCI PM registers to set the power state of |
| * given PCI device |
| * @dev: PCI device to handle. |
| * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. |
| * |
| * RETURN VALUE: |
| * -EINVAL if the requested state is invalid. |
| * -EIO if device does not support PCI PM or its PM capabilities register has a |
| * wrong version, or device doesn't support the requested state. |
| * 0 if device already is in the requested state. |
| * 0 if device's power state has been successfully changed. |
| */ |
| static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) |
| { |
| u16 pmcsr; |
| bool need_restore = false; |
| |
| /* Check if we're already there */ |
| if (dev->current_state == state) |
| return 0; |
| |
| if (!dev->pm_cap) |
| return -EIO; |
| |
| if (state < PCI_D0 || state > PCI_D3hot) |
| return -EINVAL; |
| |
| /* |
| * Validate transition: We can enter D0 from any state, but if |
| * we're already in a low-power state, we can only go deeper. E.g., |
| * we can go from D1 to D3, but we can't go directly from D3 to D1; |
| * we'd have to go from D3 to D0, then to D1. |
| */ |
| if (state != PCI_D0 && dev->current_state <= PCI_D3cold |
| && dev->current_state > state) { |
| pci_err(dev, "invalid power transition (from %s to %s)\n", |
| pci_power_name(dev->current_state), |
| pci_power_name(state)); |
| return -EINVAL; |
| } |
| |
| /* Check if this device supports the desired state */ |
| if ((state == PCI_D1 && !dev->d1_support) |
| || (state == PCI_D2 && !dev->d2_support)) |
| return -EIO; |
| |
| pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| if (pmcsr == (u16) ~0) { |
| pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", |
| pci_power_name(dev->current_state), |
| pci_power_name(state)); |
| return -EIO; |
| } |
| |
| /* |
| * If we're (effectively) in D3, force entire word to 0. |
| * This doesn't affect PME_Status, disables PME_En, and |
| * sets PowerState to 0. |
| */ |
| switch (dev->current_state) { |
| case PCI_D0: |
| case PCI_D1: |
| case PCI_D2: |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= state; |
| break; |
| case PCI_D3hot: |
| case PCI_D3cold: |
| case PCI_UNKNOWN: /* Boot-up */ |
| if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot |
| && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) |
| need_restore = true; |
| fallthrough; /* force to D0 */ |
| default: |
| pmcsr = 0; |
| break; |
| } |
| |
| /* Enter specified state */ |
| pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); |
| |
| /* |
| * Mandatory power management transition delays; see PCI PM 1.1 |
| * 5.6.1 table 18 |
| */ |
| if (state == PCI_D3hot || dev->current_state == PCI_D3hot) |
| pci_dev_d3_sleep(dev); |
| else if (state == PCI_D2 || dev->current_state == PCI_D2) |
| udelay(PCI_PM_D2_DELAY); |
| |
| pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); |
| if (dev->current_state != state) |
| pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", |
| pci_power_name(dev->current_state), |
| pci_power_name(state)); |
| |
| /* |
| * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT |
| * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning |
| * from D3hot to D0 _may_ perform an internal reset, thereby |
| * going to "D0 Uninitialized" rather than "D0 Initialized". |
| * For example, at least some versions of the 3c905B and the |
| * 3c556B exhibit this behaviour. |
| * |
| * At least some laptop BIOSen (e.g. the Thinkpad T21) leave |
| * devices in a D3hot state at boot. Consequently, we need to |
| * restore at least the BARs so that the device will be |
| * accessible to its driver. |
| */ |
| if (need_restore) |
| pci_restore_bars(dev); |
| |
| if (dev->bus->self) |
| pcie_aspm_pm_state_change(dev->bus->self); |
| |
| return 0; |
| } |
| |
| /** |
| * pci_update_current_state - Read power state of given device and cache it |
| * @dev: PCI device to handle. |
| * @state: State to cache in case the device doesn't have the PM capability |
| * |
| * The power state is read from the PMCSR register, which however is |
| * inaccessible in D3cold. The platform firmware is therefore queried first |
| * to detect accessibility of the register. In case the platform firmware |
| * reports an incorrect state or the device isn't power manageable by the |
| * platform at all, we try to detect D3cold by testing accessibility of the |
| * vendor ID in config space. |
| */ |
| void pci_update_current_state(struct pci_dev *dev, pci_power_t state) |
| { |
| if (platform_pci_get_power_state(dev) == PCI_D3cold || |
| !pci_device_is_present(dev)) { |
| dev->current_state = PCI_D3cold; |
| } else if (dev->pm_cap) { |
| u16 pmcsr; |
| |
| pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); |
| } else { |
| dev->current_state = state; |
| } |
| } |
| |
| /** |
| * pci_refresh_power_state - Refresh the given device's power state data |
| * @dev: Target PCI device. |
| * |
| * Ask the platform to refresh the devices power state information and invoke |
| * pci_update_current_state() to update its current PCI power state. |
| */ |
| void pci_refresh_power_state(struct pci_dev *dev) |
| { |
| if (platform_pci_power_manageable(dev)) |
| platform_pci_refresh_power_state(dev); |
| |
| pci_update_current_state(dev, dev->current_state); |
| } |
| |
| /** |
| * pci_platform_power_transition - Use platform to change device power state |
| * @dev: PCI device to handle. |
| * @state: State to put the device into. |
| */ |
| int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) |
| { |
| int error; |
| |
| if (platform_pci_power_manageable(dev)) { |
| error = platform_pci_set_power_state(dev, state); |
| if (!error) |
| pci_update_current_state(dev, state); |
| } else |
| error = -ENODEV; |
| |
| if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ |
| dev->current_state = PCI_D0; |
| |
| return error; |
| } |
| EXPORT_SYMBOL_GPL(pci_platform_power_transition); |
| |
| static int pci_resume_one(struct pci_dev *pci_dev, void *ign) |
| { |
| pm_request_resume(&pci_dev->dev); |
| return 0; |
| } |
| |
| /** |
| * pci_resume_bus - Walk given bus and runtime resume devices on it |
| * @bus: Top bus of the subtree to walk. |
| */ |
| void pci_resume_bus(struct pci_bus *bus) |
| { |
| if (bus) |
| pci_walk_bus(bus, pci_resume_one, NULL); |
| } |
| |
| static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) |
| { |
| int delay = 1; |
| u32 id; |
| |
| /* |
| * After reset, the device should not silently discard config |
| * requests, but it may still indicate that it needs more time by |
| * responding to them with CRS completions. The Root Port will |
| * generally synthesize ~0 data to complete the read (except when |
| * CRS SV is enabled and the read was for the Vendor ID; in that |
| * case it synthesizes 0x0001 data). |
| * |
| * Wait for the device to return a non-CRS completion. Read the |
| * Command register instead of Vendor ID so we don't have to |
| * contend with the CRS SV value. |
| */ |
| pci_read_config_dword(dev, PCI_COMMAND, &id); |
| while (id == ~0) { |
| if (delay > timeout) { |
| pci_warn(dev, "not ready %dms after %s; giving up\n", |
| delay - 1, reset_type); |
| return -ENOTTY; |
| } |
| |
| if (delay > 1000) |
| pci_info(dev, "not ready %dms after %s; waiting\n", |
| delay - 1, reset_type); |
| |
| msleep(delay); |
| delay *= 2; |
| pci_read_config_dword(dev, PCI_COMMAND, &id); |
| } |
| |
| if (delay > 1000) |
| pci_info(dev, "ready %dms after %s\n", delay - 1, |
| reset_type); |
| |
| return 0; |
| } |
| |
| /** |
| * pci_power_up - Put the given device into D0 |
| * @dev: PCI device to power up |
| */ |
| int pci_power_up(struct pci_dev *dev) |
| { |
| pci_platform_power_transition(dev, PCI_D0); |
| |
| /* |
| * Mandatory power management transition delays are handled in |
| * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the |
| * corresponding bridge. |
| */ |
| if (dev->runtime_d3cold) { |
| /* |
| * When powering on a bridge from D3cold, the whole hierarchy |
| * may be powered on into D0uninitialized state, resume them to |
| * give them a chance to suspend again |
| */ |
| pci_resume_bus(dev->subordinate); |
| } |
| |
| return pci_raw_set_power_state(dev, PCI_D0); |
| } |
| |
| /** |
| * __pci_dev_set_current_state - Set current state of a PCI device |
| * @dev: Device to handle |
| * @data: pointer to state to be set |
| */ |
| static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) |
| { |
| pci_power_t state = *(pci_power_t *)data; |
| |
| dev->current_state = state; |
| return 0; |
| } |
| |
| /** |
| * pci_bus_set_current_state - Walk given bus and set current state of devices |
| * @bus: Top bus of the subtree to walk. |
| * @state: state to be set |
| */ |
| void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) |
| { |
| if (bus) |
| pci_walk_bus(bus, __pci_dev_set_current_state, &state); |
| } |
| |
| /** |
| * pci_set_power_state - Set the power state of a PCI device |
| * @dev: PCI device to handle. |
| * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. |
| * |
| * Transition a device to a new power state, using the platform firmware and/or |
| * the device's PCI PM registers. |
| * |
| * RETURN VALUE: |
| * -EINVAL if the requested state is invalid. |
| * -EIO if device does not support PCI PM or its PM capabilities register has a |
| * wrong version, or device doesn't support the requested state. |
| * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. |
| * 0 if device already is in the requested state. |
| * 0 if the transition is to D3 but D3 is not supported. |
| * 0 if device's power state has been successfully changed. |
| */ |
| int pci_set_power_state(struct pci_dev *dev, pci_power_t state) |
| { |
| int error; |
| |
| /* Bound the state we're entering */ |
| if (state > PCI_D3cold) |
| state = PCI_D3cold; |
| else if (state < PCI_D0) |
| state = PCI_D0; |
| else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) |
| |
| /* |
| * If the device or the parent bridge do not support PCI |
| * PM, ignore the request if we're doing anything other |
| * than putting it into D0 (which would only happen on |
| * boot). |
| */ |
| return 0; |
| |
| /* Check if we're already there */ |
| if (dev->current_state == state) |
| return 0; |
| |
| if (state == PCI_D0) |
| return pci_power_up(dev); |
| |
| /* |
| * This device is quirked not to be put into D3, so don't put it in |
| * D3 |
| */ |
| if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) |
| return 0; |
| |
| /* |
| * To put device in D3cold, we put device into D3hot in native |
| * way, then put device into D3cold with platform ops |
| */ |
| error = pci_raw_set_power_state(dev, state > PCI_D3hot ? |
| PCI_D3hot : state); |
| |
| if (pci_platform_power_transition(dev, state)) |
| return error; |
| |
| /* Powering off a bridge may power off the whole hierarchy */ |
| if (state == PCI_D3cold) |
| pci_bus_set_current_state(dev->subordinate, PCI_D3cold); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(pci_set_power_state); |
| |
| /** |
| * pci_choose_state - Choose the power state of a PCI device |
| * @dev: PCI device to be suspended |
| * @state: target sleep state for the whole system. This is the value |
| * that is passed to suspend() function. |
| * |
| * Returns PCI power state suitable for given device and given system |
| * message. |
| */ |
| pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) |
| { |
| pci_power_t ret; |
| |
| if (!dev->pm_cap) |
| return PCI_D0; |
| |
| ret = platform_pci_choose_state(dev); |
| if (ret != PCI_POWER_ERROR) |
| return ret; |
| |
| switch (state.event) { |
| case PM_EVENT_ON: |
| return PCI_D0; |
| case PM_EVENT_FREEZE: |
| case PM_EVENT_PRETHAW: |
| /* REVISIT both freeze and pre-thaw "should" use D0 */ |
| case PM_EVENT_SUSPEND: |
| case PM_EVENT_HIBERNATE: |
| return PCI_D3hot; |
| default: |
| pci_info(dev, "unrecognized suspend event %d\n", |
| state.event); |
| BUG(); |
| } |
| return PCI_D0; |
| } |
| EXPORT_SYMBOL(pci_choose_state); |
| |
| #define PCI_EXP_SAVE_REGS 7 |
| |
| static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, |
| u16 cap, bool extended) |
| { |
| struct pci_cap_saved_state *tmp; |
| |
| hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { |
| if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) |
| return tmp; |
| } |
| return NULL; |
| } |
| |
| struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) |
| { |
| return _pci_find_saved_cap(dev, cap, false); |
| } |
| |
| struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) |
| { |
| return _pci_find_saved_cap(dev, cap, true); |
| } |
| |
| static int pci_save_pcie_state(struct pci_dev *dev) |
| { |
| int i = 0; |
| struct pci_cap_saved_state *save_state; |
| u16 *cap; |
| |
| if (!pci_is_pcie(dev)) |
| return 0; |
| |
| save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); |
| if (!save_state) { |
| pci_err(dev, "buffer not found in %s\n", __func__); |
| return -ENOMEM; |
| } |
| |
| cap = (u16 *)&save_state->cap.data[0]; |
| pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); |
| pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); |
| pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); |
| pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); |
| pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); |
| pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); |
| pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); |
| |
| return 0; |
| } |
| |
| static void pci_restore_pcie_state(struct pci_dev *dev) |
| { |
| int i = 0; |
| struct pci_cap_saved_state *save_state; |
| u16 *cap; |
| |
| save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); |
| if (!save_state) |
| return; |
| |
| cap = (u16 *)&save_state->cap.data[0]; |
| pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); |
| pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); |
| pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); |
| pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); |
| pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); |
| pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); |
| pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); |
| } |
| |
| static int pci_save_pcix_state(struct pci_dev *dev) |
| { |
| int pos; |
| struct pci_cap_saved_state *save_state; |
| |
| pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| if (!pos) |
| return 0; |
| |
| save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); |
| if (!save_state) { |
| pci_err(dev, "buffer not found in %s\n", __func__); |
| return -ENOMEM; |
| } |
| |
| pci_read_config_word(dev, pos + PCI_X_CMD, |
| (u16 *)save_state->cap.data); |
| |
| return 0; |
| } |
| |
| static void pci_restore_pcix_state(struct pci_dev *dev) |
| { |
| int i = 0, pos; |
| struct pci_cap_saved_state *save_state; |
| u16 *cap; |
| |
| save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); |
| pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| if (!save_state || !pos) |
| return; |
| cap = (u16 *)&save_state->cap.data[0]; |
| |
| pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); |
| } |
| |
| static void pci_save_ltr_state(struct pci_dev *dev) |
| { |
| int ltr; |
| struct pci_cap_saved_state *save_state; |
| u16 *cap; |
| |
| if (!pci_is_pcie(dev)) |
| return; |
| |
| ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); |
| if (!ltr) |
| return; |
| |
| save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); |
| if (!save_state) { |
| pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); |
| return; |
| } |
| |
| cap = (u16 *)&save_state->cap.data[0]; |
| pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); |
| pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); |
| } |
| |
| static void pci_restore_ltr_state(struct pci_dev *dev) |
| { |
| struct pci_cap_saved_state *save_state; |
| int ltr; |
| u16 *cap; |
| |
| save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); |
| ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); |
| if (!save_state || !ltr) |
| return; |
| |
| cap = (u16 *)&save_state->cap.data[0]; |
| pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); |
| pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); |
| } |
| |
| /** |
| * pci_save_state - save the PCI configuration space of a device before |
| * suspending |
| * @dev: PCI device that we're dealing with |
| */ |
| int pci_save_state(struct pci_dev *dev) |
| { |
| int i; |
| /* XXX: 100% dword access ok here? */ |
| for (i = 0; i < 16; i++) { |
| pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); |
| pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", |
| i * 4, dev->saved_config_space[i]); |
| } |
| dev->state_saved = true; |
| |
| i = pci_save_pcie_state(dev); |
| if (i != 0) |
| return i; |
| |
| i = pci_save_pcix_state(dev); |
| if (i != 0) |
| return i; |
| |
| pci_save_ltr_state(dev); |
| pci_save_dpc_state(dev); |
| pci_save_aer_state(dev); |
| pci_save_ptm_state(dev); |
| return pci_save_vc_state(dev); |
| } |
| EXPORT_SYMBOL(pci_save_state); |
| |
| static void pci_restore_config_dword(struct pci_dev *pdev, int offset, |
| u32 saved_val, int retry, bool force) |
| { |
| u32 val; |
| |
| pci_read_config_dword(pdev, offset, &val); |
| if (!force && val == saved_val) |
| return; |
| |
| for (;;) { |
| pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", |
| offset, val, saved_val); |
| pci_write_config_dword(pdev, offset, saved_val); |
| if (retry-- <= 0) |
| return; |
| |
| pci_read_config_dword(pdev, offset, &val); |
| if (val == saved_val) |
| return; |
| |
| mdelay(1); |
| } |
| } |
| |
| static void pci_restore_config_space_range(struct pci_dev *pdev, |
| int start, int end, int retry, |
| bool force) |
| { |
| int index; |
| |
| for (index = end; index >= start; index--) |
| pci_restore_config_dword(pdev, 4 * index, |
| pdev->saved_config_space[index], |
| retry, force); |
| } |
| |
| static void pci_restore_config_space(struct pci_dev *pdev) |
| { |
| if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { |
| pci_restore_config_space_range(pdev, 10, 15, 0, false); |
| /* Restore BARs before the command register. */ |
| pci_restore_config_space_range(pdev, 4, 9, 10, false); |
| pci_restore_config_space_range(pdev, 0, 3, 0, false); |
| } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| pci_restore_config_space_range(pdev, 12, 15, 0, false); |
| |
| /* |
| * Force rewriting of prefetch registers to avoid S3 resume |
| * issues on Intel PCI bridges that occur when these |
| * registers are not explicitly written. |
| */ |
| pci_restore_config_space_range(pdev, 9, 11, 0, true); |
| pci_restore_config_space_range(pdev, 0, 8, 0, false); |
| } else { |
| pci_restore_config_space_range(pdev, 0, 15, 0, false); |
| } |
| } |
| |
| static void pci_restore_rebar_state(struct pci_dev *pdev) |
| { |
| unsigned int pos, nbars, i; |
| u32 ctrl; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); |
| if (!pos) |
| return; |
| |
| pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); |
| nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> |
| PCI_REBAR_CTRL_NBAR_SHIFT; |
| |
| for (i = 0; i < nbars; i++, pos += 8) { |
| struct resource *res; |
| int bar_idx, size; |
| |
| pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); |
| bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; |
| res = pdev->resource + bar_idx; |
| size = ilog2(resource_size(res)) - 20; |
| ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; |
| ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; |
| pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); |
| } |
| } |
| |
| /** |
| * pci_restore_state - Restore the saved state of a PCI device |
| * @dev: PCI device that we're dealing with |
| */ |
| void pci_restore_state(struct pci_dev *dev) |
| { |
| if (!dev->state_saved) |
| return; |
| |
| /* |
| * Restore max latencies (in the LTR capability) before enabling |
| * LTR itself (in the PCIe capability). |
| */ |
| pci_restore_ltr_state(dev); |
| |
| pci_restore_pcie_state(dev); |
| pci_restore_pasid_state(dev); |
| pci_restore_pri_state(dev); |
| pci_restore_ats_state(dev); |
| pci_restore_vc_state(dev); |
| pci_restore_rebar_state(dev); |
| pci_restore_dpc_state(dev); |
| pci_restore_ptm_state(dev); |
| |
| pci_aer_clear_status(dev); |
| pci_restore_aer_state(dev); |
| |
| pci_restore_config_space(dev); |
| |
| pci_restore_pcix_state(dev); |
| pci_restore_msi_state(dev); |
| |
| /* Restore ACS and IOV configuration state */ |
| pci_enable_acs(dev); |
| pci_restore_iov_state(dev); |
| |
| dev->state_saved = false; |
| } |
| EXPORT_SYMBOL(pci_restore_state); |
| |
| struct pci_saved_state { |
| u32 config_space[16]; |
| struct pci_cap_saved_data cap[]; |
| }; |
| |
| /** |
| * pci_store_saved_state - Allocate and return an opaque struct containing |
| * the device saved state. |
| * @dev: PCI device that we're dealing with |
| * |
| * Return NULL if no state or error. |
| */ |
| struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) |
| { |
| struct pci_saved_state *state; |
| struct pci_cap_saved_state *tmp; |
| struct pci_cap_saved_data *cap; |
| size_t size; |
| |
| if (!dev->state_saved) |
| return NULL; |
| |
| size = sizeof(*state) + sizeof(struct pci_cap_saved_data); |
| |
| hlist_for_each_entry(tmp, &dev->saved_cap_space, next) |
| size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; |
| |
| state = kzalloc(size, GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| memcpy(state->config_space, dev->saved_config_space, |
| sizeof(state->config_space)); |
| |
| cap = state->cap; |
| hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { |
| size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; |
| memcpy(cap, &tmp->cap, len); |
| cap = (struct pci_cap_saved_data *)((u8 *)cap + len); |
| } |
| /* Empty cap_save terminates list */ |
| |
| return state; |
| } |
| EXPORT_SYMBOL_GPL(pci_store_saved_state); |
| |
| /** |
| * pci_load_saved_state - Reload the provided save state into struct pci_dev. |
| * @dev: PCI device that we're dealing with |
| * @state: Saved state returned from pci_store_saved_state() |
| */ |
| int pci_load_saved_state(struct pci_dev *dev, |
| struct pci_saved_state *state) |
| { |
| struct pci_cap_saved_data *cap; |
| |
| dev->state_saved = false; |
| |
| if (!state) |
| return 0; |
| |
| memcpy(dev->saved_config_space, state->config_space, |
| sizeof(state->config_space)); |
| |
| cap = state->cap; |
| while (cap->size) { |
| struct pci_cap_saved_state *tmp; |
| |
| tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); |
| if (!tmp || tmp->cap.size != cap->size) |
| return -EINVAL; |
| |
| memcpy(tmp->cap.data, cap->data, tmp->cap.size); |
| cap = (struct pci_cap_saved_data *)((u8 *)cap + |
| sizeof(struct pci_cap_saved_data) + cap->size); |
| } |
| |
| dev->state_saved = true; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(pci_load_saved_state); |
| |
| /** |
| * pci_load_and_free_saved_state - Reload the save state pointed to by state, |
| * and free the memory allocated for it. |
| * @dev: PCI device that we're dealing with |
| * @state: Pointer to saved state returned from pci_store_saved_state() |
| */ |
| int pci_load_and_free_saved_state(struct pci_dev *dev, |
| struct pci_saved_state **state) |
| { |
| int ret = pci_load_saved_state(dev, *state); |
| kfree(*state); |
| *state = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); |
| |
| int __weak pcibios_enable_device(struct pci_dev *dev, int bars) |
| { |
| return pci_enable_resources(dev, bars); |
| } |
| |
| static int do_pci_enable_device(struct pci_dev *dev, int bars) |
| { |
| int err; |
| struct pci_dev *bridge; |
| u16 cmd; |
| u8 pin; |
| |
| err = pci_set_power_state(dev, PCI_D0); |
| if (err < 0 && err != -EIO) |
| return err; |
| |
| bridge = pci_upstream_bridge(dev); |
| if (bridge) |
| pcie_aspm_powersave_config_link(bridge); |
| |
| err = pcibios_enable_device(dev, bars); |
| if (err < 0) |
| return err; |
| pci_fixup_device(pci_fixup_enable, dev); |
| |
| if (dev->msi_enabled || dev->msix_enabled) |
| return 0; |
| |
| pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); |
| if (pin) { |
| pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| if (cmd & PCI_COMMAND_INTX_DISABLE) |
| pci_write_config_word(dev, PCI_COMMAND, |
| cmd & ~PCI_COMMAND_INTX_DISABLE); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pci_reenable_device - Resume abandoned device |
| * @dev: PCI device to be resumed |
| * |
| * NOTE: This function is a backend of pci_default_resume() and is not supposed |
| * to be called by normal code, write proper resume handler and use it instead. |
| */ |
| int pci_reenable_device(struct pci_dev *dev) |
| { |
| if (pci_is_enabled(dev)) |
| return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); |
| return 0; |
| } |
| EXPORT_SYMBOL(pci_reenable_device); |
| |
| static void pci_enable_bridge(struct pci_dev *dev) |
| { |
| struct pci_dev *bridge; |
| int retval; |
| |
| bridge = pci_upstream_bridge(dev); |
| if (bridge) |
| pci_enable_bridge(bridge); |
| |
| if (pci_is_enabled(dev)) { |
| if (!dev->is_busmaster) |
| pci_set_master(dev); |
| return; |
| } |
| |
| retval = pci_enable_device(dev); |
| if (retval) |
| pci_err(dev, "Error enabling bridge (%d), continuing\n", |
| retval); |
| pci_set_master(dev); |
| } |
| |
| static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) |
| { |
| struct pci_dev *bridge; |
| int err; |
| int i, bars = 0; |
| |
| /* |
| * Power state could be unknown at this point, either due to a fresh |
| * boot or a device removal call. So get the current power state |
| * so that things like MSI message writing will behave as expected |
| * (e.g. if the device really is in D0 at enable time). |
| */ |
| if (dev->pm_cap) { |
| u16 pmcsr; |
| pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); |
| } |
| |
| if (atomic_inc_return(&dev->enable_cnt) > 1) |
| return 0; /* already enabled */ |
| |
| bridge = pci_upstream_bridge(dev); |
| if (bridge) |
| pci_enable_bridge(bridge); |
| |
| /* only skip sriov related */ |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) |
| if (dev->resource[i].flags & flags) |
| bars |= (1 << i); |
| for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) |
| if (dev->resource[i].flags & flags) |
| bars |= (1 << i); |
| |
| err = do_pci_enable_device(dev, bars); |
| if (err < 0) |
| atomic_dec(&dev->enable_cnt); |
| return err; |
| } |
| |
| /** |
| * pci_enable_device_io - Initialize a device for use with IO space |
| * @dev: PCI device to be initialized |
| * |
| * Initialize device before it's used by a driver. Ask low-level code |
| * to enable I/O resources. Wake up the device if it was suspended. |
| * Beware, this function can fail. |
| */ |
| int pci_enable_device_io(struct pci_dev *dev) |
| { |
| return pci_enable_device_flags(dev, IORESOURCE_IO); |
| } |
| EXPORT_SYMBOL(pci_enable_device_io); |
| |
| /** |
| * pci_enable_device_mem - Initialize a device for use with Memory space |
| * @dev: PCI device to be initialized |
| * |
| * Initialize device before it's used by a driver. Ask low-level code |
| * to enable Memory resources. Wake up the device if it was suspended. |
| * Beware, this function can fail. |
| */ |
| int pci_enable_device_mem(struct pci_dev *dev) |
| { |
| return pci_enable_device_flags(dev, IORESOURCE_MEM); |
| } |
| EXPORT_SYMBOL(pci_enable_device_mem); |
| |
| /** |
| * pci_enable_device - Initialize device before it's used by a driver. |
| * @dev: PCI device to be initialized |
| * |
| * Initialize device before it's used by a driver. Ask low-level code |
| * to enable I/O and memory. Wake up the device if it was suspended. |
| * Beware, this function can fail. |
| * |
| * Note we don't actually enable the device many times if we call |
| * this function repeatedly (we just increment the count). |
| */ |
| int pci_enable_device(struct pci_dev *dev) |
| { |
| return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); |
| } |
| EXPORT_SYMBOL(pci_enable_device); |
| |
| /* |
| * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X |
| * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so |
| * there's no need to track it separately. pci_devres is initialized |
| * when a device is enabled using managed PCI device enable interface. |
| */ |
| struct pci_devres { |
| unsigned int enabled:1; |
| unsigned int pinned:1; |
| unsigned int orig_intx:1; |
| unsigned int restore_intx:1; |
| unsigned int mwi:1; |
| u32 region_mask; |
| }; |
| |
| static void pcim_release(struct device *gendev, void *res) |
| { |
| struct pci_dev *dev = to_pci_dev(gendev); |
| struct pci_devres *this = res; |
| int i; |
| |
| if (dev->msi_enabled) |
| pci_disable_msi(dev); |
| if (dev->msix_enabled) |
| pci_disable_msix(dev); |
| |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) |
| if (this->region_mask & (1 << i)) |
| pci_release_region(dev, i); |
| |
| if (this->mwi) |
| pci_clear_mwi(dev); |
| |
| if (this->restore_intx) |
| pci_intx(dev, this->orig_intx); |
| |
| if (this->enabled && !this->pinned) |
| pci_disable_device(dev); |
| } |
| |
| static struct pci_devres *get_pci_dr(struct pci_dev *pdev) |
| { |
| struct pci_devres *dr, *new_dr; |
| |
| dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); |
| if (dr) |
| return dr; |
| |
| new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); |
| if (!new_dr) |
| return NULL; |
| return devres_get(&pdev->dev, new_dr, NULL, NULL); |
| } |
| |
| static struct pci_devres *find_pci_dr(struct pci_dev *pdev) |
| { |
| if (pci_is_managed(pdev)) |
| return devres_find(&pdev->dev, pcim_release, NULL, NULL); |
| return NULL; |
| } |
| |
| /** |
| * pcim_enable_device - Managed pci_enable_device() |
| * @pdev: PCI device to be initialized |
| * |
| * Managed pci_enable_device(). |
| */ |
| int pcim_enable_device(struct pci_dev *pdev) |
| { |
| struct pci_devres *dr; |
| int rc; |
| |
| dr = get_pci_dr(pdev); |
| if (unlikely(!dr)) |
| return -ENOMEM; |
| if (dr->enabled) |
| return 0; |
| |
| rc = pci_enable_device(pdev); |
| if (!rc) { |
| pdev->is_managed = 1; |
| dr->enabled = 1; |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(pcim_enable_device); |
| |
| /** |
| * pcim_pin_device - Pin managed PCI device |
| * @pdev: PCI device to pin |
| * |
| * Pin managed PCI device @pdev. Pinned device won't be disabled on |
| * driver detach. @pdev must have been enabled with |
| * pcim_enable_device(). |
| */ |
| void pcim_pin_device(struct pci_dev *pdev) |
| { |
| struct pci_devres *dr; |
| |
| dr = find_pci_dr(pdev); |
| WARN_ON(!dr || !dr->enabled); |
| if (dr) |
| dr->pinned = 1; |
| } |
| EXPORT_SYMBOL(pcim_pin_device); |
| |
| /* |
| * pcibios_add_device - provide arch specific hooks when adding device dev |
| * @dev: the PCI device being added |
| * |
| * Permits the platform to provide architecture specific functionality when |
| * devices are added. This is the default implementation. Architecture |
| * implementations can override this. |
| */ |
| int __weak pcibios_add_device(struct pci_dev *dev) |
| { |
| return 0; |
| } |
| |
| /** |
| * pcibios_release_device - provide arch specific hooks when releasing |
| * device dev |
| * @dev: the PCI device being released |
| * |
| * Permits the platform to provide architecture specific functionality when |
| * devices are released. This is the default implementation. Architecture |
| * implementations can override this. |
| */ |
| void __weak pcibios_release_device(struct pci_dev *dev) {} |
| |
| /** |
| * pcibios_disable_device - disable arch specific PCI resources for device dev |
| * @dev: the PCI device to disable |
| * |
| * Disables architecture specific PCI resources for the device. This |
| * is the default implementation. Architecture implementations can |
| * override this. |
| */ |
| void __weak pcibios_disable_device(struct pci_dev *dev) {} |
| |
| /** |
| * pcibios_penalize_isa_irq - penalize an ISA IRQ |
| * @irq: ISA IRQ to penalize |
| * @active: IRQ active or not |
| * |
| * Permits the platform to provide architecture-specific functionality when |
| * penalizing ISA IRQs. This is the default implementation. Architecture |
| * implementations can override this. |
| */ |
| void __weak pcibios_penalize_isa_irq(int irq, int active) {} |
| |
| static void do_pci_disable_device(struct pci_dev *dev) |
| { |
| u16 pci_command; |
| |
| pci_read_config_word(dev, PCI_COMMAND, &pci_command); |
| if (pci_command & PCI_COMMAND_MASTER) { |
| pci_command &= ~PCI_COMMAND_MASTER; |
| pci_write_config_word(dev, PCI_COMMAND, pci_command); |
| } |
| |
| pcibios_disable_device(dev); |
| } |
| |
| /** |
| * pci_disable_enabled_device - Disable device without updating enable_cnt |
| * @dev: PCI device to disable |
| * |
| * NOTE: This function is a backend of PCI power management routines and is |
| * not supposed to be called drivers. |
| */ |
| void pci_disable_enabled_device(struct pci_dev *dev) |
| { |
| if (pci_is_enabled(dev)) |
| do_pci_disable_device(dev); |
| } |
| |
| /** |
| * pci_disable_device - Disable PCI device after use |
| * @dev: PCI device to be disabled |
| * |
| * Signal to the system that the PCI device is not in use by the system |
| * anymore. This only involves disabling PCI bus-mastering, if active. |
| * |
| * Note we don't actually disable the device until all callers of |
| * pci_enable_device() have called pci_disable_device(). |
| */ |
| void pci_disable_device(struct pci_dev *dev) |
| { |
| struct pci_devres *dr; |
| |
| dr = find_pci_dr(dev); |
| if (dr) |
| dr->enabled = 0; |
| |
| dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, |
| "disabling already-disabled device"); |
| |
| if (atomic_dec_return(&dev->enable_cnt) != 0) |
| return; |
| |
| do_pci_disable_device(dev); |
| |
| dev->is_busmaster = 0; |
| } |
| EXPORT_SYMBOL(pci_disable_device); |
| |
| /** |
| * pcibios_set_pcie_reset_state - set reset state for device dev |
| * @dev: the PCIe device reset |
| * @state: Reset state to enter into |
| * |
| * Set the PCIe reset state for the device. This is the default |
| * implementation. Architecture implementations can override this. |
| */ |
| int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, |
| enum pcie_reset_state state) |
| { |
| return -EINVAL; |
| } |
| |
| /** |
| * pci_set_pcie_reset_state - set reset state for device dev |
| * @dev: the PCIe device reset |
| * @state: Reset state to enter into |
| * |
| * Sets the PCI reset state for the device. |
| */ |
| int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) |
| { |
| return pcibios_set_pcie_reset_state(dev, state); |
| } |
| EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); |
| |
| void pcie_clear_device_status(struct pci_dev *dev) |
| { |
| u16 sta; |
| |
| pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); |
| pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); |
| } |
| |
| /** |
| * pcie_clear_root_pme_status - Clear root port PME interrupt status. |
| * @dev: PCIe root port or event collector. |
| */ |
| void pcie_clear_root_pme_status(struct pci_dev *dev) |
| { |
| pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); |
| } |
| |
| /** |
| * pci_check_pme_status - Check if given device has generated PME. |
| * @dev: Device to check. |
| * |
| * Check the PME status of the device and if set, clear it and clear PME enable |
| * (if set). Return 'true' if PME status and PME enable were both set or |
| * 'false' otherwise. |
| */ |
| bool pci_check_pme_status(struct pci_dev *dev) |
| { |
| int pmcsr_pos; |
| u16 pmcsr; |
| bool ret = false; |
| |
| if (!dev->pm_cap) |
| return false; |
| |
| pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; |
| pci_read_config_word(dev, pmcsr_pos, &pmcsr); |
| if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) |
| return false; |
| |
| /* Clear PME status. */ |
| pmcsr |= PCI_PM_CTRL_PME_STATUS; |
| if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { |
| /* Disable PME to avoid interrupt flood. */ |
| pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
| ret = true; |
| } |
| |
| pci_write_config_word(dev, pmcsr_pos, pmcsr); |
| |
| return ret; |
| } |
| |
| /** |
| * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. |
| * @dev: Device to handle. |
| * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. |
| * |
| * Check if @dev has generated PME and queue a resume request for it in that |
| * case. |
| */ |
| static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) |
| { |
| if (pme_poll_reset && dev->pme_poll) |
| dev->pme_poll = false; |
| |
| if (pci_check_pme_status(dev)) { |
| pci_wakeup_event(dev); |
| pm_request_resume(&dev->dev); |
| } |
| return 0; |
| } |
| |
| /** |
| * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. |
| * @bus: Top bus of the subtree to walk. |
| */ |
| void pci_pme_wakeup_bus(struct pci_bus *bus) |
| { |
| if (bus) |
| pci_walk_bus(bus, pci_pme_wakeup, (void *)true); |
| } |
| |
| |
| /** |
| * pci_pme_capable - check the capability of PCI device to generate PME# |
| * @dev: PCI device to handle. |
| * @state: PCI state from which device will issue PME#. |
| */ |
| bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) |
| { |
| if (!dev->pm_cap) |
| return false; |
| |
| return !!(dev->pme_support & (1 << state)); |
| } |
| EXPORT_SYMBOL(pci_pme_capable); |
| |
| static void pci_pme_list_scan(struct work_struct *work) |
| { |
| struct pci_pme_device *pme_dev, *n; |
| |
| mutex_lock(&pci_pme_list_mutex); |
| list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { |
| if (pme_dev->dev->pme_poll) { |
| struct pci_dev *bridge; |
| |
| bridge = pme_dev->dev->bus->self; |
| /* |
| * If bridge is in low power state, the |
| * configuration space of subordinate devices |
| * may be not accessible |
| */ |
| if (bridge && bridge->current_state != PCI_D0) |
| continue; |
| /* |
| * If the device is in D3cold it should not be |
| * polled either. |
| */ |
| if (pme_dev->dev->current_state == PCI_D3cold) |
| continue; |
| |
| pci_pme_wakeup(pme_dev->dev, NULL); |
| } else { |
| list_del(&pme_dev->list); |
| kfree(pme_dev); |
| } |
| } |
| if (!list_empty(&pci_pme_list)) |
| queue_delayed_work(system_freezable_wq, &pci_pme_work, |
| msecs_to_jiffies(PME_TIMEOUT)); |
| mutex_unlock(&pci_pme_list_mutex); |
| } |
| |
| static void __pci_pme_active(struct pci_dev *dev, bool enable) |
| { |
| u16 pmcsr; |
| |
| if (!dev->pme_support) |
| return; |
| |
| pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| /* Clear PME_Status by writing 1 to it and enable PME# */ |
| pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; |
| if (!enable) |
| pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
| |
| pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); |
| } |
| |
| /** |
| * pci_pme_restore - Restore PME configuration after config space restore. |
| * @dev: PCI device to update. |
| */ |
| void pci_pme_restore(struct pci_dev *dev) |
| { |
| u16 pmcsr; |
| |
| if (!dev->pme_support) |
| return; |
| |
| pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| if (dev->wakeup_prepared) { |
| pmcsr |= PCI_PM_CTRL_PME_ENABLE; |
| pmcsr &= ~PCI_PM_CTRL_PME_STATUS; |
| } else { |
| pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
| pmcsr |= PCI_PM_CTRL_PME_STATUS; |
| } |
| pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); |
| } |
| |
| /** |
| * pci_pme_active - enable or disable PCI device's PME# function |
| * @dev: PCI device to handle. |
| * @enable: 'true' to enable PME# generation; 'false' to disable it. |
| * |
| * The caller must verify that the device is capable of generating PME# before |
| * calling this function with @enable equal to 'true'. |
| */ |
| void pci_pme_active(struct pci_dev *dev, bool enable) |
| { |
| __pci_pme_active(dev, enable); |
| |
| /* |
| * PCI (as opposed to PCIe) PME requires that the device have |
| * its PME# line hooked up correctly. Not all hardware vendors |
| * do this, so the PME never gets delivered and the device |
| * remains asleep. The easiest way around this is to |
| * periodically walk the list of suspended devices and check |
| * whether any have their PME flag set. The assumption is that |
| * we'll wake up often enough anyway that this won't be a huge |
| * hit, and the power savings from the devices will still be a |
| * win. |
| * |
| * Although PCIe uses in-band PME message instead of PME# line |
| * to report PME, PME does not work for some PCIe devices in |
| * reality. For example, there are devices that set their PME |
| * status bits, but don't really bother to send a PME message; |
| * there are PCI Express Root Ports that don't bother to |
| * trigger interrupts when they receive PME messages from the |
| * devices below. So PME poll is used for PCIe devices too. |
| */ |
| |
| if (dev->pme_poll) { |
| struct pci_pme_device *pme_dev; |
| if (enable) { |
| pme_dev = kmalloc(sizeof(struct pci_pme_device), |
| GFP_KERNEL); |
| if (!pme_dev) { |
| pci_warn(dev, "can't enable PME#\n"); |
| return; |
| } |
| pme_dev->dev = dev; |
| mutex_lock(&pci_pme_list_mutex); |
| list_add(&pme_dev->list, &pci_pme_list); |
| if (list_is_singular(&pci_pme_list)) |
| queue_delayed_work(system_freezable_wq, |
| &pci_pme_work, |
| msecs_to_jiffies(PME_TIMEOUT)); |
| mutex_unlock(&pci_pme_list_mutex); |
| } else { |
| mutex_lock(&pci_pme_list_mutex); |
| list_for_each_entry(pme_dev, &pci_pme_list, list) { |
| if (pme_dev->dev == dev) { |
| list_del(&pme_dev->list); |
| kfree(pme_dev); |
| break; |
| } |
| } |
| mutex_unlock(&pci_pme_list_mutex); |
| } |
| } |
| |
| pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); |
| } |
| EXPORT_SYMBOL(pci_pme_active); |
| |
| /** |
| * __pci_enable_wake - enable PCI device as wakeup event source |
| * @dev: PCI device affected |
| * @state: PCI state from which device will issue wakeup events |
| * @enable: True to enable event generation; false to disable |
| * |
| * This enables the device as a wakeup event source, or disables it. |
| * When such events involves platform-specific hooks, those hooks are |
| * called automatically by this routine. |
| * |
| * Devices with legacy power management (no standard PCI PM capabilities) |
| * always require such platform hooks. |
| * |
| * RETURN VALUE: |
| * 0 is returned on success |
| * -EINVAL is returned if device is not supposed to wake up the system |
| * Error code depending on the platform is returned if both the platform and |
| * the native mechanism fail to enable the generation of wake-up events |
| */ |
| static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) |
| { |
| int ret = 0; |
| |
| /* |
| * Bridges that are not power-manageable directly only signal |
| * wakeup on behalf of subordinate devices which is set up |
| * elsewhere, so skip them. However, bridges that are |
| * power-manageable may signal wakeup for themselves (for example, |
| * on a hotplug event) and they need to be covered here. |
| */ |
| if (!pci_power_manageable(dev)) |
| return 0; |
| |
| /* Don't do the same thing twice in a row for one device. */ |
| if (!!enable == !!dev->wakeup_prepared) |
| return 0; |
| |
| /* |
| * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don |
| * Anderson we should be doing PME# wake enable followed by ACPI wake |
| * enable. To disable wake-up we call the platform first, for symmetry. |
| */ |
| |
| if (enable) { |
| int error; |
| |
| if (pci_pme_capable(dev, state)) |
| pci_pme_active(dev, true); |
| else |
| ret = 1; |
| error = platform_pci_set_wakeup(dev, true); |
| if (ret) |
| ret = error; |
| if (!ret) |
| dev->wakeup_prepared = true; |
| } else { |
| platform_pci_set_wakeup(dev, false); |
| pci_pme_active(dev, false); |
| dev->wakeup_prepared = false; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * pci_enable_wake - change wakeup settings for a PCI device |
| * @pci_dev: Target device |
| * @state: PCI state from which device will issue wakeup events |
| * @enable: Whether or not to enable event generation |
| * |
| * If @enable is set, check device_may_wakeup() for the device before calling |
| * __pci_enable_wake() for it. |
| */ |
| int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) |
| { |
| if (enable && !device_may_wakeup(&pci_dev->dev)) |
| return -EINVAL; |
| |
| return __pci_enable_wake(pci_dev, state, enable); |
| } |
| EXPORT_SYMBOL(pci_enable_wake); |
| |
| /** |
| * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold |
| * @dev: PCI device to prepare |
| * @enable: True to enable wake-up event generation; false to disable |
| * |
| * Many drivers want the device to wake up the system from D3_hot or D3_cold |
| * and this function allows them to set that up cleanly - pci_enable_wake() |
| * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI |
| * ordering constraints. |
| * |
| * This function only returns error code if the device is not allowed to wake |
| * up the system from sleep or it is not capable of generating PME# from both |
| * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. |
| */ |
| int pci_wake_from_d3(struct pci_dev *dev, bool enable) |
| { |
| return pci_pme_capable(dev, PCI_D3cold) ? |
| pci_enable_wake(dev, PCI_D3cold, enable) : |
| pci_enable_wake(dev, PCI_D3hot, enable); |
| } |
| EXPORT_SYMBOL(pci_wake_from_d3); |
| |
| /** |
| * pci_target_state - find an appropriate low power state for a given PCI dev |
| * @dev: PCI device |
| * @wakeup: Whether or not wakeup functionality will be enabled for the device. |
| * |
| * Use underlying platform code to find a supported low power state for @dev. |
| * If the platform can't manage @dev, return the deepest state from which it |
| * can generate wake events, based on any available PME info. |
| */ |
| static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) |
| { |
| pci_power_t target_state = PCI_D3hot; |
| |
| if (platform_pci_power_manageable(dev)) { |
| /* |
| * Call the platform to find the target state for the device. |
| */ |
| pci_power_t state = platform_pci_choose_state(dev); |
| |
| switch (state) { |
| case PCI_POWER_ERROR: |
| case PCI_UNKNOWN: |
| break; |
| case PCI_D1: |
| case PCI_D2: |
| if (pci_no_d1d2(dev)) |
| break; |
| fallthrough; |
| default: |
| target_state = state; |
| } |
| |
| return target_state; |
| } |
| |
| if (!dev->pm_cap) |
| target_state = PCI_D0; |
| |
| /* |
| * If the device is in D3cold even though it's not power-manageable by |
| * the platform, it may have been powered down by non-standard means. |
| * Best to let it slumber. |
| */ |
| if (dev->current_state == PCI_D3cold) |
| target_state = PCI_D3cold; |
| |
| if (wakeup) { |
| /* |
| * Find the deepest state from which the device can generate |
| * PME#. |
| */ |
| if (dev->pme_support) { |
| while (target_state |
| && !(dev->pme_support & (1 << target_state))) |
| target_state--; |
| } |
| } |
| |
| return target_state; |
| } |
| |
| /** |
| * pci_prepare_to_sleep - prepare PCI device for system-wide transition |
| * into a sleep state |
| * @dev: Device to handle. |
| * |
| * Choose the power state appropriate for the device depending on whether |
| * it can wake up the system and/or is power manageable by the platform |
| * (PCI_D3hot is the default) and put the device into that state. |
| */ |
| int pci_prepare_to_sleep(struct pci_dev *dev) |
| { |
| bool wakeup = device_may_wakeup(&dev->dev); |
| pci_power_t target_state = pci_target_state(dev, wakeup); |
| int error; |
| |
| if (target_state == PCI_POWER_ERROR) |
| return -EIO; |
| |
| /* |
| * There are systems (for example, Intel mobile chips since Coffee |
| * Lake) where the power drawn while suspended can be significantly |
| * reduced by disabling PTM on PCIe root ports as this allows the |
| * port to enter a lower-power PM state and the SoC to reach a |
| * lower-power idle state as a whole. |
| */ |
| if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) |
| pci_disable_ptm(dev); |
| |
| pci_enable_wake(dev, target_state, wakeup); |
| |
| error = pci_set_power_state(dev, target_state); |
| |
| if (error) { |
| pci_enable_wake(dev, target_state, false); |
| pci_restore_ptm_state(dev); |
| } |
| |
| return error; |
| } |
| EXPORT_SYMBOL(pci_prepare_to_sleep); |
| |
| /** |
| * pci_back_from_sleep - turn PCI device on during system-wide transition |
| * into working state |
| * @dev: Device to handle. |
| * |
| * Disable device's system wake-up capability and put it into D0. |
| */ |
| int pci_back_from_sleep(struct pci_dev *dev) |
| { |
| pci_enable_wake(dev, PCI_D0, false); |
| return pci_set_power_state(dev, PCI_D0); |
| } |
| EXPORT_SYMBOL(pci_back_from_sleep); |
| |
| /** |
| * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. |
| * @dev: PCI device being suspended. |
| * |
| * Prepare @dev to generate wake-up events at run time and put it into a low |
| * power state. |
| */ |
| int pci_finish_runtime_suspend(struct pci_dev *dev) |
| { |
| pci_power_t target_state; |
| int error; |
| |
| target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); |
| if (target_state == PCI_POWER_ERROR) |
| return -EIO; |
| |
| dev->runtime_d3cold = target_state == PCI_D3cold; |
| |
| /* |
| * There are systems (for example, Intel mobile chips since Coffee |
| * Lake) where the power drawn while suspended can be significantly |
| * reduced by disabling PTM on PCIe root ports as this allows the |
| * port to enter a lower-power PM state and the SoC to reach a |
| * lower-power idle state as a whole. |
| */ |
| if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) |
| pci_disable_ptm(dev); |
| |
| __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); |
| |
| error = pci_set_power_state(dev, target_state); |
| |
| if (error) { |
| pci_enable_wake(dev, target_state, false); |
| pci_restore_ptm_state(dev); |
| dev->runtime_d3cold = false; |
| } |
| |
| return error; |
| } |
| |
| /** |
| * pci_dev_run_wake - Check if device can generate run-time wake-up events. |
| * @dev: Device to check. |
| * |
| * Return true if the device itself is capable of generating wake-up events |
| * (through the platform or using the native PCIe PME) or if the device supports |
| * PME and one of its upstream bridges can generate wake-up events. |
| */ |
| bool pci_dev_run_wake(struct pci_dev *dev) |
| { |
| struct pci_bus *bus = dev->bus; |
| |
| if (!dev->pme_support) |
| return false; |
| |
| /* PME-capable in principle, but not from the target power state */ |
| if (!pci_pme_capable(dev, pci_target_state(dev, true))) |
| return false; |
| |
| if (device_can_wakeup(&dev->dev)) |
| return true; |
| |
| while (bus->parent) { |
| struct pci_dev *bridge = bus->self; |
| |
| if (device_can_wakeup(&bridge->dev)) |
| return true; |
| |
| bus = bus->parent; |
| } |
| |
| /* We have reached the root bus. */ |
| if (bus->bridge) |
| return device_can_wakeup(bus->bridge); |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(pci_dev_run_wake); |
| |
| /** |
| * pci_dev_need_resume - Check if it is necessary to resume the device. |
| * @pci_dev: Device to check. |
| * |
| * Return 'true' if the device is not runtime-suspended or it has to be |
| * reconfigured due to wakeup settings difference between system and runtime |
| * suspend, or the current power state of it is not suitable for the upcoming |
| * (system-wide) transition. |
| */ |
| bool pci_dev_need_resume(struct pci_dev *pci_dev) |
| { |
| struct device *dev = &pci_dev->dev; |
| pci_power_t target_state; |
| |
| if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) |
| return true; |
| |
| target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); |
| |
| /* |
| * If the earlier platform check has not triggered, D3cold is just power |
| * removal on top of D3hot, so no need to resume the device in that |
| * case. |
| */ |
| return target_state != pci_dev->current_state && |
| target_state != PCI_D3cold && |
| pci_dev->current_state != PCI_D3hot; |
| } |
| |
| /** |
| * pci_dev_adjust_pme - Adjust PME setting for a suspended device. |
| * @pci_dev: Device to check. |
| * |
| * If the device is suspended and it is not configured for system wakeup, |
| * disable PME for it to prevent it from waking up the system unnecessarily. |
| * |
| * Note that if the device's power state is D3cold and the platform check in |
| * pci_dev_need_resume() has not triggered, the device's configuration need not |
| * be changed. |
| */ |
| void pci_dev_adjust_pme(struct pci_dev *pci_dev) |
| { |
| struct device *dev = &pci_dev->dev; |
| |
| spin_lock_irq(&dev->power.lock); |
| |
| if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && |
| pci_dev->current_state < PCI_D3cold) |
| __pci_pme_active(pci_dev, false); |
| |
| spin_unlock_irq(&dev->power.lock); |
| } |
| |
| /** |
| * pci_dev_complete_resume - Finalize resume from system sleep for a device. |
| * @pci_dev: Device to handle. |
| * |
| * If the device is runtime suspended and wakeup-capable, enable PME for it as |
| * it might have been disabled during the prepare phase of system suspend if |
| * the device was not configured for system wakeup. |
| */ |
| void pci_dev_complete_resume(struct pci_dev *pci_dev) |
| { |
| struct device *dev = &pci_dev->dev; |
| |
| if (!pci_dev_run_wake(pci_dev)) |
| return; |
| |
| spin_lock_irq(&dev->power.lock); |
| |
| if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) |
| __pci_pme_active(pci_dev, true); |
| |
| spin_unlock_irq(&dev->power.lock); |
| } |
| |
| void pci_config_pm_runtime_get(struct pci_dev *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device *parent = dev->parent; |
| |
| if (parent) |
| pm_runtime_get_sync(parent); |
| pm_runtime_get_noresume(dev); |
| /* |
| * pdev->current_state is set to PCI_D3cold during suspending, |
| * so wait until suspending completes |
| */ |
| pm_runtime_barrier(dev); |
| /* |
| * Only need to resume devices in D3cold, because config |
| * registers are still accessible for devices suspended but |
| * not in D3cold. |
| */ |
| if (pdev->current_state == PCI_D3cold) |
| pm_runtime_resume(dev); |
| } |
| |
| void pci_config_pm_runtime_put(struct pci_dev *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device *parent = dev->parent; |
| |
| pm_runtime_put(dev); |
| if (parent) |
| pm_runtime_put_sync(parent); |
| } |
| |
| static const struct dmi_system_id bridge_d3_blacklist[] = { |
| #ifdef CONFIG_X86 |
| { |
| /* |
| * Gigabyte X299 root port is not marked as hotplug capable |
| * which allows Linux to power manage it. However, this |
| * confuses the BIOS SMI handler so don't power manage root |
| * ports on that system. |
| */ |
| .ident = "X299 DESIGNARE EX-CF", |
| .matches = { |
| DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), |
| DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), |
| }, |
| }, |
| #endif |
| { } |
| }; |
| |
| /** |
| * pci_bridge_d3_possible - Is it possible to put the bridge into D3 |
| * @bridge: Bridge to check |
| * |
| * This function checks if it is possible to move the bridge to D3. |
| * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. |
| */ |
| bool pci_bridge_d3_possible(struct pci_dev *bridge) |
| { |
| if (!pci_is_pcie(bridge)) |
| return false; |
| |
| switch (pci_pcie_type(bridge)) { |
| case PCI_EXP_TYPE_ROOT_PORT: |
| case PCI_EXP_TYPE_UPSTREAM: |
| case PCI_EXP_TYPE_DOWNSTREAM: |
| if (pci_bridge_d3_disable) |
| return false; |
| |
| /* |
| * Hotplug ports handled by firmware in System Management Mode |
| * may not be put into D3 by the OS (Thunderbolt on non-Macs). |
| */ |
| if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) |
| return false; |
| |
| if (pci_bridge_d3_force) |
| return true; |
| |
| /* Even the oldest 2010 Thunderbolt controller supports D3. */ |
| if (bridge->is_thunderbolt) |
| return true; |
| |
| /* Platform might know better if the bridge supports D3 */ |
| if (platform_pci_bridge_d3(bridge)) |
| return true; |
| |
| /* |
| * Hotplug ports handled natively by the OS were not validated |
| * by vendors for runtime D3 at least until 2018 because there |
| * was no OS support. |
| */ |
| if (bridge->is_hotplug_bridge) |
| return false; |
| |
| if (dmi_check_system(bridge_d3_blacklist)) |
| return false; |
| |
| /* |
| * It should be safe to put PCIe ports from 2015 or newer |
| * to D3. |
| */ |
| if (dmi_get_bios_year() >= 2015) |
| return true; |
| break; |
| } |
| |
| return false; |
| } |
| |
| static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) |
| { |
| bool *d3cold_ok = data; |
| |
| if (/* The device needs to be allowed to go D3cold ... */ |
| dev->no_d3cold || !dev->d3cold_allowed || |
| |
| /* ... and if it is wakeup capable to do so from D3cold. */ |
| (device_may_wakeup(&dev->dev) && |
| !pci_pme_capable(dev, PCI_D3cold)) || |
| |
| /* If it is a bridge it must be allowed to go to D3. */ |
| !pci_power_manageable(dev)) |
| |
| *d3cold_ok = false; |
| |
| return !*d3cold_ok; |
| } |
| |
| /* |
| * pci_bridge_d3_update - Update bridge D3 capabilities |
| * @dev: PCI device which is changed |
| * |
| * Update upstream bridge PM capabilities accordingly depending on if the |
| * device PM configuration was changed or the device is being removed. The |
| * change is also propagated upstream. |
| */ |
| void pci_bridge_d3_update(struct pci_dev *dev) |
| { |
| bool remove = !device_is_registered(&dev->dev); |
| struct pci_dev *bridge; |
| bool d3cold_ok = true; |
| |
| bridge = pci_upstream_bridge(dev); |
| if (!bridge || !pci_bridge_d3_possible(bridge)) |
| return; |
| |
| /* |
| * If D3 is currently allowed for the bridge, removing one of its |
| * children won't change that. |
| */ |
| if (remove && bridge->bridge_d3) |
| return; |
| |
| /* |
| * If D3 is currently allowed for the bridge and a child is added or |
| * changed, disallowance of D3 can only be caused by that child, so |
| * we only need to check that single device, not any of its siblings. |
| * |
| * If D3 is currently not allowed for the bridge, checking the device |
| * first may allow us to skip checking its siblings. |
| */ |
| if (!remove) |
| pci_dev_check_d3cold(dev, &d3cold_ok); |
| |
| /* |
| * If D3 is currently not allowed for the bridge, this may be caused |
| * either by the device being changed/removed or any of its siblings, |
| * so we need to go through all children to find out if one of them |
| * continues to block D3. |
| */ |
| if (d3cold_ok && !bridge->bridge_d3) |
| pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, |
| &d3cold_ok); |
| |
| if (bridge->bridge_d3 != d3cold_ok) { |
| bridge->bridge_d3 = d3cold_ok; |
| /* Propagate change to upstream bridges */ |
| pci_bridge_d3_update(bridge); |
| } |
| } |
| |
| /** |
| * pci_d3cold_enable - Enable D3cold for device |
| * @dev: PCI device to handle |
| * |
| * This function can be used in drivers to enable D3cold from the device |
| * they handle. It also updates upstream PCI bridge PM capabilities |
| * accordingly. |
| */ |
| void pci_d3cold_enable(struct pci_dev *dev) |
| { |
| if (dev->no_d3cold) { |
| dev->no_d3cold = false; |
| pci_bridge_d3_update(dev); |
| } |
| } |
| EXPORT_SYMBOL_GPL(pci_d3cold_enable); |
| |
| /** |
| * pci_d3cold_disable - Disable D3cold for device |
| * @dev: PCI device to handle |
| * |
| * This function can be used in drivers to disable D3cold from the device |
| * they handle. It also updates upstream PCI bridge PM capabilities |
| * accordingly. |
| */ |
| void pci_d3cold_disable(struct pci_dev *dev) |
| { |
| if (!dev->no_d3cold) { |
| dev->no_d3cold = true; |
| pci_bridge_d3_update(dev); |
| } |
| } |
| EXPORT_SYMBOL_GPL(pci_d3cold_disable); |
| |
| /** |
| * pci_pm_init - Initialize PM functions of given PCI device |
| * @dev: PCI device to handle. |
| */ |
| void pci_pm_init(struct pci_dev *dev) |
| { |
| int pm; |
| u16 status; |
| u16 pmc; |
| |
| pm_runtime_forbid(&dev->dev); |
| pm_runtime_set_active(&dev->dev); |
| pm_runtime_enable(&dev->dev); |
| device_enable_async_suspend(&dev->dev); |
| dev->wakeup_prepared = false; |
| |
| dev->pm_cap = 0; |
| dev->pme_support = 0; |
| |
| /* find PCI PM capability in list */ |
| pm = pci_find_capability(dev, PCI_CAP_ID_PM); |
| if (!pm) |
| return; |
| /* Check device's ability to generate PME# */ |
| pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); |
| |
| if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { |
| pci_err(dev, "unsupported PM cap regs version (%u)\n", |
| pmc & PCI_PM_CAP_VER_MASK); |
| return; |
| } |
| |
| dev->pm_cap = pm; |
| dev->d3hot_delay = PCI_PM_D3HOT_WAIT; |
| dev->d3cold_delay = PCI_PM_D3COLD_WAIT; |
| dev->bridge_d3 = pci_bridge_d3_possible(dev); |
| dev->d3cold_allowed = true; |
| |
| dev->d1_support = false; |
| dev->d2_support = false; |
| if (!pci_no_d1d2(dev)) { |
| if (pmc & PCI_PM_CAP_D1) |
| dev->d1_support = true; |
| if (pmc & PCI_PM_CAP_D2) |
| dev->d2_support = true; |
| |
| if (dev->d1_support || dev->d2_support) |
| pci_info(dev, "supports%s%s\n", |
| dev->d1_support ? " D1" : "", |
| dev->d2_support ? " D2" : ""); |
| } |
| |
| pmc &= PCI_PM_CAP_PME_MASK; |
| if (pmc) { |
| pci_info(dev, "PME# supported from%s%s%s%s%s\n", |
| (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", |
| (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", |
| (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", |
| (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", |
| (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); |
| dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; |
| dev->pme_poll = true; |
| /* |
| * Make device's PM flags reflect the wake-up capability, but |
| * let the user space enable it to wake up the system as needed. |
| */ |
| device_set_wakeup_capable(&dev->dev, true); |
| /* Disable the PME# generation functionality */ |
| pci_pme_active(dev, false); |
| } |
| |
| pci_read_config_word(dev, PCI_STATUS, &status); |
| if (status & PCI_STATUS_IMM_READY) |
| dev->imm_ready = 1; |
| } |
| |
| static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) |
| { |
| unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; |
| |
| switch (prop) { |
| case PCI_EA_P_MEM: |
| case PCI_EA_P_VF_MEM: |
| flags |= IORESOURCE_MEM; |
| break; |
| case PCI_EA_P_MEM_PREFETCH: |
| case PCI_EA_P_VF_MEM_PREFETCH: |
| flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; |
| break; |
| case PCI_EA_P_IO: |
| flags |= IORESOURCE_IO; |
| break; |
| default: |
| return 0; |
| } |
| |
| return flags; |
| } |
| |
| static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, |
| u8 prop) |
| { |
| if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) |
| return &dev->resource[bei]; |
| #ifdef CONFIG_PCI_IOV |
| else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && |
| (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) |
| return &dev->resource[PCI_IOV_RESOURCES + |
| bei - PCI_EA_BEI_VF_BAR0]; |
| #endif |
| else if (bei == PCI_EA_BEI_ROM) |
| return &dev->resource[PCI_ROM_RESOURCE]; |
| else |
| return NULL; |
| } |
| |
| /* Read an Enhanced Allocation (EA) entry */ |
| static int pci_ea_read(struct pci_dev *dev, int offset) |
| { |
| struct resource *res; |
| int ent_size, ent_offset = offset; |
| resource_size_t start, end; |
| unsigned long flags; |
| u32 dw0, bei, base, max_offset; |
| u8 prop; |
| bool support_64 = (sizeof(resource_size_t) >= 8); |
| |
| pci_read_config_dword(dev, ent_offset, &dw0); |
| ent_offset += 4; |
| |
| /* Entry size field indicates DWORDs after 1st */ |
| ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; |
| |
| if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ |
| goto out; |
| |
| bei = (dw0 & PCI_EA_BEI) >> 4; |
| prop = (dw0 & PCI_EA_PP) >> 8; |
| |
| /* |
| * If the Property is in the reserved range, try the Secondary |
| * Property instead. |
| */ |
| if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) |
| prop = (dw0 & PCI_EA_SP) >> 16; |
| if (prop > PCI_EA_P_BRIDGE_IO) |
| goto out; |
| |
| res = pci_ea_get_resource(dev, bei, prop); |
| if (!res) { |
| pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); |
| goto out; |
| } |
| |
| flags = pci_ea_flags(dev, prop); |
| if (!flags) { |
| pci_err(dev, "Unsupported EA properties: %#x\n", prop); |
| goto out; |
| } |
| |
| /* Read Base */ |
| pci_read_config_dword(dev, ent_offset, &base); |
| start = (base & PCI_EA_FIELD_MASK); |
| ent_offset += 4; |
| |
| /* Read MaxOffset */ |
| pci_read_config_dword(dev, ent_offset, &max_offset); |
| ent_offset += 4; |
| |
| /* Read Base MSBs (if 64-bit entry) */ |
| if (base & PCI_EA_IS_64) { |
| u32 base_upper; |
| |
| pci_read_config_dword(dev, ent_offset, &base_upper); |
| ent_offset += 4; |
| |
| flags |= IORESOURCE_MEM_64; |
| |
| /* entry starts above 32-bit boundary, can't use */ |
| if (!support_64 && base_upper) |
| goto out; |
| |
| if (support_64) |
| start |= ((u64)base_upper << 32); |
| } |
| |
| end = start + (max_offset | 0x03); |
| |
| /* Read MaxOffset MSBs (if 64-bit entry) */ |
| if (max_offset & PCI_EA_IS_64) { |
| u32 max_offset_upper; |
| |
| pci_read_config_dword(dev, ent_offset, &max_offset_upper); |
| ent_offset += 4; |
| |
| flags |= IORESOURCE_MEM_64; |
| |
| /* entry too big, can't use */ |
| if (!support_64 && max_offset_upper) |
| goto out; |
| |
| if (support_64) |
| end += ((u64)max_offset_upper << 32); |
| } |
| |
| if (end < start) { |
| pci_err(dev, "EA Entry crosses address boundary\n"); |
| goto out; |
| } |
| |
| if (ent_size != ent_offset - offset) { |
| pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", |
| ent_size, ent_offset - offset); |
| goto out; |
| } |
| |
| res->name = pci_name(dev); |
| res->start = start; |
| res->end = end; |
| res->flags = flags; |
| |
| if (bei <= PCI_EA_BEI_BAR5) |
| pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", |
| bei, res, prop); |
| else if (bei == PCI_EA_BEI_ROM) |
| pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", |
| res, prop); |
| else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) |
| pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", |
| bei - PCI_EA_BEI_VF_BAR0, res, prop); |
| else |
| pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", |
| bei, res, prop); |
| |
| out: |
| return offset + ent_size; |
| } |
| |
| /* Enhanced Allocation Initialization */ |
| void pci_ea_init(struct pci_dev *dev) |
| { |
| int ea; |
| u8 num_ent; |
| int offset; |
| int i; |
| |
| /* find PCI EA capability in list */ |
| ea = pci_find_capability(dev, PCI_CAP_ID_EA); |
| if (!ea) |
| return; |
| |
| /* determine the number of entries */ |
| pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, |
| &num_ent); |
| num_ent &= PCI_EA_NUM_ENT_MASK; |
| |
| offset = ea + PCI_EA_FIRST_ENT; |
| |
| /* Skip DWORD 2 for type 1 functions */ |
| if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) |
| offset += 4; |
| |
| /* parse each EA entry */ |
| for (i = 0; i < num_ent; ++i) |
| offset = pci_ea_read(dev, offset); |
| } |
| |
| static void pci_add_saved_cap(struct pci_dev *pci_dev, |
| struct pci_cap_saved_state *new_cap) |
| { |
| hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); |
| } |
| |
| /** |
| * _pci_add_cap_save_buffer - allocate buffer for saving given |
| * capability registers |
| * @dev: the PCI device |
| * @cap: the capability to allocate the buffer for |
| * @extended: Standard or Extended capability ID |
| * @size: requested size of the buffer |
| */ |
| static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, |
| bool extended, unsigned int size) |
| { |
| int pos; |
| struct pci_cap_saved_state *save_state; |
| |
| if (extended) |
| pos = pci_find_ext_capability(dev, cap); |
| else |
| pos = pci_find_capability(dev, cap); |
| |
| if (!pos) |
| return 0; |
| |
| save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); |
| if (!save_state) |
| return -ENOMEM; |
| |
| save_state->cap.cap_nr = cap; |
| save_state->cap.cap_extended = extended; |
| save_state->cap.size = size; |
| pci_add_saved_cap(dev, save_state); |
| |
| return 0; |
| } |
| |
| int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) |
| { |
| return _pci_add_cap_save_buffer(dev, cap, false, size); |
| } |
| |
| int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) |
| { |
| return _pci_add_cap_save_buffer(dev, cap, true, size); |
| } |
| |
| /** |
| * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities |
| * @dev: the PCI device |
| */ |
| void pci_allocate_cap_save_buffers(struct pci_dev *dev) |
| { |
| int error; |
| |
| error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, |
| PCI_EXP_SAVE_REGS * sizeof(u16)); |
| if (error) |
| pci_err(dev, "unable to preallocate PCI Express save buffer\n"); |
| |
| error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); |
| if (error) |
| pci_err(dev, "unable to preallocate PCI-X save buffer\n"); |
| |
| error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, |
| 2 * sizeof(u16)); |
| if (error) |
| pci_err(dev, "unable to allocate suspend buffer for LTR\n"); |
| |
| pci_allocate_vc_save_buffers(dev); |
| } |
| |
| void pci_free_cap_save_buffers(struct pci_dev *dev) |
| { |
| struct pci_cap_saved_state *tmp; |
| struct hlist_node *n; |
| |
| hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) |
| kfree(tmp); |
| } |
| |
| /** |
| * pci_configure_ari - enable or disable ARI forwarding |
| * @dev: the PCI device |
| * |
| * If @dev and its upstream bridge both support ARI, enable ARI in the |
| * bridge. Otherwise, disable ARI in the bridge. |
| */ |
| void pci_configure_ari(struct pci_dev *dev) |
| { |
| u32 cap; |
| struct pci_dev *bridge; |
| |
| if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) |
| return; |
| |
| bridge = dev->bus->self; |
| if (!bridge) |
| return; |
| |
| pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); |
| if (!(cap & PCI_EXP_DEVCAP2_ARI)) |
| return; |
| |
| if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { |
| pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, |
| PCI_EXP_DEVCTL2_ARI); |
| bridge->ari_enabled = 1; |
| } else { |
| pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, |
| PCI_EXP_DEVCTL2_ARI); |
| bridge->ari_enabled = 0; |
| } |
| } |
| |
| static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) |
| { |
| int pos; |
| u16 cap, ctrl; |
| |
| pos = pdev->acs_cap; |
| if (!pos) |
| return false; |
| |
| /* |
| * Except for egress control, capabilities are either required |
| * or only required if controllable. Features missing from the |
| * capability field can therefore be assumed as hard-wired enabled. |
| */ |
| pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); |
| acs_flags &= (cap | PCI_ACS_EC); |
| |
| pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); |
| return (ctrl & acs_flags) == acs_flags; |
| } |
| |
| /** |
| * pci_acs_enabled - test ACS against required flags for a given device |
| * @pdev: device to test |
| * @acs_flags: required PCI ACS flags |
| * |
| * Return true if the device supports the provided flags. Automatically |
| * filters out flags that are not implemented on multifunction devices. |
| * |
| * Note that this interface checks the effective ACS capabilities of the |
| * device rather than the actual capabilities. For instance, most single |
| * function endpoints are not required to support ACS because they have no |
| * opportunity for peer-to-peer access. We therefore return 'true' |
| * regardless of whether the device exposes an ACS capability. This makes |
| * it much easier for callers of this function to ignore the actual type |
| * or topology of the device when testing ACS support. |
| */ |
| bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) |
| { |
| int ret; |
| |
| ret = pci_dev_specific_acs_enabled(pdev, acs_flags); |
| if (ret >= 0) |
| return ret > 0; |
| |
| /* |
| * Conventional PCI and PCI-X devices never support ACS, either |
| * effectively or actually. The shared bus topology implies that |
| * any device on the bus can receive or snoop DMA. |
| */ |
| if (!pci_is_pcie(pdev)) |
| return false; |
| |
| switch (pci_pcie_type(pdev)) { |
| /* |
| * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, |
| * but since their primary interface is PCI/X, we conservatively |
| * handle them as we would a non-PCIe device. |
| */ |
| case PCI_EXP_TYPE_PCIE_BRIDGE: |
| /* |
| * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never |
| * applicable... must never implement an ACS Extended Capability...". |
| * This seems arbitrary, but we take a conservative interpretation |
| * of this statement. |
| */ |
| case PCI_EXP_TYPE_PCI_BRIDGE: |
| case PCI_EXP_TYPE_RC_EC: |
| return false; |
| /* |
| * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should |
| * implement ACS in order to indicate their peer-to-peer capabilities, |
| * regardless of whether they are single- or multi-function devices. |
| */ |
| case PCI_EXP_TYPE_DOWNSTREAM: |
| case PCI_EXP_TYPE_ROOT_PORT: |
| return pci_acs_flags_enabled(pdev, acs_flags); |
| /* |
| * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be |
| * implemented by the remaining PCIe types to indicate peer-to-peer |
| * capabilities, but only when they are part of a multifunction |
| * device. The footnote for section 6.12 indicates the specific |
| * PCIe types included here. |
| */ |
| case PCI_EXP_TYPE_ENDPOINT: |
| case PCI_EXP_TYPE_UPSTREAM: |
| case PCI_EXP_TYPE_LEG_END: |
| case PCI_EXP_TYPE_RC_END: |
| if (!pdev->multifunction) |
| break; |
| |
| return pci_acs_flags_enabled(pdev, acs_flags); |
| } |
| |
| /* |
| * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable |
| * to single function devices with the exception of downstream ports. |
| */ |
| return true; |
| } |
| |
| /** |
| * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy |
| * @start: starting downstream device |
| * @end: ending upstream device or NULL to search to the root bus |
| * @acs_flags: required flags |
| * |
| * Walk up a device tree from start to end testing PCI ACS support. If |
| * any step along the way does not support the required flags, return false. |
| */ |
| bool pci_acs_path_enabled(struct pci_dev *start, |
| struct pci_dev *end, u16 acs_flags) |
| { |
| struct pci_dev *pdev, *parent = start; |
| |
| do { |
| pdev = parent; |
| |
| if (!pci_acs_enabled(pdev, acs_flags)) |
| return false; |
| |
| if (pci_is_root_bus(pdev->bus)) |
| return (end == NULL); |
| |
| parent = pdev->bus->self; |
| } while (pdev != end); |
| |
| return true; |
| } |
| |
| /** |
| * pci_acs_init - Initialize ACS if hardware supports it |
| * @dev: the PCI device |
| */ |
| void pci_acs_init(struct pci_dev *dev) |
| { |
| dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); |
| |
| /* |
| * Attempt to enable ACS regardless of capability because some Root |
| * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have |
| * the standard ACS capability but still support ACS via those |
| * quirks. |
| */ |
| pci_enable_acs(dev); |
| } |
| |
| /** |
| * pci_rebar_find_pos - find position of resize ctrl reg for BAR |
| * @pdev: PCI device |
| * @bar: BAR to find |
| * |
| * Helper to find the position of the ctrl register for a BAR. |
| * Returns -ENOTSUPP if resizable BARs are not supported at all. |
| * Returns -ENOENT if no ctrl register for the BAR could be found. |
| */ |
| static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) |
| { |
| unsigned int pos, nbars, i; |
| u32 ctrl; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); |
| if (!pos) |
| return -ENOTSUPP; |
| |
| pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); |
| nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> |
| PCI_REBAR_CTRL_NBAR_SHIFT; |
| |
| for (i = 0; i < nbars; i++, pos += 8) { |
| int bar_idx; |
| |
| pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); |
| bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; |
| if (bar_idx == bar) |
| return pos; |
| } |
| |
| return -ENOENT; |
| } |
| |
| /** |
| * pci_rebar_get_possible_sizes - get possible sizes for BAR |
| * @pdev: PCI device |
| * @bar: BAR to query |
| * |
| * Get the possible sizes of a resizable BAR as bitmask defined in the spec |
| * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. |
| */ |
| u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) |
| { |
| int pos; |
| u32 cap; |
| |
| pos = pci_rebar_find_pos(pdev, bar); |
| if (pos < 0) |
| return 0; |
| |
| pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); |
| return (cap & PCI_REBAR_CAP_SIZES) >> 4; |
| } |
| |
| /** |
| * pci_rebar_get_current_size - get the current size of a BAR |
| * @pdev: PCI device |
| * @bar: BAR to set size to |
| * |
| * Read the size of a BAR from the resizable BAR config. |
| * Returns size if found or negative error code. |
| */ |
| int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) |
| { |
| int pos; |
| u32 ctrl; |
| |
| pos = pci_rebar_find_pos(pdev, bar); |
| if (pos < 0) |
| return pos; |
| |
| pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); |
| return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; |
| } |
| |
| /** |
| * pci_rebar_set_size - set a new size for a BAR |
| * @pdev: PCI device |
| * @bar: BAR to set size to |
| * @size: new size as defined in the spec (0=1MB, 19=512GB) |
| * |
| * Set the new size of a BAR as defined in the spec. |
| * Returns zero if resizing was successful, error code otherwise. |
| */ |
| int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) |
| { |
| int pos; |
| u32 ctrl; |
| |
| pos = pci_rebar_find_pos(pdev, bar); |
| if (pos < 0) |
| return pos; |
| |
| pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); |
| ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; |
| ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; |
| pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); |
| return 0; |
| } |
| |
| /** |
| * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port |
| * @dev: the PCI device |
| * @cap_mask: mask of desired AtomicOp sizes, including one or more of: |
| * PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
| * PCI_EXP_DEVCAP2_ATOMIC_COMP64 |
| * PCI_EXP_DEVCAP2_ATOMIC_COMP128 |
| * |
| * Return 0 if all upstream bridges support AtomicOp routing, egress |
| * blocking is disabled on all upstream ports, and the root port supports |
| * the requested completion capabilities (32-bit, 64-bit and/or 128-bit |
| * AtomicOp completion), or negative otherwise. |
| */ |
| int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) |
| { |
| struct pci_bus *bus = dev->bus; |
| struct pci_dev *bridge; |
| u32 cap, ctl2; |
| |
| if (!pci_is_pcie(dev)) |
| return -EINVAL; |
| |
| /* |
| * Per PCIe r4.0, sec 6.15, endpoints and root ports may be |
| * AtomicOp requesters. For now, we only support endpoints as |
| * requesters and root ports as completers. No endpoints as |
| * completers, and no peer-to-peer. |
| */ |
| |
| switch (pci_pcie_type(dev)) { |
| case PCI_EXP_TYPE_ENDPOINT: |
| case PCI_EXP_TYPE_LEG_END: |
| case PCI_EXP_TYPE_RC_END: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| while (bus->parent) { |
| bridge = bus->self; |
| |
| pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); |
| |
| switch (pci_pcie_type(bridge)) { |
| /* Ensure switch ports support AtomicOp routing */ |
| case PCI_EXP_TYPE_UPSTREAM: |
| case PCI_EXP_TYPE_DOWNSTREAM: |
| if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) |
| return -EINVAL; |
| break; |
| |
| /* Ensure root port supports all the sizes we care about */ |
| case PCI_EXP_TYPE_ROOT_PORT: |
| if ((cap & cap_mask) != cap_mask) |
| return -EINVAL; |
| break; |
| } |
| |
| /* Ensure upstream ports don't block AtomicOps on egress */ |
| if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { |
| pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, |
| &ctl2); |
| if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) |
| return -EINVAL; |
| } |
| |
| bus = bus->parent; |
| } |
| |
| pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, |
| PCI_EXP_DEVCTL2_ATOMIC_REQ); |
| return 0; |
| } |
| EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); |
| |
| /** |
| * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge |
| * @dev: the PCI device |
| * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) |
| * |
| * Perform INTx swizzling for a device behind one level of bridge. This is |
| * required by section 9.1 of the PCI-to-PCI bridge specification for devices |
| * behind bridges on add-in cards. For devices with ARI enabled, the slot |
| * number is always 0 (see the Implementation Note in section 2.2.8.1 of |
| * the PCI Express Base Specification, Revision 2.1) |
| */ |
| u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) |
| { |
| int slot; |
| |
| if (pci_ari_enabled(dev->bus)) |
| slot = 0; |
| else |
| slot = PCI_SLOT(dev->devfn); |
| |
| return (((pin - 1) + slot) % 4) + 1; |
| } |
| |
| int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) |
| { |
| u8 pin; |
| |
| pin = dev->pin; |
| if (!pin) |
| return -1; |
| |
| while (!pci_is_root_bus(dev->bus)) { |
| pin = pci_swizzle_interrupt_pin(dev, pin); |
| dev = dev->bus->self; |
| } |
| *bridge = dev; |
| return pin; |
| } |
| |
| /** |
| * pci_common_swizzle - swizzle INTx all the way to root bridge |
| * @dev: the PCI device |
| * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) |
| * |
| * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI |
| * bridges all the way up to a PCI root bus. |
| */ |
| u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) |
| { |
| u8 pin = *pinp; |
| |
| while (!pci_is_root_bus(dev->bus)) { |
| pin = pci_swizzle_interrupt_pin(dev, pin); |
| dev = dev->bus->self; |
| } |
| *pinp = pin; |
| return PCI_SLOT(dev->devfn); |
| } |
| EXPORT_SYMBOL_GPL(pci_common_swizzle); |
| |
| /** |
| * pci_release_region - Release a PCI bar |
| * @pdev: PCI device whose resources were previously reserved by |
| * pci_request_region() |
| * @bar: BAR to release |
| * |
| * Releases the PCI I/O and memory resources previously reserved by a |
| * successful call to pci_request_region(). Call this function only |
| * after all use of the PCI regions has ceased. |
| */ |
| void pci_release_region(struct pci_dev *pdev, int bar) |
| { |
| struct pci_devres *dr; |
| |
| if (pci_resource_len(pdev, bar) == 0) |
| return; |
| if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) |
| release_region(pci_resource_start(pdev, bar), |
| pci_resource_len(pdev, bar)); |
| else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) |
| release_mem_region(pci_resource_start(pdev, bar), |
| pci_resource_len(pdev, bar)); |
| |
| dr = find_pci_dr(pdev); |
| if (dr) |
| dr->region_mask &= ~(1 << bar); |
| } |
| EXPORT_SYMBOL(pci_release_region); |
| |
| /** |
| * __pci_request_region - Reserved PCI I/O and memory resource |
| * @pdev: PCI device whose resources are to be reserved |
| * @bar: BAR to be reserved |
| * @res_name: Name to be associated with resource. |
| * @exclusive: whether the region access is exclusive or not |
| * |
| * Mark the PCI region associated with PCI device @pdev BAR @bar as |
| * being reserved by owner @res_name. Do not access any |
| * address inside the PCI regions unless this call returns |
| * successfully. |
| * |
| * If @exclusive is set, then the region is marked so that userspace |
| * is explicitly not allowed to map the resource via /dev/mem or |
| * sysfs MMIO access. |
| * |
| * Returns 0 on success, or %EBUSY on error. A warning |
| * message is also printed on failure. |
| */ |
| static int __pci_request_region(struct pci_dev *pdev, int bar, |
| const char *res_name, int exclusive) |
| { |
| struct pci_devres *dr; |
| |
| if (pci_resource_len(pdev, bar) == 0) |
| return 0; |
| |
| if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { |
| if (!request_region(pci_resource_start(pdev, bar), |
| pci_resource_len(pdev, bar), res_name)) |
| goto err_out; |
| } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { |
| if (!__request_mem_region(pci_resource_start(pdev, bar), |
| pci_resource_len(pdev, bar), res_name, |
| exclusive)) |
| goto err_out; |
| } |
| |
| dr = find_pci_dr(pdev); |
| if (dr) |
| dr->region_mask |= 1 << bar; |
| |
| return 0; |
| |
| err_out: |
| pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, |
| &pdev->resource[bar]); |
| return -EBUSY; |
| } |
| |
| /** |
| * pci_request_region - Reserve PCI I/O and memory resource |
| * @pdev: PCI device whose resources are to be reserved |
| * @bar: BAR to be reserved |
| * @res_name: Name to be associated with resource |
| * |
| * Mark the PCI region associated with PCI device @pdev BAR @bar as |
| * being reserved by owner @res_name. Do not access any |
| * address inside the PCI regions unless this call returns |
| * successfully. |
| * |
| * Returns 0 on success, or %EBUSY on error. A warning |
| * message is also printed on failure. |
| */ |
| int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) |
| { |
| return __pci_request_region(pdev, bar, res_name, 0); |
| } |
| EXPORT_SYMBOL(pci_request_region); |
| |
| /** |
| * pci_release_selected_regions - Release selected PCI I/O and memory resources |
| * @pdev: PCI device whose resources were previously reserved |
| * @bars: Bitmask of BARs to be released |
| * |
| * Release selected PCI I/O and memory resources previously reserved. |
| * Call this function only after all use of the PCI regions has ceased. |
| */ |
| void pci_release_selected_regions(struct pci_dev *pdev, int bars) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) |
| if (bars & (1 << i)) |
| pci_release_region(pdev, i); |
| } |
| EXPORT_SYMBOL(pci_release_selected_regions); |
| |
| static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, |
| const char *res_name, int excl) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) |
| if (bars & (1 << i)) |
| if (__pci_request_region(pdev, i, res_name, excl)) |
| goto err_out; |
| return 0; |
| |
| err_out: |
| while (--i >= 0) |
| if (bars & (1 << i)) |
| pci_release_region(pdev, i); |
| |
| return -EBUSY; |
| } |
| |
| |
| /** |
| * pci_request_selected_regions - Reserve selected PCI I/O and memory resources |
| * @pdev: PCI device whose resources are to be reserved |
| * @bars: Bitmask of BARs to be requested |
| * @res_name: Name to be associated with resource |
| */ |
| int pci_request_selected_regions(struct pci_dev *pdev, int bars, |
| const char *res_name) |
| { |
| return __pci_request_selected_regions(pdev, bars, res_name, 0); |
| } |
| EXPORT_SYMBOL(pci_request_selected_regions); |
| |
| int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, |
| const char *res_name) |
| { |
| return __pci_request_selected_regions(pdev, bars, res_name, |
| IORESOURCE_EXCLUSIVE); |
| } |
| EXPORT_SYMBOL(pci_request_selected_regions_exclusive); |
| |
| /** |
| * pci_release_regions - Release reserved PCI I/O and memory resources |
| * @pdev: PCI device whose resources were previously reserved by |
| * pci_request_regions() |
| * |
| * Releases all PCI I/O and memory resources previously reserved by a |
| * successful call to pci_request_regions(). Call this function only |
| * after all use of the PCI regions has ceased. |
| */ |
| |
| void pci_release_regions(struct pci_dev *pdev) |
| { |
| pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); |
| } |
| EXPORT_SYMBOL(pci_release_regions); |
| |
| /** |
| * pci_request_regions - Reserve PCI I/O and memory resources |
| * @pdev: PCI device whose resources are to be reserved |
| * @res_name: Name to be associated with resource. |
| * |
| * Mark all PCI regions associated with PCI device @pdev as |
| * being reserved by owner @res_name. Do not access any |
| * address inside the PCI regions unless this call returns |
| * successfully. |
| * |
| * Returns 0 on success, or %EBUSY on error. A warning |
| * message is also printed on failure. |
| */ |
| int pci_request_regions(struct pci_dev *pdev, const char *res_name) |
| { |
| return pci_request_selected_regions(pdev, |
| ((1 << PCI_STD_NUM_BARS) - 1), res_name); |
| } |
| EXPORT_SYMBOL(pci_request_regions); |
| |
| /** |
| * pci_request_regions_exclusive - Reserve PCI I/O and memory resources |
| * @pdev: PCI device whose resources are to be reserved |
| * @res_name: Name to be associated with resource. |
| * |
| * Mark all PCI regions associated with PCI device @pdev as being reserved |
| * by owner @res_name. Do not access any address inside the PCI regions |
| * unless this call returns successfully. |
| * |
| * pci_request_regions_exclusive() will mark the region so that /dev/mem |
| * and the sysfs MMIO access will not be allowed. |
| * |
| * Returns 0 on success, or %EBUSY on error. A warning message is also |
| * printed on failure. |
| */ |
| int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) |
| { |
| return pci_request_selected_regions_exclusive(pdev, |
| ((1 << PCI_STD_NUM_BARS) - 1), res_name); |
| } |
| EXPORT_SYMBOL(pci_request_regions_exclusive); |
| |
| /* |
| * Record the PCI IO range (expressed as CPU physical address + size). |
| * Return a negative value if an error has occurred, zero otherwise |
| */ |
| int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, |
| resource_size_t size) |
| { |
| int ret = 0; |
| #ifdef PCI_IOBASE |
| struct logic_pio_hwaddr *range; |
| |
| if (!size || addr + size < addr) |
| return -EINVAL; |
| |
| range = kzalloc(sizeof(*range), GFP_ATOMIC); |
| if (!range) |
| return -ENOMEM; |
| |
| range->fwnode = fwnode; |
| range->size = size; |
| range->hw_start = addr; |
| range->flags = LOGIC_PIO_CPU_MMIO; |
| |
| ret = logic_pio_register_range(range); |
| if (ret) |
| kfree(range); |
| #endif |
| |
| return ret; |
| } |
| |
| phys_addr_t pci_pio_to_address(unsigned long pio) |
| { |
| phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; |
| |
| #ifdef PCI_IOBASE |
| if (pio >= MMIO_UPPER_LIMIT) |
| return address; |
| |
| address = logic_pio_to_hwaddr(pio); |
| #endif |
| |
| return address; |
| } |
| |
| unsigned long __weak pci_address_to_pio(phys_addr_t address) |
| { |
| #ifdef PCI_IOBASE |
| return logic_pio_trans_cpuaddr(address); |
| #else |
| if (address > IO_SPACE_LIMIT) |
| return (unsigned long)-1; |
| |
| return (unsigned long) address; |
| #endif |
| } |
| |
| /** |
| * pci_remap_iospace - Remap the memory mapped I/O space |
| * @res: Resource describing the I/O space |
| * @phys_addr: physical address of range to be mapped |
| * |
| * Remap the memory mapped I/O space described by the @res and the CPU |
| * physical address @phys_addr into virtual address space. Only |
| * architectures that have memory mapped IO functions defined (and the |
| * PCI_IOBASE value defined) should call this function. |
| */ |
| int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) |
| { |
| #if defined(PCI_IOBASE) && defined(CONFIG_MMU) |
| unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; |
| |
| if (!(res->flags & IORESOURCE_IO)) |
| return -EINVAL; |
| |
| if (res->end > IO_SPACE_LIMIT) |
| return -EINVAL; |
| |
| return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, |
| pgprot_device(PAGE_KERNEL)); |
| #else |
| /* |
| * This architecture does not have memory mapped I/O space, |
| * so this function should never be called |
| */ |
| WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); |
| return -ENODEV; |
| #endif |
| } |
| EXPORT_SYMBOL(pci_remap_iospace); |
| |
| /** |
| * pci_unmap_iospace - Unmap the memory mapped I/O space |
| * @res: resource to be unmapped |
| * |
| * Unmap the CPU virtual address @res from virtual address space. Only |
| * architectures that have memory mapped IO functions defined (and the |
| * PCI_IOBASE value defined) should call this function. |
| */ |
| void pci_unmap_iospace(struct resource *res) |
| { |
| #if defined(PCI_IOBASE) && defined(CONFIG_MMU) |
| unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; |
| |
| unmap_kernel_range(vaddr, resource_size(res)); |
| #endif |
| } |
| EXPORT_SYMBOL(pci_unmap_iospace); |
| |
| static void devm_pci_unmap_iospace(struct device *dev, void *ptr) |
| { |
| struct resource **res = ptr; |
| |
| pci_unmap_iospace(*res); |
| } |
| |
| /** |
| * devm_pci_remap_iospace - Managed pci_remap_iospace() |
| * @dev: Generic device to remap IO address for |
| * @res: Resource describing the I/O space |
| * @phys_addr: physical address of range to be mapped |
| * |
| * Managed pci_remap_iospace(). Map is automatically unmapped on driver |
| * detach. |
| */ |
| int devm_pci_remap_iospace(struct device *dev, const struct resource *res, |
| phys_addr_t phys_addr) |
| { |
| const struct resource **ptr; |
| int error; |
| |
| ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return -ENOMEM; |
| |
| error = pci_remap_iospace(res, phys_addr); |
| if (error) { |
| devres_free(ptr); |
| } else { |
| *ptr = res; |
| devres_add(dev, ptr); |
| } |
| |
| return error; |
| } |
| EXPORT_SYMBOL(devm_pci_remap_iospace); |
| |
| /** |
| * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() |
| * @dev: Generic device to remap IO address for |
| * @offset: Resource address to map |
| * @size: Size of map |
| * |
| * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver |
| * detach. |
| */ |
| void __iomem *devm_pci_remap_cfgspace(struct device *dev, |
| resource_size_t offset, |
| resource_size_t size) |
| { |
| void __iomem **ptr, *addr; |
| |
| ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); |
| if (!ptr) |
| return NULL; |
| |
| addr = pci_remap_cfgspace(offset, size); |
| if (addr) { |
| *ptr = addr; |
| devres_add(dev, ptr); |
| } else |
| devres_free(ptr); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(devm_pci_remap_cfgspace); |
| |
| /** |
| * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource |
| * @dev: generic device to handle the resource for |
| * @res: configuration space resource to be handled |
| * |
| * Checks that a resource is a valid memory region, requests the memory |
| * region and ioremaps with pci_remap_cfgspace() API that ensures the |
| * proper PCI configuration space memory attributes are guaranteed. |
| * |
| * All operations are managed and will be undone on driver detach. |
| * |
| * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code |
| * on failure. Usage example:: |
| * |
| * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| * base = devm_pci_remap_cfg_resource(&pdev->dev, res); |
| * if (IS_ERR(base)) |
| * return PTR_ERR(base); |
| */ |
| void __iomem *devm_pci_remap_cfg_resource(struct device *dev, |
| struct resource *res) |
| { |
| resource_size_t size; |
| const char *name; |
| void __iomem *dest_ptr; |
| |
| BUG_ON(!dev); |
| |
| if (!res || resource_type(res) != IORESOURCE_MEM) { |
| dev_err(dev, "invalid resource\n"); |
| return IOMEM_ERR_PTR(-EINVAL); |
| } |
| |
| size = resource_size(res); |
| |
| if (res->name) |
| name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), |
| res->name); |
| else |
| name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); |
| if (!name) |
| return IOMEM_ERR_PTR(-ENOMEM); |
| |
| if (!devm_request_mem_region(dev, res->start, size, name)) { |
| dev_err(dev, "can't request region for resource %pR\n", res); |
| return IOMEM_ERR_PTR(-EBUSY); |
| } |
| |
| dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); |
| if (!dest_ptr) { |
| dev_err(dev, "ioremap failed for resource %pR\n", res); |
| devm_release_mem_region(dev, res->start, size); |
| dest_ptr = IOMEM_ERR_PTR(-ENOMEM); |
| } |
| |
| return dest_ptr; |
| } |
| EXPORT_SYMBOL(devm_pci_remap_cfg_resource); |
| |
| static void __pci_set_master(struct pci_dev *dev, bool enable) |
| { |
| u16 old_cmd, cmd; |
| |
| pci_read_config_word(dev, PCI_COMMAND, &old_cmd); |
| if (enable) |
| cmd = old_cmd | PCI_COMMAND_MASTER; |
| else |
| cmd = old_cmd & ~PCI_COMMAND_MASTER; |
| if (cmd != old_cmd) { |
| pci_dbg(dev, "%s bus mastering\n", |
| enable ? "enabling" : "disabling"); |
| pci_write_config_word(dev, PCI_COMMAND, cmd); |
| } |
| dev->is_busmaster = enable; |
| } |
| |
| /** |
| * pcibios_setup - process "pci=" kernel boot arguments |
| * @str: string used to pass in "pci=" kernel boot arguments |
| * |
| * Process kernel boot arguments. This is the default implementation. |
| * Architecture specific implementations can override this as necessary. |
| */ |
| char * __weak __init pcibios_setup(char *str) |
| { |
| return str; |
| } |
| |
| /** |
| * pcibios_set_master - enable PCI bus-mastering for device dev |
| * @dev: the PCI device to enable |
| * |
| * Enables PCI bus-mastering for the device. This is the default |
| * implementation. Architecture specific implementations can override |
| * this if necessary. |
| */ |
| void __weak pcibios_set_master(struct pci_dev *dev) |
| { |
| u8 lat; |
| |
| /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ |
| if (pci_is_pcie(dev)) |
| return; |
| |
| pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); |
| if (lat < 16) |
| lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; |
| else if (lat > pcibios_max_latency) |
| lat = pcibios_max_latency; |
| else |
| return; |
| |
| pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); |
| } |
| |
| /** |
| * pci_set_master - enables bus-mastering for device dev |
| * @dev: the PCI device to enable |
| * |
| * Enables bus-mastering on the device and calls pcibios_set_master() |
| * to do the needed arch specific settings. |
| */ |
| void pci_set_master(struct pci_dev *dev) |
| { |
| __pci_set_master(dev, true); |
| pcibios_set_master(dev); |
| } |
| EXPORT_SYMBOL(pci_set_master); |
| |
| /** |
| * pci_clear_master - disables bus-mastering for device dev |
| * @dev: the PCI device to disable |
| */ |
| void pci_clear_master(struct pci_dev *dev) |
| { |
| __pci_set_master(dev, false); |
| } |
| EXPORT_SYMBOL(pci_clear_master); |
| |
| /** |
| * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed |
| * @dev: the PCI device for which MWI is to be enabled |
| * |
| * Helper function for pci_set_mwi. |
| * Originally copied from drivers/net/acenic.c. |
| * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. |
| * |
| * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
| */ |
| int pci_set_cacheline_size(struct pci_dev *dev) |
| { |
| u8 cacheline_size; |
| |
| if (!pci_cache_line_size) |
| return -EINVAL; |
| |
| /* Validate current setting: the PCI_CACHE_LINE_SIZE must be |
| equal to or multiple of the right value. */ |
| pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); |
| if (cacheline_size >= pci_cache_line_size && |
| (cacheline_size % pci_cache_line_size) == 0) |
| return 0; |
| |
| /* Write the correct value. */ |
| pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); |
| /* Read it back. */ |
| pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); |
| if (cacheline_size == pci_cache_line_size) |
| return 0; |
| |
| pci_dbg(dev, "cache line size of %d is not supported\n", |
| pci_cache_line_size << 2); |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(pci_set_cacheline_size); |
| |
| /** |
| * pci_set_mwi - enables memory-write-invalidate PCI transaction |
| * @dev: the PCI device for which MWI is enabled |
| * |
| * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. |
| * |
| * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
| */ |
| int pci_set_mwi(struct pci_dev *dev) |
| { |
| #ifdef PCI_DISABLE_MWI |
| return 0; |
| #else |
| int rc; |
| u16 cmd; |
| |
| rc = pci_set_cacheline_size(dev); |
| if (rc) |
| return rc; |
| |
| pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| if (!(cmd & PCI_COMMAND_INVALIDATE)) { |
| pci_dbg(dev, "enabling Mem-Wr-Inval\n"); |
| cmd |= PCI_COMMAND_INVALIDATE; |
| pci_write_config_word(dev, PCI_COMMAND, cmd); |
| } |
| return 0; |
| #endif |
| } |
| EXPORT_SYMBOL(pci_set_mwi); |
| |
| /** |
| * pcim_set_mwi - a device-managed pci_set_mwi() |
| * @dev: the PCI device for which MWI is enabled |
| * |
| * Managed pci_set_mwi(). |
| * |
| * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
| */ |
| int pcim_set_mwi(struct pci_dev *dev) |
| { |
| struct pci_devres *dr; |
| |
| dr = find_pci_dr(dev); |
| if (!dr) |
| return -ENOMEM; |
| |
| dr->mwi = 1; |
| return pci_set_mwi(dev); |
| } |
| EXPORT_SYMBOL(pcim_set_mwi); |
| |
| /** |
| * pci_try_set_mwi - enables memory-write-invalidate PCI transaction |
| * @dev: the PCI device for which MWI is enabled |
| * |
| * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. |
| * Callers are not required to check the return value. |
| * |
| * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
| */ |
| int pci_try_set_mwi(struct pci_dev *dev) |
| { |
| #ifdef PCI_DISABLE_MWI |
| return 0; |
| #else |
| return pci_set_mwi(dev); |
| #endif |
| } |
| EXPORT_SYMBOL(pci_try_set_mwi); |
| |
| /** |
| * pci_clear_mwi - disables Memory-Write-Invalidate for device dev |
| * @dev: the PCI device to disable |
| * |
| * Disables PCI Memory-Write-Invalidate transaction on the device |
| */ |
| void pci_clear_mwi(struct pci_dev *dev) |
| { |
| #ifndef PCI_DISABLE_MWI |
| u16 cmd; |
| |
| pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| if (cmd & PCI_COMMAND_INVALIDATE) { |
| cmd &= ~PCI_COMMAND_INVALIDATE; |
| pci_write_config_word(dev, PCI_COMMAND, cmd); |
| } |
| #endif |
| } |
| EXPORT_SYMBOL(pci_clear_mwi); |
| |
| /** |
| * pci_intx - enables/disables PCI INTx for device dev |
| * @pdev: the PCI device to operate on |
| * @enable: boolean: whether to enable or disable PCI INTx |
| * |
| * Enables/disables PCI INTx for device @pdev |
| */ |
| void pci_intx(struct pci_dev *pdev, int enable) |
| { |
| u16 pci_command, new; |
| |
| pci_read_config_word(pdev, PCI_COMMAND, &pci_command); |
| |
| if (enable) |
| new = pci_command & ~PCI_COMMAND_INTX_DISABLE; |
| else |
| new = pci_command | PCI_COMMAND_INTX_DISABLE; |
| |
| if (new != pci_command) { |
| struct pci_devres *dr; |
| |
| pci_write_config_word(pdev, PCI_COMMAND, new); |
| |
| dr = find_pci_dr(pdev); |
| if (dr && !dr->restore_intx) { |
| dr->restore_intx = 1; |
| dr->orig_intx = !enable; |
| } |
| } |
| } |
| EXPORT_SYMBOL_GPL(pci_intx); |
| |
| static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) |
| { |
| struct pci_bus *bus = dev->bus; |
| bool mask_updated = true; |
| u32 cmd_status_dword; |
| u16 origcmd, newcmd; |
| unsigned long flags; |
| bool irq_pending; |
| |
| /* |
| * We do a single dword read to retrieve both command and status. |
| * Document assumptions that make this possible. |
| */ |
| BUILD_BUG_ON(PCI_COMMAND % 4); |
| BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); |
| |
| raw_spin_lock_irqsave(&pci_lock, flags); |
| |
| bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); |
| |
| irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; |
| |
| /* |
| * Check interrupt status register to see whether our device |
| * triggered the interrupt (when masking) or the next IRQ is |
| * already pending (when unmasking). |
| */ |
| if (mask != irq_pending) { |
| mask_updated = false; |
| goto done; |
| } |
| |
| origcmd = cmd_status_dword; |
| newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; |
| if (mask) |
| newcmd |= PCI_COMMAND_INTX_DISABLE; |
| if (newcmd != origcmd) |
| bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); |
| |
| done: |
| raw_spin_unlock_irqrestore(&pci_lock, flags); |
| |
| return mask_updated; |
| } |
| |
| /** |
| * pci_check_and_mask_intx - mask INTx on pending interrupt |
| * @dev: the PCI device to operate on |
| * |
| * Check if the device dev has its INTx line asserted, mask it and return |
| * true in that case. False is returned if no interrupt was pending. |
| */ |
| bool pci_check_and_mask_intx(struct pci_dev *dev) |
| { |
| return pci_check_and_set_intx_mask(dev, true); |
| } |
| EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); |
| |
| /** |
| * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending |
| * @dev: the PCI device to operate on |
| * |
| * Check if the device dev has its INTx line asserted, unmask it if not and |
| * return true. False is returned and the mask remains active if there was |
| * still an interrupt pending. |
| */ |
| bool pci_check_and_unmask_intx(struct pci_dev *dev) |
| { |
| return pci_check_and_set_intx_mask(dev, false); |
| } |
| EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); |
| |
| /** |
| * pci_wait_for_pending_transaction - wait for pending transaction |
| * @dev: the PCI device to operate on |
| * |
| * Return 0 if transaction is pending 1 otherwise. |
| */ |
| int pci_wait_for_pending_transaction(struct pci_dev *dev) |
| { |
| if (!pci_is_pcie(dev)) |
| return 1; |
| |
| return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, |
| PCI_EXP_DEVSTA_TRPND); |
| } |
| EXPORT_SYMBOL(pci_wait_for_pending_transaction); |
| |
| /** |
| * pcie_has_flr - check if a device supports function level resets |
| * @dev: device to check |
| * |
| * Returns true if the device advertises support for PCIe function level |
| * resets. |
| */ |
| bool pcie_has_flr(struct pci_dev *dev) |
| { |
| u32 cap; |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) |
| return false; |
| |
| pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); |
| return cap & PCI_EXP_DEVCAP_FLR; |
| } |
| EXPORT_SYMBOL_GPL(pcie_has_flr); |
| |
| /** |
| * pcie_flr - initiate a PCIe function level reset |
| * @dev: device to reset |
| * |
| * Initiate a function level reset on @dev. The caller should ensure the |
| * device supports FLR before calling this function, e.g. by using the |
| * pcie_has_flr() helper. |
| */ |
| int pcie_flr(struct pci_dev *dev) |
| { |
| if (!pci_wait_for_pending_transaction(dev)) |
| pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); |
| |
| pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); |
| |
| if (dev->imm_ready) |
| return 0; |
| |
| /* |
| * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within |
| * 100ms, but may silently discard requests while the FLR is in |
| * progress. Wait 100ms before trying to access the device. |
| */ |
| msleep(100); |
| |
| return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); |
| } |
| EXPORT_SYMBOL_GPL(pcie_flr); |
| |
| static int pci_af_flr(struct pci_dev *dev, int probe) |
| { |
| int pos; |
| u8 cap; |
| |
| pos = pci_find_capability(dev, PCI_CAP_ID_AF); |
| if (!pos) |
| return -ENOTTY; |
| |
| if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) |
| return -ENOTTY; |
| |
| pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); |
| if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) |
| return -ENOTTY; |
| |
| if (probe) |
| return 0; |
| |
| /* |
| * Wait for Transaction Pending bit to clear. A word-aligned test |
| * is used, so we use the control offset rather than status and shift |
| * the test bit to match. |
| */ |
| if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, |
| PCI_AF_STATUS_TP << 8)) |
| pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); |
| |
| pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); |
| |
| if (dev->imm_ready) |
| return 0; |
| |
| /* |
| * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, |
| * updated 27 July 2006; a device must complete an FLR within |
| * 100ms, but may silently discard requests while the FLR is in |
| * progress. Wait 100ms before trying to access the device. |
| */ |
| msleep(100); |
| |
| return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); |
| } |
| |
| /** |
| * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. |
| * @dev: Device to reset. |
| * @probe: If set, only check if the device can be reset this way. |
| * |
| * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is |
| * unset, it will be reinitialized internally when going from PCI_D3hot to |
| * PCI_D0. If that's the case and the device is not in a low-power state |
| * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. |
| * |
| * NOTE: This causes the caller to sleep for twice the device power transition |
| * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms |
| * by default (i.e. unless the @dev's d3hot_delay field has a different value). |
| * Moreover, only devices in D0 can be reset by this function. |
| */ |
| static int pci_pm_reset(struct pci_dev *dev, int probe) |
| { |
| u16 csr; |
| |
| if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) |
| return -ENOTTY; |
| |
| pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); |
| if (csr & PCI_PM_CTRL_NO_SOFT_RESET) |
| return -ENOTTY; |
| |
| if (probe) |
| return 0; |
| |
| if (dev->current_state != PCI_D0) |
| return -EINVAL; |
| |
| csr &= ~PCI_PM_CTRL_STATE_MASK; |
| csr |= PCI_D3hot; |
| pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); |
| pci_dev_d3_sleep(dev); |
| |
| csr &= ~PCI_PM_CTRL_STATE_MASK; |
| csr |= PCI_D0; |
| pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); |
| pci_dev_d3_sleep(dev); |
| |
| return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); |
| } |
| |
| /** |
| * pcie_wait_for_link_delay - Wait until link is active or inactive |
| * @pdev: Bridge device |
| * @active: waiting for active or inactive? |
| * @delay: Delay to wait after link has become active (in ms) |
| * |
| * Use this to wait till link becomes active or inactive. |
| */ |
| static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, |
| int delay) |
| { |
| int timeout = 1000; |
| bool ret; |
| u16 lnk_status; |
| |
| /* |
| * Some controllers might not implement link active reporting. In this |
| * case, we wait for 1000 ms + any delay requested by the caller. |
| */ |
| if (!pdev->link_active_reporting) { |
| msleep(timeout + delay); |
| return true; |
| } |
| |
| /* |
| * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, |
| * after which we should expect an link active if the reset was |
| * successful. If so, software must wait a minimum 100ms before sending |
| * configuration requests to devices downstream this port. |
| * |
| * If the link fails to activate, either the device was physically |
| * removed or the link is permanently failed. |
| */ |
| if (active) |
| msleep(20); |
| for (;;) { |
| pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); |
| ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); |
| if (ret == active) |
| break; |
| if (timeout <= 0) |
| break; |
| msleep(10); |
| timeout -= 10; |
| } |
| if (active && ret) |
| msleep(delay); |
| |
| return ret == active; |
| } |
| |
| /** |
| * pcie_wait_for_link - Wait until link is active or inactive |
| * @pdev: Bridge device |
| * @active: waiting for active or inactive? |
| * |
| * Use this to wait till link becomes active or inactive. |
| */ |
| bool pcie_wait_for_link(struct pci_dev *pdev, bool active) |
| { |
| return pcie_wait_for_link_delay(pdev, active, 100); |
| } |
| |
| /* |
| * Find maximum D3cold delay required by all the devices on the bus. The |
| * spec says 100 ms, but firmware can lower it and we allow drivers to |
| * increase it as well. |
| * |
| * Called with @pci_bus_sem locked for reading. |
| */ |
| static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) |
| { |
| const struct pci_dev *pdev; |
| int min_delay = 100; |
| int max_delay = 0; |
| |
| list_for_each_entry(pdev, &bus->devices, bus_list) { |
| if (pdev->d3cold_delay < min_delay) |
| min_delay = pdev->d3cold_delay; |
| if (pdev->d3cold_delay > max_delay) |
| max_delay = pdev->d3cold_delay; |
| } |
| |
| return max(min_delay, max_delay); |
| } |
| |
| /** |
| * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible |
| * @dev: PCI bridge |
| * |
| * Handle necessary delays before access to the devices on the secondary |
| * side of the bridge are permitted after D3cold to D0 transition. |
| * |
| * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For |
| * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section |
| * 4.3.2. |
| */ |
| void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) |
| { |
| struct pci_dev *child; |
| int delay; |
| |
| if (pci_dev_is_disconnected(dev)) |
| return; |
| |
| if (!pci_is_bridge(dev) || !dev->bridge_d3) |
| return; |
| |
| down_read(&pci_bus_sem); |
| |
| /* |
| * We only deal with devices that are present currently on the bus. |
| * For any hot-added devices the access delay is handled in pciehp |
| * board_added(). In case of ACPI hotplug the firmware is expected |
| * to configure the devices before OS is notified. |
| */ |
| if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { |
| up_read(&pci_bus_sem); |
| return; |
| } |
| |
| /* Take d3cold_delay requirements into account */ |
| delay = pci_bus_max_d3cold_delay(dev->subordinate); |
| if (!delay) { |
| up_read(&pci_bus_sem); |
| return; |
| } |
| |
| child = list_first_entry(&dev->subordinate->devices, struct pci_dev, |
| bus_list); |
| up_read(&pci_bus_sem); |
| |
| /* |
| * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before |
| * accessing the device after reset (that is 1000 ms + 100 ms). In |
| * practice this should not be needed because we don't do power |
| * management for them (see pci_bridge_d3_possible()). |
| */ |
| if (!pci_is_pcie(dev)) { |
| pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); |
| msleep(1000 + delay); |
| return; |
| } |
| |
| /* |
| * For PCIe downstream and root ports that do not support speeds |
| * greater than 5 GT/s need to wait minimum 100 ms. For higher |
| * speeds (gen3) we need to wait first for the data link layer to |
| * become active. |
| * |
| * However, 100 ms is the minimum and the PCIe spec says the |
| * software must allow at least 1s before it can determine that the |
| * device that did not respond is a broken device. There is |
| * evidence that 100 ms is not always enough, for example certain |
| * Titan Ridge xHCI controller does not always respond to |
| * configuration requests if we only wait for 100 ms (see |
| * https://bugzilla.kernel.org/show_bug.cgi?id=203885). |
| * |
| * Therefore we wait for 100 ms and check for the device presence. |
| * If it is still not present give it an additional 100 ms. |
| */ |
| if (!pcie_downstream_port(dev)) |
| return; |
| |
| if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { |
| pci_dbg(dev, "waiting %d ms for downstream link\n", delay); |
| msleep(delay); |
| } else { |
| pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", |
| delay); |
| if (!pcie_wait_for_link_delay(dev, true, delay)) { |
| /* Did not train, no need to wait any further */ |
| pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); |
| return; |
| } |
| } |
| |
| if (!pci_device_is_present(child)) { |
| pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); |
| msleep(delay); |
| } |
| } |
| |
| void pci_reset_secondary_bus(struct pci_dev *dev) |
| { |
| u16 ctrl; |
| |
| pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); |
| ctrl |= PCI_BRIDGE_CTL_BUS_RESET; |
| pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); |
| |
| /* |
| * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double |
| * this to 2ms to ensure that we meet the minimum requirement. |
| */ |
| msleep(2); |
| |
| ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; |
| pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); |
| |
| /* |
| * Trhfa for conventional PCI is 2^25 clock cycles. |
| * Assuming a minimum 33MHz clock this results in a 1s |
| * delay before we can consider subordinate devices to |
| * be re-initialized. PCIe has some ways to shorten this, |
| * but we don't make use of them yet. |
| */ |
| ssleep(1); |
| } |
| |
| void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) |
| { |
| pci_reset_secondary_bus(dev); |
| } |
| |
| /** |
| * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. |
| * @dev: Bridge device |
| * |
| * Use the bridge control register to assert reset on the secondary bus. |
| * Devices on the secondary bus are left in power-on state. |
| */ |
| int pci_bridge_secondary_bus_reset(struct pci_dev *dev) |
| { |
| pcibios_reset_secondary_bus(dev); |
| |
| return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); |
| } |
| EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); |
| |
| static int pci_parent_bus_reset(struct pci_dev *dev, int probe) |
| { |
| struct pci_dev *pdev; |
| |
| if (pci_is_root_bus(dev->bus) || dev->subordinate || |
| !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) |
| return -ENOTTY; |
| |
| list_for_each_entry(pdev, &dev->bus->devices, bus_list) |
| if (pdev != dev) |
| return -ENOTTY; |
| |
| if (probe) |
| return 0; |
| |
| return pci_bridge_secondary_bus_reset(dev->bus->self); |
| } |
| |
| static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) |
| { |
| int rc = -ENOTTY; |
| |
| if (!hotplug || !try_module_get(hotplug->owner)) |
| return rc; |
| |
| if (hotplug->ops->reset_slot) |
| rc = hotplug->ops->reset_slot(hotplug, probe); |
| |
| module_put(hotplug->owner); |
| |
| return rc; |
| } |
| |
| static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) |
| { |
| if (dev->multifunction || dev->subordinate || !dev->slot || |
| dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) |
| return -ENOTTY; |
| |
| return pci_reset_hotplug_slot(dev->slot->hotplug, probe); |
| } |
| |
| static void pci_dev_lock(struct pci_dev *dev) |
| { |
| pci_cfg_access_lock(dev); |
| /* block PM suspend, driver probe, etc. */ |
| device_lock(&dev->dev); |
| } |
| |
| /* Return 1 on successful lock, 0 on contention */ |
| static int pci_dev_trylock(struct pci_dev *dev) |
| { |
| if (pci_cfg_access_trylock(dev)) { |
| if (device_trylock(&dev->dev)) |
| return 1; |
| pci_cfg_access_unlock(dev); |
| } |
| |
| return 0; |
| } |
| |
| static void pci_dev_unlock(struct pci_dev *dev) |
| { |
| device_unlock(&dev->dev); |
| pci_cfg_access_unlock(dev); |
| } |
| |
| static void pci_dev_save_and_disable(struct pci_dev *dev) |
| { |
| const struct pci_error_handlers *err_handler = |
| dev->driver ? dev->driver->err_handler : NULL; |
| |
| /* |
| * dev->driver->err_handler->reset_prepare() is protected against |
| * races with ->remove() by the device lock, which must be held by |
| * the caller. |
| */ |
| if (err_handler && err_handler->reset_prepare) |
| err_handler->reset_prepare(dev); |
| |
| /* |
| * Wake-up device prior to save. PM registers default to D0 after |
| * reset and a simple register restore doesn't reliably return |
| * to a non-D0 state anyway. |
| */ |
| pci_set_power_state(dev, PCI_D0); |
| |
| pci_save_state(dev); |
| /* |
| * Disable the device by clearing the Command register, except for |
| * INTx-disable which is set. This not only disables MMIO and I/O port |
| * BARs, but also prevents the device from being Bus Master, preventing |
| * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 |
| * compliant devices, INTx-disable prevents legacy interrupts. |
| */ |
| pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); |
| } |
| |
| static void pci_dev_restore(struct pci_dev *dev) |
| { |
| const struct pci_error_handlers *err_handler = |
| dev->driver ? dev->driver->err_handler : NULL; |
| |
| pci_restore_state(dev); |
| |
| /* |
| * dev->driver->err_handler->reset_done() is protected against |
| * races with ->remove() by the device lock, which must be held by |
| * the caller. |
| */ |
| if (err_handler && err_handler->reset_done) |
| err_handler->reset_done(dev); |
| } |
| |
| /** |
| * __pci_reset_function_locked - reset a PCI device function while holding |
| * the @dev mutex lock. |
| * @dev: PCI device to reset |
| * |
| * Some devices allow an individual function to be reset without affecting |
| * other functions in the same device. The PCI device must be responsive |
| * to PCI config space in order to use this function. |
| * |
| * The device function is presumed to be unused and the caller is holding |
| * the device mutex lock when this function is called. |
| * |
| * Resetting the device will make the contents of PCI configuration space |
| * random, so any caller of this must be prepared to reinitialise the |
| * device including MSI, bus mastering, BARs, decoding IO and memory spaces, |
| * etc. |
| * |
| * Returns 0 if the device function was successfully reset or negative if the |
| * device doesn't support resetting a single function. |
| */ |
| int __pci_reset_function_locked(struct pci_dev *dev) |
| { |
| int rc; |
| |
| might_sleep(); |
| |
| /* |
| * A reset method returns -ENOTTY if it doesn't support this device |
| * and we should try the next method. |
| * |
| * If it returns 0 (success), we're finished. If it returns any |
| * other error, we're also finished: this indicates that further |
| * reset mechanisms might be broken on the device. |
| */ |
| rc = pci_dev_specific_reset(dev, 0); |
| if (rc != -ENOTTY) |
| return rc; |
| if (pcie_has_flr(dev)) { |
| rc = pcie_flr(dev); |
| if (rc != -ENOTTY) |
| return rc; |
| } |
| rc = pci_af_flr(dev, 0); |
| if (rc != -ENOTTY) |
| return rc; |
| rc = pci_pm_reset(dev, 0); |
| if (rc != -ENOTTY) |
| return rc; |
| rc = pci_dev_reset_slot_function(dev, 0); |
| if (rc != -ENOTTY) |
| return rc; |
| return pci_parent_bus_reset(dev, 0); |
| } |
| EXPORT_SYMBOL_GPL(__pci_reset_function_locked); |
| |
| /** |
| * pci_probe_reset_function - check whether the device can be safely reset |
| * @dev: PCI device to reset |
| * |
| * Some devices allow an individual function to be reset without affecting |
| * other functions in the same device. The PCI device must be responsive |
| * to PCI config space in order to use this function. |
| * |
| * Returns 0 if the device function can be reset or negative if the |
| * device doesn't support resetting a single function. |
| */ |
| int pci_probe_reset_function(struct pci_dev *dev) |
| { |
| int rc; |
| |
| might_sleep(); |
| |
| rc = pci_dev_specific_reset(dev, 1); |
| if (rc != -ENOTTY) |
| return rc; |
| if (pcie_has_flr(dev)) |
| return 0; |
| rc = pci_af_flr(dev, 1); |
| if (rc != -ENOTTY) |
| return rc; |
| rc = pci_pm_reset(dev, 1); |
| if (rc != -ENOTTY) |
| return rc; |
| rc = pci_dev_reset_slot_function(dev, 1); |
| if (rc != -ENOTTY) |
| return rc; |
| |
| return pci_parent_bus_reset(dev, 1); |
| } |
| |
| /** |
| * pci_reset_function - quiesce and reset a PCI device function |
| * @dev: PCI device to reset |
| * |
| * Some devices allow an individual function to be reset without affecting |
| * other functions in the same device. The PCI device must be responsive |
| * to PCI config space in order to use this function. |
| * |
| * This function does not just reset the PCI portion of a device, but |
| * clears all the state associated with the device. This function differs |
| * from __pci_reset_function_locked() in that it saves and restores device state |
| * over the reset and takes the PCI device lock. |
| * |
| * Returns 0 if the device function was successfully reset or negative if the |
| * device doesn't support resetting a single function. |
| */ |
| int pci_reset_function(struct pci_dev *dev) |
| { |
| int rc; |
| |
| if (!dev->reset_fn) |
| return -ENOTTY; |
| |
| pci_dev_lock(dev); |
| pci_dev_save_and_disable(dev); |
| |
| rc = __pci_reset_function_locked(dev); |
| |
| pci_dev_restore(dev); |
| pci_dev_unlock(dev); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(pci_reset_function); |
| |
| /** |
| * pci_reset_function_locked - quiesce and reset a PCI device function |
| * @dev: PCI device to reset |
| * |
| * Some devices allow an individual function to be reset without affecting |
| * other functions in the same device. The PCI device must be responsive |
| * to PCI config space in order to use this function. |
| * |
| * This function does not just reset the PCI portion of a device, but |
| * clears all the state associated with the device. This function differs |
| * from __pci_reset_function_locked() in that it saves and restores device state |
| * over the reset. It also differs from pci_reset_function() in that it |
| * requires the PCI device lock to be held. |
| * |
| * Returns 0 if the device function was successfully reset or negative if the |
| * device doesn't support resetting a single function. |
| */ |
| int pci_reset_function_locked(struct pci_dev *dev) |
| { |
| int rc; |
| |
| if (!dev->reset_fn) |
| return -ENOTTY; |
| |
| pci_dev_save_and_disable(dev); |
| |
| rc = __pci_reset_function_locked(dev); |
| |
| pci_dev_restore(dev); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(pci_reset_function_locked); |
| |
| /** |
| * pci_try_reset_function - quiesce and reset a PCI device function |
| * @dev: PCI device to reset |
| * |
| * Same as above, except return -EAGAIN if unable to lock device. |
| */ |
| int pci_try_reset_function(struct pci_dev *dev) |
| { |
| int rc; |
| |
| if (!dev->reset_fn) |
| return -ENOTTY; |
| |
| if (!pci_dev_trylock(dev)) |
| return -EAGAIN; |
| |
| pci_dev_save_and_disable(dev); |
| rc = __pci_reset_function_locked(dev); |
| pci_dev_restore(dev); |
| pci_dev_unlock(dev); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(pci_try_reset_function); |
| |
| /* Do any devices on or below this bus prevent a bus reset? */ |
| static bool pci_bus_resetable(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| |
| if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) |
| return false; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || |
| (dev->subordinate && !pci_bus_resetable(dev->subordinate))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Lock devices from the top of the tree down */ |
| static void pci_bus_lock(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| pci_dev_lock(dev); |
| if (dev->subordinate) |
| pci_bus_lock(dev->subordinate); |
| } |
| } |
| |
| /* Unlock devices from the bottom of the tree up */ |
| static void pci_bus_unlock(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| if (dev->subordinate) |
| pci_bus_unlock(dev->subordinate); |
| pci_dev_unlock(dev); |
| } |
| } |
| |
| /* Return 1 on successful lock, 0 on contention */ |
| static int pci_bus_trylock(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| if (!pci_dev_trylock(dev)) |
| goto unlock; |
| if (dev->subordinate) { |
| if (!pci_bus_trylock(dev->subordinate)) { |
| pci_dev_unlock(dev); |
| goto unlock; |
| } |
| } |
| } |
| return 1; |
| |
| unlock: |
| list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { |
| if (dev->subordinate) |
| pci_bus_unlock(dev->subordinate); |
| pci_dev_unlock(dev); |
| } |
| return 0; |
| } |
| |
| /* Do any devices on or below this slot prevent a bus reset? */ |
| static bool pci_slot_resetable(struct pci_slot *slot) |
| { |
| struct pci_dev *dev; |
| |
| if (slot->bus->self && |
| (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) |
| return false; |
| |
| list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| if (!dev->slot || dev->slot != slot) |
| continue; |
| if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || |
| (dev->subordinate && !pci_bus_resetable(dev->subordinate))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Lock devices from the top of the tree down */ |
| static void pci_slot_lock(struct pci_slot *slot) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| if (!dev->slot || dev->slot != slot) |
| continue; |
| pci_dev_lock(dev); |
| if (dev->subordinate) |
| pci_bus_lock(dev->subordinate); |
| } |
| } |
| |
| /* Unlock devices from the bottom of the tree up */ |
| static void pci_slot_unlock(struct pci_slot *slot) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| if (!dev->slot || dev->slot != slot) |
| continue; |
| if (dev->subordinate) |
| pci_bus_unlock(dev->subordinate); |
| pci_dev_unlock(dev); |
| } |
| } |
| |
| /* Return 1 on successful lock, 0 on contention */ |
| static int pci_slot_trylock(struct pci_slot *slot) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| if (!dev->slot || dev->slot != slot) |
| continue; |
| if (!pci_dev_trylock(dev)) |
| goto unlock; |
| if (dev->subordinate) { |
| if (!pci_bus_trylock(dev->subordinate)) { |
| pci_dev_unlock(dev); |
| goto unlock; |
| } |
| } |
| } |
| return 1; |
| |
| unlock: |
| list_for_each_entry_continue_reverse(dev, |
| &slot->bus->devices, bus_list) { |
| if (!dev->slot || dev->slot != slot) |
| continue; |
| if (dev->subordinate) |
| pci_bus_unlock(dev->subordinate); |
| pci_dev_unlock(dev); |
| } |
| return 0; |
| } |
| |
| /* |
| * Save and disable devices from the top of the tree down while holding |
| * the @dev mutex lock for the entire tree. |
| */ |
| static void pci_bus_save_and_disable_locked(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| pci_dev_save_and_disable(dev); |
| if (dev->subordinate) |
| pci_bus_save_and_disable_locked(dev->subordinate); |
| } |
| } |
| |
| /* |
| * Restore devices from top of the tree down while holding @dev mutex lock |
| * for the entire tree. Parent bridges need to be restored before we can |
| * get to subordinate devices. |
| */ |
| static void pci_bus_restore_locked(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| pci_dev_restore(dev); |
| if (dev->subordinate) |
| pci_bus_restore_locked(dev->subordinate); |
| } |
| } |
| |
| /* |
| * Save and disable devices from the top of the tree down while holding |
| * the @dev mutex lock for the entire tree. |
| */ |
| static void pci_slot_save_and_disable_locked(struct pci_slot *slot) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| if (!dev->slot || dev->slot != slot) |
| continue; |
| pci_dev_save_and_disable(dev); |
| if (dev->subordinate) |
| pci_bus_save_and_disable_locked(dev->subordinate); |
| } |
| } |
| |
| /* |
| * Restore devices from top of the tree down while holding @dev mutex lock |
| * for the entire tree. Parent bridges need to be restored before we can |
| * get to subordinate devices. |
| */ |
| static void pci_slot_restore_locked(struct pci_slot *slot) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| if (!dev->slot || dev->slot != slot) |
| continue; |
| pci_dev_restore(dev); |
| if (dev->subordinate) |
| pci_bus_restore_locked(dev->subordinate); |
| } |
| } |
| |
| static int pci_slot_reset(struct pci_slot *slot, int probe) |
| { |
| int rc; |
| |
| if (!slot || !pci_slot_resetable(slot)) |
| return -ENOTTY; |
| |
| if (!probe) |
| pci_slot_lock(slot); |
| |
| might_sleep(); |
| |
| rc = pci_reset_hotplug_slot(slot->hotplug, probe); |
| |
| if (!probe) |
| pci_slot_unlock(slot); |
| |
| return rc; |
| } |
| |
| /** |
| * pci_probe_reset_slot - probe whether a PCI slot can be reset |
| * @slot: PCI slot to probe |
| * |
| * Return 0 if slot can be reset, negative if a slot reset is not supported. |
| */ |
| int pci_probe_reset_slot(struct pci_slot *slot) |
| { |
| return pci_slot_reset(slot, 1); |
| } |
| EXPORT_SYMBOL_GPL(pci_probe_reset_slot); |
| |
| /** |
| * __pci_reset_slot - Try to reset a PCI slot |
| * @slot: PCI slot to reset |
| * |
| * A PCI bus may host multiple slots, each slot may support a reset mechanism |
| * independent of other slots. For instance, some slots may support slot power |
| * control. In the case of a 1:1 bus to slot architecture, this function may |
| * wrap the bus reset to avoid spurious slot related events such as hotplug. |
| * Generally a slot reset should be attempted before a bus reset. All of the |
| * function of the slot and any subordinate buses behind the slot are reset |
| * through this function. PCI config space of all devices in the slot and |
| * behind the slot is saved before and restored after reset. |
| * |
| * Same as above except return -EAGAIN if the slot cannot be locked |
| */ |
| static int __pci_reset_slot(struct pci_slot *slot) |
| { |
| int rc; |
| |
| rc = pci_slot_reset(slot, 1); |
| if (rc) |
| return rc; |
| |
| if (pci_slot_trylock(slot)) { |
| pci_slot_save_and_disable_locked(slot); |
| might_sleep(); |
| rc = pci_reset_hotplug_slot(slot->hotplug, 0); |
| pci_slot_restore_locked(slot); |
| pci_slot_unlock(slot); |
| } else |
| rc = -EAGAIN; |
| |
| return rc; |
| } |
| |
| static int pci_bus_reset(struct pci_bus *bus, int probe) |
| { |
| int ret; |
| |
| if (!bus->self || !pci_bus_resetable(bus)) |
| return -ENOTTY; |
| |
| if (probe) |
| return 0; |
| |
| pci_bus_lock(bus); |
| |
| might_sleep(); |
| |
| ret = pci_bridge_secondary_bus_reset(bus->self); |
| |
| pci_bus_unlock(bus); |
| |
| return ret; |
| } |
| |
| /** |
| * pci_bus_error_reset - reset the bridge's subordinate bus |
| * @bridge: The parent device that connects to the bus to reset |
| * |
| * This function will first try to reset the slots on this bus if the method is |
| * available. If slot reset fails or is not available, this will fall back to a |
| * secondary bus reset. |
| */ |
| int pci_bus_error_reset(struct pci_dev *bridge) |
| { |
| struct pci_bus *bus = bridge->subordinate; |
| struct pci_slot *slot; |
| |
| if (!bus) |
| return -ENOTTY; |
| |
| mutex_lock(&pci_slot_mutex); |
| if (list_empty(&bus->slots)) |
| goto bus_reset; |
| |
| list_for_each_entry(slot, &bus->slots, list) |
| if (pci_probe_reset_slot(slot)) |
| goto bus_reset; |
| |
| list_for_each_entry(slot, &bus->slots, list) |
| if (pci_slot_reset(slot, 0)) |
| goto bus_reset; |
| |
| mutex_unlock(&pci_slot_mutex); |
| return 0; |
| bus_reset: |
| mutex_unlock(&pci_slot_mutex); |
| return pci_bus_reset(bridge->subordinate, 0); |
| } |
| |
| /** |
| * pci_probe_reset_bus - probe whether a PCI bus can be reset |
| * @bus: PCI bus to probe |
| * |
| * Return 0 if bus can be reset, negative if a bus reset is not supported. |
| */ |
| int pci_probe_reset_bus(struct pci_bus *bus) |
| { |
| return pci_bus_reset(bus, 1); |
| } |
| EXPORT_SYMBOL_GPL(pci_probe_reset_bus); |
| |
| /** |
| * __pci_reset_bus - Try to reset a PCI bus |
| * @bus: top level PCI bus to reset |
| * |
| * Same as above except return -EAGAIN if the bus cannot be locked |
| */ |
| static int __pci_reset_bus(struct pci_bus *bus) |
| { |
| int rc; |
| |
| rc = pci_bus_reset(bus, 1); |
| if (rc) |
| return rc; |
| |
| if (pci_bus_trylock(bus)) { |
| pci_bus_save_and_disable_locked(bus); |
| might_sleep(); |
| rc = pci_bridge_secondary_bus_reset(bus->self); |
| pci_bus_restore_locked(bus); |
| pci_bus_unlock(bus); |
| } else |
| rc = -EAGAIN; |
| |
| return rc; |
| } |
| |
| /** |
| * pci_reset_bus - Try to reset a PCI bus |
| * @pdev: top level PCI device to reset via slot/bus |
| * |
| * Same as above except return -EAGAIN if the bus cannot be locked |
| */ |
| int pci_reset_bus(struct pci_dev *pdev) |
| { |
| return (!pci_probe_reset_slot(pdev->slot)) ? |
| __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); |
| } |
| EXPORT_SYMBOL_GPL(pci_reset_bus); |
| |
| /** |
| * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count |
| * @dev: PCI device to query |
| * |
| * Returns mmrbc: maximum designed memory read count in bytes or |
| * appropriate error value. |
| */ |
| int pcix_get_max_mmrbc(struct pci_dev *dev) |
| { |
| int cap; |
| u32 stat; |
| |
| cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| if (!cap) |
| return -EINVAL; |
| |
| if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) |
| return -EINVAL; |
| |
| return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); |
| } |
| EXPORT_SYMBOL(pcix_get_max_mmrbc); |
| |
| /** |
| * pcix_get_mmrbc - get PCI-X maximum memory read byte count |
| * @dev: PCI device to query |
| * |
| * Returns mmrbc: maximum memory read count in bytes or appropriate error |
| * value. |
| */ |
| int pcix_get_mmrbc(struct pci_dev *dev) |
| { |
| int cap; |
| u16 cmd; |
| |
| cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| if (!cap) |
| return -EINVAL; |
| |
| if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) |
| return -EINVAL; |
| |
| return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); |
| } |
| EXPORT_SYMBOL(pcix_get_mmrbc); |
| |
| /** |
| * pcix_set_mmrbc - set PCI-X maximum memory read byte count |
| * @dev: PCI device to query |
| * @mmrbc: maximum memory read count in bytes |
| * valid values are 512, 1024, 2048, 4096 |
| * |
| * If possible sets maximum memory read byte count, some bridges have errata |
| * that prevent this. |
| */ |
| int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) |
| { |
| int cap; |
| u32 stat, v, o; |
| u16 cmd; |
| |
| if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) |
| return -EINVAL; |
| |
| v = ffs(mmrbc) - 10; |
| |
| cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| if (!cap) |
| return -EINVAL; |
| |
| if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) |
| return -EINVAL; |
| |
| if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) |
| return -E2BIG; |
| |
| if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) |
| return -EINVAL; |
| |
| o = (cmd & PCI_X_CMD_MAX_READ) >> 2; |
| if (o != v) { |
| if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) |
| return -EIO; |
| |
| cmd &= ~PCI_X_CMD_MAX_READ; |
| cmd |= v << 2; |
| if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) |
| return -EIO; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(pcix_set_mmrbc); |
| |
| /** |
| * pcie_get_readrq - get PCI Express read request size |
| * @dev: PCI device to query |
| * |
| * Returns maximum memory read request in bytes or appropriate error value. |
| */ |
| int pcie_get_readrq(struct pci_dev *dev) |
| { |
| u16 ctl; |
| |
| pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); |
| |
| return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); |
| } |
| EXPORT_SYMBOL(pcie_get_readrq); |
| |
| /** |
| * pcie_set_readrq - set PCI Express maximum memory read request |
| * @dev: PCI device to query |
| * @rq: maximum memory read count in bytes |
| * valid values are 128, 256, 512, 1024, 2048, 4096 |
| * |
| * If possible sets maximum memory read request in bytes |
| */ |
| int pcie_set_readrq(struct pci_dev *dev, int rq) |
| { |
| u16 v; |
| int ret; |
| |
| if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) |
| return -EINVAL; |
| |
| /* |
| * If using the "performance" PCIe config, we clamp the read rq |
| * size to the max packet size to keep the host bridge from |
| * generating requests larger than we can cope with. |
| */ |
| if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { |
| int mps = pcie_get_mps(dev); |
| |
| if (mps < rq) |
| rq = mps; |
| } |
| |
| v = (ffs(rq) - 8) << 12; |
| |
| ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, |
| PCI_EXP_DEVCTL_READRQ, v); |
| |
| return pcibios_err_to_errno(ret); |
| } |
| EXPORT_SYMBOL(pcie_set_readrq); |
| |
| /** |
| * pcie_get_mps - get PCI Express maximum payload size |
| * @dev: PCI device to query |
| * |
| * Returns maximum payload size in bytes |
| */ |
| int pcie_get_mps(struct pci_dev *dev) |
| { |
| u16 ctl; |
| |
| pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); |
| |
| return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); |
| } |
| EXPORT_SYMBOL(pcie_get_mps); |
| |
| /** |
| * pcie_set_mps - set PCI Express maximum payload size |
| * @dev: PCI device to query |
| * @mps: maximum payload size in bytes |
| * valid values are 128, 256, 512, 1024, 2048, 4096 |
| * |
| * If possible sets maximum payload size |
| */ |
| int pcie_set_mps(struct pci_dev *dev, int mps) |
| { |
| u16 v; |
| int ret; |
| |
| if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) |
| return -EINVAL; |
| |
| v = ffs(mps) - 8; |
| if (v > dev->pcie_mpss) |
| return -EINVAL; |
| v <<= 5; |
| |
| ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, |
| PCI_EXP_DEVCTL_PAYLOAD, v); |
| |
| return pcibios_err_to_errno(ret); |
| } |
| EXPORT_SYMBOL(pcie_set_mps); |
| |
| /** |
| * pcie_bandwidth_available - determine minimum link settings of a PCIe |
| * device and its bandwidth limitation |
| * @dev: PCI device to query |
| * @limiting_dev: storage for device causing the bandwidth limitation |
| * @speed: storage for speed of limiting device |
| * @width: storage for width of limiting device |
| * |
| * Walk up the PCI device chain and find the point where the minimum |
| * bandwidth is available. Return the bandwidth available there and (if |
| * limiting_dev, speed, and width pointers are supplied) information about |
| * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of |
| * raw bandwidth. |
| */ |
| u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, |
| enum pci_bus_speed *speed, |
| enum pcie_link_width *width) |
| { |
| u16 lnksta; |
| enum pci_bus_speed next_speed; |
| enum pcie_link_width next_width; |
| u32 bw, next_bw; |
| |
| if (speed) |
| *speed = PCI_SPEED_UNKNOWN; |
| if (width) |
| *width = PCIE_LNK_WIDTH_UNKNOWN; |
| |
| bw = 0; |
| |
| while (dev) { |
| pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); |
| |
| next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; |
| next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> |
| PCI_EXP_LNKSTA_NLW_SHIFT; |
| |
| next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); |
| |
| /* Check if current device limits the total bandwidth */ |
| if (!bw || next_bw <= bw) { |
| bw = next_bw; |
| |
| if (limiting_dev) |
| *limiting_dev = dev; |
| if (speed) |
| *speed = next_speed; |
| if (width) |
| *width = next_width; |
| } |
| |
| dev = pci_upstream_bridge(dev); |
| } |
| |
| return bw; |
| } |
| EXPORT_SYMBOL(pcie_bandwidth_available); |
| |
| /** |
| * pcie_get_speed_cap - query for the PCI device's link speed capability |
| * @dev: PCI device to query |
| * |
| * Query the PCI device speed capability. Return the maximum link speed |
| * supported by the device. |
| */ |
| enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) |
| { |
| u32 lnkcap2, lnkcap; |
| |
| /* |
| * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The |
| * implementation note there recommends using the Supported Link |
| * Speeds Vector in Link Capabilities 2 when supported. |
| * |
| * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software |
| * should use the Supported Link Speeds field in Link Capabilities, |
| * where only 2.5 GT/s and 5.0 GT/s speeds were defined. |
| */ |
| pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); |
| |
| /* PCIe r3.0-compliant */ |
| if (lnkcap2) |
| return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); |
| |
| pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); |
| if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) |
| return PCIE_SPEED_5_0GT; |
| else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) |
| return PCIE_SPEED_2_5GT; |
| |
| return PCI_SPEED_UNKNOWN; |
| } |
| EXPORT_SYMBOL(pcie_get_speed_cap); |
| |
| /** |
| * pcie_get_width_cap - query for the PCI device's link width capability |
| * @dev: PCI device to query |
| * |
| * Query the PCI device width capability. Return the maximum link width |
| * supported by the device. |
| */ |
| enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) |
| { |
| u32 lnkcap; |
| |
| pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); |
| if (lnkcap) |
| return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; |
| |
| return PCIE_LNK_WIDTH_UNKNOWN; |
| } |
| EXPORT_SYMBOL(pcie_get_width_cap); |
| |
| /** |
| * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability |
| * @dev: PCI device |
| * @speed: storage for link speed |
| * @width: storage for link width |
| * |
| * Calculate a PCI device's link bandwidth by querying for its link speed |
| * and width, multiplying them, and applying encoding overhead. The result |
| * is in Mb/s, i.e., megabits/second of raw bandwidth. |
| */ |
| u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, |
| enum pcie_link_width *width) |
| { |
| *speed = pcie_get_speed_cap(dev); |
| *width = pcie_get_width_cap(dev); |
| |
| if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) |
| return 0; |
| |
| return *width * PCIE_SPEED2MBS_ENC(*speed); |
| } |
| |
| /** |
| * __pcie_print_link_status - Report the PCI device's link speed and width |
| * @dev: PCI device to query |
| * @verbose: Print info even when enough bandwidth is available |
| * |
| * If the available bandwidth at the device is less than the device is |
| * capable of, report the device's maximum possible bandwidth and the |
| * upstream link that limits its performance. If @verbose, always print |
| * the available bandwidth, even if the device isn't constrained. |
| */ |
| void __pcie_print_link_status(struct pci_dev *dev, bool verbose) |
| { |
| enum pcie_link_width width, width_cap; |
| enum pci_bus_speed speed, speed_cap; |
| struct pci_dev *limiting_dev = NULL; |
| u32 bw_avail, bw_cap; |
| |
| bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); |
| bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); |
| |
| if (bw_avail >= bw_cap && verbose) |
| pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", |
| bw_cap / 1000, bw_cap % 1000, |
| pci_speed_string(speed_cap), width_cap); |
| else if (bw_avail < bw_cap) |
| pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", |
| bw_avail / 1000, bw_avail % 1000, |
| pci_speed_string(speed), width, |
| limiting_dev ? pci_name(limiting_dev) : "<unknown>", |
| bw_cap / 1000, bw_cap % 1000, |
| pci_speed_string(speed_cap), width_cap); |
| } |
| |
| /** |
| * pcie_print_link_status - Report the PCI device's link speed and width |
| * @dev: PCI device to query |
| * |
| * Report the available bandwidth at the device. |
| */ |
| void pcie_print_link_status(struct pci_dev *dev) |
| { |
| __pcie_print_link_status(dev, true); |
| } |
| EXPORT_SYMBOL(pcie_print_link_status); |
| |
| /** |
| * pci_select_bars - Make BAR mask from the type of resource |
| * @dev: the PCI device for which BAR mask is made |
| * @flags: resource type mask to be selected |
| * |
| * This helper routine makes bar mask from the type of resource. |
| */ |
| int pci_select_bars(struct pci_dev *dev, unsigned long flags) |
| { |
| int i, bars = 0; |
| for (i = 0; i < PCI_NUM_RESOURCES; i++) |
| if (pci_resource_flags(dev, i) & flags) |
| bars |= (1 << i); |
| return bars; |
| } |
| EXPORT_SYMBOL(pci_select_bars); |
| |
| /* Some architectures require additional programming to enable VGA */ |
| static arch_set_vga_state_t arch_set_vga_state; |
| |
| void __init pci_register_set_vga_state(arch_set_vga_state_t func) |
| { |
| arch_set_vga_state = func; /* NULL disables */ |
| } |
| |
| static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, |
| unsigned int command_bits, u32 flags) |
| { |
| if (arch_set_vga_state) |
| return arch_set_vga_state(dev, decode, command_bits, |
| flags); |
| return 0; |
| } |
| |
| /** |
| * pci_set_vga_state - set VGA decode state on device and parents if requested |
| * @dev: the PCI device |
| * @decode: true = enable decoding, false = disable decoding |
| * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY |
| * @flags: traverse ancestors and change bridges |
| * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE |
| */ |
| int pci_set_vga_state(struct pci_dev *dev, bool decode, |
| unsigned int command_bits, u32 flags) |
| { |
| struct pci_bus *bus; |
| struct pci_dev *bridge; |
| u16 cmd; |
| int rc; |
| |
| WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); |
| |
| /* ARCH specific VGA enables */ |
| rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); |
| if (rc) |
| return rc; |
| |
| if (flags & PCI_VGA_STATE_CHANGE_DECODES) { |
| pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| if (decode) |
| cmd |= command_bits; |
| else |
| cmd &= ~command_bits; |
| pci_write_config_word(dev, PCI_COMMAND, cmd); |
| } |
| |
| if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) |
| return 0; |
| |
| bus = dev->bus; |
| while (bus) { |
| bridge = bus->self; |
| if (bridge) { |
| pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, |
| &cmd); |
| if (decode) |
| cmd |= PCI_BRIDGE_CTL_VGA; |
| else |
| cmd &= ~PCI_BRIDGE_CTL_VGA; |
| pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, |
| cmd); |
| } |
| bus = bus->parent; |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_ACPI |
| bool pci_pr3_present(struct pci_dev *pdev) |
| { |
| struct acpi_device *adev; |
| |
| if (acpi_disabled) |
| return false; |
| |
| adev = ACPI_COMPANION(&pdev->dev); |
| if (!adev) |
| return false; |
| |
| return adev->power.flags.power_resources && |
| acpi_has_method(adev->handle, "_PR3"); |
| } |
| EXPORT_SYMBOL_GPL(pci_pr3_present); |
| #endif |
| |
| /** |
| * pci_add_dma_alias - Add a DMA devfn alias for a device |
| * @dev: the PCI device for which alias is added |
| * @devfn_from: alias slot and function |
| * @nr_devfns: number of subsequent devfns to alias |
| * |
| * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask |
| * which is used to program permissible bus-devfn source addresses for DMA |
| * requests in an IOMMU. These aliases factor into IOMMU group creation |
| * and are useful for devices generating DMA requests beyond or different |
| * from their logical bus-devfn. Examples include device quirks where the |
| * device simply uses the wrong devfn, as well as non-transparent bridges |
| * where the alias may be a proxy for devices in another domain. |
| * |
| * IOMMU group creation is performed during device discovery or addition, |
| * prior to any potential DMA mapping and therefore prior to driver probing |
| * (especially for userspace assigned devices where IOMMU group definition |
| * cannot be left as a userspace activity). DMA aliases should therefore |
| * be configured via quirks, such as the PCI fixup header quirk. |
| */ |
| void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) |
| { |
| int devfn_to; |
| |
| nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); |
| devfn_to = devfn_from + nr_devfns - 1; |
| |
| if (!dev->dma_alias_mask) |
| dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); |
| if (!dev->dma_alias_mask) { |
| pci_warn(dev, "Unable to allocate DMA alias mask\n"); |
| return; |
| } |
| |
| bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); |
| |
| if (nr_devfns == 1) |
| pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", |
| PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); |
| else if (nr_devfns > 1) |
| pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", |
| PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), |
| PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); |
| } |
| |
| bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) |
| { |
| return (dev1->dma_alias_mask && |
| test_bit(dev2->devfn, dev1->dma_alias_mask)) || |
| (dev2->dma_alias_mask && |
| test_bit(dev1->devfn, dev2->dma_alias_mask)) || |
| pci_real_dma_dev(dev1) == dev2 || |
| pci_real_dma_dev(dev2) == dev1; |
| } |
| |
| bool pci_device_is_present(struct pci_dev *pdev) |
| { |
| u32 v; |
| |
| if (pci_dev_is_disconnected(pdev)) |
| return false; |
| return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); |
| } |
| EXPORT_SYMBOL_GPL(pci_device_is_present); |
| |
| void pci_ignore_hotplug(struct pci_dev *dev) |
| { |
| struct pci_dev *bridge = dev->bus->self; |
| |
| dev->ignore_hotplug = 1; |
| /* Propagate the "ignore hotplug" setting to the parent bridge. */ |
| if (bridge) |
| bridge->ignore_hotplug = 1; |
| } |
| EXPORT_SYMBOL_GPL(pci_ignore_hotplug); |
| |
| /** |
| * pci_real_dma_dev - Get PCI DMA device for PCI device |
| * @dev: the PCI device that may have a PCI DMA alias |
| * |
| * Permits the platform to provide architecture-specific functionality to |
| * devices needing to alias DMA to another PCI device on another PCI bus. If |
| * the PCI device is on the same bus, it is recommended to use |
| * pci_add_dma_alias(). This is the default implementation. Architecture |
| * implementations can override this. |
| */ |
| struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) |
| { |
| return dev; |
| } |
| |
| resource_size_t __weak pcibios_default_alignment(void) |
| { |
| return 0; |
| } |
| |
| /* |
| * Arches that don't want to expose struct resource to userland as-is in |
| * sysfs and /proc can implement their own pci_resource_to_user(). |
| */ |
| void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, |
| const struct resource *rsrc, |
| resource_size_t *start, resource_size_t *end) |
| { |
| *start = rsrc->start; |
| *end = rsrc->end; |
| } |
| |
| static char *resource_alignment_param; |
| static DEFINE_SPINLOCK(resource_alignment_lock); |
| |
| /** |
| * pci_specified_resource_alignment - get resource alignment specified by user. |
| * @dev: the PCI device to get |
| * @resize: whether or not to change resources' size when reassigning alignment |
| * |
| * RETURNS: Resource alignment if it is specified. |
| * Zero if it is not specified. |
| */ |
| static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, |
| bool *resize) |
| { |
| int align_order, count; |
| resource_size_t align = pcibios_default_alignment(); |
| const char *p; |
| int ret; |
| |
| spin_lock(&resource_alignment_lock); |
| p = resource_alignment_param; |
| if (!p || !*p) |
| goto out; |
| if (pci_has_flag(PCI_PROBE_ONLY)) { |
| align = 0; |
| pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); |
| goto out; |
| } |
| |
| while (*p) { |
| count = 0; |
| if (sscanf(p, "%d%n", &align_order, &count) == 1 && |
| p[count] == '@') { |
| p += count + 1; |
| if (align_order > 63) { |
| pr_err("PCI: Invalid requested alignment (order %d)\n", |
| align_order); |
| align_order = PAGE_SHIFT; |
| } |
| } else { |
| align_order = PAGE_SHIFT; |
| } |
| |
| ret = pci_dev_str_match(dev, p, &p); |
| if (ret == 1) { |
| *resize = true; |
| align = 1ULL << align_order; |
| break; |
| } else if (ret < 0) { |
| pr_err("PCI: Can't parse resource_alignment parameter: %s\n", |
| p); |
| break; |
| } |
| |
| if (*p != ';' && *p != ',') { |
| /* End of param or invalid format */ |
| break; |
| } |
| p++; |
| } |
| out: |
| spin_unlock(&resource_alignment_lock); |
| return align; |
| } |
| |
| static void pci_request_resource_alignment(struct pci_dev *dev, int bar, |
| resource_size_t align, bool resize) |
| { |
| struct resource *r = &dev->resource[bar]; |
| resource_size_t size; |
| |
| if (!(r->flags & IORESOURCE_MEM)) |
| return; |
| |
| if (r->flags & IORESOURCE_PCI_FIXED) { |
| pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", |
| bar, r, (unsigned long long)align); |
| return; |
| } |
| |
| size = resource_size(r); |
| if (size >= align) |
| return; |
| |
| /* |
| * Increase the alignment of the resource. There are two ways we |
| * can do this: |
| * |
| * 1) Increase the size of the resource. BARs are aligned on their |
| * size, so when we reallocate space for this resource, we'll |
| * allocate it with the larger alignment. This also prevents |
| * assignment of any other BARs inside the alignment region, so |
| * if we're requesting page alignment, this means no other BARs |
| * will share the page. |
| * |
| * The disadvantage is that this makes the resource larger than |
| * the hardware BAR, which may break drivers that compute things |
| * based on the resource size, e.g., to find registers at a |
| * fixed offset before the end of the BAR. |
| * |
| * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and |
| * set r->start to the desired alignment. By itself this |
| * doesn't prevent other BARs being put inside the alignment |
| * region, but if we realign *every* resource of every device in |
| * the system, none of them will share an alignment region. |
| * |
| * When the user has requested alignment for only some devices via |
| * the "pci=resource_alignment" argument, "resize" is true and we |
| * use the first method. Otherwise we assume we're aligning all |
| * devices and we use the second. |
| */ |
| |
| pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", |
| bar, r, (unsigned long long)align); |
| |
| if (resize) { |
| r->start = 0; |
| r->end = align - 1; |
| } else { |
| r->flags &= ~IORESOURCE_SIZEALIGN; |
| r->flags |= IORESOURCE_STARTALIGN; |
| r->start = align; |
| r->end = r->start + size - 1; |
| } |
| r->flags |= IORESOURCE_UNSET; |
| } |
| |
| /* |
| * This function disables memory decoding and releases memory resources |
| * of the device specified by kernel's boot parameter 'pci=resource_alignment='. |
| * It also rounds up size to specified alignment. |
| * Later on, the kernel will assign page-aligned memory resource back |
| * to the device. |
| */ |
| void pci_reassigndev_resource_alignment(struct pci_dev *dev) |
| { |
| int i; |
| struct resource *r; |
| resource_size_t align; |
| u16 command; |
| bool resize = false; |
| |
| /* |
| * VF BARs are read-only zero according to SR-IOV spec r1.1, sec |
| * 3.4.1.11. Their resources are allocated from the space |
| * described by the VF BARx register in the PF's SR-IOV capability. |
| * We can't influence their alignment here. |
| */ |
| if (dev->is_virtfn) |
| return; |
| |
| /* check if specified PCI is target device to reassign */ |
| align = pci_specified_resource_alignment(dev, &resize); |
| if (!align) |
| return; |
| |
| if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && |
| (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { |
| pci_warn(dev, "Can't reassign resources to host bridge\n"); |
| return; |
| } |
| |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| command &= ~PCI_COMMAND_MEMORY; |
| pci_write_config_word(dev, PCI_COMMAND, command); |
| |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) |
| pci_request_resource_alignment(dev, i, align, resize); |
| |
| /* |
| * Need to disable bridge's resource window, |
| * to enable the kernel to reassign new resource |
| * window later on. |
| */ |
| if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { |
| r = &dev->resource[i]; |
| if (!(r->flags & IORESOURCE_MEM)) |
| continue; |
| r->flags |= IORESOURCE_UNSET; |
| r->end = resource_size(r) - 1; |
| r->start = 0; |
| } |
| pci_disable_bridge_window(dev); |
| } |
| } |
| |
| static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) |
| { |
| size_t count = 0; |
| |
| spin_lock(&resource_alignment_lock); |
| if (resource_alignment_param) |
| count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); |
| spin_unlock(&resource_alignment_lock); |
| |
| /* |
| * When set by the command line, resource_alignment_param will not |
| * have a trailing line feed, which is ugly. So conditionally add |
| * it here. |
| */ |
| if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { |
| buf[count - 1] = '\n'; |
| buf[count++] = 0; |
| } |
| |
| return count; |
| } |
| |
| static ssize_t resource_alignment_store(struct bus_type *bus, |
| const char *buf, size_t count) |
| { |
| char *param = kstrndup(buf, count, GFP_KERNEL); |
| |
| if (!param) |
| return -ENOMEM; |
| |
| spin_lock(&resource_alignment_lock); |
| kfree(resource_alignment_param); |
| resource_alignment_param = param; |
| spin_unlock(&resource_alignment_lock); |
| return count; |
| } |
| |
| static BUS_ATTR_RW(resource_alignment); |
| |
| static int __init pci_resource_alignment_sysfs_init(void) |
| { |
| return bus_create_file(&pci_bus_type, |
| &bus_attr_resource_alignment); |
| } |
| late_initcall(pci_resource_alignment_sysfs_init); |
| |
| static void pci_no_domains(void) |
| { |
| #ifdef CONFIG_PCI_DOMAINS |
| pci_domains_supported = 0; |
| #endif |
| } |
| |
| #ifdef CONFIG_PCI_DOMAINS_GENERIC |
| static atomic_t __domain_nr = ATOMIC_INIT(-1); |
| |
| static int pci_get_new_domain_nr(void) |
| { |
| return atomic_inc_return(&__domain_nr); |
| } |
| |
| static int of_pci_bus_find_domain_nr(struct device *parent) |
| { |
| static int use_dt_domains = -1; |
| int domain = -1; |
| |
| if (parent) |
| domain = of_get_pci_domain_nr(parent->of_node); |
| |
| /* |
| * Check DT domain and use_dt_domains values. |
| * |
| * If DT domain property is valid (domain >= 0) and |
| * use_dt_domains != 0, the DT assignment is valid since this means |
| * we have not previously allocated a domain number by using |
| * pci_get_new_domain_nr(); we should also update use_dt_domains to |
| * 1, to indicate that we have just assigned a domain number from |
| * DT. |
| * |
| * If DT domain property value is not valid (ie domain < 0), and we |
| * have not previously assigned a domain number from DT |
| * (use_dt_domains != 1) we should assign a domain number by |
| * using the: |
| * |
| * pci_get_new_domain_nr() |
| * |
| * API and update the use_dt_domains value to keep track of method we |
| * are using to assign domain numbers (use_dt_domains = 0). |
| * |
| * All other combinations imply we have a platform that is trying |
| * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), |
| * which is a recipe for domain mishandling and it is prevented by |
| * invalidating the domain value (domain = -1) and printing a |
| * corresponding error. |
| */ |
| if (domain >= 0 && use_dt_domains) { |
| use_dt_domains = 1; |
| } else if (domain < 0 && use_dt_domains != 1) { |
| use_dt_domains = 0; |
| domain = pci_get_new_domain_nr(); |
| } else { |
| if (parent) |
| pr_err("Node %pOF has ", parent->of_node); |
| pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); |
| domain = -1; |
| } |
| |
| return domain; |
| } |
| |
| int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) |
| { |
| return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : |
| acpi_pci_bus_find_domain_nr(bus); |
| } |
| #endif |
| |
| /** |
| * pci_ext_cfg_avail - can we access extended PCI config space? |
| * |
| * Returns 1 if we can access PCI extended config space (offsets |
| * greater than 0xff). This is the default implementation. Architecture |
| * implementations can override this. |
| */ |
| int __weak pci_ext_cfg_avail(void) |
| { |
| return 1; |
| } |
| |
| void __weak pci_fixup_cardbus(struct pci_bus *bus) |
| { |
| } |
| EXPORT_SYMBOL(pci_fixup_cardbus); |
| |
| static int __init pci_setup(char *str) |
| { |
| while (str) { |
| char *k = strchr(str, ','); |
| if (k) |
| *k++ = 0; |
| if (*str && (str = pcibios_setup(str)) && *str) { |
| if (!strcmp(str, "nomsi")) { |
| pci_no_msi(); |
| } else if (!strncmp(str, "noats", 5)) { |
| pr_info("PCIe: ATS is disabled\n"); |
| pcie_ats_disabled = true; |
| } else if (!strcmp(str, "noaer")) { |
| pci_no_aer(); |
| } else if (!strcmp(str, "earlydump")) { |
| pci_early_dump = true; |
| } else if (!strncmp(str, "realloc=", 8)) { |
| pci_realloc_get_opt(str + 8); |
| } else if (!strncmp(str, "realloc", 7)) { |
| pci_realloc_get_opt("on"); |
| } else if (!strcmp(str, "nodomains")) { |
| pci_no_domains(); |
| } else if (!strncmp(str, "noari", 5)) { |
| pcie_ari_disabled = true; |
| } else if (!strncmp(str, "cbiosize=", 9)) { |
| pci_cardbus_io_size = memparse(str + 9, &str); |
| } else if (!strncmp(str, "cbmemsize=", 10)) { |
| pci_cardbus_mem_size = memparse(str + 10, &str); |
| } else if (!strncmp(str, "resource_alignment=", 19)) { |
| resource_alignment_param = str + 19; |
| } else if (!strncmp(str, "ecrc=", 5)) { |
| pcie_ecrc_get_policy(str + 5); |
| } else if (!strncmp(str, "hpiosize=", 9)) { |
| pci_hotplug_io_size = memparse(str + 9, &str); |
| } else if (!strncmp(str, "hpmmiosize=", 11)) { |
| pci_hotplug_mmio_size = memparse(str + 11, &str); |
| } else if (!strncmp(str, "hpmmioprefsize=", 15)) { |
| pci_hotplug_mmio_pref_size = memparse(str + 15, &str); |
| } else if (!strncmp(str, "hpmemsize=", 10)) { |
| pci_hotplug_mmio_size = memparse(str + 10, &str); |
| pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; |
| } else if (!strncmp(str, "hpbussize=", 10)) { |
| pci_hotplug_bus_size = |
| simple_strtoul(str + 10, &str, 0); |
| if (pci_hotplug_bus_size > 0xff) |
| pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; |
| } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { |
| pcie_bus_config = PCIE_BUS_TUNE_OFF; |
| } else if (!strncmp(str, "pcie_bus_safe", 13)) { |
| pcie_bus_config = PCIE_BUS_SAFE; |
| } else if (!strncmp(str, "pcie_bus_perf", 13)) { |
| pcie_bus_config = PCIE_BUS_PERFORMANCE; |
| } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { |
| pcie_bus_config = PCIE_BUS_PEER2PEER; |
| } else if (!strncmp(str, "pcie_scan_all", 13)) { |
| pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); |
| } else if (!strncmp(str, "disable_acs_redir=", 18)) { |
| disable_acs_redir_param = str + 18; |
| } else { |
| pr_err("PCI: Unknown option `%s'\n", str); |
| } |
| } |
| str = k; |
| } |
| return 0; |
| } |
| early_param("pci", pci_setup); |
| |
| /* |
| * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized |
| * in pci_setup(), above, to point to data in the __initdata section which |
| * will be freed after the init sequence is complete. We can't allocate memory |
| * in pci_setup() because some architectures do not have any memory allocation |
| * service available during an early_param() call. So we allocate memory and |
| * copy the variable here before the init section is freed. |
| * |
| */ |
| static int __init pci_realloc_setup_params(void) |
| { |
| resource_alignment_param = kstrdup(resource_alignment_param, |
| GFP_KERNEL); |
| disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); |
| |
| return 0; |
| } |
| pure_initcall(pci_realloc_setup_params); |