| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2021 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include "habanalabs.h" |
| #include "../include/common/hl_boot_if.h" |
| |
| #include <linux/firmware.h> |
| #include <linux/crc32.h> |
| #include <linux/slab.h> |
| #include <linux/ctype.h> |
| |
| #define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */ |
| |
| static char *extract_fw_ver_from_str(const char *fw_str) |
| { |
| char *str, *fw_ver, *whitespace; |
| |
| fw_ver = kmalloc(16, GFP_KERNEL); |
| if (!fw_ver) |
| return NULL; |
| |
| str = strnstr(fw_str, "fw-", VERSION_MAX_LEN); |
| if (!str) |
| goto free_fw_ver; |
| |
| /* Skip the fw- part */ |
| str += 3; |
| |
| /* Copy until the next whitespace */ |
| whitespace = strnstr(str, " ", 15); |
| if (!whitespace) |
| goto free_fw_ver; |
| |
| strscpy(fw_ver, str, whitespace - str + 1); |
| |
| return fw_ver; |
| |
| free_fw_ver: |
| kfree(fw_ver); |
| return NULL; |
| } |
| |
| static int hl_request_fw(struct hl_device *hdev, |
| const struct firmware **firmware_p, |
| const char *fw_name) |
| { |
| size_t fw_size; |
| int rc; |
| |
| rc = request_firmware(firmware_p, fw_name, hdev->dev); |
| if (rc) { |
| dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n", |
| fw_name, rc); |
| goto out; |
| } |
| |
| fw_size = (*firmware_p)->size; |
| if ((fw_size % 4) != 0) { |
| dev_err(hdev->dev, "Illegal %s firmware size %zu\n", |
| fw_name, fw_size); |
| rc = -EINVAL; |
| goto release_fw; |
| } |
| |
| dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size); |
| |
| if (fw_size > FW_FILE_MAX_SIZE) { |
| dev_err(hdev->dev, |
| "FW file size %zu exceeds maximum of %u bytes\n", |
| fw_size, FW_FILE_MAX_SIZE); |
| rc = -EINVAL; |
| goto release_fw; |
| } |
| |
| return 0; |
| |
| release_fw: |
| release_firmware(*firmware_p); |
| out: |
| return rc; |
| } |
| |
| /** |
| * hl_release_firmware() - release FW |
| * |
| * @fw: fw descriptor |
| * |
| * note: this inline function added to serve as a comprehensive mirror for the |
| * hl_request_fw function. |
| */ |
| static inline void hl_release_firmware(const struct firmware *fw) |
| { |
| release_firmware(fw); |
| } |
| |
| /** |
| * hl_fw_copy_fw_to_device() - copy FW to device |
| * |
| * @hdev: pointer to hl_device structure. |
| * @fw: fw descriptor |
| * @dst: IO memory mapped address space to copy firmware to |
| * @src_offset: offset in src FW to copy from |
| * @size: amount of bytes to copy (0 to copy the whole binary) |
| * |
| * actual copy of FW binary data to device, shared by static and dynamic loaders |
| */ |
| static int hl_fw_copy_fw_to_device(struct hl_device *hdev, |
| const struct firmware *fw, void __iomem *dst, |
| u32 src_offset, u32 size) |
| { |
| const void *fw_data; |
| |
| /* size 0 indicates to copy the whole file */ |
| if (!size) |
| size = fw->size; |
| |
| if (src_offset + size > fw->size) { |
| dev_err(hdev->dev, |
| "size to copy(%u) and offset(%u) are invalid\n", |
| size, src_offset); |
| return -EINVAL; |
| } |
| |
| fw_data = (const void *) fw->data; |
| |
| memcpy_toio(dst, fw_data + src_offset, size); |
| return 0; |
| } |
| |
| /** |
| * hl_fw_copy_msg_to_device() - copy message to device |
| * |
| * @hdev: pointer to hl_device structure. |
| * @msg: message |
| * @dst: IO memory mapped address space to copy firmware to |
| * @src_offset: offset in src message to copy from |
| * @size: amount of bytes to copy (0 to copy the whole binary) |
| * |
| * actual copy of message data to device. |
| */ |
| static int hl_fw_copy_msg_to_device(struct hl_device *hdev, |
| struct lkd_msg_comms *msg, void __iomem *dst, |
| u32 src_offset, u32 size) |
| { |
| void *msg_data; |
| |
| /* size 0 indicates to copy the whole file */ |
| if (!size) |
| size = sizeof(struct lkd_msg_comms); |
| |
| if (src_offset + size > sizeof(struct lkd_msg_comms)) { |
| dev_err(hdev->dev, |
| "size to copy(%u) and offset(%u) are invalid\n", |
| size, src_offset); |
| return -EINVAL; |
| } |
| |
| msg_data = (void *) msg; |
| |
| memcpy_toio(dst, msg_data + src_offset, size); |
| |
| return 0; |
| } |
| |
| /** |
| * hl_fw_load_fw_to_device() - Load F/W code to device's memory. |
| * |
| * @hdev: pointer to hl_device structure. |
| * @fw_name: the firmware image name |
| * @dst: IO memory mapped address space to copy firmware to |
| * @src_offset: offset in src FW to copy from |
| * @size: amount of bytes to copy (0 to copy the whole binary) |
| * |
| * Copy fw code from firmware file to device memory. |
| * |
| * Return: 0 on success, non-zero for failure. |
| */ |
| int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, |
| void __iomem *dst, u32 src_offset, u32 size) |
| { |
| const struct firmware *fw; |
| int rc; |
| |
| rc = hl_request_fw(hdev, &fw, fw_name); |
| if (rc) |
| return rc; |
| |
| rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size); |
| |
| hl_release_firmware(fw); |
| return rc; |
| } |
| |
| int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode) |
| { |
| struct cpucp_packet pkt = {}; |
| |
| pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, |
| sizeof(pkt), 0, NULL); |
| } |
| |
| int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, |
| u16 len, u32 timeout, u64 *result) |
| { |
| struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id]; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct cpucp_packet *pkt; |
| dma_addr_t pkt_dma_addr; |
| struct hl_bd *sent_bd; |
| u32 tmp, expected_ack_val, pi; |
| int rc = 0; |
| |
| pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len, |
| &pkt_dma_addr); |
| if (!pkt) { |
| dev_err(hdev->dev, |
| "Failed to allocate DMA memory for packet to CPU\n"); |
| return -ENOMEM; |
| } |
| |
| memcpy(pkt, msg, len); |
| |
| mutex_lock(&hdev->send_cpu_message_lock); |
| |
| if (hdev->disabled) |
| goto out; |
| |
| if (hdev->device_cpu_disabled) { |
| rc = -EIO; |
| goto out; |
| } |
| |
| /* set fence to a non valid value */ |
| pkt->fence = cpu_to_le32(UINT_MAX); |
| pi = queue->pi; |
| |
| /* |
| * The CPU queue is a synchronous queue with an effective depth of |
| * a single entry (although it is allocated with room for multiple |
| * entries). We lock on it using 'send_cpu_message_lock' which |
| * serializes accesses to the CPU queue. |
| * Which means that we don't need to lock the access to the entire H/W |
| * queues module when submitting a JOB to the CPU queue. |
| */ |
| hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr); |
| |
| if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN) |
| expected_ack_val = queue->pi; |
| else |
| expected_ack_val = CPUCP_PACKET_FENCE_VAL; |
| |
| rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp, |
| (tmp == expected_ack_val), 1000, |
| timeout, true); |
| |
| hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp); |
| hdev->device_cpu_disabled = true; |
| goto out; |
| } |
| |
| tmp = le32_to_cpu(pkt->ctl); |
| |
| rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT; |
| if (rc) { |
| dev_err(hdev->dev, "F/W ERROR %d for CPU packet %d\n", |
| rc, |
| (tmp & CPUCP_PKT_CTL_OPCODE_MASK) |
| >> CPUCP_PKT_CTL_OPCODE_SHIFT); |
| rc = -EIO; |
| } else if (result) { |
| *result = le64_to_cpu(pkt->result); |
| } |
| |
| /* Scrub previous buffer descriptor 'ctl' field which contains the |
| * previous PI value written during packet submission. |
| * We must do this or else F/W can read an old value upon queue wraparound. |
| */ |
| sent_bd = queue->kernel_address; |
| sent_bd += hl_pi_2_offset(pi); |
| sent_bd->ctl = cpu_to_le32(UINT_MAX); |
| |
| out: |
| mutex_unlock(&hdev->send_cpu_message_lock); |
| |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt); |
| |
| return rc; |
| } |
| |
| int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type) |
| { |
| struct cpucp_packet pkt; |
| u64 result; |
| int rc; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.value = cpu_to_le64(event_type); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| 0, &result); |
| |
| if (rc) |
| dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type); |
| |
| return rc; |
| } |
| |
| int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, |
| size_t irq_arr_size) |
| { |
| struct cpucp_unmask_irq_arr_packet *pkt; |
| size_t total_pkt_size; |
| u64 result; |
| int rc; |
| |
| total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) + |
| irq_arr_size; |
| |
| /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ |
| total_pkt_size = (total_pkt_size + 0x7) & ~0x7; |
| |
| /* total_pkt_size is casted to u16 later on */ |
| if (total_pkt_size > USHRT_MAX) { |
| dev_err(hdev->dev, "too many elements in IRQ array\n"); |
| return -EINVAL; |
| } |
| |
| pkt = kzalloc(total_pkt_size, GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0])); |
| memcpy(&pkt->irqs, irq_arr, irq_arr_size); |
| |
| pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt, |
| total_pkt_size, 0, &result); |
| |
| if (rc) |
| dev_err(hdev->dev, "failed to unmask IRQ array\n"); |
| |
| kfree(pkt); |
| |
| return rc; |
| } |
| |
| int hl_fw_test_cpu_queue(struct hl_device *hdev) |
| { |
| struct cpucp_packet test_pkt = {}; |
| u64 result; |
| int rc; |
| |
| test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt, |
| sizeof(test_pkt), 0, &result); |
| |
| if (!rc) { |
| if (result != CPUCP_PACKET_FENCE_VAL) |
| dev_err(hdev->dev, |
| "CPU queue test failed (%#08llx)\n", result); |
| } else { |
| dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc); |
| } |
| |
| return rc; |
| } |
| |
| void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle) |
| { |
| u64 kernel_addr; |
| |
| kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size); |
| |
| *dma_handle = hdev->cpu_accessible_dma_address + |
| (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem); |
| |
| return (void *) (uintptr_t) kernel_addr; |
| } |
| |
| void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, |
| void *vaddr) |
| { |
| gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr, |
| size); |
| } |
| |
| int hl_fw_send_heartbeat(struct hl_device *hdev) |
| { |
| struct cpucp_packet hb_pkt; |
| u64 result; |
| int rc; |
| |
| memset(&hb_pkt, 0, sizeof(hb_pkt)); |
| hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt, |
| sizeof(hb_pkt), 0, &result); |
| |
| if ((rc) || (result != CPUCP_PACKET_FENCE_VAL)) |
| return -EIO; |
| |
| if (le32_to_cpu(hb_pkt.status_mask) & |
| CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) { |
| dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n"); |
| rc = -EIO; |
| } |
| |
| return rc; |
| } |
| |
| static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val, |
| u32 sts_val) |
| { |
| bool err_exists = false; |
| |
| if (!(err_val & CPU_BOOT_ERR0_ENABLED)) |
| return false; |
| |
| if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) { |
| dev_err(hdev->dev, |
| "Device boot error - DRAM initialization failed\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) { |
| dev_err(hdev->dev, "Device boot error - FIT image corrupted\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) { |
| dev_err(hdev->dev, |
| "Device boot error - Thermal Sensor initialization failed\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) { |
| if (hdev->bmc_enable) { |
| dev_err(hdev->dev, |
| "Device boot error - Skipped waiting for BMC\n"); |
| err_exists = true; |
| } else { |
| dev_info(hdev->dev, |
| "Device boot message - Skipped waiting for BMC\n"); |
| /* This is an info so we don't want it to disable the |
| * device |
| */ |
| err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED; |
| } |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) { |
| dev_err(hdev->dev, |
| "Device boot error - Serdes data from BMC not available\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) { |
| dev_err(hdev->dev, |
| "Device boot error - NIC F/W initialization failed\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) { |
| dev_err(hdev->dev, |
| "Device boot warning - security not ready\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) { |
| dev_err(hdev->dev, "Device boot error - security failure\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) { |
| dev_err(hdev->dev, "Device boot error - eFuse failure\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) { |
| dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_PLL_FAIL) { |
| dev_err(hdev->dev, "Device boot error - PLL failure\n"); |
| err_exists = true; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) { |
| /* Ignore this bit, don't prevent driver loading */ |
| dev_dbg(hdev->dev, "device unusable status is set\n"); |
| err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL; |
| } |
| |
| if (sts_val & CPU_BOOT_DEV_STS0_ENABLED) |
| dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val); |
| |
| /* All warnings should go here in order not to reach the unknown error validation */ |
| if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) { |
| dev_warn(hdev->dev, |
| "Device boot warning - Skipped DRAM initialization\n"); |
| /* This is a warning so we don't want it to disable the |
| * device |
| */ |
| err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) { |
| dev_warn(hdev->dev, |
| "Device boot warning - Failed to load preboot primary image\n"); |
| /* This is a warning so we don't want it to disable the |
| * device as we have a secondary preboot image |
| */ |
| err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL; |
| } |
| |
| if (err_val & CPU_BOOT_ERR0_TPM_FAIL) { |
| dev_warn(hdev->dev, |
| "Device boot warning - TPM failure\n"); |
| /* This is a warning so we don't want it to disable the |
| * device |
| */ |
| err_val &= ~CPU_BOOT_ERR0_TPM_FAIL; |
| } |
| |
| if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) { |
| dev_err(hdev->dev, |
| "Device boot error - unknown ERR0 error 0x%08x\n", err_val); |
| err_exists = true; |
| } |
| |
| /* return error only if it's in the predefined mask */ |
| if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) & |
| lower_32_bits(hdev->boot_error_status_mask))) |
| return true; |
| |
| return false; |
| } |
| |
| /* placeholder for ERR1 as no errors defined there yet */ |
| static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val, |
| u32 sts_val) |
| { |
| /* |
| * keep this variable to preserve the logic of the function. |
| * this way it would require less modifications when error will be |
| * added to DEV_ERR1 |
| */ |
| bool err_exists = false; |
| |
| if (!(err_val & CPU_BOOT_ERR1_ENABLED)) |
| return false; |
| |
| if (sts_val & CPU_BOOT_DEV_STS1_ENABLED) |
| dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val); |
| |
| if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) { |
| dev_err(hdev->dev, |
| "Device boot error - unknown ERR1 error 0x%08x\n", |
| err_val); |
| err_exists = true; |
| } |
| |
| /* return error only if it's in the predefined mask */ |
| if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) & |
| upper_32_bits(hdev->boot_error_status_mask))) |
| return true; |
| |
| return false; |
| } |
| |
| static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, |
| u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg, |
| u32 cpu_boot_dev_status1_reg) |
| { |
| u32 err_val, status_val; |
| bool err_exists = false; |
| |
| /* Some of the firmware status codes are deprecated in newer f/w |
| * versions. In those versions, the errors are reported |
| * in different registers. Therefore, we need to check those |
| * registers and print the exact errors. Moreover, there |
| * may be multiple errors, so we need to report on each error |
| * separately. Some of the error codes might indicate a state |
| * that is not an error per-se, but it is an error in production |
| * environment |
| */ |
| err_val = RREG32(boot_err0_reg); |
| status_val = RREG32(cpu_boot_dev_status0_reg); |
| err_exists = fw_report_boot_dev0(hdev, err_val, status_val); |
| |
| err_val = RREG32(boot_err1_reg); |
| status_val = RREG32(cpu_boot_dev_status1_reg); |
| err_exists |= fw_report_boot_dev1(hdev, err_val, status_val); |
| |
| if (err_exists) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| int hl_fw_cpucp_info_get(struct hl_device *hdev, |
| u32 sts_boot_dev_sts0_reg, |
| u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, |
| u32 boot_err1_reg) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct cpucp_packet pkt = {}; |
| dma_addr_t cpucp_info_dma_addr; |
| void *cpucp_info_cpu_addr; |
| char *kernel_ver; |
| u64 result; |
| int rc; |
| |
| cpucp_info_cpu_addr = |
| hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, |
| sizeof(struct cpucp_info), |
| &cpucp_info_dma_addr); |
| if (!cpucp_info_cpu_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate DMA memory for CPU-CP info packet\n"); |
| return -ENOMEM; |
| } |
| |
| memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.addr = cpu_to_le64(cpucp_info_dma_addr); |
| pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info)); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP info pkt, error %d\n", rc); |
| goto out; |
| } |
| |
| rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg, |
| sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg); |
| if (rc) { |
| dev_err(hdev->dev, "Errors in device boot\n"); |
| goto out; |
| } |
| |
| memcpy(&prop->cpucp_info, cpucp_info_cpu_addr, |
| sizeof(prop->cpucp_info)); |
| |
| rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to build hwmon channel info, error %d\n", rc); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version); |
| if (kernel_ver) { |
| dev_info(hdev->dev, "Linux version %s", kernel_ver); |
| kfree(kernel_ver); |
| } |
| |
| /* assume EQ code doesn't need to check eqe index */ |
| hdev->event_queue.check_eqe_index = false; |
| |
| /* Read FW application security bits again */ |
| if (prop->fw_cpu_boot_dev_sts0_valid) { |
| prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg); |
| if (prop->fw_app_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_EQ_INDEX_EN) |
| hdev->event_queue.check_eqe_index = true; |
| } |
| |
| if (prop->fw_cpu_boot_dev_sts1_valid) |
| prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg); |
| |
| out: |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, |
| sizeof(struct cpucp_info), cpucp_info_cpu_addr); |
| |
| return rc; |
| } |
| |
| static int hl_fw_send_msi_info_msg(struct hl_device *hdev) |
| { |
| struct cpucp_array_data_packet *pkt; |
| size_t total_pkt_size, data_size; |
| u64 result; |
| int rc; |
| |
| /* skip sending this info for unsupported ASICs */ |
| if (!hdev->asic_funcs->get_msi_info) |
| return 0; |
| |
| data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32); |
| total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size; |
| |
| /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ |
| total_pkt_size = (total_pkt_size + 0x7) & ~0x7; |
| |
| /* total_pkt_size is casted to u16 later on */ |
| if (total_pkt_size > USHRT_MAX) { |
| dev_err(hdev->dev, "CPUCP array data is too big\n"); |
| return -EINVAL; |
| } |
| |
| pkt = kzalloc(total_pkt_size, GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES); |
| |
| memset((void *) &pkt->data, 0xFF, data_size); |
| hdev->asic_funcs->get_msi_info(pkt->data); |
| |
| pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt, |
| total_pkt_size, 0, &result); |
| |
| /* |
| * in case packet result is invalid it means that FW does not support |
| * this feature and will use default/hard coded MSI values. no reason |
| * to stop the boot |
| */ |
| if (rc && result == cpucp_packet_invalid) |
| rc = 0; |
| |
| if (rc) |
| dev_err(hdev->dev, "failed to send CPUCP array data\n"); |
| |
| kfree(pkt); |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_handshake(struct hl_device *hdev, |
| u32 sts_boot_dev_sts0_reg, |
| u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, |
| u32 boot_err1_reg) |
| { |
| int rc; |
| |
| rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg, |
| sts_boot_dev_sts1_reg, boot_err0_reg, |
| boot_err1_reg); |
| if (rc) |
| return rc; |
| |
| return hl_fw_send_msi_info_msg(hdev); |
| } |
| |
| int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) |
| { |
| struct cpucp_packet pkt = {}; |
| void *eeprom_info_cpu_addr; |
| dma_addr_t eeprom_info_dma_addr; |
| u64 result; |
| int rc; |
| |
| eeprom_info_cpu_addr = |
| hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, |
| max_size, &eeprom_info_dma_addr); |
| if (!eeprom_info_cpu_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate DMA memory for CPU-CP EEPROM packet\n"); |
| return -ENOMEM; |
| } |
| |
| memset(eeprom_info_cpu_addr, 0, max_size); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.addr = cpu_to_le64(eeprom_info_dma_addr); |
| pkt.data_max_size = cpu_to_le32(max_size); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_EEPROM_TIMEOUT_USEC, &result); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP EEPROM packet, error %d\n", |
| rc); |
| goto out; |
| } |
| |
| /* result contains the actual size */ |
| memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size)); |
| |
| out: |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, max_size, |
| eeprom_info_cpu_addr); |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, |
| struct hl_info_pci_counters *counters) |
| { |
| struct cpucp_packet pkt = {}; |
| u64 result; |
| int rc; |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| /* Fetch PCI rx counter */ |
| pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx); |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); |
| return rc; |
| } |
| counters->rx_throughput = result; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| /* Fetch PCI tx counter */ |
| pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx); |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); |
| return rc; |
| } |
| counters->tx_throughput = result; |
| |
| /* Fetch PCI replay counter */ |
| memset(&pkt, 0, sizeof(pkt)); |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); |
| return rc; |
| } |
| counters->replay_cnt = (u32) result; |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy) |
| { |
| struct cpucp_packet pkt = {}; |
| u64 result; |
| int rc; |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CpuCP total energy pkt, error %d\n", |
| rc); |
| return rc; |
| } |
| |
| *total_energy = result; |
| |
| return rc; |
| } |
| |
| int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, |
| enum pll_index *pll_index) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u8 pll_byte, pll_bit_off; |
| bool dynamic_pll; |
| int fw_pll_idx; |
| |
| dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_DYN_PLL_EN); |
| |
| if (!dynamic_pll) { |
| /* |
| * in case we are working with legacy FW (each asic has unique |
| * PLL numbering) use the driver based index as they are |
| * aligned with fw legacy numbering |
| */ |
| *pll_index = input_pll_index; |
| return 0; |
| } |
| |
| /* retrieve a FW compatible PLL index based on |
| * ASIC specific user request |
| */ |
| fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index); |
| if (fw_pll_idx < 0) { |
| dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n", |
| input_pll_index, fw_pll_idx); |
| return -EINVAL; |
| } |
| |
| /* PLL map is a u8 array */ |
| pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3]; |
| pll_bit_off = fw_pll_idx & 0x7; |
| |
| if (!(pll_byte & BIT(pll_bit_off))) { |
| dev_err(hdev->dev, "PLL index %d is not supported\n", |
| fw_pll_idx); |
| return -EINVAL; |
| } |
| |
| *pll_index = fw_pll_idx; |
| |
| return 0; |
| } |
| |
| int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, |
| u16 *pll_freq_arr) |
| { |
| struct cpucp_packet pkt; |
| enum pll_index used_pll_idx; |
| u64 result; |
| int rc; |
| |
| rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); |
| if (rc) |
| return rc; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.pll_type = __cpu_to_le16((u16)used_pll_idx); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) |
| dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc); |
| |
| pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result); |
| pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result); |
| pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result); |
| pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result); |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power) |
| { |
| struct cpucp_packet pkt; |
| u64 result; |
| int rc; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.type = cpu_to_le16(CPUCP_POWER_INPUT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to read power, error %d\n", rc); |
| return rc; |
| } |
| |
| *power = result; |
| |
| return rc; |
| } |
| |
| int hl_fw_dram_replaced_row_get(struct hl_device *hdev, |
| struct cpucp_hbm_row_info *info) |
| { |
| struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr; |
| dma_addr_t cpucp_repl_rows_info_dma_addr; |
| struct cpucp_packet pkt = {}; |
| u64 result; |
| int rc; |
| |
| cpucp_repl_rows_info_cpu_addr = |
| hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, |
| sizeof(struct cpucp_hbm_row_info), |
| &cpucp_repl_rows_info_dma_addr); |
| if (!cpucp_repl_rows_info_cpu_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate DMA memory for CPU-CP replaced rows info packet\n"); |
| return -ENOMEM; |
| } |
| |
| memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr); |
| pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info)); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc); |
| goto out; |
| } |
| |
| memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info)); |
| |
| out: |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, |
| sizeof(struct cpucp_hbm_row_info), |
| cpucp_repl_rows_info_cpu_addr); |
| |
| return rc; |
| } |
| |
| int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num) |
| { |
| struct cpucp_packet pkt; |
| u64 result; |
| int rc; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP pending rows info pkt, error %d\n", rc); |
| goto out; |
| } |
| |
| *pend_rows_num = (u32) result; |
| out: |
| return rc; |
| } |
| |
| void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev) |
| { |
| struct static_fw_load_mgr *static_loader = |
| &hdev->fw_loader.static_loader; |
| int rc; |
| |
| if (hdev->asic_prop.dynamic_fw_load) { |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, |
| COMMS_RST_DEV, 0, false, |
| hdev->fw_loader.cpu_timeout); |
| if (rc) |
| dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n"); |
| } else { |
| WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV); |
| } |
| } |
| |
| void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev) |
| { |
| struct static_fw_load_mgr *static_loader = |
| &hdev->fw_loader.static_loader; |
| int rc; |
| |
| if (hdev->device_cpu_is_halted) |
| return; |
| |
| /* Stop device CPU to make sure nothing bad happens */ |
| if (hdev->asic_prop.dynamic_fw_load) { |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, |
| COMMS_GOTO_WFE, 0, true, |
| hdev->fw_loader.cpu_timeout); |
| if (rc) |
| dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n"); |
| } else { |
| WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE); |
| msleep(static_loader->cpu_reset_wait_msec); |
| |
| /* Must clear this register in order to prevent preboot |
| * from reading WFE after reboot |
| */ |
| WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA); |
| } |
| |
| hdev->device_cpu_is_halted = true; |
| } |
| |
| static void detect_cpu_boot_status(struct hl_device *hdev, u32 status) |
| { |
| /* Some of the status codes below are deprecated in newer f/w |
| * versions but we keep them here for backward compatibility |
| */ |
| switch (status) { |
| case CPU_BOOT_STATUS_NA: |
| dev_err(hdev->dev, |
| "Device boot progress - BTL/ROM did NOT run\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_WFE: |
| dev_err(hdev->dev, |
| "Device boot progress - Stuck inside WFE loop\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_BTL: |
| dev_err(hdev->dev, |
| "Device boot progress - Stuck in BTL\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_PREBOOT: |
| dev_err(hdev->dev, |
| "Device boot progress - Stuck in Preboot\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_SPL: |
| dev_err(hdev->dev, |
| "Device boot progress - Stuck in SPL\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_UBOOT: |
| dev_err(hdev->dev, |
| "Device boot progress - Stuck in u-boot\n"); |
| break; |
| case CPU_BOOT_STATUS_DRAM_INIT_FAIL: |
| dev_err(hdev->dev, |
| "Device boot progress - DRAM initialization failed\n"); |
| break; |
| case CPU_BOOT_STATUS_UBOOT_NOT_READY: |
| dev_err(hdev->dev, |
| "Device boot progress - Cannot boot\n"); |
| break; |
| case CPU_BOOT_STATUS_TS_INIT_FAIL: |
| dev_err(hdev->dev, |
| "Device boot progress - Thermal Sensor initialization failed\n"); |
| break; |
| case CPU_BOOT_STATUS_SECURITY_READY: |
| dev_err(hdev->dev, |
| "Device boot progress - Stuck in preboot after security initialization\n"); |
| break; |
| default: |
| dev_err(hdev->dev, |
| "Device boot progress - Invalid status code %d\n", |
| status); |
| break; |
| } |
| } |
| |
| static int hl_fw_read_preboot_caps(struct hl_device *hdev, |
| u32 cpu_boot_status_reg, |
| u32 sts_boot_dev_sts0_reg, |
| u32 sts_boot_dev_sts1_reg, |
| u32 boot_err0_reg, u32 boot_err1_reg, |
| u32 timeout) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 status, reg_val; |
| int rc; |
| |
| /* Need to check two possible scenarios: |
| * |
| * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where |
| * the preboot is waiting for the boot fit |
| * |
| * All other status values - for older firmwares where the uboot was |
| * loaded from the FLASH |
| */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_IN_UBOOT) || |
| (status == CPU_BOOT_STATUS_DRAM_RDY) || |
| (status == CPU_BOOT_STATUS_NIC_FW_RDY) || |
| (status == CPU_BOOT_STATUS_READY_TO_BOOT) || |
| (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT), |
| hdev->fw_poll_interval_usec, |
| timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, "CPU boot ready status timeout\n"); |
| detect_cpu_boot_status(hdev, status); |
| |
| /* If we read all FF, then something is totally wrong, no point |
| * of reading specific errors |
| */ |
| if (status != -1) |
| fw_read_errors(hdev, boot_err0_reg, boot_err1_reg, |
| sts_boot_dev_sts0_reg, |
| sts_boot_dev_sts1_reg); |
| return -EIO; |
| } |
| |
| /* |
| * the registers DEV_STS* contain FW capabilities/features. |
| * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED |
| * is set. |
| * In the first read of this register we store the value of this |
| * register ONLY if the register is enabled (which will be propagated |
| * to next stages) and also mark the register as valid. |
| * In case it is not enabled the stored value will be left 0- all |
| * caps/features are off |
| */ |
| reg_val = RREG32(sts_boot_dev_sts0_reg); |
| if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) { |
| prop->fw_cpu_boot_dev_sts0_valid = true; |
| prop->fw_preboot_cpu_boot_dev_sts0 = reg_val; |
| } |
| |
| reg_val = RREG32(sts_boot_dev_sts1_reg); |
| if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) { |
| prop->fw_cpu_boot_dev_sts1_valid = true; |
| prop->fw_preboot_cpu_boot_dev_sts1 = reg_val; |
| } |
| |
| prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_FW_LD_COM_EN); |
| |
| /* initialize FW loader once we know what load protocol is used */ |
| hdev->asic_funcs->init_firmware_loader(hdev); |
| |
| dev_dbg(hdev->dev, "Attempting %s FW load\n", |
| prop->dynamic_fw_load ? "dynamic" : "legacy"); |
| return 0; |
| } |
| |
| static int hl_fw_static_read_device_fw_version(struct hl_device *hdev, |
| enum hl_fw_component fwc) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct fw_load_mgr *fw_loader = &hdev->fw_loader; |
| struct static_fw_load_mgr *static_loader; |
| char *dest, *boot_ver, *preboot_ver; |
| u32 ver_off, limit; |
| const char *name; |
| char btl_ver[32]; |
| |
| static_loader = &hdev->fw_loader.static_loader; |
| |
| switch (fwc) { |
| case FW_COMP_BOOT_FIT: |
| ver_off = RREG32(static_loader->boot_fit_version_offset_reg); |
| dest = prop->uboot_ver; |
| name = "Boot-fit"; |
| limit = static_loader->boot_fit_version_max_off; |
| break; |
| case FW_COMP_PREBOOT: |
| ver_off = RREG32(static_loader->preboot_version_offset_reg); |
| dest = prop->preboot_ver; |
| name = "Preboot"; |
| limit = static_loader->preboot_version_max_off; |
| break; |
| default: |
| dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); |
| return -EIO; |
| } |
| |
| ver_off &= static_loader->sram_offset_mask; |
| |
| if (ver_off < limit) { |
| memcpy_fromio(dest, |
| hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off, |
| VERSION_MAX_LEN); |
| } else { |
| dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n", |
| name, ver_off); |
| strscpy(dest, "unavailable", VERSION_MAX_LEN); |
| return -EIO; |
| } |
| |
| if (fwc == FW_COMP_BOOT_FIT) { |
| boot_ver = extract_fw_ver_from_str(prop->uboot_ver); |
| if (boot_ver) { |
| dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); |
| kfree(boot_ver); |
| } |
| } else if (fwc == FW_COMP_PREBOOT) { |
| preboot_ver = strnstr(prop->preboot_ver, "Preboot", |
| VERSION_MAX_LEN); |
| if (preboot_ver && preboot_ver != prop->preboot_ver) { |
| strscpy(btl_ver, prop->preboot_ver, |
| min((int) (preboot_ver - prop->preboot_ver), |
| 31)); |
| dev_info(hdev->dev, "%s\n", btl_ver); |
| } |
| |
| preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); |
| if (preboot_ver) { |
| dev_info(hdev->dev, "preboot version %s\n", |
| preboot_ver); |
| kfree(preboot_ver); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * hl_fw_preboot_update_state - update internal data structures during |
| * handshake with preboot |
| * |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static void hl_fw_preboot_update_state(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1; |
| |
| cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0; |
| cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1; |
| |
| /* We read boot_dev_sts registers multiple times during boot: |
| * 1. preboot - a. Check whether the security status bits are valid |
| * b. Check whether fw security is enabled |
| * c. Check whether hard reset is done by preboot |
| * 2. boot cpu - a. Fetch boot cpu security status |
| * b. Check whether hard reset is done by boot cpu |
| * 3. FW application - a. Fetch fw application security status |
| * b. Check whether hard reset is done by fw app |
| */ |
| prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); |
| |
| dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n", |
| cpu_boot_dev_sts0); |
| |
| dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n", |
| cpu_boot_dev_sts1); |
| |
| dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n", |
| prop->hard_reset_done_by_fw ? "enabled" : "disabled"); |
| |
| dev_dbg(hdev->dev, "firmware-level security is %s\n", |
| prop->fw_security_enabled ? "enabled" : "disabled"); |
| |
| dev_dbg(hdev->dev, "GIC controller is %s\n", |
| prop->gic_interrupts_enable ? "enabled" : "disabled"); |
| } |
| |
| static int hl_fw_static_read_preboot_status(struct hl_device *hdev) |
| { |
| int rc; |
| |
| rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, |
| u32 sts_boot_dev_sts0_reg, |
| u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, |
| u32 boot_err1_reg, u32 timeout) |
| { |
| int rc; |
| |
| if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU)) |
| return 0; |
| |
| /* |
| * In order to determine boot method (static VS dymanic) we need to |
| * read the boot caps register |
| */ |
| rc = hl_fw_read_preboot_caps(hdev, cpu_boot_status_reg, |
| sts_boot_dev_sts0_reg, |
| sts_boot_dev_sts1_reg, boot_err0_reg, |
| boot_err1_reg, timeout); |
| if (rc) |
| return rc; |
| |
| hl_fw_preboot_update_state(hdev); |
| |
| /* no need to read preboot status in dynamic load */ |
| if (hdev->asic_prop.dynamic_fw_load) |
| return 0; |
| |
| return hl_fw_static_read_preboot_status(hdev); |
| } |
| |
| /* associate string with COMM status */ |
| static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = { |
| [COMMS_STS_NOOP] = "NOOP", |
| [COMMS_STS_ACK] = "ACK", |
| [COMMS_STS_OK] = "OK", |
| [COMMS_STS_ERR] = "ERR", |
| [COMMS_STS_VALID_ERR] = "VALID_ERR", |
| [COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR", |
| }; |
| |
| /** |
| * hl_fw_dynamic_report_error_status - report error status |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @status: value of FW status register |
| * @expected_status: the expected status |
| */ |
| static void hl_fw_dynamic_report_error_status(struct hl_device *hdev, |
| u32 status, |
| enum comms_sts expected_status) |
| { |
| enum comms_sts comm_status = |
| FIELD_GET(COMMS_STATUS_STATUS_MASK, status); |
| |
| if (comm_status < COMMS_STS_INVLD_LAST) |
| dev_err(hdev->dev, "Device status %s, expected status: %s\n", |
| hl_dynamic_fw_status_str[comm_status], |
| hl_dynamic_fw_status_str[expected_status]); |
| else |
| dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n", |
| comm_status, |
| hl_dynamic_fw_status_str[expected_status]); |
| } |
| |
| /** |
| * hl_fw_dynamic_send_cmd - send LKD to FW cmd |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @cmd: LKD to FW cmd code |
| * @size: size of next FW component to be loaded (0 if not necessary) |
| * |
| * LDK to FW exact command layout is defined at struct comms_command. |
| * note: the size argument is used only when the next FW component should be |
| * loaded, otherwise it shall be 0. the size is used by the FW in later |
| * protocol stages and when sending only indicating the amount of memory |
| * to be allocated by the FW to receive the next boot component. |
| */ |
| static void hl_fw_dynamic_send_cmd(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| enum comms_cmd cmd, unsigned int size) |
| { |
| struct cpu_dyn_regs *dyn_regs; |
| u32 val; |
| |
| dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; |
| |
| val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd); |
| val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size); |
| |
| WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val); |
| } |
| |
| /** |
| * hl_fw_dynamic_extract_fw_response - update the FW response |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @response: FW response |
| * @status: the status read from CPU status register |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| struct fw_response *response, |
| u32 status) |
| { |
| response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status); |
| response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) << |
| COMMS_STATUS_OFFSET_ALIGN_SHIFT; |
| response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status); |
| |
| if ((response->ram_type != COMMS_SRAM) && |
| (response->ram_type != COMMS_DRAM)) { |
| dev_err(hdev->dev, "FW status: invalid RAM type %u\n", |
| response->ram_type); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @expected_status: expected status to wait for |
| * @timeout: timeout for status wait |
| * |
| * @return 0 on success, otherwise non-zero error code |
| * |
| * waiting for status from FW include polling the FW status register until |
| * expected status is received or timeout occurs (whatever occurs first). |
| */ |
| static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| enum comms_sts expected_status, |
| u32 timeout) |
| { |
| struct cpu_dyn_regs *dyn_regs; |
| u32 status; |
| int rc; |
| |
| dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; |
| |
| /* Wait for expected status */ |
| rc = hl_poll_timeout( |
| hdev, |
| le32_to_cpu(dyn_regs->cpu_cmd_status_to_host), |
| status, |
| FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status, |
| hdev->fw_poll_interval_usec, |
| timeout); |
| |
| if (rc) { |
| hl_fw_dynamic_report_error_status(hdev, status, |
| expected_status); |
| return -EIO; |
| } |
| |
| /* |
| * skip storing FW response for NOOP to preserve the actual desired |
| * FW status |
| */ |
| if (expected_status == COMMS_STS_NOOP) |
| return 0; |
| |
| rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader, |
| &fw_loader->dynamic_loader.response, |
| status); |
| return rc; |
| } |
| |
| /** |
| * hl_fw_dynamic_send_clear_cmd - send clear command to FW |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * |
| * @return 0 on success, otherwise non-zero error code |
| * |
| * after command cycle between LKD to FW CPU (i.e. LKD got an expected status |
| * from FW) we need to clear the CPU status register in order to avoid garbage |
| * between command cycles. |
| * This is done by sending clear command and polling the CPU to LKD status |
| * register to hold the status NOOP |
| */ |
| static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader) |
| { |
| hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0); |
| |
| return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP, |
| fw_loader->cpu_timeout); |
| } |
| |
| /** |
| * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @cmd: LKD to FW cmd code |
| * @size: size of next FW component to be loaded (0 if not necessary) |
| * @wait_ok: if true also wait for OK response from FW |
| * @timeout: timeout for status wait |
| * |
| * @return 0 on success, otherwise non-zero error code |
| * |
| * brief: |
| * when sending protocol command we have the following steps: |
| * - send clear (clear command and verify clear status register) |
| * - send the actual protocol command |
| * - wait for ACK on the protocol command |
| * - send clear |
| * - send NOOP |
| * if, in addition, the specific protocol command should wait for OK then: |
| * - wait for OK |
| * - send clear |
| * - send NOOP |
| * |
| * NOTES: |
| * send clear: this is necessary in order to clear the status register to avoid |
| * leftovers between command |
| * NOOP command: necessary to avoid loop on the clear command by the FW |
| */ |
| int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| enum comms_cmd cmd, unsigned int size, |
| bool wait_ok, u32 timeout) |
| { |
| int rc; |
| |
| /* first send clear command to clean former commands */ |
| rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); |
| |
| /* send the actual command */ |
| hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size); |
| |
| /* wait for ACK for the command */ |
| rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK, |
| timeout); |
| if (rc) |
| return rc; |
| |
| /* clear command to prepare for NOOP command */ |
| rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); |
| if (rc) |
| return rc; |
| |
| /* send the actual NOOP command */ |
| hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); |
| |
| if (!wait_ok) |
| return 0; |
| |
| rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK, |
| timeout); |
| if (rc) |
| return rc; |
| |
| /* clear command to prepare for NOOP command */ |
| rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); |
| if (rc) |
| return rc; |
| |
| /* send the actual NOOP command */ |
| hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * hl_fw_compat_crc32 - CRC compatible with FW |
| * |
| * @data: pointer to the data |
| * @size: size of the data |
| * |
| * @return the CRC32 result |
| * |
| * NOTE: kernel's CRC32 differ's from standard CRC32 calculation. |
| * in order to be aligned we need to flip the bits of both the input |
| * initial CRC and kernel's CRC32 result. |
| * in addition both sides use initial CRC of 0, |
| */ |
| static u32 hl_fw_compat_crc32(u8 *data, size_t size) |
| { |
| return ~crc32_le(~((u32)0), data, size); |
| } |
| |
| /** |
| * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory |
| * transfer (image or descriptor) between |
| * host and FW |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @addr: device address of memory transfer |
| * @size: memory transter size |
| * @region: PCI memory region |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev, |
| u64 addr, size_t size, |
| struct pci_mem_region *region) |
| { |
| u64 end_addr; |
| |
| /* now make sure that the memory transfer is within region's bounds */ |
| end_addr = addr + size; |
| if (end_addr >= region->region_base + region->region_size) { |
| dev_err(hdev->dev, |
| "dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n", |
| end_addr); |
| return -EIO; |
| } |
| |
| /* |
| * now make sure memory transfer is within predefined BAR bounds. |
| * this is to make sure we do not need to set the bar (e.g. for DRAM |
| * memory transfers) |
| */ |
| if (end_addr >= region->region_base - region->offset_in_bar + |
| region->bar_size) { |
| dev_err(hdev->dev, |
| "FW image beyond PCI BAR bounds\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * hl_fw_dynamic_validate_descriptor - validate FW descriptor |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @fw_desc: the descriptor form FW |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| struct lkd_fw_comms_desc *fw_desc) |
| { |
| struct pci_mem_region *region; |
| enum pci_region region_id; |
| size_t data_size; |
| u32 data_crc32; |
| u8 *data_ptr; |
| u64 addr; |
| int rc; |
| |
| if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC) { |
| dev_err(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n", |
| fw_desc->header.magic); |
| return -EIO; |
| } |
| |
| if (fw_desc->header.version != HL_COMMS_DESC_VER) { |
| dev_err(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n", |
| fw_desc->header.version); |
| return -EIO; |
| } |
| |
| /* |
| * calc CRC32 of data without header. |
| * note that no alignment/stride address issues here as all structures |
| * are 64 bit padded |
| */ |
| data_size = sizeof(struct lkd_fw_comms_desc) - |
| sizeof(struct comms_desc_header); |
| data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header); |
| |
| if (le16_to_cpu(fw_desc->header.size) != data_size) { |
| dev_err(hdev->dev, |
| "Invalid descriptor size 0x%x, expected size 0x%zx\n", |
| le16_to_cpu(fw_desc->header.size), data_size); |
| return -EIO; |
| } |
| |
| data_crc32 = hl_fw_compat_crc32(data_ptr, data_size); |
| |
| if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) { |
| dev_err(hdev->dev, |
| "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n", |
| data_crc32, fw_desc->header.crc32); |
| return -EIO; |
| } |
| |
| /* find memory region to which to copy the image */ |
| addr = le64_to_cpu(fw_desc->img_addr); |
| region_id = hl_get_pci_memory_region(hdev, addr); |
| if ((region_id != PCI_REGION_SRAM) && |
| ((region_id != PCI_REGION_DRAM))) { |
| dev_err(hdev->dev, |
| "Invalid region to copy FW image address=%llx\n", addr); |
| return -EIO; |
| } |
| |
| region = &hdev->pci_mem_region[region_id]; |
| |
| /* store the region for the copy stage */ |
| fw_loader->dynamic_loader.image_region = region; |
| |
| /* |
| * here we know that the start address is valid, now make sure that the |
| * image is within region's bounds |
| */ |
| rc = hl_fw_dynamic_validate_memory_bound(hdev, addr, |
| fw_loader->dynamic_loader.fw_image_size, |
| region); |
| if (rc) { |
| dev_err(hdev->dev, |
| "invalid mem transfer request for FW image\n"); |
| return rc; |
| } |
| |
| /* here we can mark the descriptor as valid as the content has been validated */ |
| fw_loader->dynamic_loader.fw_desc_valid = true; |
| |
| return 0; |
| } |
| |
| static int hl_fw_dynamic_validate_response(struct hl_device *hdev, |
| struct fw_response *response, |
| struct pci_mem_region *region) |
| { |
| u64 device_addr; |
| int rc; |
| |
| device_addr = region->region_base + response->ram_offset; |
| |
| /* |
| * validate that the descriptor is within region's bounds |
| * Note that as the start address was supplied according to the RAM |
| * type- testing only the end address is enough |
| */ |
| rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr, |
| sizeof(struct lkd_fw_comms_desc), |
| region); |
| return rc; |
| } |
| |
| /** |
| * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader) |
| { |
| struct lkd_fw_comms_desc *fw_desc; |
| struct pci_mem_region *region; |
| struct fw_response *response; |
| enum pci_region region_id; |
| void __iomem *src; |
| int rc; |
| |
| fw_desc = &fw_loader->dynamic_loader.comm_desc; |
| response = &fw_loader->dynamic_loader.response; |
| |
| region_id = (response->ram_type == COMMS_SRAM) ? |
| PCI_REGION_SRAM : PCI_REGION_DRAM; |
| |
| region = &hdev->pci_mem_region[region_id]; |
| |
| rc = hl_fw_dynamic_validate_response(hdev, response, region); |
| if (rc) { |
| dev_err(hdev->dev, |
| "invalid mem transfer request for FW descriptor\n"); |
| return rc; |
| } |
| |
| /* |
| * extract address to copy the descriptor from |
| * in addition, as the descriptor value is going to be over-ridden by new data- we mark it |
| * as invalid. |
| * it will be marked again as valid once validated |
| */ |
| fw_loader->dynamic_loader.fw_desc_valid = false; |
| src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + |
| response->ram_offset; |
| memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc)); |
| |
| return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc); |
| } |
| |
| /** |
| * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @next_image_size: size to allocate for next FW component |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| size_t next_image_size) |
| { |
| int rc; |
| |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC, |
| next_image_size, true, |
| fw_loader->cpu_timeout); |
| if (rc) |
| return rc; |
| |
| return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader); |
| } |
| |
| /** |
| * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fwc: the firmware component |
| * @fw_version: fw component's version string |
| */ |
| static void hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev, |
| enum hl_fw_component fwc, |
| const char *fw_version) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| char *preboot_ver, *boot_ver; |
| char btl_ver[32]; |
| |
| switch (fwc) { |
| case FW_COMP_BOOT_FIT: |
| strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN); |
| boot_ver = extract_fw_ver_from_str(prop->uboot_ver); |
| if (boot_ver) { |
| dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); |
| kfree(boot_ver); |
| } |
| |
| break; |
| case FW_COMP_PREBOOT: |
| strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN); |
| preboot_ver = strnstr(prop->preboot_ver, "Preboot", |
| VERSION_MAX_LEN); |
| if (preboot_ver && preboot_ver != prop->preboot_ver) { |
| strscpy(btl_ver, prop->preboot_ver, |
| min((int) (preboot_ver - prop->preboot_ver), |
| 31)); |
| dev_info(hdev->dev, "%s\n", btl_ver); |
| } |
| |
| preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); |
| if (preboot_ver) { |
| dev_info(hdev->dev, "preboot version %s\n", |
| preboot_ver); |
| kfree(preboot_ver); |
| } |
| |
| break; |
| default: |
| dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); |
| return; |
| } |
| } |
| |
| /** |
| * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw: fw descriptor |
| * @fw_loader: managing structure for loading device's FW |
| */ |
| static int hl_fw_dynamic_copy_image(struct hl_device *hdev, |
| const struct firmware *fw, |
| struct fw_load_mgr *fw_loader) |
| { |
| struct lkd_fw_comms_desc *fw_desc; |
| struct pci_mem_region *region; |
| void __iomem *dest; |
| u64 addr; |
| int rc; |
| |
| fw_desc = &fw_loader->dynamic_loader.comm_desc; |
| addr = le64_to_cpu(fw_desc->img_addr); |
| |
| /* find memory region to which to copy the image */ |
| region = fw_loader->dynamic_loader.image_region; |
| |
| dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + |
| (addr - region->region_base); |
| |
| rc = hl_fw_copy_fw_to_device(hdev, fw, dest, |
| fw_loader->boot_fit_img.src_off, |
| fw_loader->boot_fit_img.copy_size); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @msg: message |
| * @fw_loader: managing structure for loading device's FW |
| */ |
| static int hl_fw_dynamic_copy_msg(struct hl_device *hdev, |
| struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader) |
| { |
| struct lkd_fw_comms_desc *fw_desc; |
| struct pci_mem_region *region; |
| void __iomem *dest; |
| u64 addr; |
| int rc; |
| |
| fw_desc = &fw_loader->dynamic_loader.comm_desc; |
| addr = le64_to_cpu(fw_desc->img_addr); |
| |
| /* find memory region to which to copy the image */ |
| region = fw_loader->dynamic_loader.image_region; |
| |
| dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + |
| (addr - region->region_base); |
| |
| rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_fw_boot_fit_update_state - update internal data structures after boot-fit |
| * is loaded |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 |
| * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static void hl_fw_boot_fit_update_state(struct hl_device *hdev, |
| u32 cpu_boot_dev_sts0_reg, |
| u32 cpu_boot_dev_sts1_reg) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU; |
| |
| /* Read boot_cpu status bits */ |
| if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) { |
| prop->fw_bootfit_cpu_boot_dev_sts0 = |
| RREG32(cpu_boot_dev_sts0_reg); |
| |
| prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); |
| |
| dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n", |
| prop->fw_bootfit_cpu_boot_dev_sts0); |
| } |
| |
| if (prop->fw_cpu_boot_dev_sts1_valid) { |
| prop->fw_bootfit_cpu_boot_dev_sts1 = |
| RREG32(cpu_boot_dev_sts1_reg); |
| |
| dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n", |
| prop->fw_bootfit_cpu_boot_dev_sts1); |
| } |
| |
| dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n", |
| prop->hard_reset_done_by_fw ? "enabled" : "disabled"); |
| } |
| |
| static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev) |
| { |
| struct cpu_dyn_regs *dyn_regs = |
| &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; |
| |
| /* Check whether all 3 interrupt interfaces are set, if not use a |
| * single interface |
| */ |
| if (!hdev->asic_prop.gic_interrupts_enable && |
| !(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) { |
| dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq; |
| dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq; |
| |
| dev_warn(hdev->dev, |
| "Using a single interrupt interface towards cpucp"); |
| } |
| } |
| /** |
| * hl_fw_dynamic_load_image - load FW image using dynamic protocol |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @load_fwc: the FW component to be loaded |
| * @img_ld_timeout: image load timeout |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_dynamic_load_image(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, |
| enum hl_fw_component load_fwc, |
| u32 img_ld_timeout) |
| { |
| enum hl_fw_component cur_fwc; |
| const struct firmware *fw; |
| char *fw_name; |
| int rc = 0; |
| |
| /* |
| * when loading image we have one of 2 scenarios: |
| * 1. current FW component is preboot and we want to load boot-fit |
| * 2. current FW component is boot-fit and we want to load linux |
| */ |
| if (load_fwc == FW_COMP_BOOT_FIT) { |
| cur_fwc = FW_COMP_PREBOOT; |
| fw_name = fw_loader->boot_fit_img.image_name; |
| } else { |
| cur_fwc = FW_COMP_BOOT_FIT; |
| fw_name = fw_loader->linux_img.image_name; |
| } |
| |
| /* request FW in order to communicate to FW the size to be allocated */ |
| rc = hl_request_fw(hdev, &fw, fw_name); |
| if (rc) |
| return rc; |
| |
| /* store the image size for future validation */ |
| fw_loader->dynamic_loader.fw_image_size = fw->size; |
| |
| rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size); |
| if (rc) |
| goto release_fw; |
| |
| /* read preboot version */ |
| hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc, |
| fw_loader->dynamic_loader.comm_desc.cur_fw_ver); |
| |
| |
| /* update state according to boot stage */ |
| if (cur_fwc == FW_COMP_BOOT_FIT) { |
| struct cpu_dyn_regs *dyn_regs; |
| |
| dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; |
| hl_fw_boot_fit_update_state(hdev, |
| le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), |
| le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); |
| } |
| |
| /* copy boot fit to space allocated by FW */ |
| rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader); |
| if (rc) |
| goto release_fw; |
| |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, |
| 0, true, |
| fw_loader->cpu_timeout); |
| if (rc) |
| goto release_fw; |
| |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, |
| 0, false, |
| img_ld_timeout); |
| |
| release_fw: |
| hl_release_firmware(fw); |
| return rc; |
| } |
| |
| static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader) |
| { |
| struct dynamic_fw_load_mgr *dyn_loader; |
| u32 status; |
| int rc; |
| |
| dyn_loader = &fw_loader->dynamic_loader; |
| |
| /* |
| * Make sure CPU boot-loader is running |
| * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux |
| * yet there is a debug scenario in which we loading uboot (without Linux) |
| * which at later stage is relocated to DRAM. In this case we expect |
| * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the |
| * poll flags |
| */ |
| rc = hl_poll_timeout( |
| hdev, |
| le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), |
| status, |
| (status == CPU_BOOT_STATUS_READY_TO_BOOT) || |
| (status == CPU_BOOT_STATUS_SRAM_AVAIL), |
| hdev->fw_poll_interval_usec, |
| dyn_loader->wait_for_bl_timeout); |
| if (rc) { |
| dev_err(hdev->dev, "failed to wait for boot\n"); |
| return rc; |
| } |
| |
| dev_dbg(hdev->dev, "uboot status = %d\n", status); |
| return 0; |
| } |
| |
| static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader) |
| { |
| struct dynamic_fw_load_mgr *dyn_loader; |
| u32 status; |
| int rc; |
| |
| dyn_loader = &fw_loader->dynamic_loader; |
| |
| /* Make sure CPU linux is running */ |
| |
| rc = hl_poll_timeout( |
| hdev, |
| le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), |
| status, |
| (status == CPU_BOOT_STATUS_SRAM_AVAIL), |
| hdev->fw_poll_interval_usec, |
| fw_loader->cpu_timeout); |
| if (rc) { |
| dev_err(hdev->dev, "failed to wait for Linux\n"); |
| return rc; |
| } |
| |
| dev_dbg(hdev->dev, "Boot status = %d\n", status); |
| return 0; |
| } |
| |
| /** |
| * hl_fw_linux_update_state - update internal data structures after Linux |
| * is loaded. |
| * Note: Linux initialization is comprised mainly |
| * of two stages - loading kernel (SRAM_AVAIL) |
| * & loading ARMCP. |
| * Therefore reading boot device status in any of |
| * these stages might result in different values. |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 |
| * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static void hl_fw_linux_update_state(struct hl_device *hdev, |
| u32 cpu_boot_dev_sts0_reg, |
| u32 cpu_boot_dev_sts1_reg) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX; |
| |
| /* Read FW application security bits */ |
| if (prop->fw_cpu_boot_dev_sts0_valid) { |
| prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg); |
| |
| prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); |
| |
| if (prop->fw_app_cpu_boot_dev_sts0 & |
| CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN) |
| prop->gic_interrupts_enable = false; |
| |
| dev_dbg(hdev->dev, |
| "Firmware application CPU status0 %#x\n", |
| prop->fw_app_cpu_boot_dev_sts0); |
| |
| dev_dbg(hdev->dev, "GIC controller is %s\n", |
| prop->gic_interrupts_enable ? |
| "enabled" : "disabled"); |
| } |
| |
| if (prop->fw_cpu_boot_dev_sts1_valid) { |
| prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg); |
| |
| dev_dbg(hdev->dev, |
| "Firmware application CPU status1 %#x\n", |
| prop->fw_app_cpu_boot_dev_sts1); |
| } |
| |
| dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n", |
| prop->hard_reset_done_by_fw ? "enabled" : "disabled"); |
| |
| dev_info(hdev->dev, "Successfully loaded firmware to device\n"); |
| } |
| |
| /** |
| * hl_fw_dynamic_send_msg - send a COMMS message with attached data |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * @msg_type: message type |
| * @data: data to be sent |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_dynamic_send_msg(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader, u8 msg_type, void *data) |
| { |
| struct lkd_msg_comms msg; |
| int rc; |
| |
| memset(&msg, 0, sizeof(msg)); |
| |
| /* create message to be sent */ |
| msg.header.type = msg_type; |
| msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header)); |
| msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC); |
| |
| switch (msg_type) { |
| case HL_COMMS_RESET_CAUSE_TYPE: |
| msg.reset_cause = *(__u8 *) data; |
| break; |
| default: |
| dev_err(hdev->dev, |
| "Send COMMS message - invalid message type %u\n", |
| msg_type); |
| return -EINVAL; |
| } |
| |
| rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, |
| sizeof(struct lkd_msg_comms)); |
| if (rc) |
| return rc; |
| |
| /* copy message to space allocated by FW */ |
| rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader); |
| if (rc) |
| return rc; |
| |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, |
| 0, true, |
| fw_loader->cpu_timeout); |
| if (rc) |
| return rc; |
| |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, |
| 0, true, |
| fw_loader->cpu_timeout); |
| if (rc) |
| return rc; |
| |
| return 0; |
| } |
| |
| /** |
| * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * |
| * @return 0 on success, otherwise non-zero error code |
| * |
| * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol. |
| * the communication is done using registers: |
| * - LKD command register |
| * - FW status register |
| * the protocol is race free. this goal is achieved by splitting the requests |
| * and response to known synchronization points between the LKD and the FW. |
| * each response to LKD request is known and bound to a predefined timeout. |
| * in case of timeout expiration without the desired status from FW- the |
| * protocol (and hence the boot) will fail. |
| */ |
| static int hl_fw_dynamic_init_cpu(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader) |
| { |
| struct cpu_dyn_regs *dyn_regs; |
| int rc; |
| |
| dev_info(hdev->dev, |
| "Loading firmware to device, may take some time...\n"); |
| |
| /* initialize FW descriptor as invalid */ |
| fw_loader->dynamic_loader.fw_desc_valid = false; |
| |
| /* |
| * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values! |
| * It will be updated from FW after hl_fw_dynamic_request_descriptor(). |
| */ |
| dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; |
| |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE, |
| 0, true, |
| fw_loader->cpu_timeout); |
| if (rc) |
| goto protocol_err; |
| |
| if (hdev->curr_reset_cause) { |
| rc = hl_fw_dynamic_send_msg(hdev, fw_loader, |
| HL_COMMS_RESET_CAUSE_TYPE, &hdev->curr_reset_cause); |
| if (rc) |
| goto protocol_err; |
| |
| /* Clear current reset cause */ |
| hdev->curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; |
| } |
| |
| if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) { |
| rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0); |
| if (rc) |
| goto protocol_err; |
| |
| /* read preboot version */ |
| hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT, |
| fw_loader->dynamic_loader.comm_desc.cur_fw_ver); |
| return 0; |
| } |
| |
| /* load boot fit to FW */ |
| rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT, |
| fw_loader->boot_fit_timeout); |
| if (rc) { |
| dev_err(hdev->dev, "failed to load boot fit\n"); |
| goto protocol_err; |
| } |
| |
| /* |
| * when testing FW load (without Linux) on PLDM we don't want to |
| * wait until boot fit is active as it may take several hours. |
| * instead, we load the bootfit and let it do all initializations in |
| * the background. |
| */ |
| if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX)) |
| return 0; |
| |
| rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader); |
| if (rc) |
| goto protocol_err; |
| |
| /* Enable DRAM scrambling before Linux boot and after successful |
| * UBoot |
| */ |
| hdev->asic_funcs->init_cpu_scrambler_dram(hdev); |
| |
| if (!(hdev->fw_components & FW_TYPE_LINUX)) { |
| dev_info(hdev->dev, "Skip loading Linux F/W\n"); |
| return 0; |
| } |
| |
| if (fw_loader->skip_bmc) { |
| rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, |
| COMMS_SKIP_BMC, 0, |
| true, |
| fw_loader->cpu_timeout); |
| if (rc) { |
| dev_err(hdev->dev, "failed to load boot fit\n"); |
| goto protocol_err; |
| } |
| } |
| |
| /* load Linux image to FW */ |
| rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX, |
| fw_loader->cpu_timeout); |
| if (rc) { |
| dev_err(hdev->dev, "failed to load Linux\n"); |
| goto protocol_err; |
| } |
| |
| rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader); |
| if (rc) |
| goto protocol_err; |
| |
| hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), |
| le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); |
| |
| hl_fw_dynamic_update_linux_interrupt_if(hdev); |
| |
| return 0; |
| |
| protocol_err: |
| if (fw_loader->dynamic_loader.fw_desc_valid) |
| fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0), |
| le32_to_cpu(dyn_regs->cpu_boot_err1), |
| le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), |
| le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); |
| return rc; |
| } |
| |
| /** |
| * hl_fw_static_init_cpu - initialize the device CPU using static protocol |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * @fw_loader: managing structure for loading device's FW |
| * |
| * @return 0 on success, otherwise non-zero error code |
| */ |
| static int hl_fw_static_init_cpu(struct hl_device *hdev, |
| struct fw_load_mgr *fw_loader) |
| { |
| u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status; |
| u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg; |
| struct static_fw_load_mgr *static_loader; |
| u32 cpu_boot_status_reg; |
| int rc; |
| |
| if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) |
| return 0; |
| |
| /* init common loader parameters */ |
| cpu_timeout = fw_loader->cpu_timeout; |
| |
| /* init static loader parameters */ |
| static_loader = &fw_loader->static_loader; |
| cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg; |
| msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg; |
| cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg; |
| cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg; |
| cpu_boot_status_reg = static_loader->cpu_boot_status_reg; |
| |
| dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n", |
| cpu_timeout / USEC_PER_SEC); |
| |
| /* Wait for boot FIT request */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT, |
| hdev->fw_poll_interval_usec, |
| fw_loader->boot_fit_timeout); |
| |
| if (rc) { |
| dev_dbg(hdev->dev, |
| "No boot fit request received, resuming boot\n"); |
| } else { |
| rc = hdev->asic_funcs->load_boot_fit_to_device(hdev); |
| if (rc) |
| goto out; |
| |
| /* Clear device CPU message status */ |
| WREG32(cpu_msg_status_reg, CPU_MSG_CLR); |
| |
| /* Signal device CPU that boot loader is ready */ |
| WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); |
| |
| /* Poll for CPU device ack */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_msg_status_reg, |
| status, |
| status == CPU_MSG_OK, |
| hdev->fw_poll_interval_usec, |
| fw_loader->boot_fit_timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Timeout waiting for boot fit load ack\n"); |
| goto out; |
| } |
| |
| /* Clear message */ |
| WREG32(msg_to_cpu_reg, KMD_MSG_NA); |
| } |
| |
| /* |
| * Make sure CPU boot-loader is running |
| * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux |
| * yet there is a debug scenario in which we loading uboot (without Linux) |
| * which at later stage is relocated to DRAM. In this case we expect |
| * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the |
| * poll flags |
| */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_DRAM_RDY) || |
| (status == CPU_BOOT_STATUS_NIC_FW_RDY) || |
| (status == CPU_BOOT_STATUS_READY_TO_BOOT) || |
| (status == CPU_BOOT_STATUS_SRAM_AVAIL), |
| hdev->fw_poll_interval_usec, |
| cpu_timeout); |
| |
| dev_dbg(hdev->dev, "uboot status = %d\n", status); |
| |
| /* Read U-Boot version now in case we will later fail */ |
| hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT); |
| |
| /* update state according to boot stage */ |
| hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg, |
| cpu_boot_dev_status1_reg); |
| |
| if (rc) { |
| detect_cpu_boot_status(hdev, status); |
| rc = -EIO; |
| goto out; |
| } |
| |
| /* Enable DRAM scrambling before Linux boot and after successful |
| * UBoot |
| */ |
| hdev->asic_funcs->init_cpu_scrambler_dram(hdev); |
| |
| if (!(hdev->fw_components & FW_TYPE_LINUX)) { |
| dev_info(hdev->dev, "Skip loading Linux F/W\n"); |
| rc = 0; |
| goto out; |
| } |
| |
| if (status == CPU_BOOT_STATUS_SRAM_AVAIL) { |
| rc = 0; |
| goto out; |
| } |
| |
| dev_info(hdev->dev, |
| "Loading firmware to device, may take some time...\n"); |
| |
| rc = hdev->asic_funcs->load_firmware_to_device(hdev); |
| if (rc) |
| goto out; |
| |
| if (fw_loader->skip_bmc) { |
| WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED), |
| hdev->fw_poll_interval_usec, |
| cpu_timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to get ACK on skipping BMC, %d\n", |
| status); |
| WREG32(msg_to_cpu_reg, KMD_MSG_NA); |
| rc = -EIO; |
| goto out; |
| } |
| } |
| |
| WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_SRAM_AVAIL), |
| hdev->fw_poll_interval_usec, |
| cpu_timeout); |
| |
| /* Clear message */ |
| WREG32(msg_to_cpu_reg, KMD_MSG_NA); |
| |
| if (rc) { |
| if (status == CPU_BOOT_STATUS_FIT_CORRUPTED) |
| dev_err(hdev->dev, |
| "Device reports FIT image is corrupted\n"); |
| else |
| dev_err(hdev->dev, |
| "Failed to load firmware to device, %d\n", |
| status); |
| |
| rc = -EIO; |
| goto out; |
| } |
| |
| rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, |
| fw_loader->static_loader.boot_err1_reg, |
| cpu_boot_dev_status0_reg, |
| cpu_boot_dev_status1_reg); |
| if (rc) |
| return rc; |
| |
| hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg, |
| cpu_boot_dev_status1_reg); |
| |
| return 0; |
| |
| out: |
| fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, |
| fw_loader->static_loader.boot_err1_reg, |
| cpu_boot_dev_status0_reg, |
| cpu_boot_dev_status1_reg); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_fw_init_cpu - initialize the device CPU |
| * |
| * @hdev: pointer to the habanalabs device structure |
| * |
| * @return 0 on success, otherwise non-zero error code |
| * |
| * perform necessary initializations for device's CPU. takes into account if |
| * init protocol is static or dynamic. |
| */ |
| int hl_fw_init_cpu(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct fw_load_mgr *fw_loader = &hdev->fw_loader; |
| |
| return prop->dynamic_fw_load ? |
| hl_fw_dynamic_init_cpu(hdev, fw_loader) : |
| hl_fw_static_init_cpu(hdev, fw_loader); |
| } |