| #ifndef __LINUX_UHCI_HCD_H |
| #define __LINUX_UHCI_HCD_H |
| |
| #include <linux/list.h> |
| #include <linux/usb.h> |
| |
| #define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT) |
| #define PIPE_DEVEP_MASK 0x0007ff00 |
| |
| |
| /* |
| * Universal Host Controller Interface data structures and defines |
| */ |
| |
| /* Command register */ |
| #define USBCMD 0 |
| #define USBCMD_RS 0x0001 /* Run/Stop */ |
| #define USBCMD_HCRESET 0x0002 /* Host reset */ |
| #define USBCMD_GRESET 0x0004 /* Global reset */ |
| #define USBCMD_EGSM 0x0008 /* Global Suspend Mode */ |
| #define USBCMD_FGR 0x0010 /* Force Global Resume */ |
| #define USBCMD_SWDBG 0x0020 /* SW Debug mode */ |
| #define USBCMD_CF 0x0040 /* Config Flag (sw only) */ |
| #define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */ |
| |
| /* Status register */ |
| #define USBSTS 2 |
| #define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */ |
| #define USBSTS_ERROR 0x0002 /* Interrupt due to error */ |
| #define USBSTS_RD 0x0004 /* Resume Detect */ |
| #define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */ |
| #define USBSTS_HCPE 0x0010 /* Host Controller Process Error: |
| * the schedule is buggy */ |
| #define USBSTS_HCH 0x0020 /* HC Halted */ |
| |
| /* Interrupt enable register */ |
| #define USBINTR 4 |
| #define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */ |
| #define USBINTR_RESUME 0x0002 /* Resume interrupt enable */ |
| #define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */ |
| #define USBINTR_SP 0x0008 /* Short packet interrupt enable */ |
| |
| #define USBFRNUM 6 |
| #define USBFLBASEADD 8 |
| #define USBSOF 12 |
| #define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */ |
| |
| /* USB port status and control registers */ |
| #define USBPORTSC1 16 |
| #define USBPORTSC2 18 |
| #define USBPORTSC_CCS 0x0001 /* Current Connect Status |
| * ("device present") */ |
| #define USBPORTSC_CSC 0x0002 /* Connect Status Change */ |
| #define USBPORTSC_PE 0x0004 /* Port Enable */ |
| #define USBPORTSC_PEC 0x0008 /* Port Enable Change */ |
| #define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */ |
| #define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */ |
| #define USBPORTSC_RD 0x0040 /* Resume Detect */ |
| #define USBPORTSC_RES1 0x0080 /* reserved, always 1 */ |
| #define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */ |
| #define USBPORTSC_PR 0x0200 /* Port Reset */ |
| /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */ |
| #define USBPORTSC_OC 0x0400 /* Over Current condition */ |
| #define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */ |
| #define USBPORTSC_SUSP 0x1000 /* Suspend */ |
| #define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */ |
| #define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */ |
| #define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */ |
| |
| /* PCI legacy support register */ |
| #define USBLEGSUP 0xc0 |
| #define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */ |
| #define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */ |
| #define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */ |
| |
| /* PCI Intel-specific resume-enable register */ |
| #define USBRES_INTEL 0xc4 |
| #define USBPORT1EN 0x01 |
| #define USBPORT2EN 0x02 |
| |
| #define UHCI_PTR_BITS cpu_to_le32(0x000F) |
| #define UHCI_PTR_TERM cpu_to_le32(0x0001) |
| #define UHCI_PTR_QH cpu_to_le32(0x0002) |
| #define UHCI_PTR_DEPTH cpu_to_le32(0x0004) |
| #define UHCI_PTR_BREADTH cpu_to_le32(0x0000) |
| |
| #define UHCI_NUMFRAMES 1024 /* in the frame list [array] */ |
| #define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */ |
| #define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames |
| * can be scheduled */ |
| #define MAX_PHASE 32 /* Periodic scheduling length */ |
| |
| /* When no queues need Full-Speed Bandwidth Reclamation, |
| * delay this long before turning FSBR off */ |
| #define FSBR_OFF_DELAY msecs_to_jiffies(10) |
| |
| /* If a queue hasn't advanced after this much time, assume it is stuck */ |
| #define QH_WAIT_TIMEOUT msecs_to_jiffies(200) |
| |
| |
| /* |
| * Queue Headers |
| */ |
| |
| /* |
| * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes |
| * with each endpoint, and qh->element (updated by the HC) is either: |
| * - the next unprocessed TD in the endpoint's queue, or |
| * - UHCI_PTR_TERM (when there's no more traffic for this endpoint). |
| * |
| * The other role of a QH is to serve as a "skeleton" framelist entry, so we |
| * can easily splice a QH for some endpoint into the schedule at the right |
| * place. Then qh->element is UHCI_PTR_TERM. |
| * |
| * In the schedule, qh->link maintains a list of QHs seen by the HC: |
| * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ... |
| * |
| * qh->node is the software equivalent of qh->link. The differences |
| * are that the software list is doubly-linked and QHs in the UNLINKING |
| * state are on the software list but not the hardware schedule. |
| * |
| * For bookkeeping purposes we maintain QHs even for Isochronous endpoints, |
| * but they never get added to the hardware schedule. |
| */ |
| #define QH_STATE_IDLE 1 /* QH is not being used */ |
| #define QH_STATE_UNLINKING 2 /* QH has been removed from the |
| * schedule but the hardware may |
| * still be using it */ |
| #define QH_STATE_ACTIVE 3 /* QH is on the schedule */ |
| |
| struct uhci_qh { |
| /* Hardware fields */ |
| __le32 link; /* Next QH in the schedule */ |
| __le32 element; /* Queue element (TD) pointer */ |
| |
| /* Software fields */ |
| dma_addr_t dma_handle; |
| |
| struct list_head node; /* Node in the list of QHs */ |
| struct usb_host_endpoint *hep; /* Endpoint information */ |
| struct usb_device *udev; |
| struct list_head queue; /* Queue of urbps for this QH */ |
| struct uhci_td *dummy_td; /* Dummy TD to end the queue */ |
| struct uhci_td *post_td; /* Last TD completed */ |
| |
| struct usb_iso_packet_descriptor *iso_packet_desc; |
| /* Next urb->iso_frame_desc entry */ |
| unsigned long advance_jiffies; /* Time of last queue advance */ |
| unsigned int unlink_frame; /* When the QH was unlinked */ |
| unsigned int period; /* For Interrupt and Isochronous QHs */ |
| short phase; /* Between 0 and period-1 */ |
| short load; /* Periodic time requirement, in us */ |
| unsigned int iso_frame; /* Frame # for iso_packet_desc */ |
| |
| int state; /* QH_STATE_xxx; see above */ |
| int type; /* Queue type (control, bulk, etc) */ |
| int skel; /* Skeleton queue number */ |
| |
| unsigned int initial_toggle:1; /* Endpoint's current toggle value */ |
| unsigned int needs_fixup:1; /* Must fix the TD toggle values */ |
| unsigned int is_stopped:1; /* Queue was stopped by error/unlink */ |
| unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */ |
| unsigned int bandwidth_reserved:1; /* Periodic bandwidth has |
| * been allocated */ |
| } __attribute__((aligned(16))); |
| |
| /* |
| * We need a special accessor for the element pointer because it is |
| * subject to asynchronous updates by the controller. |
| */ |
| static inline __le32 qh_element(struct uhci_qh *qh) { |
| __le32 element = qh->element; |
| |
| barrier(); |
| return element; |
| } |
| |
| #define LINK_TO_QH(qh) (UHCI_PTR_QH | cpu_to_le32((qh)->dma_handle)) |
| |
| |
| /* |
| * Transfer Descriptors |
| */ |
| |
| /* |
| * for TD <status>: |
| */ |
| #define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */ |
| #define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */ |
| #define TD_CTRL_C_ERR_SHIFT 27 |
| #define TD_CTRL_LS (1 << 26) /* Low Speed Device */ |
| #define TD_CTRL_IOS (1 << 25) /* Isochronous Select */ |
| #define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */ |
| #define TD_CTRL_ACTIVE (1 << 23) /* TD Active */ |
| #define TD_CTRL_STALLED (1 << 22) /* TD Stalled */ |
| #define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */ |
| #define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */ |
| #define TD_CTRL_NAK (1 << 19) /* NAK Received */ |
| #define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */ |
| #define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */ |
| #define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */ |
| |
| #define TD_CTRL_ANY_ERROR (TD_CTRL_STALLED | TD_CTRL_DBUFERR | \ |
| TD_CTRL_BABBLE | TD_CTRL_CRCTIME | \ |
| TD_CTRL_BITSTUFF) |
| |
| #define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT) |
| #define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000) |
| #define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \ |
| TD_CTRL_ACTLEN_MASK) /* 1-based */ |
| |
| /* |
| * for TD <info>: (a.k.a. Token) |
| */ |
| #define td_token(td) le32_to_cpu((td)->token) |
| #define TD_TOKEN_DEVADDR_SHIFT 8 |
| #define TD_TOKEN_TOGGLE_SHIFT 19 |
| #define TD_TOKEN_TOGGLE (1 << 19) |
| #define TD_TOKEN_EXPLEN_SHIFT 21 |
| #define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */ |
| #define TD_TOKEN_PID_MASK 0xFF |
| |
| #define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \ |
| TD_TOKEN_EXPLEN_SHIFT) |
| |
| #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \ |
| 1) & TD_TOKEN_EXPLEN_MASK) |
| #define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1) |
| #define uhci_endpoint(token) (((token) >> 15) & 0xf) |
| #define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f) |
| #define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff) |
| #define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK) |
| #define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN) |
| #define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN) |
| |
| /* |
| * The documentation says "4 words for hardware, 4 words for software". |
| * |
| * That's silly, the hardware doesn't care. The hardware only cares that |
| * the hardware words are 16-byte aligned, and we can have any amount of |
| * sw space after the TD entry. |
| * |
| * td->link points to either another TD (not necessarily for the same urb or |
| * even the same endpoint), or nothing (PTR_TERM), or a QH. |
| */ |
| struct uhci_td { |
| /* Hardware fields */ |
| __le32 link; |
| __le32 status; |
| __le32 token; |
| __le32 buffer; |
| |
| /* Software fields */ |
| dma_addr_t dma_handle; |
| |
| struct list_head list; |
| |
| int frame; /* for iso: what frame? */ |
| struct list_head fl_list; |
| } __attribute__((aligned(16))); |
| |
| /* |
| * We need a special accessor for the control/status word because it is |
| * subject to asynchronous updates by the controller. |
| */ |
| static inline u32 td_status(struct uhci_td *td) { |
| __le32 status = td->status; |
| |
| barrier(); |
| return le32_to_cpu(status); |
| } |
| |
| #define LINK_TO_TD(td) (cpu_to_le32((td)->dma_handle)) |
| |
| |
| /* |
| * Skeleton Queue Headers |
| */ |
| |
| /* |
| * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for |
| * automatic queuing. To make it easy to insert entries into the schedule, |
| * we have a skeleton of QHs for each predefined Interrupt latency. |
| * Asynchronous QHs (low-speed control, full-speed control, and bulk) |
| * go onto the period-1 interrupt list, since they all get accessed on |
| * every frame. |
| * |
| * When we want to add a new QH, we add it to the list starting from the |
| * appropriate skeleton QH. For instance, the schedule can look like this: |
| * |
| * skel int128 QH |
| * dev 1 interrupt QH |
| * dev 5 interrupt QH |
| * skel int64 QH |
| * skel int32 QH |
| * ... |
| * skel int1 + async QH |
| * dev 5 low-speed control QH |
| * dev 1 bulk QH |
| * dev 2 bulk QH |
| * |
| * There is a special terminating QH used to keep full-speed bandwidth |
| * reclamation active when no full-speed control or bulk QHs are linked |
| * into the schedule. It has an inactive TD (to work around a PIIX bug, |
| * see the Intel errata) and it points back to itself. |
| * |
| * There's a special skeleton QH for Isochronous QHs which never appears |
| * on the schedule. Isochronous TDs go on the schedule before the |
| * the skeleton QHs. The hardware accesses them directly rather than |
| * through their QH, which is used only for bookkeeping purposes. |
| * While the UHCI spec doesn't forbid the use of QHs for Isochronous, |
| * it doesn't use them either. And the spec says that queues never |
| * advance on an error completion status, which makes them totally |
| * unsuitable for Isochronous transfers. |
| * |
| * There's also a special skeleton QH used for QHs which are in the process |
| * of unlinking and so may still be in use by the hardware. It too never |
| * appears on the schedule. |
| */ |
| |
| #define UHCI_NUM_SKELQH 11 |
| #define SKEL_UNLINK 0 |
| #define skel_unlink_qh skelqh[SKEL_UNLINK] |
| #define SKEL_ISO 1 |
| #define skel_iso_qh skelqh[SKEL_ISO] |
| /* int128, int64, ..., int1 = 2, 3, ..., 9 */ |
| #define SKEL_INDEX(exponent) (9 - exponent) |
| #define SKEL_ASYNC 9 |
| #define skel_async_qh skelqh[SKEL_ASYNC] |
| #define SKEL_TERM 10 |
| #define skel_term_qh skelqh[SKEL_TERM] |
| |
| /* The following entries refer to sublists of skel_async_qh */ |
| #define SKEL_LS_CONTROL 20 |
| #define SKEL_FS_CONTROL 21 |
| #define SKEL_FSBR SKEL_FS_CONTROL |
| #define SKEL_BULK 22 |
| |
| /* |
| * The UHCI controller and root hub |
| */ |
| |
| /* |
| * States for the root hub: |
| * |
| * To prevent "bouncing" in the presence of electrical noise, |
| * when there are no devices attached we delay for 1 second in the |
| * RUNNING_NODEVS state before switching to the AUTO_STOPPED state. |
| * |
| * (Note that the AUTO_STOPPED state won't be necessary once the hub |
| * driver learns to autosuspend.) |
| */ |
| enum uhci_rh_state { |
| /* In the following states the HC must be halted. |
| * These two must come first. */ |
| UHCI_RH_RESET, |
| UHCI_RH_SUSPENDED, |
| |
| UHCI_RH_AUTO_STOPPED, |
| UHCI_RH_RESUMING, |
| |
| /* In this state the HC changes from running to halted, |
| * so it can legally appear either way. */ |
| UHCI_RH_SUSPENDING, |
| |
| /* In the following states it's an error if the HC is halted. |
| * These two must come last. */ |
| UHCI_RH_RUNNING, /* The normal state */ |
| UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */ |
| }; |
| |
| /* |
| * The full UHCI controller information: |
| */ |
| struct uhci_hcd { |
| |
| /* debugfs */ |
| struct dentry *dentry; |
| |
| /* Grabbed from PCI */ |
| unsigned long io_addr; |
| |
| /* Used when registers are memory mapped */ |
| void __iomem *regs; |
| |
| struct dma_pool *qh_pool; |
| struct dma_pool *td_pool; |
| |
| struct uhci_td *term_td; /* Terminating TD, see UHCI bug */ |
| struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */ |
| struct uhci_qh *next_qh; /* Next QH to scan */ |
| |
| spinlock_t lock; |
| |
| dma_addr_t frame_dma_handle; /* Hardware frame list */ |
| __le32 *frame; |
| void **frame_cpu; /* CPU's frame list */ |
| |
| enum uhci_rh_state rh_state; |
| unsigned long auto_stop_time; /* When to AUTO_STOP */ |
| |
| unsigned int frame_number; /* As of last check */ |
| unsigned int is_stopped; |
| #define UHCI_IS_STOPPED 9999 /* Larger than a frame # */ |
| unsigned int last_iso_frame; /* Frame of last scan */ |
| unsigned int cur_iso_frame; /* Frame for current scan */ |
| |
| unsigned int scan_in_progress:1; /* Schedule scan is running */ |
| unsigned int need_rescan:1; /* Redo the schedule scan */ |
| unsigned int dead:1; /* Controller has died */ |
| unsigned int RD_enable:1; /* Suspended root hub with |
| Resume-Detect interrupts |
| enabled */ |
| unsigned int is_initialized:1; /* Data structure is usable */ |
| unsigned int fsbr_is_on:1; /* FSBR is turned on */ |
| unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */ |
| unsigned int fsbr_expiring:1; /* FSBR is timing out */ |
| |
| struct timer_list fsbr_timer; /* For turning off FBSR */ |
| |
| /* Silicon quirks */ |
| unsigned int oc_low:1; /* OverCurrent bit active low */ |
| unsigned int wait_for_hp:1; /* Wait for HP port reset */ |
| unsigned int big_endian_mmio:1; /* Big endian registers */ |
| |
| /* Support for port suspend/resume/reset */ |
| unsigned long port_c_suspend; /* Bit-arrays of ports */ |
| unsigned long resuming_ports; |
| unsigned long ports_timeout; /* Time to stop signalling */ |
| |
| struct list_head idle_qh_list; /* Where the idle QHs live */ |
| |
| int rh_numports; /* Number of root-hub ports */ |
| |
| wait_queue_head_t waitqh; /* endpoint_disable waiters */ |
| int num_waiting; /* Number of waiters */ |
| |
| int total_load; /* Sum of array values */ |
| short load[MAX_PHASE]; /* Periodic allocations */ |
| |
| /* Reset host controller */ |
| void (*reset_hc) (struct uhci_hcd *uhci); |
| int (*check_and_reset_hc) (struct uhci_hcd *uhci); |
| /* configure_hc should perform arch specific settings, if needed */ |
| void (*configure_hc) (struct uhci_hcd *uhci); |
| /* Check for broken resume detect interrupts */ |
| int (*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci); |
| /* Check for broken global suspend */ |
| int (*global_suspend_mode_is_broken) (struct uhci_hcd *uhci); |
| }; |
| |
| /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */ |
| static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd) |
| { |
| return (struct uhci_hcd *) (hcd->hcd_priv); |
| } |
| static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci) |
| { |
| return container_of((void *) uhci, struct usb_hcd, hcd_priv); |
| } |
| |
| #define uhci_dev(u) (uhci_to_hcd(u)->self.controller) |
| |
| /* Utility macro for comparing frame numbers */ |
| #define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1))) |
| |
| |
| /* |
| * Private per-URB data |
| */ |
| struct urb_priv { |
| struct list_head node; /* Node in the QH's urbp list */ |
| |
| struct urb *urb; |
| |
| struct uhci_qh *qh; /* QH for this URB */ |
| struct list_head td_list; |
| |
| unsigned fsbr:1; /* URB wants FSBR */ |
| }; |
| |
| |
| /* Some special IDs */ |
| |
| #define PCI_VENDOR_ID_GENESYS 0x17a0 |
| #define PCI_DEVICE_ID_GL880S_UHCI 0x8083 |
| |
| /* |
| * Functions used to access controller registers. The UCHI spec says that host |
| * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts |
| * we use memory mapped registers. |
| */ |
| |
| #ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC |
| /* Support PCI only */ |
| static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) |
| { |
| return inl(uhci->io_addr + reg); |
| } |
| |
| static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) |
| { |
| outl(val, uhci->io_addr + reg); |
| } |
| |
| static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) |
| { |
| return inw(uhci->io_addr + reg); |
| } |
| |
| static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) |
| { |
| outw(val, uhci->io_addr + reg); |
| } |
| |
| static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) |
| { |
| return inb(uhci->io_addr + reg); |
| } |
| |
| static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) |
| { |
| outb(val, uhci->io_addr + reg); |
| } |
| |
| #else |
| /* Support non-PCI host controllers */ |
| #ifdef CONFIG_PCI |
| /* Support PCI and non-PCI host controllers */ |
| #define uhci_has_pci_registers(u) ((u)->io_addr != 0) |
| #else |
| /* Support non-PCI host controllers only */ |
| #define uhci_has_pci_registers(u) 0 |
| #endif |
| |
| #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO |
| /* Support (non-PCI) big endian host controllers */ |
| #define uhci_big_endian_mmio(u) ((u)->big_endian_mmio) |
| #else |
| #define uhci_big_endian_mmio(u) 0 |
| #endif |
| |
| static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) |
| { |
| if (uhci_has_pci_registers(uhci)) |
| return inl(uhci->io_addr + reg); |
| #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO |
| else if (uhci_big_endian_mmio(uhci)) |
| return readl_be(uhci->regs + reg); |
| #endif |
| else |
| return readl(uhci->regs + reg); |
| } |
| |
| static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) |
| { |
| if (uhci_has_pci_registers(uhci)) |
| outl(val, uhci->io_addr + reg); |
| #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO |
| else if (uhci_big_endian_mmio(uhci)) |
| writel_be(val, uhci->regs + reg); |
| #endif |
| else |
| writel(val, uhci->regs + reg); |
| } |
| |
| static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) |
| { |
| if (uhci_has_pci_registers(uhci)) |
| return inw(uhci->io_addr + reg); |
| #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO |
| else if (uhci_big_endian_mmio(uhci)) |
| return readw_be(uhci->regs + reg); |
| #endif |
| else |
| return readw(uhci->regs + reg); |
| } |
| |
| static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) |
| { |
| if (uhci_has_pci_registers(uhci)) |
| outw(val, uhci->io_addr + reg); |
| #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO |
| else if (uhci_big_endian_mmio(uhci)) |
| writew_be(val, uhci->regs + reg); |
| #endif |
| else |
| writew(val, uhci->regs + reg); |
| } |
| |
| static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) |
| { |
| if (uhci_has_pci_registers(uhci)) |
| return inb(uhci->io_addr + reg); |
| #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO |
| else if (uhci_big_endian_mmio(uhci)) |
| return readb_be(uhci->regs + reg); |
| #endif |
| else |
| return readb(uhci->regs + reg); |
| } |
| |
| static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) |
| { |
| if (uhci_has_pci_registers(uhci)) |
| outb(val, uhci->io_addr + reg); |
| #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO |
| else if (uhci_big_endian_mmio(uhci)) |
| writeb_be(val, uhci->regs + reg); |
| #endif |
| else |
| writeb(val, uhci->regs + reg); |
| } |
| #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */ |
| |
| #endif |