blob: 5783c1a55b099325fbaa139f0d53575f8ef7428c [file] [log] [blame]
/*
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* verbs.c
*
* Encapsulates the major functions managing:
* o adapters
* o endpoints
* o connections
* o buffer memory
*/
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <asm/bitops.h>
#include "xprt_rdma.h"
/*
* Globals/Macros
*/
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
static void rpcrdma_reset_frmrs(struct rpcrdma_ia *);
static void rpcrdma_reset_fmrs(struct rpcrdma_ia *);
/*
* internal functions
*/
/*
* handle replies in tasklet context, using a single, global list
* rdma tasklet function -- just turn around and call the func
* for all replies on the list
*/
static DEFINE_SPINLOCK(rpcrdma_tk_lock_g);
static LIST_HEAD(rpcrdma_tasklets_g);
static void
rpcrdma_run_tasklet(unsigned long data)
{
struct rpcrdma_rep *rep;
void (*func)(struct rpcrdma_rep *);
unsigned long flags;
data = data;
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
while (!list_empty(&rpcrdma_tasklets_g)) {
rep = list_entry(rpcrdma_tasklets_g.next,
struct rpcrdma_rep, rr_list);
list_del(&rep->rr_list);
func = rep->rr_func;
rep->rr_func = NULL;
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
if (func)
func(rep);
else
rpcrdma_recv_buffer_put(rep);
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
}
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
}
static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL);
static const char * const async_event[] = {
"CQ error",
"QP fatal error",
"QP request error",
"QP access error",
"communication established",
"send queue drained",
"path migration successful",
"path mig error",
"device fatal error",
"port active",
"port error",
"LID change",
"P_key change",
"SM change",
"SRQ error",
"SRQ limit reached",
"last WQE reached",
"client reregister",
"GID change",
};
#define ASYNC_MSG(status) \
((status) < ARRAY_SIZE(async_event) ? \
async_event[(status)] : "unknown async error")
static void
rpcrdma_schedule_tasklet(struct list_head *sched_list)
{
unsigned long flags;
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
list_splice_tail(sched_list, &rpcrdma_tasklets_g);
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
tasklet_schedule(&rpcrdma_tasklet_g);
}
static void
rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
{
struct rpcrdma_ep *ep = context;
pr_err("RPC: %s: %s on device %s ep %p\n",
__func__, ASYNC_MSG(event->event),
event->device->name, context);
if (ep->rep_connected == 1) {
ep->rep_connected = -EIO;
ep->rep_func(ep);
wake_up_all(&ep->rep_connect_wait);
}
}
static void
rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context)
{
struct rpcrdma_ep *ep = context;
pr_err("RPC: %s: %s on device %s ep %p\n",
__func__, ASYNC_MSG(event->event),
event->device->name, context);
if (ep->rep_connected == 1) {
ep->rep_connected = -EIO;
ep->rep_func(ep);
wake_up_all(&ep->rep_connect_wait);
}
}
static void
rpcrdma_sendcq_process_wc(struct ib_wc *wc)
{
struct rpcrdma_mw *frmr = (struct rpcrdma_mw *)(unsigned long)wc->wr_id;
dprintk("RPC: %s: frmr %p status %X opcode %d\n",
__func__, frmr, wc->status, wc->opcode);
if (wc->wr_id == 0ULL)
return;
if (wc->status != IB_WC_SUCCESS)
frmr->r.frmr.fr_state = FRMR_IS_STALE;
}
static int
rpcrdma_sendcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep)
{
struct ib_wc *wcs;
int budget, count, rc;
budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE;
do {
wcs = ep->rep_send_wcs;
rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs);
if (rc <= 0)
return rc;
count = rc;
while (count-- > 0)
rpcrdma_sendcq_process_wc(wcs++);
} while (rc == RPCRDMA_POLLSIZE && --budget);
return 0;
}
/*
* Handle send, fast_reg_mr, and local_inv completions.
*
* Send events are typically suppressed and thus do not result
* in an upcall. Occasionally one is signaled, however. This
* prevents the provider's completion queue from wrapping and
* losing a completion.
*/
static void
rpcrdma_sendcq_upcall(struct ib_cq *cq, void *cq_context)
{
struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context;
int rc;
rc = rpcrdma_sendcq_poll(cq, ep);
if (rc) {
dprintk("RPC: %s: ib_poll_cq failed: %i\n",
__func__, rc);
return;
}
rc = ib_req_notify_cq(cq,
IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
if (rc == 0)
return;
if (rc < 0) {
dprintk("RPC: %s: ib_req_notify_cq failed: %i\n",
__func__, rc);
return;
}
rpcrdma_sendcq_poll(cq, ep);
}
static void
rpcrdma_recvcq_process_wc(struct ib_wc *wc, struct list_head *sched_list)
{
struct rpcrdma_rep *rep =
(struct rpcrdma_rep *)(unsigned long)wc->wr_id;
dprintk("RPC: %s: rep %p status %X opcode %X length %u\n",
__func__, rep, wc->status, wc->opcode, wc->byte_len);
if (wc->status != IB_WC_SUCCESS) {
rep->rr_len = ~0U;
goto out_schedule;
}
if (wc->opcode != IB_WC_RECV)
return;
rep->rr_len = wc->byte_len;
ib_dma_sync_single_for_cpu(rdmab_to_ia(rep->rr_buffer)->ri_id->device,
rep->rr_iov.addr, rep->rr_len, DMA_FROM_DEVICE);
if (rep->rr_len >= 16) {
struct rpcrdma_msg *p = (struct rpcrdma_msg *)rep->rr_base;
unsigned int credits = ntohl(p->rm_credit);
if (credits == 0)
credits = 1; /* don't deadlock */
else if (credits > rep->rr_buffer->rb_max_requests)
credits = rep->rr_buffer->rb_max_requests;
atomic_set(&rep->rr_buffer->rb_credits, credits);
}
out_schedule:
list_add_tail(&rep->rr_list, sched_list);
}
static int
rpcrdma_recvcq_poll(struct ib_cq *cq, struct rpcrdma_ep *ep)
{
struct list_head sched_list;
struct ib_wc *wcs;
int budget, count, rc;
INIT_LIST_HEAD(&sched_list);
budget = RPCRDMA_WC_BUDGET / RPCRDMA_POLLSIZE;
do {
wcs = ep->rep_recv_wcs;
rc = ib_poll_cq(cq, RPCRDMA_POLLSIZE, wcs);
if (rc <= 0)
goto out_schedule;
count = rc;
while (count-- > 0)
rpcrdma_recvcq_process_wc(wcs++, &sched_list);
} while (rc == RPCRDMA_POLLSIZE && --budget);
rc = 0;
out_schedule:
rpcrdma_schedule_tasklet(&sched_list);
return rc;
}
/*
* Handle receive completions.
*
* It is reentrant but processes single events in order to maintain
* ordering of receives to keep server credits.
*
* It is the responsibility of the scheduled tasklet to return
* recv buffers to the pool. NOTE: this affects synchronization of
* connection shutdown. That is, the structures required for
* the completion of the reply handler must remain intact until
* all memory has been reclaimed.
*/
static void
rpcrdma_recvcq_upcall(struct ib_cq *cq, void *cq_context)
{
struct rpcrdma_ep *ep = (struct rpcrdma_ep *)cq_context;
int rc;
rc = rpcrdma_recvcq_poll(cq, ep);
if (rc) {
dprintk("RPC: %s: ib_poll_cq failed: %i\n",
__func__, rc);
return;
}
rc = ib_req_notify_cq(cq,
IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS);
if (rc == 0)
return;
if (rc < 0) {
dprintk("RPC: %s: ib_req_notify_cq failed: %i\n",
__func__, rc);
return;
}
rpcrdma_recvcq_poll(cq, ep);
}
static void
rpcrdma_flush_cqs(struct rpcrdma_ep *ep)
{
struct ib_wc wc;
LIST_HEAD(sched_list);
while (ib_poll_cq(ep->rep_attr.recv_cq, 1, &wc) > 0)
rpcrdma_recvcq_process_wc(&wc, &sched_list);
if (!list_empty(&sched_list))
rpcrdma_schedule_tasklet(&sched_list);
while (ib_poll_cq(ep->rep_attr.send_cq, 1, &wc) > 0)
rpcrdma_sendcq_process_wc(&wc);
}
#ifdef RPC_DEBUG
static const char * const conn[] = {
"address resolved",
"address error",
"route resolved",
"route error",
"connect request",
"connect response",
"connect error",
"unreachable",
"rejected",
"established",
"disconnected",
"device removal",
"multicast join",
"multicast error",
"address change",
"timewait exit",
};
#define CONNECTION_MSG(status) \
((status) < ARRAY_SIZE(conn) ? \
conn[(status)] : "unrecognized connection error")
#endif
static int
rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
{
struct rpcrdma_xprt *xprt = id->context;
struct rpcrdma_ia *ia = &xprt->rx_ia;
struct rpcrdma_ep *ep = &xprt->rx_ep;
#ifdef RPC_DEBUG
struct sockaddr_in *addr = (struct sockaddr_in *) &ep->rep_remote_addr;
#endif
struct ib_qp_attr attr;
struct ib_qp_init_attr iattr;
int connstate = 0;
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
case RDMA_CM_EVENT_ROUTE_RESOLVED:
ia->ri_async_rc = 0;
complete(&ia->ri_done);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
ia->ri_async_rc = -EHOSTUNREACH;
dprintk("RPC: %s: CM address resolution error, ep 0x%p\n",
__func__, ep);
complete(&ia->ri_done);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
ia->ri_async_rc = -ENETUNREACH;
dprintk("RPC: %s: CM route resolution error, ep 0x%p\n",
__func__, ep);
complete(&ia->ri_done);
break;
case RDMA_CM_EVENT_ESTABLISHED:
connstate = 1;
ib_query_qp(ia->ri_id->qp, &attr,
IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC,
&iattr);
dprintk("RPC: %s: %d responder resources"
" (%d initiator)\n",
__func__, attr.max_dest_rd_atomic, attr.max_rd_atomic);
goto connected;
case RDMA_CM_EVENT_CONNECT_ERROR:
connstate = -ENOTCONN;
goto connected;
case RDMA_CM_EVENT_UNREACHABLE:
connstate = -ENETDOWN;
goto connected;
case RDMA_CM_EVENT_REJECTED:
connstate = -ECONNREFUSED;
goto connected;
case RDMA_CM_EVENT_DISCONNECTED:
connstate = -ECONNABORTED;
goto connected;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
connstate = -ENODEV;
connected:
atomic_set(&rpcx_to_rdmax(ep->rep_xprt)->rx_buf.rb_credits, 1);
dprintk("RPC: %s: %sconnected\n",
__func__, connstate > 0 ? "" : "dis");
ep->rep_connected = connstate;
ep->rep_func(ep);
wake_up_all(&ep->rep_connect_wait);
/*FALLTHROUGH*/
default:
dprintk("RPC: %s: %pI4:%u (ep 0x%p): %s\n",
__func__, &addr->sin_addr.s_addr,
ntohs(addr->sin_port), ep,
CONNECTION_MSG(event->event));
break;
}
#ifdef RPC_DEBUG
if (connstate == 1) {
int ird = attr.max_dest_rd_atomic;
int tird = ep->rep_remote_cma.responder_resources;
printk(KERN_INFO "rpcrdma: connection to %pI4:%u "
"on %s, memreg %d slots %d ird %d%s\n",
&addr->sin_addr.s_addr,
ntohs(addr->sin_port),
ia->ri_id->device->name,
ia->ri_memreg_strategy,
xprt->rx_buf.rb_max_requests,
ird, ird < 4 && ird < tird / 2 ? " (low!)" : "");
} else if (connstate < 0) {
printk(KERN_INFO "rpcrdma: connection to %pI4:%u closed (%d)\n",
&addr->sin_addr.s_addr,
ntohs(addr->sin_port),
connstate);
}
#endif
return 0;
}
static struct rdma_cm_id *
rpcrdma_create_id(struct rpcrdma_xprt *xprt,
struct rpcrdma_ia *ia, struct sockaddr *addr)
{
struct rdma_cm_id *id;
int rc;
init_completion(&ia->ri_done);
id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(id)) {
rc = PTR_ERR(id);
dprintk("RPC: %s: rdma_create_id() failed %i\n",
__func__, rc);
return id;
}
ia->ri_async_rc = -ETIMEDOUT;
rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
if (rc) {
dprintk("RPC: %s: rdma_resolve_addr() failed %i\n",
__func__, rc);
goto out;
}
wait_for_completion_interruptible_timeout(&ia->ri_done,
msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
rc = ia->ri_async_rc;
if (rc)
goto out;
ia->ri_async_rc = -ETIMEDOUT;
rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
if (rc) {
dprintk("RPC: %s: rdma_resolve_route() failed %i\n",
__func__, rc);
goto out;
}
wait_for_completion_interruptible_timeout(&ia->ri_done,
msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
rc = ia->ri_async_rc;
if (rc)
goto out;
return id;
out:
rdma_destroy_id(id);
return ERR_PTR(rc);
}
/*
* Drain any cq, prior to teardown.
*/
static void
rpcrdma_clean_cq(struct ib_cq *cq)
{
struct ib_wc wc;
int count = 0;
while (1 == ib_poll_cq(cq, 1, &wc))
++count;
if (count)
dprintk("RPC: %s: flushed %d events (last 0x%x)\n",
__func__, count, wc.opcode);
}
/*
* Exported functions.
*/
/*
* Open and initialize an Interface Adapter.
* o initializes fields of struct rpcrdma_ia, including
* interface and provider attributes and protection zone.
*/
int
rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
{
int rc, mem_priv;
struct ib_device_attr devattr;
struct rpcrdma_ia *ia = &xprt->rx_ia;
ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
if (IS_ERR(ia->ri_id)) {
rc = PTR_ERR(ia->ri_id);
goto out1;
}
ia->ri_pd = ib_alloc_pd(ia->ri_id->device);
if (IS_ERR(ia->ri_pd)) {
rc = PTR_ERR(ia->ri_pd);
dprintk("RPC: %s: ib_alloc_pd() failed %i\n",
__func__, rc);
goto out2;
}
/*
* Query the device to determine if the requested memory
* registration strategy is supported. If it isn't, set the
* strategy to a globally supported model.
*/
rc = ib_query_device(ia->ri_id->device, &devattr);
if (rc) {
dprintk("RPC: %s: ib_query_device failed %d\n",
__func__, rc);
goto out2;
}
if (devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) {
ia->ri_have_dma_lkey = 1;
ia->ri_dma_lkey = ia->ri_id->device->local_dma_lkey;
}
if (memreg == RPCRDMA_FRMR) {
/* Requires both frmr reg and local dma lkey */
if ((devattr.device_cap_flags &
(IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) !=
(IB_DEVICE_MEM_MGT_EXTENSIONS|IB_DEVICE_LOCAL_DMA_LKEY)) {
dprintk("RPC: %s: FRMR registration "
"not supported by HCA\n", __func__);
memreg = RPCRDMA_MTHCAFMR;
} else {
/* Mind the ia limit on FRMR page list depth */
ia->ri_max_frmr_depth = min_t(unsigned int,
RPCRDMA_MAX_DATA_SEGS,
devattr.max_fast_reg_page_list_len);
}
}
if (memreg == RPCRDMA_MTHCAFMR) {
if (!ia->ri_id->device->alloc_fmr) {
dprintk("RPC: %s: MTHCAFMR registration "
"not supported by HCA\n", __func__);
memreg = RPCRDMA_ALLPHYSICAL;
}
}
/*
* Optionally obtain an underlying physical identity mapping in
* order to do a memory window-based bind. This base registration
* is protected from remote access - that is enabled only by binding
* for the specific bytes targeted during each RPC operation, and
* revoked after the corresponding completion similar to a storage
* adapter.
*/
switch (memreg) {
case RPCRDMA_FRMR:
break;
case RPCRDMA_ALLPHYSICAL:
mem_priv = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ;
goto register_setup;
case RPCRDMA_MTHCAFMR:
if (ia->ri_have_dma_lkey)
break;
mem_priv = IB_ACCESS_LOCAL_WRITE;
register_setup:
ia->ri_bind_mem = ib_get_dma_mr(ia->ri_pd, mem_priv);
if (IS_ERR(ia->ri_bind_mem)) {
printk(KERN_ALERT "%s: ib_get_dma_mr for "
"phys register failed with %lX\n",
__func__, PTR_ERR(ia->ri_bind_mem));
rc = -ENOMEM;
goto out2;
}
break;
default:
printk(KERN_ERR "RPC: Unsupported memory "
"registration mode: %d\n", memreg);
rc = -ENOMEM;
goto out2;
}
dprintk("RPC: %s: memory registration strategy is %d\n",
__func__, memreg);
/* Else will do memory reg/dereg for each chunk */
ia->ri_memreg_strategy = memreg;
rwlock_init(&ia->ri_qplock);
return 0;
out2:
rdma_destroy_id(ia->ri_id);
ia->ri_id = NULL;
out1:
return rc;
}
/*
* Clean up/close an IA.
* o if event handles and PD have been initialized, free them.
* o close the IA
*/
void
rpcrdma_ia_close(struct rpcrdma_ia *ia)
{
int rc;
dprintk("RPC: %s: entering\n", __func__);
if (ia->ri_bind_mem != NULL) {
rc = ib_dereg_mr(ia->ri_bind_mem);
dprintk("RPC: %s: ib_dereg_mr returned %i\n",
__func__, rc);
}
if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
if (ia->ri_id->qp)
rdma_destroy_qp(ia->ri_id);
rdma_destroy_id(ia->ri_id);
ia->ri_id = NULL;
}
if (ia->ri_pd != NULL && !IS_ERR(ia->ri_pd)) {
rc = ib_dealloc_pd(ia->ri_pd);
dprintk("RPC: %s: ib_dealloc_pd returned %i\n",
__func__, rc);
}
}
/*
* Create unconnected endpoint.
*/
int
rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
struct rpcrdma_create_data_internal *cdata)
{
struct ib_device_attr devattr;
struct ib_cq *sendcq, *recvcq;
int rc, err;
rc = ib_query_device(ia->ri_id->device, &devattr);
if (rc) {
dprintk("RPC: %s: ib_query_device failed %d\n",
__func__, rc);
return rc;
}
/* check provider's send/recv wr limits */
if (cdata->max_requests > devattr.max_qp_wr)
cdata->max_requests = devattr.max_qp_wr;
ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
ep->rep_attr.qp_context = ep;
/* send_cq and recv_cq initialized below */
ep->rep_attr.srq = NULL;
ep->rep_attr.cap.max_send_wr = cdata->max_requests;
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR: {
int depth = 7;
/* Add room for frmr register and invalidate WRs.
* 1. FRMR reg WR for head
* 2. FRMR invalidate WR for head
* 3. N FRMR reg WRs for pagelist
* 4. N FRMR invalidate WRs for pagelist
* 5. FRMR reg WR for tail
* 6. FRMR invalidate WR for tail
* 7. The RDMA_SEND WR
*/
/* Calculate N if the device max FRMR depth is smaller than
* RPCRDMA_MAX_DATA_SEGS.
*/
if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) {
int delta = RPCRDMA_MAX_DATA_SEGS -
ia->ri_max_frmr_depth;
do {
depth += 2; /* FRMR reg + invalidate */
delta -= ia->ri_max_frmr_depth;
} while (delta > 0);
}
ep->rep_attr.cap.max_send_wr *= depth;
if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr) {
cdata->max_requests = devattr.max_qp_wr / depth;
if (!cdata->max_requests)
return -EINVAL;
ep->rep_attr.cap.max_send_wr = cdata->max_requests *
depth;
}
break;
}
default:
break;
}
ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
ep->rep_attr.cap.max_send_sge = (cdata->padding ? 4 : 2);
ep->rep_attr.cap.max_recv_sge = 1;
ep->rep_attr.cap.max_inline_data = 0;
ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
ep->rep_attr.qp_type = IB_QPT_RC;
ep->rep_attr.port_num = ~0;
dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
"iovs: send %d recv %d\n",
__func__,
ep->rep_attr.cap.max_send_wr,
ep->rep_attr.cap.max_recv_wr,
ep->rep_attr.cap.max_send_sge,
ep->rep_attr.cap.max_recv_sge);
/* set trigger for requesting send completion */
ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 - 1;
if (ep->rep_cqinit > RPCRDMA_MAX_UNSIGNALED_SENDS)
ep->rep_cqinit = RPCRDMA_MAX_UNSIGNALED_SENDS;
else if (ep->rep_cqinit <= 2)
ep->rep_cqinit = 0;
INIT_CQCOUNT(ep);
ep->rep_ia = ia;
init_waitqueue_head(&ep->rep_connect_wait);
INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker);
sendcq = ib_create_cq(ia->ri_id->device, rpcrdma_sendcq_upcall,
rpcrdma_cq_async_error_upcall, ep,
ep->rep_attr.cap.max_send_wr + 1, 0);
if (IS_ERR(sendcq)) {
rc = PTR_ERR(sendcq);
dprintk("RPC: %s: failed to create send CQ: %i\n",
__func__, rc);
goto out1;
}
rc = ib_req_notify_cq(sendcq, IB_CQ_NEXT_COMP);
if (rc) {
dprintk("RPC: %s: ib_req_notify_cq failed: %i\n",
__func__, rc);
goto out2;
}
recvcq = ib_create_cq(ia->ri_id->device, rpcrdma_recvcq_upcall,
rpcrdma_cq_async_error_upcall, ep,
ep->rep_attr.cap.max_recv_wr + 1, 0);
if (IS_ERR(recvcq)) {
rc = PTR_ERR(recvcq);
dprintk("RPC: %s: failed to create recv CQ: %i\n",
__func__, rc);
goto out2;
}
rc = ib_req_notify_cq(recvcq, IB_CQ_NEXT_COMP);
if (rc) {
dprintk("RPC: %s: ib_req_notify_cq failed: %i\n",
__func__, rc);
ib_destroy_cq(recvcq);
goto out2;
}
ep->rep_attr.send_cq = sendcq;
ep->rep_attr.recv_cq = recvcq;
/* Initialize cma parameters */
/* RPC/RDMA does not use private data */
ep->rep_remote_cma.private_data = NULL;
ep->rep_remote_cma.private_data_len = 0;
/* Client offers RDMA Read but does not initiate */
ep->rep_remote_cma.initiator_depth = 0;
if (devattr.max_qp_rd_atom > 32) /* arbitrary but <= 255 */
ep->rep_remote_cma.responder_resources = 32;
else
ep->rep_remote_cma.responder_resources = devattr.max_qp_rd_atom;
ep->rep_remote_cma.retry_count = 7;
ep->rep_remote_cma.flow_control = 0;
ep->rep_remote_cma.rnr_retry_count = 0;
return 0;
out2:
err = ib_destroy_cq(sendcq);
if (err)
dprintk("RPC: %s: ib_destroy_cq returned %i\n",
__func__, err);
out1:
return rc;
}
/*
* rpcrdma_ep_destroy
*
* Disconnect and destroy endpoint. After this, the only
* valid operations on the ep are to free it (if dynamically
* allocated) or re-create it.
*/
void
rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
int rc;
dprintk("RPC: %s: entering, connected is %d\n",
__func__, ep->rep_connected);
cancel_delayed_work_sync(&ep->rep_connect_worker);
if (ia->ri_id->qp) {
rpcrdma_ep_disconnect(ep, ia);
rdma_destroy_qp(ia->ri_id);
ia->ri_id->qp = NULL;
}
/* padding - could be done in rpcrdma_buffer_destroy... */
if (ep->rep_pad_mr) {
rpcrdma_deregister_internal(ia, ep->rep_pad_mr, &ep->rep_pad);
ep->rep_pad_mr = NULL;
}
rpcrdma_clean_cq(ep->rep_attr.recv_cq);
rc = ib_destroy_cq(ep->rep_attr.recv_cq);
if (rc)
dprintk("RPC: %s: ib_destroy_cq returned %i\n",
__func__, rc);
rpcrdma_clean_cq(ep->rep_attr.send_cq);
rc = ib_destroy_cq(ep->rep_attr.send_cq);
if (rc)
dprintk("RPC: %s: ib_destroy_cq returned %i\n",
__func__, rc);
}
/*
* Connect unconnected endpoint.
*/
int
rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
struct rdma_cm_id *id, *old;
int rc = 0;
int retry_count = 0;
if (ep->rep_connected != 0) {
struct rpcrdma_xprt *xprt;
retry:
dprintk("RPC: %s: reconnecting...\n", __func__);
rpcrdma_ep_disconnect(ep, ia);
rpcrdma_flush_cqs(ep);
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
rpcrdma_reset_frmrs(ia);
break;
case RPCRDMA_MTHCAFMR:
rpcrdma_reset_fmrs(ia);
break;
case RPCRDMA_ALLPHYSICAL:
break;
default:
rc = -EIO;
goto out;
}
xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
id = rpcrdma_create_id(xprt, ia,
(struct sockaddr *)&xprt->rx_data.addr);
if (IS_ERR(id)) {
rc = -EHOSTUNREACH;
goto out;
}
/* TEMP TEMP TEMP - fail if new device:
* Deregister/remarshal *all* requests!
* Close and recreate adapter, pd, etc!
* Re-determine all attributes still sane!
* More stuff I haven't thought of!
* Rrrgh!
*/
if (ia->ri_id->device != id->device) {
printk("RPC: %s: can't reconnect on "
"different device!\n", __func__);
rdma_destroy_id(id);
rc = -ENETUNREACH;
goto out;
}
/* END TEMP */
rc = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
if (rc) {
dprintk("RPC: %s: rdma_create_qp failed %i\n",
__func__, rc);
rdma_destroy_id(id);
rc = -ENETUNREACH;
goto out;
}
write_lock(&ia->ri_qplock);
old = ia->ri_id;
ia->ri_id = id;
write_unlock(&ia->ri_qplock);
rdma_destroy_qp(old);
rdma_destroy_id(old);
} else {
dprintk("RPC: %s: connecting...\n", __func__);
rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
if (rc) {
dprintk("RPC: %s: rdma_create_qp failed %i\n",
__func__, rc);
/* do not update ep->rep_connected */
return -ENETUNREACH;
}
}
ep->rep_connected = 0;
rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
if (rc) {
dprintk("RPC: %s: rdma_connect() failed with %i\n",
__func__, rc);
goto out;
}
wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
/*
* Check state. A non-peer reject indicates no listener
* (ECONNREFUSED), which may be a transient state. All
* others indicate a transport condition which has already
* undergone a best-effort.
*/
if (ep->rep_connected == -ECONNREFUSED &&
++retry_count <= RDMA_CONNECT_RETRY_MAX) {
dprintk("RPC: %s: non-peer_reject, retry\n", __func__);
goto retry;
}
if (ep->rep_connected <= 0) {
/* Sometimes, the only way to reliably connect to remote
* CMs is to use same nonzero values for ORD and IRD. */
if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 &&
(ep->rep_remote_cma.responder_resources == 0 ||
ep->rep_remote_cma.initiator_depth !=
ep->rep_remote_cma.responder_resources)) {
if (ep->rep_remote_cma.responder_resources == 0)
ep->rep_remote_cma.responder_resources = 1;
ep->rep_remote_cma.initiator_depth =
ep->rep_remote_cma.responder_resources;
goto retry;
}
rc = ep->rep_connected;
} else {
dprintk("RPC: %s: connected\n", __func__);
}
out:
if (rc)
ep->rep_connected = rc;
return rc;
}
/*
* rpcrdma_ep_disconnect
*
* This is separate from destroy to facilitate the ability
* to reconnect without recreating the endpoint.
*
* This call is not reentrant, and must not be made in parallel
* on the same endpoint.
*/
void
rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{
int rc;
rpcrdma_flush_cqs(ep);
rc = rdma_disconnect(ia->ri_id);
if (!rc) {
/* returns without wait if not connected */
wait_event_interruptible(ep->rep_connect_wait,
ep->rep_connected != 1);
dprintk("RPC: %s: after wait, %sconnected\n", __func__,
(ep->rep_connected == 1) ? "still " : "dis");
} else {
dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc);
ep->rep_connected = rc;
}
}
static int
rpcrdma_init_fmrs(struct rpcrdma_ia *ia, struct rpcrdma_buffer *buf)
{
int mr_access_flags = IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ;
struct ib_fmr_attr fmr_attr = {
.max_pages = RPCRDMA_MAX_DATA_SEGS,
.max_maps = 1,
.page_shift = PAGE_SHIFT
};
struct rpcrdma_mw *r;
int i, rc;
i = (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS;
dprintk("RPC: %s: initalizing %d FMRs\n", __func__, i);
while (i--) {
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (r == NULL)
return -ENOMEM;
r->r.fmr = ib_alloc_fmr(ia->ri_pd, mr_access_flags, &fmr_attr);
if (IS_ERR(r->r.fmr)) {
rc = PTR_ERR(r->r.fmr);
dprintk("RPC: %s: ib_alloc_fmr failed %i\n",
__func__, rc);
goto out_free;
}
list_add(&r->mw_list, &buf->rb_mws);
list_add(&r->mw_all, &buf->rb_all);
}
return 0;
out_free:
kfree(r);
return rc;
}
static int
rpcrdma_init_frmrs(struct rpcrdma_ia *ia, struct rpcrdma_buffer *buf)
{
struct rpcrdma_frmr *f;
struct rpcrdma_mw *r;
int i, rc;
i = (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS;
dprintk("RPC: %s: initalizing %d FRMRs\n", __func__, i);
while (i--) {
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (r == NULL)
return -ENOMEM;
f = &r->r.frmr;
f->fr_mr = ib_alloc_fast_reg_mr(ia->ri_pd,
ia->ri_max_frmr_depth);
if (IS_ERR(f->fr_mr)) {
rc = PTR_ERR(f->fr_mr);
dprintk("RPC: %s: ib_alloc_fast_reg_mr "
"failed %i\n", __func__, rc);
goto out_free;
}
f->fr_pgl = ib_alloc_fast_reg_page_list(ia->ri_id->device,
ia->ri_max_frmr_depth);
if (IS_ERR(f->fr_pgl)) {
rc = PTR_ERR(f->fr_pgl);
dprintk("RPC: %s: ib_alloc_fast_reg_page_list "
"failed %i\n", __func__, rc);
ib_dereg_mr(f->fr_mr);
goto out_free;
}
list_add(&r->mw_list, &buf->rb_mws);
list_add(&r->mw_all, &buf->rb_all);
}
return 0;
out_free:
kfree(r);
return rc;
}
int
rpcrdma_buffer_create(struct rpcrdma_buffer *buf, struct rpcrdma_ep *ep,
struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata)
{
char *p;
size_t len, rlen, wlen;
int i, rc;
buf->rb_max_requests = cdata->max_requests;
spin_lock_init(&buf->rb_lock);
atomic_set(&buf->rb_credits, 1);
/* Need to allocate:
* 1. arrays for send and recv pointers
* 2. arrays of struct rpcrdma_req to fill in pointers
* 3. array of struct rpcrdma_rep for replies
* 4. padding, if any
* Send/recv buffers in req/rep need to be registered
*/
len = buf->rb_max_requests *
(sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *));
len += cdata->padding;
p = kzalloc(len, GFP_KERNEL);
if (p == NULL) {
dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n",
__func__, len);
rc = -ENOMEM;
goto out;
}
buf->rb_pool = p; /* for freeing it later */
buf->rb_send_bufs = (struct rpcrdma_req **) p;
p = (char *) &buf->rb_send_bufs[buf->rb_max_requests];
buf->rb_recv_bufs = (struct rpcrdma_rep **) p;
p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests];
/*
* Register the zeroed pad buffer, if any.
*/
if (cdata->padding) {
rc = rpcrdma_register_internal(ia, p, cdata->padding,
&ep->rep_pad_mr, &ep->rep_pad);
if (rc)
goto out;
}
p += cdata->padding;
INIT_LIST_HEAD(&buf->rb_mws);
INIT_LIST_HEAD(&buf->rb_all);
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
rc = rpcrdma_init_frmrs(ia, buf);
if (rc)
goto out;
break;
case RPCRDMA_MTHCAFMR:
rc = rpcrdma_init_fmrs(ia, buf);
if (rc)
goto out;
break;
default:
break;
}
/*
* Allocate/init the request/reply buffers. Doing this
* using kmalloc for now -- one for each buf.
*/
wlen = 1 << fls(cdata->inline_wsize + sizeof(struct rpcrdma_req));
rlen = 1 << fls(cdata->inline_rsize + sizeof(struct rpcrdma_rep));
dprintk("RPC: %s: wlen = %zu, rlen = %zu\n",
__func__, wlen, rlen);
for (i = 0; i < buf->rb_max_requests; i++) {
struct rpcrdma_req *req;
struct rpcrdma_rep *rep;
req = kmalloc(wlen, GFP_KERNEL);
if (req == NULL) {
dprintk("RPC: %s: request buffer %d alloc"
" failed\n", __func__, i);
rc = -ENOMEM;
goto out;
}
memset(req, 0, sizeof(struct rpcrdma_req));
buf->rb_send_bufs[i] = req;
buf->rb_send_bufs[i]->rl_buffer = buf;
rc = rpcrdma_register_internal(ia, req->rl_base,
wlen - offsetof(struct rpcrdma_req, rl_base),
&buf->rb_send_bufs[i]->rl_handle,
&buf->rb_send_bufs[i]->rl_iov);
if (rc)
goto out;
buf->rb_send_bufs[i]->rl_size = wlen -
sizeof(struct rpcrdma_req);
rep = kmalloc(rlen, GFP_KERNEL);
if (rep == NULL) {
dprintk("RPC: %s: reply buffer %d alloc failed\n",
__func__, i);
rc = -ENOMEM;
goto out;
}
memset(rep, 0, sizeof(struct rpcrdma_rep));
buf->rb_recv_bufs[i] = rep;
buf->rb_recv_bufs[i]->rr_buffer = buf;
rc = rpcrdma_register_internal(ia, rep->rr_base,
rlen - offsetof(struct rpcrdma_rep, rr_base),
&buf->rb_recv_bufs[i]->rr_handle,
&buf->rb_recv_bufs[i]->rr_iov);
if (rc)
goto out;
}
dprintk("RPC: %s: max_requests %d\n",
__func__, buf->rb_max_requests);
/* done */
return 0;
out:
rpcrdma_buffer_destroy(buf);
return rc;
}
static void
rpcrdma_destroy_fmrs(struct rpcrdma_buffer *buf)
{
struct rpcrdma_mw *r;
int rc;
while (!list_empty(&buf->rb_all)) {
r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
list_del(&r->mw_all);
list_del(&r->mw_list);
rc = ib_dealloc_fmr(r->r.fmr);
if (rc)
dprintk("RPC: %s: ib_dealloc_fmr failed %i\n",
__func__, rc);
kfree(r);
}
}
static void
rpcrdma_destroy_frmrs(struct rpcrdma_buffer *buf)
{
struct rpcrdma_mw *r;
int rc;
while (!list_empty(&buf->rb_all)) {
r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
list_del(&r->mw_all);
list_del(&r->mw_list);
rc = ib_dereg_mr(r->r.frmr.fr_mr);
if (rc)
dprintk("RPC: %s: ib_dereg_mr failed %i\n",
__func__, rc);
ib_free_fast_reg_page_list(r->r.frmr.fr_pgl);
kfree(r);
}
}
void
rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
{
struct rpcrdma_ia *ia = rdmab_to_ia(buf);
int i;
/* clean up in reverse order from create
* 1. recv mr memory (mr free, then kfree)
* 2. send mr memory (mr free, then kfree)
* 3. MWs
*/
dprintk("RPC: %s: entering\n", __func__);
for (i = 0; i < buf->rb_max_requests; i++) {
if (buf->rb_recv_bufs && buf->rb_recv_bufs[i]) {
rpcrdma_deregister_internal(ia,
buf->rb_recv_bufs[i]->rr_handle,
&buf->rb_recv_bufs[i]->rr_iov);
kfree(buf->rb_recv_bufs[i]);
}
if (buf->rb_send_bufs && buf->rb_send_bufs[i]) {
rpcrdma_deregister_internal(ia,
buf->rb_send_bufs[i]->rl_handle,
&buf->rb_send_bufs[i]->rl_iov);
kfree(buf->rb_send_bufs[i]);
}
}
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
rpcrdma_destroy_frmrs(buf);
break;
case RPCRDMA_MTHCAFMR:
rpcrdma_destroy_fmrs(buf);
break;
default:
break;
}
kfree(buf->rb_pool);
}
/* After a disconnect, unmap all FMRs.
*
* This is invoked only in the transport connect worker in order
* to serialize with rpcrdma_register_fmr_external().
*/
static void
rpcrdma_reset_fmrs(struct rpcrdma_ia *ia)
{
struct rpcrdma_xprt *r_xprt =
container_of(ia, struct rpcrdma_xprt, rx_ia);
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
struct list_head *pos;
struct rpcrdma_mw *r;
LIST_HEAD(l);
int rc;
list_for_each(pos, &buf->rb_all) {
r = list_entry(pos, struct rpcrdma_mw, mw_all);
INIT_LIST_HEAD(&l);
list_add(&r->r.fmr->list, &l);
rc = ib_unmap_fmr(&l);
if (rc)
dprintk("RPC: %s: ib_unmap_fmr failed %i\n",
__func__, rc);
}
}
/* After a disconnect, a flushed FAST_REG_MR can leave an FRMR in
* an unusable state. Find FRMRs in this state and dereg / reg
* each. FRMRs that are VALID and attached to an rpcrdma_req are
* also torn down.
*
* This gives all in-use FRMRs a fresh rkey and leaves them INVALID.
*
* This is invoked only in the transport connect worker in order
* to serialize with rpcrdma_register_frmr_external().
*/
static void
rpcrdma_reset_frmrs(struct rpcrdma_ia *ia)
{
struct rpcrdma_xprt *r_xprt =
container_of(ia, struct rpcrdma_xprt, rx_ia);
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
struct list_head *pos;
struct rpcrdma_mw *r;
int rc;
list_for_each(pos, &buf->rb_all) {
r = list_entry(pos, struct rpcrdma_mw, mw_all);
if (r->r.frmr.fr_state == FRMR_IS_INVALID)
continue;
rc = ib_dereg_mr(r->r.frmr.fr_mr);
if (rc)
dprintk("RPC: %s: ib_dereg_mr failed %i\n",
__func__, rc);
ib_free_fast_reg_page_list(r->r.frmr.fr_pgl);
r->r.frmr.fr_mr = ib_alloc_fast_reg_mr(ia->ri_pd,
ia->ri_max_frmr_depth);
if (IS_ERR(r->r.frmr.fr_mr)) {
rc = PTR_ERR(r->r.frmr.fr_mr);
dprintk("RPC: %s: ib_alloc_fast_reg_mr"
" failed %i\n", __func__, rc);
continue;
}
r->r.frmr.fr_pgl = ib_alloc_fast_reg_page_list(
ia->ri_id->device,
ia->ri_max_frmr_depth);
if (IS_ERR(r->r.frmr.fr_pgl)) {
rc = PTR_ERR(r->r.frmr.fr_pgl);
dprintk("RPC: %s: "
"ib_alloc_fast_reg_page_list "
"failed %i\n", __func__, rc);
ib_dereg_mr(r->r.frmr.fr_mr);
continue;
}
r->r.frmr.fr_state = FRMR_IS_INVALID;
}
}
/* "*mw" can be NULL when rpcrdma_buffer_get_mrs() fails, leaving
* some req segments uninitialized.
*/
static void
rpcrdma_buffer_put_mr(struct rpcrdma_mw **mw, struct rpcrdma_buffer *buf)
{
if (*mw) {
list_add_tail(&(*mw)->mw_list, &buf->rb_mws);
*mw = NULL;
}
}
/* Cycle mw's back in reverse order, and "spin" them.
* This delays and scrambles reuse as much as possible.
*/
static void
rpcrdma_buffer_put_mrs(struct rpcrdma_req *req, struct rpcrdma_buffer *buf)
{
struct rpcrdma_mr_seg *seg = req->rl_segments;
struct rpcrdma_mr_seg *seg1 = seg;
int i;
for (i = 1, seg++; i < RPCRDMA_MAX_SEGS; seg++, i++)
rpcrdma_buffer_put_mr(&seg->mr_chunk.rl_mw, buf);
rpcrdma_buffer_put_mr(&seg1->mr_chunk.rl_mw, buf);
}
static void
rpcrdma_buffer_put_sendbuf(struct rpcrdma_req *req, struct rpcrdma_buffer *buf)
{
buf->rb_send_bufs[--buf->rb_send_index] = req;
req->rl_niovs = 0;
if (req->rl_reply) {
buf->rb_recv_bufs[--buf->rb_recv_index] = req->rl_reply;
req->rl_reply->rr_func = NULL;
req->rl_reply = NULL;
}
}
/* rpcrdma_unmap_one() was already done by rpcrdma_deregister_frmr_external().
* Redo only the ib_post_send().
*/
static void
rpcrdma_retry_local_inv(struct rpcrdma_mw *r, struct rpcrdma_ia *ia)
{
struct rpcrdma_xprt *r_xprt =
container_of(ia, struct rpcrdma_xprt, rx_ia);
struct ib_send_wr invalidate_wr, *bad_wr;
int rc;
dprintk("RPC: %s: FRMR %p is stale\n", __func__, r);
/* When this FRMR is re-inserted into rb_mws, it is no longer stale */
r->r.frmr.fr_state = FRMR_IS_INVALID;
memset(&invalidate_wr, 0, sizeof(invalidate_wr));
invalidate_wr.wr_id = (unsigned long)(void *)r;
invalidate_wr.opcode = IB_WR_LOCAL_INV;
invalidate_wr.ex.invalidate_rkey = r->r.frmr.fr_mr->rkey;
DECR_CQCOUNT(&r_xprt->rx_ep);
dprintk("RPC: %s: frmr %p invalidating rkey %08x\n",
__func__, r, r->r.frmr.fr_mr->rkey);
read_lock(&ia->ri_qplock);
rc = ib_post_send(ia->ri_id->qp, &invalidate_wr, &bad_wr);
read_unlock(&ia->ri_qplock);
if (rc) {
/* Force rpcrdma_buffer_get() to retry */
r->r.frmr.fr_state = FRMR_IS_STALE;
dprintk("RPC: %s: ib_post_send failed, %i\n",
__func__, rc);
}
}
static void
rpcrdma_retry_flushed_linv(struct list_head *stale,
struct rpcrdma_buffer *buf)
{
struct rpcrdma_ia *ia = rdmab_to_ia(buf);
struct list_head *pos;
struct rpcrdma_mw *r;
unsigned long flags;
list_for_each(pos, stale) {
r = list_entry(pos, struct rpcrdma_mw, mw_list);
rpcrdma_retry_local_inv(r, ia);
}
spin_lock_irqsave(&buf->rb_lock, flags);
list_splice_tail(stale, &buf->rb_mws);
spin_unlock_irqrestore(&buf->rb_lock, flags);
}
static struct rpcrdma_req *
rpcrdma_buffer_get_frmrs(struct rpcrdma_req *req, struct rpcrdma_buffer *buf,
struct list_head *stale)
{
struct rpcrdma_mw *r;
int i;
i = RPCRDMA_MAX_SEGS - 1;
while (!list_empty(&buf->rb_mws)) {
r = list_entry(buf->rb_mws.next,
struct rpcrdma_mw, mw_list);
list_del(&r->mw_list);
if (r->r.frmr.fr_state == FRMR_IS_STALE) {
list_add(&r->mw_list, stale);
continue;
}
req->rl_segments[i].mr_chunk.rl_mw = r;
if (unlikely(i-- == 0))
return req; /* Success */
}
/* Not enough entries on rb_mws for this req */
rpcrdma_buffer_put_sendbuf(req, buf);
rpcrdma_buffer_put_mrs(req, buf);
return NULL;
}
static struct rpcrdma_req *
rpcrdma_buffer_get_fmrs(struct rpcrdma_req *req, struct rpcrdma_buffer *buf)
{
struct rpcrdma_mw *r;
int i;
i = RPCRDMA_MAX_SEGS - 1;
while (!list_empty(&buf->rb_mws)) {
r = list_entry(buf->rb_mws.next,
struct rpcrdma_mw, mw_list);
list_del(&r->mw_list);
req->rl_segments[i].mr_chunk.rl_mw = r;
if (unlikely(i-- == 0))
return req; /* Success */
}
/* Not enough entries on rb_mws for this req */
rpcrdma_buffer_put_sendbuf(req, buf);
rpcrdma_buffer_put_mrs(req, buf);
return NULL;
}
/*
* Get a set of request/reply buffers.
*
* Reply buffer (if needed) is attached to send buffer upon return.
* Rule:
* rb_send_index and rb_recv_index MUST always be pointing to the
* *next* available buffer (non-NULL). They are incremented after
* removing buffers, and decremented *before* returning them.
*/
struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
{
struct rpcrdma_ia *ia = rdmab_to_ia(buffers);
struct list_head stale;
struct rpcrdma_req *req;
unsigned long flags;
spin_lock_irqsave(&buffers->rb_lock, flags);
if (buffers->rb_send_index == buffers->rb_max_requests) {
spin_unlock_irqrestore(&buffers->rb_lock, flags);
dprintk("RPC: %s: out of request buffers\n", __func__);
return ((struct rpcrdma_req *)NULL);
}
req = buffers->rb_send_bufs[buffers->rb_send_index];
if (buffers->rb_send_index < buffers->rb_recv_index) {
dprintk("RPC: %s: %d extra receives outstanding (ok)\n",
__func__,
buffers->rb_recv_index - buffers->rb_send_index);
req->rl_reply = NULL;
} else {
req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
}
buffers->rb_send_bufs[buffers->rb_send_index++] = NULL;
INIT_LIST_HEAD(&stale);
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
req = rpcrdma_buffer_get_frmrs(req, buffers, &stale);
break;
case RPCRDMA_MTHCAFMR:
req = rpcrdma_buffer_get_fmrs(req, buffers);
break;
default:
break;
}
spin_unlock_irqrestore(&buffers->rb_lock, flags);
if (!list_empty(&stale))
rpcrdma_retry_flushed_linv(&stale, buffers);
return req;
}
/*
* Put request/reply buffers back into pool.
* Pre-decrement counter/array index.
*/
void
rpcrdma_buffer_put(struct rpcrdma_req *req)
{
struct rpcrdma_buffer *buffers = req->rl_buffer;
struct rpcrdma_ia *ia = rdmab_to_ia(buffers);
unsigned long flags;
spin_lock_irqsave(&buffers->rb_lock, flags);
rpcrdma_buffer_put_sendbuf(req, buffers);
switch (ia->ri_memreg_strategy) {
case RPCRDMA_FRMR:
case RPCRDMA_MTHCAFMR:
rpcrdma_buffer_put_mrs(req, buffers);
break;
default:
break;
}
spin_unlock_irqrestore(&buffers->rb_lock, flags);
}
/*
* Recover reply buffers from pool.
* This happens when recovering from error conditions.
* Post-increment counter/array index.
*/
void
rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
{
struct rpcrdma_buffer *buffers = req->rl_buffer;
unsigned long flags;
if (req->rl_iov.length == 0) /* special case xprt_rdma_allocate() */
buffers = ((struct rpcrdma_req *) buffers)->rl_buffer;
spin_lock_irqsave(&buffers->rb_lock, flags);
if (buffers->rb_recv_index < buffers->rb_max_requests) {
req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
}
spin_unlock_irqrestore(&buffers->rb_lock, flags);
}
/*
* Put reply buffers back into pool when not attached to
* request. This happens in error conditions.
*/
void
rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
{
struct rpcrdma_buffer *buffers = rep->rr_buffer;
unsigned long flags;
rep->rr_func = NULL;
spin_lock_irqsave(&buffers->rb_lock, flags);
buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep;
spin_unlock_irqrestore(&buffers->rb_lock, flags);
}
/*
* Wrappers for internal-use kmalloc memory registration, used by buffer code.
*/
int
rpcrdma_register_internal(struct rpcrdma_ia *ia, void *va, int len,
struct ib_mr **mrp, struct ib_sge *iov)
{
struct ib_phys_buf ipb;
struct ib_mr *mr;
int rc;
/*
* All memory passed here was kmalloc'ed, therefore phys-contiguous.
*/
iov->addr = ib_dma_map_single(ia->ri_id->device,
va, len, DMA_BIDIRECTIONAL);
if (ib_dma_mapping_error(ia->ri_id->device, iov->addr))
return -ENOMEM;
iov->length = len;
if (ia->ri_have_dma_lkey) {
*mrp = NULL;
iov->lkey = ia->ri_dma_lkey;
return 0;
} else if (ia->ri_bind_mem != NULL) {
*mrp = NULL;
iov->lkey = ia->ri_bind_mem->lkey;
return 0;
}
ipb.addr = iov->addr;
ipb.size = iov->length;
mr = ib_reg_phys_mr(ia->ri_pd, &ipb, 1,
IB_ACCESS_LOCAL_WRITE, &iov->addr);
dprintk("RPC: %s: phys convert: 0x%llx "
"registered 0x%llx length %d\n",
__func__, (unsigned long long)ipb.addr,
(unsigned long long)iov->addr, len);
if (IS_ERR(mr)) {
*mrp = NULL;
rc = PTR_ERR(mr);
dprintk("RPC: %s: failed with %i\n", __func__, rc);
} else {
*mrp = mr;
iov->lkey = mr->lkey;
rc = 0;
}
return rc;
}
int
rpcrdma_deregister_internal(struct rpcrdma_ia *ia,
struct ib_mr *mr, struct ib_sge *iov)
{
int rc;
ib_dma_unmap_single(ia->ri_id->device,
iov->addr, iov->length, DMA_BIDIRECTIONAL);
if (NULL == mr)
return 0;
rc = ib_dereg_mr(mr);
if (rc)
dprintk("RPC: %s: ib_dereg_mr failed %i\n", __func__, rc);
return rc;
}
/*
* Wrappers for chunk registration, shared by read/write chunk code.
*/
static void
rpcrdma_map_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg, int writing)
{
seg->mr_dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
seg->mr_dmalen = seg->mr_len;
if (seg->mr_page)
seg->mr_dma = ib_dma_map_page(ia->ri_id->device,
seg->mr_page, offset_in_page(seg->mr_offset),
seg->mr_dmalen, seg->mr_dir);
else
seg->mr_dma = ib_dma_map_single(ia->ri_id->device,
seg->mr_offset,
seg->mr_dmalen, seg->mr_dir);
if (ib_dma_mapping_error(ia->ri_id->device, seg->mr_dma)) {
dprintk("RPC: %s: mr_dma %llx mr_offset %p mr_dma_len %zu\n",
__func__,
(unsigned long long)seg->mr_dma,
seg->mr_offset, seg->mr_dmalen);
}
}
static void
rpcrdma_unmap_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg)
{
if (seg->mr_page)
ib_dma_unmap_page(ia->ri_id->device,
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
else
ib_dma_unmap_single(ia->ri_id->device,
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
}
static int
rpcrdma_register_frmr_external(struct rpcrdma_mr_seg *seg,
int *nsegs, int writing, struct rpcrdma_ia *ia,
struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_mr_seg *seg1 = seg;
struct rpcrdma_mw *mw = seg1->mr_chunk.rl_mw;
struct rpcrdma_frmr *frmr = &mw->r.frmr;
struct ib_mr *mr = frmr->fr_mr;
struct ib_send_wr fastreg_wr, *bad_wr;
u8 key;
int len, pageoff;
int i, rc;
int seg_len;
u64 pa;
int page_no;
pageoff = offset_in_page(seg1->mr_offset);
seg1->mr_offset -= pageoff; /* start of page */
seg1->mr_len += pageoff;
len = -pageoff;
if (*nsegs > ia->ri_max_frmr_depth)
*nsegs = ia->ri_max_frmr_depth;
for (page_no = i = 0; i < *nsegs;) {
rpcrdma_map_one(ia, seg, writing);
pa = seg->mr_dma;
for (seg_len = seg->mr_len; seg_len > 0; seg_len -= PAGE_SIZE) {
frmr->fr_pgl->page_list[page_no++] = pa;
pa += PAGE_SIZE;
}
len += seg->mr_len;
++seg;
++i;
/* Check for holes */
if ((i < *nsegs && offset_in_page(seg->mr_offset)) ||
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
break;
}
dprintk("RPC: %s: Using frmr %p to map %d segments\n",
__func__, mw, i);
frmr->fr_state = FRMR_IS_VALID;
memset(&fastreg_wr, 0, sizeof(fastreg_wr));
fastreg_wr.wr_id = (unsigned long)(void *)mw;
fastreg_wr.opcode = IB_WR_FAST_REG_MR;
fastreg_wr.wr.fast_reg.iova_start = seg1->mr_dma;
fastreg_wr.wr.fast_reg.page_list = frmr->fr_pgl;
fastreg_wr.wr.fast_reg.page_list_len = page_no;
fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
fastreg_wr.wr.fast_reg.length = page_no << PAGE_SHIFT;
if (fastreg_wr.wr.fast_reg.length < len) {
rc = -EIO;
goto out_err;
}
/* Bump the key */
key = (u8)(mr->rkey & 0x000000FF);
ib_update_fast_reg_key(mr, ++key);
fastreg_wr.wr.fast_reg.access_flags = (writing ?
IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
IB_ACCESS_REMOTE_READ);
fastreg_wr.wr.fast_reg.rkey = mr->rkey;
DECR_CQCOUNT(&r_xprt->rx_ep);
rc = ib_post_send(ia->ri_id->qp, &fastreg_wr, &bad_wr);
if (rc) {
dprintk("RPC: %s: failed ib_post_send for register,"
" status %i\n", __func__, rc);
ib_update_fast_reg_key(mr, --key);
goto out_err;
} else {
seg1->mr_rkey = mr->rkey;
seg1->mr_base = seg1->mr_dma + pageoff;
seg1->mr_nsegs = i;
seg1->mr_len = len;
}
*nsegs = i;
return 0;
out_err:
frmr->fr_state = FRMR_IS_INVALID;
while (i--)
rpcrdma_unmap_one(ia, --seg);
return rc;
}
static int
rpcrdma_deregister_frmr_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_ia *ia, struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_mr_seg *seg1 = seg;
struct ib_send_wr invalidate_wr, *bad_wr;
int rc;
seg1->mr_chunk.rl_mw->r.frmr.fr_state = FRMR_IS_INVALID;
memset(&invalidate_wr, 0, sizeof invalidate_wr);
invalidate_wr.wr_id = (unsigned long)(void *)seg1->mr_chunk.rl_mw;
invalidate_wr.opcode = IB_WR_LOCAL_INV;
invalidate_wr.ex.invalidate_rkey = seg1->mr_chunk.rl_mw->r.frmr.fr_mr->rkey;
DECR_CQCOUNT(&r_xprt->rx_ep);
read_lock(&ia->ri_qplock);
while (seg1->mr_nsegs--)
rpcrdma_unmap_one(ia, seg++);
rc = ib_post_send(ia->ri_id->qp, &invalidate_wr, &bad_wr);
read_unlock(&ia->ri_qplock);
if (rc) {
/* Force rpcrdma_buffer_get() to retry */
seg1->mr_chunk.rl_mw->r.frmr.fr_state = FRMR_IS_STALE;
dprintk("RPC: %s: failed ib_post_send for invalidate,"
" status %i\n", __func__, rc);
}
return rc;
}
static int
rpcrdma_register_fmr_external(struct rpcrdma_mr_seg *seg,
int *nsegs, int writing, struct rpcrdma_ia *ia)
{
struct rpcrdma_mr_seg *seg1 = seg;
u64 physaddrs[RPCRDMA_MAX_DATA_SEGS];
int len, pageoff, i, rc;
pageoff = offset_in_page(seg1->mr_offset);
seg1->mr_offset -= pageoff; /* start of page */
seg1->mr_len += pageoff;
len = -pageoff;
if (*nsegs > RPCRDMA_MAX_DATA_SEGS)
*nsegs = RPCRDMA_MAX_DATA_SEGS;
for (i = 0; i < *nsegs;) {
rpcrdma_map_one(ia, seg, writing);
physaddrs[i] = seg->mr_dma;
len += seg->mr_len;
++seg;
++i;
/* Check for holes */
if ((i < *nsegs && offset_in_page(seg->mr_offset)) ||
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
break;
}
rc = ib_map_phys_fmr(seg1->mr_chunk.rl_mw->r.fmr,
physaddrs, i, seg1->mr_dma);
if (rc) {
dprintk("RPC: %s: failed ib_map_phys_fmr "
"%u@0x%llx+%i (%d)... status %i\n", __func__,
len, (unsigned long long)seg1->mr_dma,
pageoff, i, rc);
while (i--)
rpcrdma_unmap_one(ia, --seg);
} else {
seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.fmr->rkey;
seg1->mr_base = seg1->mr_dma + pageoff;
seg1->mr_nsegs = i;
seg1->mr_len = len;
}
*nsegs = i;
return rc;
}
static int
rpcrdma_deregister_fmr_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_ia *ia)
{
struct rpcrdma_mr_seg *seg1 = seg;
LIST_HEAD(l);
int rc;
list_add(&seg1->mr_chunk.rl_mw->r.fmr->list, &l);
rc = ib_unmap_fmr(&l);
read_lock(&ia->ri_qplock);
while (seg1->mr_nsegs--)
rpcrdma_unmap_one(ia, seg++);
read_unlock(&ia->ri_qplock);
if (rc)
dprintk("RPC: %s: failed ib_unmap_fmr,"
" status %i\n", __func__, rc);
return rc;
}
int
rpcrdma_register_external(struct rpcrdma_mr_seg *seg,
int nsegs, int writing, struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
int rc = 0;
switch (ia->ri_memreg_strategy) {
case RPCRDMA_ALLPHYSICAL:
rpcrdma_map_one(ia, seg, writing);
seg->mr_rkey = ia->ri_bind_mem->rkey;
seg->mr_base = seg->mr_dma;
seg->mr_nsegs = 1;
nsegs = 1;
break;
/* Registration using frmr registration */
case RPCRDMA_FRMR:
rc = rpcrdma_register_frmr_external(seg, &nsegs, writing, ia, r_xprt);
break;
/* Registration using fmr memory registration */
case RPCRDMA_MTHCAFMR:
rc = rpcrdma_register_fmr_external(seg, &nsegs, writing, ia);
break;
default:
return -EIO;
}
if (rc)
return rc;
return nsegs;
}
int
rpcrdma_deregister_external(struct rpcrdma_mr_seg *seg,
struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
int nsegs = seg->mr_nsegs, rc;
switch (ia->ri_memreg_strategy) {
case RPCRDMA_ALLPHYSICAL:
read_lock(&ia->ri_qplock);
rpcrdma_unmap_one(ia, seg);
read_unlock(&ia->ri_qplock);
break;
case RPCRDMA_FRMR:
rc = rpcrdma_deregister_frmr_external(seg, ia, r_xprt);
break;
case RPCRDMA_MTHCAFMR:
rc = rpcrdma_deregister_fmr_external(seg, ia);
break;
default:
break;
}
return nsegs;
}
/*
* Prepost any receive buffer, then post send.
*
* Receive buffer is donated to hardware, reclaimed upon recv completion.
*/
int
rpcrdma_ep_post(struct rpcrdma_ia *ia,
struct rpcrdma_ep *ep,
struct rpcrdma_req *req)
{
struct ib_send_wr send_wr, *send_wr_fail;
struct rpcrdma_rep *rep = req->rl_reply;
int rc;
if (rep) {
rc = rpcrdma_ep_post_recv(ia, ep, rep);
if (rc)
goto out;
req->rl_reply = NULL;
}
send_wr.next = NULL;
send_wr.wr_id = 0ULL; /* no send cookie */
send_wr.sg_list = req->rl_send_iov;
send_wr.num_sge = req->rl_niovs;
send_wr.opcode = IB_WR_SEND;
if (send_wr.num_sge == 4) /* no need to sync any pad (constant) */
ib_dma_sync_single_for_device(ia->ri_id->device,
req->rl_send_iov[3].addr, req->rl_send_iov[3].length,
DMA_TO_DEVICE);
ib_dma_sync_single_for_device(ia->ri_id->device,
req->rl_send_iov[1].addr, req->rl_send_iov[1].length,
DMA_TO_DEVICE);
ib_dma_sync_single_for_device(ia->ri_id->device,
req->rl_send_iov[0].addr, req->rl_send_iov[0].length,
DMA_TO_DEVICE);
if (DECR_CQCOUNT(ep) > 0)
send_wr.send_flags = 0;
else { /* Provider must take a send completion every now and then */
INIT_CQCOUNT(ep);
send_wr.send_flags = IB_SEND_SIGNALED;
}
rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
if (rc)
dprintk("RPC: %s: ib_post_send returned %i\n", __func__,
rc);
out:
return rc;
}
/*
* (Re)post a receive buffer.
*/
int
rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
struct rpcrdma_ep *ep,
struct rpcrdma_rep *rep)
{
struct ib_recv_wr recv_wr, *recv_wr_fail;
int rc;
recv_wr.next = NULL;
recv_wr.wr_id = (u64) (unsigned long) rep;
recv_wr.sg_list = &rep->rr_iov;
recv_wr.num_sge = 1;
ib_dma_sync_single_for_cpu(ia->ri_id->device,
rep->rr_iov.addr, rep->rr_iov.length, DMA_BIDIRECTIONAL);
rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
if (rc)
dprintk("RPC: %s: ib_post_recv returned %i\n", __func__,
rc);
return rc;
}
/* Physical mapping means one Read/Write list entry per-page.
* All list entries must fit within an inline buffer
*
* NB: The server must return a Write list for NFS READ,
* which has the same constraint. Factor in the inline
* rsize as well.
*/
static size_t
rpcrdma_physical_max_payload(struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
unsigned int inline_size, pages;
inline_size = min_t(unsigned int,
cdata->inline_wsize, cdata->inline_rsize);
inline_size -= RPCRDMA_HDRLEN_MIN;
pages = inline_size / sizeof(struct rpcrdma_segment);
return pages << PAGE_SHIFT;
}
static size_t
rpcrdma_mr_max_payload(struct rpcrdma_xprt *r_xprt)
{
return RPCRDMA_MAX_DATA_SEGS << PAGE_SHIFT;
}
size_t
rpcrdma_max_payload(struct rpcrdma_xprt *r_xprt)
{
size_t result;
switch (r_xprt->rx_ia.ri_memreg_strategy) {
case RPCRDMA_ALLPHYSICAL:
result = rpcrdma_physical_max_payload(r_xprt);
break;
default:
result = rpcrdma_mr_max_payload(r_xprt);
}
return result;
}