| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Handle caching attributes in page tables (PAT) |
| * |
| * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> |
| * Suresh B Siddha <suresh.b.siddha@intel.com> |
| * |
| * Interval tree used to store the PAT memory type reservations. |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <linux/debugfs.h> |
| #include <linux/kernel.h> |
| #include <linux/interval_tree_generic.h> |
| #include <linux/sched.h> |
| #include <linux/gfp.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pat.h> |
| |
| #include "pat_internal.h" |
| |
| /* |
| * The memtype tree keeps track of memory type for specific |
| * physical memory areas. Without proper tracking, conflicting memory |
| * types in different mappings can cause CPU cache corruption. |
| * |
| * The tree is an interval tree (augmented rbtree) with tree ordered |
| * on starting address. Tree can contain multiple entries for |
| * different regions which overlap. All the aliases have the same |
| * cache attributes of course. |
| * |
| * memtype_lock protects the rbtree. |
| */ |
| static inline u64 memtype_interval_start(struct memtype *memtype) |
| { |
| return memtype->start; |
| } |
| |
| static inline u64 memtype_interval_end(struct memtype *memtype) |
| { |
| return memtype->end - 1; |
| } |
| INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end, |
| memtype_interval_start, memtype_interval_end, |
| static, memtype_interval) |
| |
| static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED; |
| |
| enum { |
| MEMTYPE_EXACT_MATCH = 0, |
| MEMTYPE_END_MATCH = 1 |
| }; |
| |
| static struct memtype *memtype_match(u64 start, u64 end, int match_type) |
| { |
| struct memtype *match; |
| |
| match = memtype_interval_iter_first(&memtype_rbroot, start, end); |
| while (match != NULL && match->start < end) { |
| if ((match_type == MEMTYPE_EXACT_MATCH) && |
| (match->start == start) && (match->end == end)) |
| return match; |
| |
| if ((match_type == MEMTYPE_END_MATCH) && |
| (match->start < start) && (match->end == end)) |
| return match; |
| |
| match = memtype_interval_iter_next(match, start, end); |
| } |
| |
| return NULL; /* Returns NULL if there is no match */ |
| } |
| |
| static int memtype_check_conflict(u64 start, u64 end, |
| enum page_cache_mode reqtype, |
| enum page_cache_mode *newtype) |
| { |
| struct memtype *match; |
| enum page_cache_mode found_type = reqtype; |
| |
| match = memtype_interval_iter_first(&memtype_rbroot, start, end); |
| if (match == NULL) |
| goto success; |
| |
| if (match->type != found_type && newtype == NULL) |
| goto failure; |
| |
| dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end); |
| found_type = match->type; |
| |
| match = memtype_interval_iter_next(match, start, end); |
| while (match) { |
| if (match->type != found_type) |
| goto failure; |
| |
| match = memtype_interval_iter_next(match, start, end); |
| } |
| success: |
| if (newtype) |
| *newtype = found_type; |
| |
| return 0; |
| |
| failure: |
| pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n", |
| current->comm, current->pid, start, end, |
| cattr_name(found_type), cattr_name(match->type)); |
| return -EBUSY; |
| } |
| |
| int memtype_check_insert(struct memtype *new, |
| enum page_cache_mode *ret_type) |
| { |
| int err = 0; |
| |
| err = memtype_check_conflict(new->start, new->end, new->type, ret_type); |
| if (err) |
| return err; |
| |
| if (ret_type) |
| new->type = *ret_type; |
| |
| memtype_interval_insert(new, &memtype_rbroot); |
| return 0; |
| } |
| |
| struct memtype *memtype_erase(u64 start, u64 end) |
| { |
| struct memtype *data; |
| |
| /* |
| * Since the memtype_rbroot tree allows overlapping ranges, |
| * memtype_erase() checks with EXACT_MATCH first, i.e. free |
| * a whole node for the munmap case. If no such entry is found, |
| * it then checks with END_MATCH, i.e. shrink the size of a node |
| * from the end for the mremap case. |
| */ |
| data = memtype_match(start, end, MEMTYPE_EXACT_MATCH); |
| if (!data) { |
| data = memtype_match(start, end, MEMTYPE_END_MATCH); |
| if (!data) |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (data->start == start) { |
| /* munmap: erase this node */ |
| memtype_interval_remove(data, &memtype_rbroot); |
| } else { |
| /* mremap: update the end value of this node */ |
| memtype_interval_remove(data, &memtype_rbroot); |
| data->end = start; |
| memtype_interval_insert(data, &memtype_rbroot); |
| return NULL; |
| } |
| |
| return data; |
| } |
| |
| struct memtype *memtype_lookup(u64 addr) |
| { |
| return memtype_interval_iter_first(&memtype_rbroot, addr, |
| addr + PAGE_SIZE); |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| int memtype_copy_nth_element(struct memtype *out, loff_t pos) |
| { |
| struct memtype *match; |
| int i = 1; |
| |
| match = memtype_interval_iter_first(&memtype_rbroot, 0, ULONG_MAX); |
| while (match && pos != i) { |
| match = memtype_interval_iter_next(match, 0, ULONG_MAX); |
| i++; |
| } |
| |
| if (match) { /* pos == i */ |
| *out = *match; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| #endif |