| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * KFENCE guarded object allocator and fault handling. |
| * |
| * Copyright (C) 2020, Google LLC. |
| */ |
| |
| #define pr_fmt(fmt) "kfence: " fmt |
| |
| #include <linux/atomic.h> |
| #include <linux/bug.h> |
| #include <linux/debugfs.h> |
| #include <linux/hash.h> |
| #include <linux/irq_work.h> |
| #include <linux/jhash.h> |
| #include <linux/kcsan-checks.h> |
| #include <linux/kfence.h> |
| #include <linux/kmemleak.h> |
| #include <linux/list.h> |
| #include <linux/lockdep.h> |
| #include <linux/log2.h> |
| #include <linux/memblock.h> |
| #include <linux/moduleparam.h> |
| #include <linux/random.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched/clock.h> |
| #include <linux/sched/sysctl.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| |
| #include <asm/kfence.h> |
| |
| #include "kfence.h" |
| |
| /* Disables KFENCE on the first warning assuming an irrecoverable error. */ |
| #define KFENCE_WARN_ON(cond) \ |
| ({ \ |
| const bool __cond = WARN_ON(cond); \ |
| if (unlikely(__cond)) \ |
| WRITE_ONCE(kfence_enabled, false); \ |
| __cond; \ |
| }) |
| |
| /* === Data ================================================================= */ |
| |
| static bool kfence_enabled __read_mostly; |
| |
| static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; |
| |
| #ifdef MODULE_PARAM_PREFIX |
| #undef MODULE_PARAM_PREFIX |
| #endif |
| #define MODULE_PARAM_PREFIX "kfence." |
| |
| static int param_set_sample_interval(const char *val, const struct kernel_param *kp) |
| { |
| unsigned long num; |
| int ret = kstrtoul(val, 0, &num); |
| |
| if (ret < 0) |
| return ret; |
| |
| if (!num) /* Using 0 to indicate KFENCE is disabled. */ |
| WRITE_ONCE(kfence_enabled, false); |
| else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) |
| return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ |
| |
| *((unsigned long *)kp->arg) = num; |
| return 0; |
| } |
| |
| static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) |
| { |
| if (!READ_ONCE(kfence_enabled)) |
| return sprintf(buffer, "0\n"); |
| |
| return param_get_ulong(buffer, kp); |
| } |
| |
| static const struct kernel_param_ops sample_interval_param_ops = { |
| .set = param_set_sample_interval, |
| .get = param_get_sample_interval, |
| }; |
| module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); |
| |
| /* Pool usage% threshold when currently covered allocations are skipped. */ |
| static unsigned long kfence_skip_covered_thresh __read_mostly = 75; |
| module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644); |
| |
| /* The pool of pages used for guard pages and objects. */ |
| char *__kfence_pool __ro_after_init; |
| EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ |
| |
| /* |
| * Per-object metadata, with one-to-one mapping of object metadata to |
| * backing pages (in __kfence_pool). |
| */ |
| static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); |
| struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; |
| |
| /* Freelist with available objects. */ |
| static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); |
| static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ |
| |
| /* |
| * The static key to set up a KFENCE allocation; or if static keys are not used |
| * to gate allocations, to avoid a load and compare if KFENCE is disabled. |
| */ |
| DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); |
| |
| /* Gates the allocation, ensuring only one succeeds in a given period. */ |
| atomic_t kfence_allocation_gate = ATOMIC_INIT(1); |
| |
| /* |
| * A Counting Bloom filter of allocation coverage: limits currently covered |
| * allocations of the same source filling up the pool. |
| * |
| * Assuming a range of 15%-85% unique allocations in the pool at any point in |
| * time, the below parameters provide a probablity of 0.02-0.33 for false |
| * positive hits respectively: |
| * |
| * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM |
| */ |
| #define ALLOC_COVERED_HNUM 2 |
| #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2) |
| #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER) |
| #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER) |
| #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1) |
| static atomic_t alloc_covered[ALLOC_COVERED_SIZE]; |
| |
| /* Stack depth used to determine uniqueness of an allocation. */ |
| #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8) |
| |
| /* |
| * Randomness for stack hashes, making the same collisions across reboots and |
| * different machines less likely. |
| */ |
| static u32 stack_hash_seed __ro_after_init; |
| |
| /* Statistics counters for debugfs. */ |
| enum kfence_counter_id { |
| KFENCE_COUNTER_ALLOCATED, |
| KFENCE_COUNTER_ALLOCS, |
| KFENCE_COUNTER_FREES, |
| KFENCE_COUNTER_ZOMBIES, |
| KFENCE_COUNTER_BUGS, |
| KFENCE_COUNTER_SKIP_INCOMPAT, |
| KFENCE_COUNTER_SKIP_CAPACITY, |
| KFENCE_COUNTER_SKIP_COVERED, |
| KFENCE_COUNTER_COUNT, |
| }; |
| static atomic_long_t counters[KFENCE_COUNTER_COUNT]; |
| static const char *const counter_names[] = { |
| [KFENCE_COUNTER_ALLOCATED] = "currently allocated", |
| [KFENCE_COUNTER_ALLOCS] = "total allocations", |
| [KFENCE_COUNTER_FREES] = "total frees", |
| [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", |
| [KFENCE_COUNTER_BUGS] = "total bugs", |
| [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)", |
| [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)", |
| [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)", |
| }; |
| static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); |
| |
| /* === Internals ============================================================ */ |
| |
| static inline bool should_skip_covered(void) |
| { |
| unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100; |
| |
| return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh; |
| } |
| |
| static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries) |
| { |
| num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH); |
| num_entries = filter_irq_stacks(stack_entries, num_entries); |
| return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed); |
| } |
| |
| /* |
| * Adds (or subtracts) count @val for allocation stack trace hash |
| * @alloc_stack_hash from Counting Bloom filter. |
| */ |
| static void alloc_covered_add(u32 alloc_stack_hash, int val) |
| { |
| int i; |
| |
| for (i = 0; i < ALLOC_COVERED_HNUM; i++) { |
| atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]); |
| alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); |
| } |
| } |
| |
| /* |
| * Returns true if the allocation stack trace hash @alloc_stack_hash is |
| * currently contained (non-zero count) in Counting Bloom filter. |
| */ |
| static bool alloc_covered_contains(u32 alloc_stack_hash) |
| { |
| int i; |
| |
| for (i = 0; i < ALLOC_COVERED_HNUM; i++) { |
| if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK])) |
| return false; |
| alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); |
| } |
| |
| return true; |
| } |
| |
| static bool kfence_protect(unsigned long addr) |
| { |
| return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); |
| } |
| |
| static bool kfence_unprotect(unsigned long addr) |
| { |
| return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); |
| } |
| |
| static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) |
| { |
| long index; |
| |
| /* The checks do not affect performance; only called from slow-paths. */ |
| |
| if (!is_kfence_address((void *)addr)) |
| return NULL; |
| |
| /* |
| * May be an invalid index if called with an address at the edge of |
| * __kfence_pool, in which case we would report an "invalid access" |
| * error. |
| */ |
| index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; |
| if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) |
| return NULL; |
| |
| return &kfence_metadata[index]; |
| } |
| |
| static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) |
| { |
| unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; |
| unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; |
| |
| /* The checks do not affect performance; only called from slow-paths. */ |
| |
| /* Only call with a pointer into kfence_metadata. */ |
| if (KFENCE_WARN_ON(meta < kfence_metadata || |
| meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) |
| return 0; |
| |
| /* |
| * This metadata object only ever maps to 1 page; verify that the stored |
| * address is in the expected range. |
| */ |
| if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) |
| return 0; |
| |
| return pageaddr; |
| } |
| |
| /* |
| * Update the object's metadata state, including updating the alloc/free stacks |
| * depending on the state transition. |
| */ |
| static noinline void |
| metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next, |
| unsigned long *stack_entries, size_t num_stack_entries) |
| { |
| struct kfence_track *track = |
| next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; |
| |
| lockdep_assert_held(&meta->lock); |
| |
| if (stack_entries) { |
| memcpy(track->stack_entries, stack_entries, |
| num_stack_entries * sizeof(stack_entries[0])); |
| } else { |
| /* |
| * Skip over 1 (this) functions; noinline ensures we do not |
| * accidentally skip over the caller by never inlining. |
| */ |
| num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); |
| } |
| track->num_stack_entries = num_stack_entries; |
| track->pid = task_pid_nr(current); |
| track->cpu = raw_smp_processor_id(); |
| track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ |
| |
| /* |
| * Pairs with READ_ONCE() in |
| * kfence_shutdown_cache(), |
| * kfence_handle_page_fault(). |
| */ |
| WRITE_ONCE(meta->state, next); |
| } |
| |
| /* Write canary byte to @addr. */ |
| static inline bool set_canary_byte(u8 *addr) |
| { |
| *addr = KFENCE_CANARY_PATTERN(addr); |
| return true; |
| } |
| |
| /* Check canary byte at @addr. */ |
| static inline bool check_canary_byte(u8 *addr) |
| { |
| struct kfence_metadata *meta; |
| unsigned long flags; |
| |
| if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) |
| return true; |
| |
| atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
| |
| meta = addr_to_metadata((unsigned long)addr); |
| raw_spin_lock_irqsave(&meta->lock, flags); |
| kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION); |
| raw_spin_unlock_irqrestore(&meta->lock, flags); |
| |
| return false; |
| } |
| |
| /* __always_inline this to ensure we won't do an indirect call to fn. */ |
| static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) |
| { |
| const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); |
| unsigned long addr; |
| |
| /* |
| * We'll iterate over each canary byte per-side until fn() returns |
| * false. However, we'll still iterate over the canary bytes to the |
| * right of the object even if there was an error in the canary bytes to |
| * the left of the object. Specifically, if check_canary_byte() |
| * generates an error, showing both sides might give more clues as to |
| * what the error is about when displaying which bytes were corrupted. |
| */ |
| |
| /* Apply to left of object. */ |
| for (addr = pageaddr; addr < meta->addr; addr++) { |
| if (!fn((u8 *)addr)) |
| break; |
| } |
| |
| /* Apply to right of object. */ |
| for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { |
| if (!fn((u8 *)addr)) |
| break; |
| } |
| } |
| |
| static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp, |
| unsigned long *stack_entries, size_t num_stack_entries, |
| u32 alloc_stack_hash) |
| { |
| struct kfence_metadata *meta = NULL; |
| unsigned long flags; |
| struct slab *slab; |
| void *addr; |
| |
| /* Try to obtain a free object. */ |
| raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| if (!list_empty(&kfence_freelist)) { |
| meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); |
| list_del_init(&meta->list); |
| } |
| raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| if (!meta) { |
| atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]); |
| return NULL; |
| } |
| |
| if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { |
| /* |
| * This is extremely unlikely -- we are reporting on a |
| * use-after-free, which locked meta->lock, and the reporting |
| * code via printk calls kmalloc() which ends up in |
| * kfence_alloc() and tries to grab the same object that we're |
| * reporting on. While it has never been observed, lockdep does |
| * report that there is a possibility of deadlock. Fix it by |
| * using trylock and bailing out gracefully. |
| */ |
| raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| /* Put the object back on the freelist. */ |
| list_add_tail(&meta->list, &kfence_freelist); |
| raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| |
| return NULL; |
| } |
| |
| meta->addr = metadata_to_pageaddr(meta); |
| /* Unprotect if we're reusing this page. */ |
| if (meta->state == KFENCE_OBJECT_FREED) |
| kfence_unprotect(meta->addr); |
| |
| /* |
| * Note: for allocations made before RNG initialization, will always |
| * return zero. We still benefit from enabling KFENCE as early as |
| * possible, even when the RNG is not yet available, as this will allow |
| * KFENCE to detect bugs due to earlier allocations. The only downside |
| * is that the out-of-bounds accesses detected are deterministic for |
| * such allocations. |
| */ |
| if (prandom_u32_max(2)) { |
| /* Allocate on the "right" side, re-calculate address. */ |
| meta->addr += PAGE_SIZE - size; |
| meta->addr = ALIGN_DOWN(meta->addr, cache->align); |
| } |
| |
| addr = (void *)meta->addr; |
| |
| /* Update remaining metadata. */ |
| metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries); |
| /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ |
| WRITE_ONCE(meta->cache, cache); |
| meta->size = size; |
| meta->alloc_stack_hash = alloc_stack_hash; |
| raw_spin_unlock_irqrestore(&meta->lock, flags); |
| |
| alloc_covered_add(alloc_stack_hash, 1); |
| |
| /* Set required slab fields. */ |
| slab = virt_to_slab((void *)meta->addr); |
| slab->slab_cache = cache; |
| #if defined(CONFIG_SLUB) |
| slab->objects = 1; |
| #elif defined(CONFIG_SLAB) |
| slab->s_mem = addr; |
| #endif |
| |
| /* Memory initialization. */ |
| for_each_canary(meta, set_canary_byte); |
| |
| /* |
| * We check slab_want_init_on_alloc() ourselves, rather than letting |
| * SL*B do the initialization, as otherwise we might overwrite KFENCE's |
| * redzone. |
| */ |
| if (unlikely(slab_want_init_on_alloc(gfp, cache))) |
| memzero_explicit(addr, size); |
| if (cache->ctor) |
| cache->ctor(addr); |
| |
| if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) |
| kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ |
| |
| atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); |
| atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); |
| |
| return addr; |
| } |
| |
| static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) |
| { |
| struct kcsan_scoped_access assert_page_exclusive; |
| unsigned long flags; |
| bool init; |
| |
| raw_spin_lock_irqsave(&meta->lock, flags); |
| |
| if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { |
| /* Invalid or double-free, bail out. */ |
| atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
| kfence_report_error((unsigned long)addr, false, NULL, meta, |
| KFENCE_ERROR_INVALID_FREE); |
| raw_spin_unlock_irqrestore(&meta->lock, flags); |
| return; |
| } |
| |
| /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ |
| kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, |
| KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, |
| &assert_page_exclusive); |
| |
| if (CONFIG_KFENCE_STRESS_TEST_FAULTS) |
| kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ |
| |
| /* Restore page protection if there was an OOB access. */ |
| if (meta->unprotected_page) { |
| memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); |
| kfence_protect(meta->unprotected_page); |
| meta->unprotected_page = 0; |
| } |
| |
| /* Mark the object as freed. */ |
| metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0); |
| init = slab_want_init_on_free(meta->cache); |
| raw_spin_unlock_irqrestore(&meta->lock, flags); |
| |
| alloc_covered_add(meta->alloc_stack_hash, -1); |
| |
| /* Check canary bytes for memory corruption. */ |
| for_each_canary(meta, check_canary_byte); |
| |
| /* |
| * Clear memory if init-on-free is set. While we protect the page, the |
| * data is still there, and after a use-after-free is detected, we |
| * unprotect the page, so the data is still accessible. |
| */ |
| if (!zombie && unlikely(init)) |
| memzero_explicit(addr, meta->size); |
| |
| /* Protect to detect use-after-frees. */ |
| kfence_protect((unsigned long)addr); |
| |
| kcsan_end_scoped_access(&assert_page_exclusive); |
| if (!zombie) { |
| /* Add it to the tail of the freelist for reuse. */ |
| raw_spin_lock_irqsave(&kfence_freelist_lock, flags); |
| KFENCE_WARN_ON(!list_empty(&meta->list)); |
| list_add_tail(&meta->list, &kfence_freelist); |
| raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); |
| |
| atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); |
| atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); |
| } else { |
| /* See kfence_shutdown_cache(). */ |
| atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); |
| } |
| } |
| |
| static void rcu_guarded_free(struct rcu_head *h) |
| { |
| struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); |
| |
| kfence_guarded_free((void *)meta->addr, meta, false); |
| } |
| |
| static bool __init kfence_init_pool(void) |
| { |
| unsigned long addr = (unsigned long)__kfence_pool; |
| struct page *pages; |
| int i; |
| |
| if (!__kfence_pool) |
| return false; |
| |
| if (!arch_kfence_init_pool()) |
| goto err; |
| |
| pages = virt_to_page(addr); |
| |
| /* |
| * Set up object pages: they must have PG_slab set, to avoid freeing |
| * these as real pages. |
| * |
| * We also want to avoid inserting kfence_free() in the kfree() |
| * fast-path in SLUB, and therefore need to ensure kfree() correctly |
| * enters __slab_free() slow-path. |
| */ |
| for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { |
| if (!i || (i % 2)) |
| continue; |
| |
| /* Verify we do not have a compound head page. */ |
| if (WARN_ON(compound_head(&pages[i]) != &pages[i])) |
| goto err; |
| |
| __SetPageSlab(&pages[i]); |
| } |
| |
| /* |
| * Protect the first 2 pages. The first page is mostly unnecessary, and |
| * merely serves as an extended guard page. However, adding one |
| * additional page in the beginning gives us an even number of pages, |
| * which simplifies the mapping of address to metadata index. |
| */ |
| for (i = 0; i < 2; i++) { |
| if (unlikely(!kfence_protect(addr))) |
| goto err; |
| |
| addr += PAGE_SIZE; |
| } |
| |
| for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| struct kfence_metadata *meta = &kfence_metadata[i]; |
| |
| /* Initialize metadata. */ |
| INIT_LIST_HEAD(&meta->list); |
| raw_spin_lock_init(&meta->lock); |
| meta->state = KFENCE_OBJECT_UNUSED; |
| meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ |
| list_add_tail(&meta->list, &kfence_freelist); |
| |
| /* Protect the right redzone. */ |
| if (unlikely(!kfence_protect(addr + PAGE_SIZE))) |
| goto err; |
| |
| addr += 2 * PAGE_SIZE; |
| } |
| |
| /* |
| * The pool is live and will never be deallocated from this point on. |
| * Remove the pool object from the kmemleak object tree, as it would |
| * otherwise overlap with allocations returned by kfence_alloc(), which |
| * are registered with kmemleak through the slab post-alloc hook. |
| */ |
| kmemleak_free(__kfence_pool); |
| |
| return true; |
| |
| err: |
| /* |
| * Only release unprotected pages, and do not try to go back and change |
| * page attributes due to risk of failing to do so as well. If changing |
| * page attributes for some pages fails, it is very likely that it also |
| * fails for the first page, and therefore expect addr==__kfence_pool in |
| * most failure cases. |
| */ |
| memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); |
| __kfence_pool = NULL; |
| return false; |
| } |
| |
| /* === DebugFS Interface ==================================================== */ |
| |
| static int stats_show(struct seq_file *seq, void *v) |
| { |
| int i; |
| |
| seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); |
| for (i = 0; i < KFENCE_COUNTER_COUNT; i++) |
| seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(stats); |
| |
| /* |
| * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. |
| * start_object() and next_object() return the object index + 1, because NULL is used |
| * to stop iteration. |
| */ |
| static void *start_object(struct seq_file *seq, loff_t *pos) |
| { |
| if (*pos < CONFIG_KFENCE_NUM_OBJECTS) |
| return (void *)((long)*pos + 1); |
| return NULL; |
| } |
| |
| static void stop_object(struct seq_file *seq, void *v) |
| { |
| } |
| |
| static void *next_object(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| ++*pos; |
| if (*pos < CONFIG_KFENCE_NUM_OBJECTS) |
| return (void *)((long)*pos + 1); |
| return NULL; |
| } |
| |
| static int show_object(struct seq_file *seq, void *v) |
| { |
| struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&meta->lock, flags); |
| kfence_print_object(seq, meta); |
| raw_spin_unlock_irqrestore(&meta->lock, flags); |
| seq_puts(seq, "---------------------------------\n"); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations object_seqops = { |
| .start = start_object, |
| .next = next_object, |
| .stop = stop_object, |
| .show = show_object, |
| }; |
| |
| static int open_objects(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &object_seqops); |
| } |
| |
| static const struct file_operations objects_fops = { |
| .open = open_objects, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| static int __init kfence_debugfs_init(void) |
| { |
| struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); |
| |
| debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); |
| debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); |
| return 0; |
| } |
| |
| late_initcall(kfence_debugfs_init); |
| |
| /* === Allocation Gate Timer ================================================ */ |
| |
| #ifdef CONFIG_KFENCE_STATIC_KEYS |
| /* Wait queue to wake up allocation-gate timer task. */ |
| static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); |
| |
| static void wake_up_kfence_timer(struct irq_work *work) |
| { |
| wake_up(&allocation_wait); |
| } |
| static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); |
| #endif |
| |
| /* |
| * Set up delayed work, which will enable and disable the static key. We need to |
| * use a work queue (rather than a simple timer), since enabling and disabling a |
| * static key cannot be done from an interrupt. |
| * |
| * Note: Toggling a static branch currently causes IPIs, and here we'll end up |
| * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with |
| * more aggressive sampling intervals), we could get away with a variant that |
| * avoids IPIs, at the cost of not immediately capturing allocations if the |
| * instructions remain cached. |
| */ |
| static struct delayed_work kfence_timer; |
| static void toggle_allocation_gate(struct work_struct *work) |
| { |
| if (!READ_ONCE(kfence_enabled)) |
| return; |
| |
| atomic_set(&kfence_allocation_gate, 0); |
| #ifdef CONFIG_KFENCE_STATIC_KEYS |
| /* Enable static key, and await allocation to happen. */ |
| static_branch_enable(&kfence_allocation_key); |
| |
| if (sysctl_hung_task_timeout_secs) { |
| /* |
| * During low activity with no allocations we might wait a |
| * while; let's avoid the hung task warning. |
| */ |
| wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate), |
| sysctl_hung_task_timeout_secs * HZ / 2); |
| } else { |
| wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); |
| } |
| |
| /* Disable static key and reset timer. */ |
| static_branch_disable(&kfence_allocation_key); |
| #endif |
| queue_delayed_work(system_unbound_wq, &kfence_timer, |
| msecs_to_jiffies(kfence_sample_interval)); |
| } |
| static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); |
| |
| /* === Public interface ===================================================== */ |
| |
| void __init kfence_alloc_pool(void) |
| { |
| if (!kfence_sample_interval) |
| return; |
| |
| __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); |
| |
| if (!__kfence_pool) |
| pr_err("failed to allocate pool\n"); |
| } |
| |
| void __init kfence_init(void) |
| { |
| /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ |
| if (!kfence_sample_interval) |
| return; |
| |
| stack_hash_seed = (u32)random_get_entropy(); |
| if (!kfence_init_pool()) { |
| pr_err("%s failed\n", __func__); |
| return; |
| } |
| |
| if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS)) |
| static_branch_enable(&kfence_allocation_key); |
| WRITE_ONCE(kfence_enabled, true); |
| queue_delayed_work(system_unbound_wq, &kfence_timer, 0); |
| pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, |
| CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, |
| (void *)(__kfence_pool + KFENCE_POOL_SIZE)); |
| } |
| |
| void kfence_shutdown_cache(struct kmem_cache *s) |
| { |
| unsigned long flags; |
| struct kfence_metadata *meta; |
| int i; |
| |
| for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| bool in_use; |
| |
| meta = &kfence_metadata[i]; |
| |
| /* |
| * If we observe some inconsistent cache and state pair where we |
| * should have returned false here, cache destruction is racing |
| * with either kmem_cache_alloc() or kmem_cache_free(). Taking |
| * the lock will not help, as different critical section |
| * serialization will have the same outcome. |
| */ |
| if (READ_ONCE(meta->cache) != s || |
| READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) |
| continue; |
| |
| raw_spin_lock_irqsave(&meta->lock, flags); |
| in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; |
| raw_spin_unlock_irqrestore(&meta->lock, flags); |
| |
| if (in_use) { |
| /* |
| * This cache still has allocations, and we should not |
| * release them back into the freelist so they can still |
| * safely be used and retain the kernel's default |
| * behaviour of keeping the allocations alive (leak the |
| * cache); however, they effectively become "zombie |
| * allocations" as the KFENCE objects are the only ones |
| * still in use and the owning cache is being destroyed. |
| * |
| * We mark them freed, so that any subsequent use shows |
| * more useful error messages that will include stack |
| * traces of the user of the object, the original |
| * allocation, and caller to shutdown_cache(). |
| */ |
| kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); |
| } |
| } |
| |
| for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { |
| meta = &kfence_metadata[i]; |
| |
| /* See above. */ |
| if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) |
| continue; |
| |
| raw_spin_lock_irqsave(&meta->lock, flags); |
| if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) |
| meta->cache = NULL; |
| raw_spin_unlock_irqrestore(&meta->lock, flags); |
| } |
| } |
| |
| void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) |
| { |
| unsigned long stack_entries[KFENCE_STACK_DEPTH]; |
| size_t num_stack_entries; |
| u32 alloc_stack_hash; |
| |
| /* |
| * Perform size check before switching kfence_allocation_gate, so that |
| * we don't disable KFENCE without making an allocation. |
| */ |
| if (size > PAGE_SIZE) { |
| atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); |
| return NULL; |
| } |
| |
| /* |
| * Skip allocations from non-default zones, including DMA. We cannot |
| * guarantee that pages in the KFENCE pool will have the requested |
| * properties (e.g. reside in DMAable memory). |
| */ |
| if ((flags & GFP_ZONEMASK) || |
| (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) { |
| atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); |
| return NULL; |
| } |
| |
| if (atomic_inc_return(&kfence_allocation_gate) > 1) |
| return NULL; |
| #ifdef CONFIG_KFENCE_STATIC_KEYS |
| /* |
| * waitqueue_active() is fully ordered after the update of |
| * kfence_allocation_gate per atomic_inc_return(). |
| */ |
| if (waitqueue_active(&allocation_wait)) { |
| /* |
| * Calling wake_up() here may deadlock when allocations happen |
| * from within timer code. Use an irq_work to defer it. |
| */ |
| irq_work_queue(&wake_up_kfence_timer_work); |
| } |
| #endif |
| |
| if (!READ_ONCE(kfence_enabled)) |
| return NULL; |
| |
| num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0); |
| |
| /* |
| * Do expensive check for coverage of allocation in slow-path after |
| * allocation_gate has already become non-zero, even though it might |
| * mean not making any allocation within a given sample interval. |
| * |
| * This ensures reasonable allocation coverage when the pool is almost |
| * full, including avoiding long-lived allocations of the same source |
| * filling up the pool (e.g. pagecache allocations). |
| */ |
| alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries); |
| if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) { |
| atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]); |
| return NULL; |
| } |
| |
| return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries, |
| alloc_stack_hash); |
| } |
| |
| size_t kfence_ksize(const void *addr) |
| { |
| const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| |
| /* |
| * Read locklessly -- if there is a race with __kfence_alloc(), this is |
| * either a use-after-free or invalid access. |
| */ |
| return meta ? meta->size : 0; |
| } |
| |
| void *kfence_object_start(const void *addr) |
| { |
| const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| |
| /* |
| * Read locklessly -- if there is a race with __kfence_alloc(), this is |
| * either a use-after-free or invalid access. |
| */ |
| return meta ? (void *)meta->addr : NULL; |
| } |
| |
| void __kfence_free(void *addr) |
| { |
| struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); |
| |
| /* |
| * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing |
| * the object, as the object page may be recycled for other-typed |
| * objects once it has been freed. meta->cache may be NULL if the cache |
| * was destroyed. |
| */ |
| if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) |
| call_rcu(&meta->rcu_head, rcu_guarded_free); |
| else |
| kfence_guarded_free(addr, meta, false); |
| } |
| |
| bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) |
| { |
| const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; |
| struct kfence_metadata *to_report = NULL; |
| enum kfence_error_type error_type; |
| unsigned long flags; |
| |
| if (!is_kfence_address((void *)addr)) |
| return false; |
| |
| if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ |
| return kfence_unprotect(addr); /* ... unprotect and proceed. */ |
| |
| atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); |
| |
| if (page_index % 2) { |
| /* This is a redzone, report a buffer overflow. */ |
| struct kfence_metadata *meta; |
| int distance = 0; |
| |
| meta = addr_to_metadata(addr - PAGE_SIZE); |
| if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { |
| to_report = meta; |
| /* Data race ok; distance calculation approximate. */ |
| distance = addr - data_race(meta->addr + meta->size); |
| } |
| |
| meta = addr_to_metadata(addr + PAGE_SIZE); |
| if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { |
| /* Data race ok; distance calculation approximate. */ |
| if (!to_report || distance > data_race(meta->addr) - addr) |
| to_report = meta; |
| } |
| |
| if (!to_report) |
| goto out; |
| |
| raw_spin_lock_irqsave(&to_report->lock, flags); |
| to_report->unprotected_page = addr; |
| error_type = KFENCE_ERROR_OOB; |
| |
| /* |
| * If the object was freed before we took the look we can still |
| * report this as an OOB -- the report will simply show the |
| * stacktrace of the free as well. |
| */ |
| } else { |
| to_report = addr_to_metadata(addr); |
| if (!to_report) |
| goto out; |
| |
| raw_spin_lock_irqsave(&to_report->lock, flags); |
| error_type = KFENCE_ERROR_UAF; |
| /* |
| * We may race with __kfence_alloc(), and it is possible that a |
| * freed object may be reallocated. We simply report this as a |
| * use-after-free, with the stack trace showing the place where |
| * the object was re-allocated. |
| */ |
| } |
| |
| out: |
| if (to_report) { |
| kfence_report_error(addr, is_write, regs, to_report, error_type); |
| raw_spin_unlock_irqrestore(&to_report->lock, flags); |
| } else { |
| /* This may be a UAF or OOB access, but we can't be sure. */ |
| kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); |
| } |
| |
| return kfence_unprotect(addr); /* Unprotect and let access proceed. */ |
| } |