| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Overview: |
| * This is the generic MTD driver for NAND flash devices. It should be |
| * capable of working with almost all NAND chips currently available. |
| * |
| * Additional technical information is available on |
| * http://www.linux-mtd.infradead.org/doc/nand.html |
| * |
| * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) |
| * 2002-2006 Thomas Gleixner (tglx@linutronix.de) |
| * |
| * Credits: |
| * David Woodhouse for adding multichip support |
| * |
| * Aleph One Ltd. and Toby Churchill Ltd. for supporting the |
| * rework for 2K page size chips |
| * |
| * TODO: |
| * Enable cached programming for 2k page size chips |
| * Check, if mtd->ecctype should be set to MTD_ECC_HW |
| * if we have HW ECC support. |
| * BBT table is not serialized, has to be fixed |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/types.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand-ecc-sw-hamming.h> |
| #include <linux/mtd/nand-ecc-sw-bch.h> |
| #include <linux/interrupt.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/of.h> |
| #include <linux/of_gpio.h> |
| #include <linux/gpio/consumer.h> |
| |
| #include "internals.h" |
| |
| static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, |
| struct mtd_pairing_info *info) |
| { |
| int lastpage = (mtd->erasesize / mtd->writesize) - 1; |
| int dist = 3; |
| |
| if (page == lastpage) |
| dist = 2; |
| |
| if (!page || (page & 1)) { |
| info->group = 0; |
| info->pair = (page + 1) / 2; |
| } else { |
| info->group = 1; |
| info->pair = (page + 1 - dist) / 2; |
| } |
| |
| return 0; |
| } |
| |
| static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, |
| const struct mtd_pairing_info *info) |
| { |
| int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; |
| int page = info->pair * 2; |
| int dist = 3; |
| |
| if (!info->group && !info->pair) |
| return 0; |
| |
| if (info->pair == lastpair && info->group) |
| dist = 2; |
| |
| if (!info->group) |
| page--; |
| else if (info->pair) |
| page += dist - 1; |
| |
| if (page >= mtd->erasesize / mtd->writesize) |
| return -EINVAL; |
| |
| return page; |
| } |
| |
| const struct mtd_pairing_scheme dist3_pairing_scheme = { |
| .ngroups = 2, |
| .get_info = nand_pairing_dist3_get_info, |
| .get_wunit = nand_pairing_dist3_get_wunit, |
| }; |
| |
| static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) |
| { |
| int ret = 0; |
| |
| /* Start address must align on block boundary */ |
| if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { |
| pr_debug("%s: unaligned address\n", __func__); |
| ret = -EINVAL; |
| } |
| |
| /* Length must align on block boundary */ |
| if (len & ((1ULL << chip->phys_erase_shift) - 1)) { |
| pr_debug("%s: length not block aligned\n", __func__); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * nand_extract_bits - Copy unaligned bits from one buffer to another one |
| * @dst: destination buffer |
| * @dst_off: bit offset at which the writing starts |
| * @src: source buffer |
| * @src_off: bit offset at which the reading starts |
| * @nbits: number of bits to copy from @src to @dst |
| * |
| * Copy bits from one memory region to another (overlap authorized). |
| */ |
| void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, |
| unsigned int src_off, unsigned int nbits) |
| { |
| unsigned int tmp, n; |
| |
| dst += dst_off / 8; |
| dst_off %= 8; |
| src += src_off / 8; |
| src_off %= 8; |
| |
| while (nbits) { |
| n = min3(8 - dst_off, 8 - src_off, nbits); |
| |
| tmp = (*src >> src_off) & GENMASK(n - 1, 0); |
| *dst &= ~GENMASK(n - 1 + dst_off, dst_off); |
| *dst |= tmp << dst_off; |
| |
| dst_off += n; |
| if (dst_off >= 8) { |
| dst++; |
| dst_off -= 8; |
| } |
| |
| src_off += n; |
| if (src_off >= 8) { |
| src++; |
| src_off -= 8; |
| } |
| |
| nbits -= n; |
| } |
| } |
| EXPORT_SYMBOL_GPL(nand_extract_bits); |
| |
| /** |
| * nand_select_target() - Select a NAND target (A.K.A. die) |
| * @chip: NAND chip object |
| * @cs: the CS line to select. Note that this CS id is always from the chip |
| * PoV, not the controller one |
| * |
| * Select a NAND target so that further operations executed on @chip go to the |
| * selected NAND target. |
| */ |
| void nand_select_target(struct nand_chip *chip, unsigned int cs) |
| { |
| /* |
| * cs should always lie between 0 and nanddev_ntargets(), when that's |
| * not the case it's a bug and the caller should be fixed. |
| */ |
| if (WARN_ON(cs > nanddev_ntargets(&chip->base))) |
| return; |
| |
| chip->cur_cs = cs; |
| |
| if (chip->legacy.select_chip) |
| chip->legacy.select_chip(chip, cs); |
| } |
| EXPORT_SYMBOL_GPL(nand_select_target); |
| |
| /** |
| * nand_deselect_target() - Deselect the currently selected target |
| * @chip: NAND chip object |
| * |
| * Deselect the currently selected NAND target. The result of operations |
| * executed on @chip after the target has been deselected is undefined. |
| */ |
| void nand_deselect_target(struct nand_chip *chip) |
| { |
| if (chip->legacy.select_chip) |
| chip->legacy.select_chip(chip, -1); |
| |
| chip->cur_cs = -1; |
| } |
| EXPORT_SYMBOL_GPL(nand_deselect_target); |
| |
| /** |
| * nand_release_device - [GENERIC] release chip |
| * @chip: NAND chip object |
| * |
| * Release chip lock and wake up anyone waiting on the device. |
| */ |
| static void nand_release_device(struct nand_chip *chip) |
| { |
| /* Release the controller and the chip */ |
| mutex_unlock(&chip->controller->lock); |
| mutex_unlock(&chip->lock); |
| } |
| |
| /** |
| * nand_bbm_get_next_page - Get the next page for bad block markers |
| * @chip: NAND chip object |
| * @page: First page to start checking for bad block marker usage |
| * |
| * Returns an integer that corresponds to the page offset within a block, for |
| * a page that is used to store bad block markers. If no more pages are |
| * available, -EINVAL is returned. |
| */ |
| int nand_bbm_get_next_page(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int last_page = ((mtd->erasesize - mtd->writesize) >> |
| chip->page_shift) & chip->pagemask; |
| unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE |
| | NAND_BBM_LASTPAGE; |
| |
| if (page == 0 && !(chip->options & bbm_flags)) |
| return 0; |
| if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) |
| return 0; |
| if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) |
| return 1; |
| if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) |
| return last_page; |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * nand_block_bad - [DEFAULT] Read bad block marker from the chip |
| * @chip: NAND chip object |
| * @ofs: offset from device start |
| * |
| * Check, if the block is bad. |
| */ |
| static int nand_block_bad(struct nand_chip *chip, loff_t ofs) |
| { |
| int first_page, page_offset; |
| int res; |
| u8 bad; |
| |
| first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| page_offset = nand_bbm_get_next_page(chip, 0); |
| |
| while (page_offset >= 0) { |
| res = chip->ecc.read_oob(chip, first_page + page_offset); |
| if (res < 0) |
| return res; |
| |
| bad = chip->oob_poi[chip->badblockpos]; |
| |
| if (likely(chip->badblockbits == 8)) |
| res = bad != 0xFF; |
| else |
| res = hweight8(bad) < chip->badblockbits; |
| if (res) |
| return res; |
| |
| page_offset = nand_bbm_get_next_page(chip, page_offset + 1); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nand_region_is_secured() - Check if the region is secured |
| * @chip: NAND chip object |
| * @offset: Offset of the region to check |
| * @size: Size of the region to check |
| * |
| * Checks if the region is secured by comparing the offset and size with the |
| * list of secure regions obtained from DT. Returns true if the region is |
| * secured else false. |
| */ |
| static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size) |
| { |
| int i; |
| |
| /* Skip touching the secure regions if present */ |
| for (i = 0; i < chip->nr_secure_regions; i++) { |
| const struct nand_secure_region *region = &chip->secure_regions[i]; |
| |
| if (offset + size <= region->offset || |
| offset >= region->offset + region->size) |
| continue; |
| |
| pr_debug("%s: Region 0x%llx - 0x%llx is secured!", |
| __func__, offset, offset + size); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (chip->options & NAND_NO_BBM_QUIRK) |
| return 0; |
| |
| /* Check if the region is secured */ |
| if (nand_region_is_secured(chip, ofs, mtd->erasesize)) |
| return -EIO; |
| |
| if (chip->legacy.block_bad) |
| return chip->legacy.block_bad(chip, ofs); |
| |
| return nand_block_bad(chip, ofs); |
| } |
| |
| /** |
| * nand_get_device - [GENERIC] Get chip for selected access |
| * @chip: NAND chip structure |
| * |
| * Lock the device and its controller for exclusive access |
| * |
| * Return: -EBUSY if the chip has been suspended, 0 otherwise |
| */ |
| static int nand_get_device(struct nand_chip *chip) |
| { |
| mutex_lock(&chip->lock); |
| if (chip->suspended) { |
| mutex_unlock(&chip->lock); |
| return -EBUSY; |
| } |
| mutex_lock(&chip->controller->lock); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_check_wp - [GENERIC] check if the chip is write protected |
| * @chip: NAND chip object |
| * |
| * Check, if the device is write protected. The function expects, that the |
| * device is already selected. |
| */ |
| static int nand_check_wp(struct nand_chip *chip) |
| { |
| u8 status; |
| int ret; |
| |
| /* Broken xD cards report WP despite being writable */ |
| if (chip->options & NAND_BROKEN_XD) |
| return 0; |
| |
| /* Check the WP bit */ |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| return ret; |
| |
| return status & NAND_STATUS_WP ? 0 : 1; |
| } |
| |
| /** |
| * nand_fill_oob - [INTERN] Transfer client buffer to oob |
| * @chip: NAND chip object |
| * @oob: oob data buffer |
| * @len: oob data write length |
| * @ops: oob ops structure |
| */ |
| static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| /* |
| * Initialise to all 0xFF, to avoid the possibility of left over OOB |
| * data from a previous OOB read. |
| */ |
| memset(chip->oob_poi, 0xff, mtd->oobsize); |
| |
| switch (ops->mode) { |
| |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_RAW: |
| memcpy(chip->oob_poi + ops->ooboffs, oob, len); |
| return oob + len; |
| |
| case MTD_OPS_AUTO_OOB: |
| ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, |
| ops->ooboffs, len); |
| BUG_ON(ret); |
| return oob + len; |
| |
| default: |
| BUG(); |
| } |
| return NULL; |
| } |
| |
| /** |
| * nand_do_write_oob - [MTD Interface] NAND write out-of-band |
| * @chip: NAND chip object |
| * @to: offset to write to |
| * @ops: oob operation description structure |
| * |
| * NAND write out-of-band. |
| */ |
| static int nand_do_write_oob(struct nand_chip *chip, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int chipnr, page, status, len, ret; |
| |
| pr_debug("%s: to = 0x%08x, len = %i\n", |
| __func__, (unsigned int)to, (int)ops->ooblen); |
| |
| len = mtd_oobavail(mtd, ops); |
| |
| /* Do not allow write past end of page */ |
| if ((ops->ooboffs + ops->ooblen) > len) { |
| pr_debug("%s: attempt to write past end of page\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Check if the region is secured */ |
| if (nand_region_is_secured(chip, to, ops->ooblen)) |
| return -EIO; |
| |
| chipnr = (int)(to >> chip->chip_shift); |
| |
| /* |
| * Reset the chip. Some chips (like the Toshiba TC5832DC found in one |
| * of my DiskOnChip 2000 test units) will clear the whole data page too |
| * if we don't do this. I have no clue why, but I seem to have 'fixed' |
| * it in the doc2000 driver in August 1999. dwmw2. |
| */ |
| ret = nand_reset(chip, chipnr); |
| if (ret) |
| return ret; |
| |
| nand_select_target(chip, chipnr); |
| |
| /* Shift to get page */ |
| page = (int)(to >> chip->page_shift); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(chip)) { |
| nand_deselect_target(chip); |
| return -EROFS; |
| } |
| |
| /* Invalidate the page cache, if we write to the cached page */ |
| if (page == chip->pagecache.page) |
| chip->pagecache.page = -1; |
| |
| nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); |
| |
| if (ops->mode == MTD_OPS_RAW) |
| status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); |
| else |
| status = chip->ecc.write_oob(chip, page & chip->pagemask); |
| |
| nand_deselect_target(chip); |
| |
| if (status) |
| return status; |
| |
| ops->oobretlen = ops->ooblen; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker |
| * @chip: NAND chip object |
| * @ofs: offset from device start |
| * |
| * This is the default implementation, which can be overridden by a hardware |
| * specific driver. It provides the details for writing a bad block marker to a |
| * block. |
| */ |
| static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mtd_oob_ops ops; |
| uint8_t buf[2] = { 0, 0 }; |
| int ret = 0, res, page_offset; |
| |
| memset(&ops, 0, sizeof(ops)); |
| ops.oobbuf = buf; |
| ops.ooboffs = chip->badblockpos; |
| if (chip->options & NAND_BUSWIDTH_16) { |
| ops.ooboffs &= ~0x01; |
| ops.len = ops.ooblen = 2; |
| } else { |
| ops.len = ops.ooblen = 1; |
| } |
| ops.mode = MTD_OPS_PLACE_OOB; |
| |
| page_offset = nand_bbm_get_next_page(chip, 0); |
| |
| while (page_offset >= 0) { |
| res = nand_do_write_oob(chip, |
| ofs + (page_offset * mtd->writesize), |
| &ops); |
| |
| if (!ret) |
| ret = res; |
| |
| page_offset = nand_bbm_get_next_page(chip, page_offset + 1); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * nand_markbad_bbm - mark a block by updating the BBM |
| * @chip: NAND chip object |
| * @ofs: offset of the block to mark bad |
| */ |
| int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) |
| { |
| if (chip->legacy.block_markbad) |
| return chip->legacy.block_markbad(chip, ofs); |
| |
| return nand_default_block_markbad(chip, ofs); |
| } |
| |
| /** |
| * nand_block_markbad_lowlevel - mark a block bad |
| * @chip: NAND chip object |
| * @ofs: offset from device start |
| * |
| * This function performs the generic NAND bad block marking steps (i.e., bad |
| * block table(s) and/or marker(s)). We only allow the hardware driver to |
| * specify how to write bad block markers to OOB (chip->legacy.block_markbad). |
| * |
| * We try operations in the following order: |
| * |
| * (1) erase the affected block, to allow OOB marker to be written cleanly |
| * (2) write bad block marker to OOB area of affected block (unless flag |
| * NAND_BBT_NO_OOB_BBM is present) |
| * (3) update the BBT |
| * |
| * Note that we retain the first error encountered in (2) or (3), finish the |
| * procedures, and dump the error in the end. |
| */ |
| static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int res, ret = 0; |
| |
| if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { |
| struct erase_info einfo; |
| |
| /* Attempt erase before marking OOB */ |
| memset(&einfo, 0, sizeof(einfo)); |
| einfo.addr = ofs; |
| einfo.len = 1ULL << chip->phys_erase_shift; |
| nand_erase_nand(chip, &einfo, 0); |
| |
| /* Write bad block marker to OOB */ |
| ret = nand_get_device(chip); |
| if (ret) |
| return ret; |
| |
| ret = nand_markbad_bbm(chip, ofs); |
| nand_release_device(chip); |
| } |
| |
| /* Mark block bad in BBT */ |
| if (chip->bbt) { |
| res = nand_markbad_bbt(chip, ofs); |
| if (!ret) |
| ret = res; |
| } |
| |
| if (!ret) |
| mtd->ecc_stats.badblocks++; |
| |
| return ret; |
| } |
| |
| /** |
| * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * |
| * Check if the block is marked as reserved. |
| */ |
| static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (!chip->bbt) |
| return 0; |
| /* Return info from the table */ |
| return nand_isreserved_bbt(chip, ofs); |
| } |
| |
| /** |
| * nand_block_checkbad - [GENERIC] Check if a block is marked bad |
| * @chip: NAND chip object |
| * @ofs: offset from device start |
| * @allowbbt: 1, if its allowed to access the bbt area |
| * |
| * Check, if the block is bad. Either by reading the bad block table or |
| * calling of the scan function. |
| */ |
| static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) |
| { |
| /* Return info from the table */ |
| if (chip->bbt) |
| return nand_isbad_bbt(chip, ofs, allowbbt); |
| |
| return nand_isbad_bbm(chip, ofs); |
| } |
| |
| /** |
| * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 |
| * @chip: NAND chip structure |
| * @timeout_ms: Timeout in ms |
| * |
| * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. |
| * If that does not happen whitin the specified timeout, -ETIMEDOUT is |
| * returned. |
| * |
| * This helper is intended to be used when the controller does not have access |
| * to the NAND R/B pin. |
| * |
| * Be aware that calling this helper from an ->exec_op() implementation means |
| * ->exec_op() must be re-entrant. |
| * |
| * Return 0 if the NAND chip is ready, a negative error otherwise. |
| */ |
| int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) |
| { |
| const struct nand_interface_config *conf; |
| u8 status = 0; |
| int ret; |
| |
| if (!nand_has_exec_op(chip)) |
| return -ENOTSUPP; |
| |
| /* Wait tWB before polling the STATUS reg. */ |
| conf = nand_get_interface_config(chip); |
| ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max)); |
| |
| ret = nand_status_op(chip, NULL); |
| if (ret) |
| return ret; |
| |
| /* |
| * +1 below is necessary because if we are now in the last fraction |
| * of jiffy and msecs_to_jiffies is 1 then we will wait only that |
| * small jiffy fraction - possibly leading to false timeout |
| */ |
| timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; |
| do { |
| ret = nand_read_data_op(chip, &status, sizeof(status), true, |
| false); |
| if (ret) |
| break; |
| |
| if (status & NAND_STATUS_READY) |
| break; |
| |
| /* |
| * Typical lowest execution time for a tR on most NANDs is 10us, |
| * use this as polling delay before doing something smarter (ie. |
| * deriving a delay from the timeout value, timeout_ms/ratio). |
| */ |
| udelay(10); |
| } while (time_before(jiffies, timeout_ms)); |
| |
| /* |
| * We have to exit READ_STATUS mode in order to read real data on the |
| * bus in case the WAITRDY instruction is preceding a DATA_IN |
| * instruction. |
| */ |
| nand_exit_status_op(chip); |
| |
| if (ret) |
| return ret; |
| |
| return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; |
| }; |
| EXPORT_SYMBOL_GPL(nand_soft_waitrdy); |
| |
| /** |
| * nand_gpio_waitrdy - Poll R/B GPIO pin until ready |
| * @chip: NAND chip structure |
| * @gpiod: GPIO descriptor of R/B pin |
| * @timeout_ms: Timeout in ms |
| * |
| * Poll the R/B GPIO pin until it becomes ready. If that does not happen |
| * whitin the specified timeout, -ETIMEDOUT is returned. |
| * |
| * This helper is intended to be used when the controller has access to the |
| * NAND R/B pin over GPIO. |
| * |
| * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. |
| */ |
| int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, |
| unsigned long timeout_ms) |
| { |
| |
| /* |
| * Wait until R/B pin indicates chip is ready or timeout occurs. |
| * +1 below is necessary because if we are now in the last fraction |
| * of jiffy and msecs_to_jiffies is 1 then we will wait only that |
| * small jiffy fraction - possibly leading to false timeout. |
| */ |
| timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; |
| do { |
| if (gpiod_get_value_cansleep(gpiod)) |
| return 0; |
| |
| cond_resched(); |
| } while (time_before(jiffies, timeout_ms)); |
| |
| return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; |
| }; |
| EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); |
| |
| /** |
| * panic_nand_wait - [GENERIC] wait until the command is done |
| * @chip: NAND chip structure |
| * @timeo: timeout |
| * |
| * Wait for command done. This is a helper function for nand_wait used when |
| * we are in interrupt context. May happen when in panic and trying to write |
| * an oops through mtdoops. |
| */ |
| void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) |
| { |
| int i; |
| for (i = 0; i < timeo; i++) { |
| if (chip->legacy.dev_ready) { |
| if (chip->legacy.dev_ready(chip)) |
| break; |
| } else { |
| int ret; |
| u8 status; |
| |
| ret = nand_read_data_op(chip, &status, sizeof(status), |
| true, false); |
| if (ret) |
| return; |
| |
| if (status & NAND_STATUS_READY) |
| break; |
| } |
| mdelay(1); |
| } |
| } |
| |
| static bool nand_supports_get_features(struct nand_chip *chip, int addr) |
| { |
| return (chip->parameters.supports_set_get_features && |
| test_bit(addr, chip->parameters.get_feature_list)); |
| } |
| |
| static bool nand_supports_set_features(struct nand_chip *chip, int addr) |
| { |
| return (chip->parameters.supports_set_get_features && |
| test_bit(addr, chip->parameters.set_feature_list)); |
| } |
| |
| /** |
| * nand_reset_interface - Reset data interface and timings |
| * @chip: The NAND chip |
| * @chipnr: Internal die id |
| * |
| * Reset the Data interface and timings to ONFI mode 0. |
| * |
| * Returns 0 for success or negative error code otherwise. |
| */ |
| static int nand_reset_interface(struct nand_chip *chip, int chipnr) |
| { |
| const struct nand_controller_ops *ops = chip->controller->ops; |
| int ret; |
| |
| if (!nand_controller_can_setup_interface(chip)) |
| return 0; |
| |
| /* |
| * The ONFI specification says: |
| * " |
| * To transition from NV-DDR or NV-DDR2 to the SDR data |
| * interface, the host shall use the Reset (FFh) command |
| * using SDR timing mode 0. A device in any timing mode is |
| * required to recognize Reset (FFh) command issued in SDR |
| * timing mode 0. |
| * " |
| * |
| * Configure the data interface in SDR mode and set the |
| * timings to timing mode 0. |
| */ |
| |
| chip->current_interface_config = nand_get_reset_interface_config(); |
| ret = ops->setup_interface(chip, chipnr, |
| chip->current_interface_config); |
| if (ret) |
| pr_err("Failed to configure data interface to SDR timing mode 0\n"); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_setup_interface - Setup the best data interface and timings |
| * @chip: The NAND chip |
| * @chipnr: Internal die id |
| * |
| * Configure what has been reported to be the best data interface and NAND |
| * timings supported by the chip and the driver. |
| * |
| * Returns 0 for success or negative error code otherwise. |
| */ |
| static int nand_setup_interface(struct nand_chip *chip, int chipnr) |
| { |
| const struct nand_controller_ops *ops = chip->controller->ops; |
| u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request; |
| int ret; |
| |
| if (!nand_controller_can_setup_interface(chip)) |
| return 0; |
| |
| /* |
| * A nand_reset_interface() put both the NAND chip and the NAND |
| * controller in timings mode 0. If the default mode for this chip is |
| * also 0, no need to proceed to the change again. Plus, at probe time, |
| * nand_setup_interface() uses ->set/get_features() which would |
| * fail anyway as the parameter page is not available yet. |
| */ |
| if (!chip->best_interface_config) |
| return 0; |
| |
| request = chip->best_interface_config->timings.mode; |
| if (nand_interface_is_sdr(chip->best_interface_config)) |
| request |= ONFI_DATA_INTERFACE_SDR; |
| else |
| request |= ONFI_DATA_INTERFACE_NVDDR; |
| tmode_param[0] = request; |
| |
| /* Change the mode on the chip side (if supported by the NAND chip) */ |
| if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { |
| nand_select_target(chip, chipnr); |
| ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, |
| tmode_param); |
| nand_deselect_target(chip); |
| if (ret) |
| return ret; |
| } |
| |
| /* Change the mode on the controller side */ |
| ret = ops->setup_interface(chip, chipnr, chip->best_interface_config); |
| if (ret) |
| return ret; |
| |
| /* Check the mode has been accepted by the chip, if supported */ |
| if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) |
| goto update_interface_config; |
| |
| memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); |
| nand_select_target(chip, chipnr); |
| ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, |
| tmode_param); |
| nand_deselect_target(chip); |
| if (ret) |
| goto err_reset_chip; |
| |
| if (request != tmode_param[0]) { |
| pr_warn("%s timing mode %d not acknowledged by the NAND chip\n", |
| nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR", |
| chip->best_interface_config->timings.mode); |
| pr_debug("NAND chip would work in %s timing mode %d\n", |
| tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR", |
| (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0])); |
| goto err_reset_chip; |
| } |
| |
| update_interface_config: |
| chip->current_interface_config = chip->best_interface_config; |
| |
| return 0; |
| |
| err_reset_chip: |
| /* |
| * Fallback to mode 0 if the chip explicitly did not ack the chosen |
| * timing mode. |
| */ |
| nand_reset_interface(chip, chipnr); |
| nand_select_target(chip, chipnr); |
| nand_reset_op(chip); |
| nand_deselect_target(chip); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the |
| * NAND controller and the NAND chip support |
| * @chip: the NAND chip |
| * @iface: the interface configuration (can eventually be updated) |
| * @spec_timings: specific timings, when not fitting the ONFI specification |
| * |
| * If specific timings are provided, use them. Otherwise, retrieve supported |
| * timing modes from ONFI information. |
| */ |
| int nand_choose_best_sdr_timings(struct nand_chip *chip, |
| struct nand_interface_config *iface, |
| struct nand_sdr_timings *spec_timings) |
| { |
| const struct nand_controller_ops *ops = chip->controller->ops; |
| int best_mode = 0, mode, ret = -EOPNOTSUPP; |
| |
| iface->type = NAND_SDR_IFACE; |
| |
| if (spec_timings) { |
| iface->timings.sdr = *spec_timings; |
| iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings); |
| |
| /* Verify the controller supports the requested interface */ |
| ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, |
| iface); |
| if (!ret) { |
| chip->best_interface_config = iface; |
| return ret; |
| } |
| |
| /* Fallback to slower modes */ |
| best_mode = iface->timings.mode; |
| } else if (chip->parameters.onfi) { |
| best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1; |
| } |
| |
| for (mode = best_mode; mode >= 0; mode--) { |
| onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode); |
| |
| ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, |
| iface); |
| if (!ret) { |
| chip->best_interface_config = iface; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the |
| * NAND controller and the NAND chip support |
| * @chip: the NAND chip |
| * @iface: the interface configuration (can eventually be updated) |
| * @spec_timings: specific timings, when not fitting the ONFI specification |
| * |
| * If specific timings are provided, use them. Otherwise, retrieve supported |
| * timing modes from ONFI information. |
| */ |
| int nand_choose_best_nvddr_timings(struct nand_chip *chip, |
| struct nand_interface_config *iface, |
| struct nand_nvddr_timings *spec_timings) |
| { |
| const struct nand_controller_ops *ops = chip->controller->ops; |
| int best_mode = 0, mode, ret = -EOPNOTSUPP; |
| |
| iface->type = NAND_NVDDR_IFACE; |
| |
| if (spec_timings) { |
| iface->timings.nvddr = *spec_timings; |
| iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings); |
| |
| /* Verify the controller supports the requested interface */ |
| ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, |
| iface); |
| if (!ret) { |
| chip->best_interface_config = iface; |
| return ret; |
| } |
| |
| /* Fallback to slower modes */ |
| best_mode = iface->timings.mode; |
| } else if (chip->parameters.onfi) { |
| best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1; |
| } |
| |
| for (mode = best_mode; mode >= 0; mode--) { |
| onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode); |
| |
| ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, |
| iface); |
| if (!ret) { |
| chip->best_interface_config = iface; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both |
| * NAND controller and the NAND chip support |
| * @chip: the NAND chip |
| * @iface: the interface configuration (can eventually be updated) |
| * |
| * If specific timings are provided, use them. Otherwise, retrieve supported |
| * timing modes from ONFI information. |
| */ |
| static int nand_choose_best_timings(struct nand_chip *chip, |
| struct nand_interface_config *iface) |
| { |
| int ret; |
| |
| /* Try the fastest timings: NV-DDR */ |
| ret = nand_choose_best_nvddr_timings(chip, iface, NULL); |
| if (!ret) |
| return 0; |
| |
| /* Fallback to SDR timings otherwise */ |
| return nand_choose_best_sdr_timings(chip, iface, NULL); |
| } |
| |
| /** |
| * nand_choose_interface_config - find the best data interface and timings |
| * @chip: The NAND chip |
| * |
| * Find the best data interface and NAND timings supported by the chip |
| * and the driver. Eventually let the NAND manufacturer driver propose his own |
| * set of timings. |
| * |
| * After this function nand_chip->interface_config is initialized with the best |
| * timing mode available. |
| * |
| * Returns 0 for success or negative error code otherwise. |
| */ |
| static int nand_choose_interface_config(struct nand_chip *chip) |
| { |
| struct nand_interface_config *iface; |
| int ret; |
| |
| if (!nand_controller_can_setup_interface(chip)) |
| return 0; |
| |
| iface = kzalloc(sizeof(*iface), GFP_KERNEL); |
| if (!iface) |
| return -ENOMEM; |
| |
| if (chip->ops.choose_interface_config) |
| ret = chip->ops.choose_interface_config(chip, iface); |
| else |
| ret = nand_choose_best_timings(chip, iface); |
| |
| if (ret) |
| kfree(iface); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_fill_column_cycles - fill the column cycles of an address |
| * @chip: The NAND chip |
| * @addrs: Array of address cycles to fill |
| * @offset_in_page: The offset in the page |
| * |
| * Fills the first or the first two bytes of the @addrs field depending |
| * on the NAND bus width and the page size. |
| * |
| * Returns the number of cycles needed to encode the column, or a negative |
| * error code in case one of the arguments is invalid. |
| */ |
| static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, |
| unsigned int offset_in_page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| /* Make sure the offset is less than the actual page size. */ |
| if (offset_in_page > mtd->writesize + mtd->oobsize) |
| return -EINVAL; |
| |
| /* |
| * On small page NANDs, there's a dedicated command to access the OOB |
| * area, and the column address is relative to the start of the OOB |
| * area, not the start of the page. Asjust the address accordingly. |
| */ |
| if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) |
| offset_in_page -= mtd->writesize; |
| |
| /* |
| * The offset in page is expressed in bytes, if the NAND bus is 16-bit |
| * wide, then it must be divided by 2. |
| */ |
| if (chip->options & NAND_BUSWIDTH_16) { |
| if (WARN_ON(offset_in_page % 2)) |
| return -EINVAL; |
| |
| offset_in_page /= 2; |
| } |
| |
| addrs[0] = offset_in_page; |
| |
| /* |
| * Small page NANDs use 1 cycle for the columns, while large page NANDs |
| * need 2 |
| */ |
| if (mtd->writesize <= 512) |
| return 1; |
| |
| addrs[1] = offset_in_page >> 8; |
| |
| return 2; |
| } |
| |
| static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, |
| unsigned int offset_in_page, void *buf, |
| unsigned int len) |
| { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 addrs[4]; |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_READ0, 0), |
| NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), |
| NAND_COMMON_TIMING_NS(conf, tRR_min)), |
| NAND_OP_DATA_IN(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int ret; |
| |
| /* Drop the DATA_IN instruction if len is set to 0. */ |
| if (!len) |
| op.ninstrs--; |
| |
| if (offset_in_page >= mtd->writesize) |
| instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; |
| else if (offset_in_page >= 256 && |
| !(chip->options & NAND_BUSWIDTH_16)) |
| instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; |
| |
| ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| if (ret < 0) |
| return ret; |
| |
| addrs[1] = page; |
| addrs[2] = page >> 8; |
| |
| if (chip->options & NAND_ROW_ADDR_3) { |
| addrs[3] = page >> 16; |
| instrs[1].ctx.addr.naddrs++; |
| } |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, |
| unsigned int offset_in_page, void *buf, |
| unsigned int len) |
| { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| u8 addrs[5]; |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_READ0, 0), |
| NAND_OP_ADDR(4, addrs, 0), |
| NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), |
| NAND_COMMON_TIMING_NS(conf, tRR_min)), |
| NAND_OP_DATA_IN(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int ret; |
| |
| /* Drop the DATA_IN instruction if len is set to 0. */ |
| if (!len) |
| op.ninstrs--; |
| |
| ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| if (ret < 0) |
| return ret; |
| |
| addrs[2] = page; |
| addrs[3] = page >> 8; |
| |
| if (chip->options & NAND_ROW_ADDR_3) { |
| addrs[4] = page >> 16; |
| instrs[1].ctx.addr.naddrs++; |
| } |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| /** |
| * nand_read_page_op - Do a READ PAGE operation |
| * @chip: The NAND chip |
| * @page: page to read |
| * @offset_in_page: offset within the page |
| * @buf: buffer used to store the data |
| * @len: length of the buffer |
| * |
| * This function issues a READ PAGE operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_read_page_op(struct nand_chip *chip, unsigned int page, |
| unsigned int offset_in_page, void *buf, unsigned int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (len && !buf) |
| return -EINVAL; |
| |
| if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) { |
| if (mtd->writesize > 512) |
| return nand_lp_exec_read_page_op(chip, page, |
| offset_in_page, buf, |
| len); |
| |
| return nand_sp_exec_read_page_op(chip, page, offset_in_page, |
| buf, len); |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); |
| if (len) |
| chip->legacy.read_buf(chip, buf, len); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_read_page_op); |
| |
| /** |
| * nand_read_param_page_op - Do a READ PARAMETER PAGE operation |
| * @chip: The NAND chip |
| * @page: parameter page to read |
| * @buf: buffer used to store the data |
| * @len: length of the buffer |
| * |
| * This function issues a READ PARAMETER PAGE operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, |
| unsigned int len) |
| { |
| unsigned int i; |
| u8 *p = buf; |
| |
| if (len && !buf) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_PARAM, 0), |
| NAND_OP_ADDR(1, &page, |
| NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), |
| NAND_COMMON_TIMING_NS(conf, tRR_min)), |
| NAND_OP_8BIT_DATA_IN(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| /* Drop the DATA_IN instruction if len is set to 0. */ |
| if (!len) |
| op.ninstrs--; |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); |
| for (i = 0; i < len; i++) |
| p[i] = chip->legacy.read_byte(chip); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_change_read_column_op - Do a CHANGE READ COLUMN operation |
| * @chip: The NAND chip |
| * @offset_in_page: offset within the page |
| * @buf: buffer used to store the data |
| * @len: length of the buffer |
| * @force_8bit: force 8-bit bus access |
| * |
| * This function issues a CHANGE READ COLUMN operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_change_read_column_op(struct nand_chip *chip, |
| unsigned int offset_in_page, void *buf, |
| unsigned int len, bool force_8bit) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (len && !buf) |
| return -EINVAL; |
| |
| if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| return -EINVAL; |
| |
| /* Small page NANDs do not support column change. */ |
| if (mtd->writesize <= 512) |
| return -ENOTSUPP; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| u8 addrs[2] = {}; |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_RNDOUT, 0), |
| NAND_OP_ADDR(2, addrs, 0), |
| NAND_OP_CMD(NAND_CMD_RNDOUTSTART, |
| NAND_COMMON_TIMING_NS(conf, tCCS_min)), |
| NAND_OP_DATA_IN(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int ret; |
| |
| ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| if (ret < 0) |
| return ret; |
| |
| /* Drop the DATA_IN instruction if len is set to 0. */ |
| if (!len) |
| op.ninstrs--; |
| |
| instrs[3].ctx.data.force_8bit = force_8bit; |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); |
| if (len) |
| chip->legacy.read_buf(chip, buf, len); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_change_read_column_op); |
| |
| /** |
| * nand_read_oob_op - Do a READ OOB operation |
| * @chip: The NAND chip |
| * @page: page to read |
| * @offset_in_oob: offset within the OOB area |
| * @buf: buffer used to store the data |
| * @len: length of the buffer |
| * |
| * This function issues a READ OOB operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_read_oob_op(struct nand_chip *chip, unsigned int page, |
| unsigned int offset_in_oob, void *buf, unsigned int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (len && !buf) |
| return -EINVAL; |
| |
| if (offset_in_oob + len > mtd->oobsize) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) |
| return nand_read_page_op(chip, page, |
| mtd->writesize + offset_in_oob, |
| buf, len); |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); |
| if (len) |
| chip->legacy.read_buf(chip, buf, len); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_read_oob_op); |
| |
| static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, |
| unsigned int offset_in_page, const void *buf, |
| unsigned int len, bool prog) |
| { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 addrs[5] = {}; |
| struct nand_op_instr instrs[] = { |
| /* |
| * The first instruction will be dropped if we're dealing |
| * with a large page NAND and adjusted if we're dealing |
| * with a small page NAND and the page offset is > 255. |
| */ |
| NAND_OP_CMD(NAND_CMD_READ0, 0), |
| NAND_OP_CMD(NAND_CMD_SEQIN, 0), |
| NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)), |
| NAND_OP_DATA_OUT(len, buf, 0), |
| NAND_OP_CMD(NAND_CMD_PAGEPROG, |
| NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| |
| if (naddrs < 0) |
| return naddrs; |
| |
| addrs[naddrs++] = page; |
| addrs[naddrs++] = page >> 8; |
| if (chip->options & NAND_ROW_ADDR_3) |
| addrs[naddrs++] = page >> 16; |
| |
| instrs[2].ctx.addr.naddrs = naddrs; |
| |
| /* Drop the last two instructions if we're not programming the page. */ |
| if (!prog) { |
| op.ninstrs -= 2; |
| /* Also drop the DATA_OUT instruction if empty. */ |
| if (!len) |
| op.ninstrs--; |
| } |
| |
| if (mtd->writesize <= 512) { |
| /* |
| * Small pages need some more tweaking: we have to adjust the |
| * first instruction depending on the page offset we're trying |
| * to access. |
| */ |
| if (offset_in_page >= mtd->writesize) |
| instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; |
| else if (offset_in_page >= 256 && |
| !(chip->options & NAND_BUSWIDTH_16)) |
| instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; |
| } else { |
| /* |
| * Drop the first command if we're dealing with a large page |
| * NAND. |
| */ |
| op.instrs++; |
| op.ninstrs--; |
| } |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| /** |
| * nand_prog_page_begin_op - starts a PROG PAGE operation |
| * @chip: The NAND chip |
| * @page: page to write |
| * @offset_in_page: offset within the page |
| * @buf: buffer containing the data to write to the page |
| * @len: length of the buffer |
| * |
| * This function issues the first half of a PROG PAGE operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, |
| unsigned int offset_in_page, const void *buf, |
| unsigned int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (len && !buf) |
| return -EINVAL; |
| |
| if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) |
| return nand_exec_prog_page_op(chip, page, offset_in_page, buf, |
| len, false); |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); |
| |
| if (buf) |
| chip->legacy.write_buf(chip, buf, len); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); |
| |
| /** |
| * nand_prog_page_end_op - ends a PROG PAGE operation |
| * @chip: The NAND chip |
| * |
| * This function issues the second half of a PROG PAGE operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_prog_page_end_op(struct nand_chip *chip) |
| { |
| int ret; |
| u8 status; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_PAGEPROG, |
| NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), |
| 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| ret = nand_exec_op(chip, &op); |
| if (ret) |
| return ret; |
| |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| return ret; |
| } else { |
| chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); |
| ret = chip->legacy.waitfunc(chip); |
| if (ret < 0) |
| return ret; |
| |
| status = ret; |
| } |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_prog_page_end_op); |
| |
| /** |
| * nand_prog_page_op - Do a full PROG PAGE operation |
| * @chip: The NAND chip |
| * @page: page to write |
| * @offset_in_page: offset within the page |
| * @buf: buffer containing the data to write to the page |
| * @len: length of the buffer |
| * |
| * This function issues a full PROG PAGE operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_prog_page_op(struct nand_chip *chip, unsigned int page, |
| unsigned int offset_in_page, const void *buf, |
| unsigned int len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 status; |
| int ret; |
| |
| if (!len || !buf) |
| return -EINVAL; |
| |
| if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) { |
| ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf, |
| len, true); |
| if (ret) |
| return ret; |
| |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| return ret; |
| } else { |
| chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, |
| page); |
| chip->legacy.write_buf(chip, buf, len); |
| chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); |
| ret = chip->legacy.waitfunc(chip); |
| if (ret < 0) |
| return ret; |
| |
| status = ret; |
| } |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_prog_page_op); |
| |
| /** |
| * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation |
| * @chip: The NAND chip |
| * @offset_in_page: offset within the page |
| * @buf: buffer containing the data to send to the NAND |
| * @len: length of the buffer |
| * @force_8bit: force 8-bit bus access |
| * |
| * This function issues a CHANGE WRITE COLUMN operation. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_change_write_column_op(struct nand_chip *chip, |
| unsigned int offset_in_page, |
| const void *buf, unsigned int len, |
| bool force_8bit) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (len && !buf) |
| return -EINVAL; |
| |
| if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| return -EINVAL; |
| |
| /* Small page NANDs do not support column change. */ |
| if (mtd->writesize <= 512) |
| return -ENOTSUPP; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| u8 addrs[2]; |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_RNDIN, 0), |
| NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)), |
| NAND_OP_DATA_OUT(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int ret; |
| |
| ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| if (ret < 0) |
| return ret; |
| |
| instrs[2].ctx.data.force_8bit = force_8bit; |
| |
| /* Drop the DATA_OUT instruction if len is set to 0. */ |
| if (!len) |
| op.ninstrs--; |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); |
| if (len) |
| chip->legacy.write_buf(chip, buf, len); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_change_write_column_op); |
| |
| /** |
| * nand_readid_op - Do a READID operation |
| * @chip: The NAND chip |
| * @addr: address cycle to pass after the READID command |
| * @buf: buffer used to store the ID |
| * @len: length of the buffer |
| * |
| * This function sends a READID command and reads back the ID returned by the |
| * NAND. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, |
| unsigned int len) |
| { |
| unsigned int i; |
| u8 *id = buf, *ddrbuf = NULL; |
| |
| if (len && !buf) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_READID, 0), |
| NAND_OP_ADDR(1, &addr, |
| NAND_COMMON_TIMING_NS(conf, tADL_min)), |
| NAND_OP_8BIT_DATA_IN(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int ret; |
| |
| /* READ_ID data bytes are received twice in NV-DDR mode */ |
| if (len && nand_interface_is_nvddr(conf)) { |
| ddrbuf = kzalloc(len * 2, GFP_KERNEL); |
| if (!ddrbuf) |
| return -ENOMEM; |
| |
| instrs[2].ctx.data.len *= 2; |
| instrs[2].ctx.data.buf.in = ddrbuf; |
| } |
| |
| /* Drop the DATA_IN instruction if len is set to 0. */ |
| if (!len) |
| op.ninstrs--; |
| |
| ret = nand_exec_op(chip, &op); |
| if (!ret && len && nand_interface_is_nvddr(conf)) { |
| for (i = 0; i < len; i++) |
| id[i] = ddrbuf[i * 2]; |
| } |
| |
| kfree(ddrbuf); |
| |
| return ret; |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); |
| |
| for (i = 0; i < len; i++) |
| id[i] = chip->legacy.read_byte(chip); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_readid_op); |
| |
| /** |
| * nand_status_op - Do a STATUS operation |
| * @chip: The NAND chip |
| * @status: out variable to store the NAND status |
| * |
| * This function sends a STATUS command and reads back the status returned by |
| * the NAND. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_status_op(struct nand_chip *chip, u8 *status) |
| { |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| u8 ddrstatus[2]; |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_STATUS, |
| NAND_COMMON_TIMING_NS(conf, tADL_min)), |
| NAND_OP_8BIT_DATA_IN(1, status, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int ret; |
| |
| /* The status data byte will be received twice in NV-DDR mode */ |
| if (status && nand_interface_is_nvddr(conf)) { |
| instrs[1].ctx.data.len *= 2; |
| instrs[1].ctx.data.buf.in = ddrstatus; |
| } |
| |
| if (!status) |
| op.ninstrs--; |
| |
| ret = nand_exec_op(chip, &op); |
| if (!ret && status && nand_interface_is_nvddr(conf)) |
| *status = ddrstatus[0]; |
| |
| return ret; |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); |
| if (status) |
| *status = chip->legacy.read_byte(chip); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_status_op); |
| |
| /** |
| * nand_exit_status_op - Exit a STATUS operation |
| * @chip: The NAND chip |
| * |
| * This function sends a READ0 command to cancel the effect of the STATUS |
| * command to avoid reading only the status until a new read command is sent. |
| * |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_exit_status_op(struct nand_chip *chip) |
| { |
| if (nand_has_exec_op(chip)) { |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_READ0, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_erase_op - Do an erase operation |
| * @chip: The NAND chip |
| * @eraseblock: block to erase |
| * |
| * This function sends an ERASE command and waits for the NAND to be ready |
| * before returning. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) |
| { |
| unsigned int page = eraseblock << |
| (chip->phys_erase_shift - chip->page_shift); |
| int ret; |
| u8 status; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| u8 addrs[3] = { page, page >> 8, page >> 16 }; |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_ERASE1, 0), |
| NAND_OP_ADDR(2, addrs, 0), |
| NAND_OP_CMD(NAND_CMD_ERASE2, |
| NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max), |
| 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| if (chip->options & NAND_ROW_ADDR_3) |
| instrs[1].ctx.addr.naddrs++; |
| |
| ret = nand_exec_op(chip, &op); |
| if (ret) |
| return ret; |
| |
| ret = nand_status_op(chip, &status); |
| if (ret) |
| return ret; |
| } else { |
| chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); |
| chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); |
| |
| ret = chip->legacy.waitfunc(chip); |
| if (ret < 0) |
| return ret; |
| |
| status = ret; |
| } |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_erase_op); |
| |
| /** |
| * nand_set_features_op - Do a SET FEATURES operation |
| * @chip: The NAND chip |
| * @feature: feature id |
| * @data: 4 bytes of data |
| * |
| * This function sends a SET FEATURES command and waits for the NAND to be |
| * ready before returning. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| static int nand_set_features_op(struct nand_chip *chip, u8 feature, |
| const void *data) |
| { |
| const u8 *params = data; |
| int i, ret; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), |
| NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf, |
| tADL_min)), |
| NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, |
| NAND_COMMON_TIMING_NS(conf, |
| tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), |
| 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); |
| for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| chip->legacy.write_byte(chip, params[i]); |
| |
| ret = chip->legacy.waitfunc(chip); |
| if (ret < 0) |
| return ret; |
| |
| if (ret & NAND_STATUS_FAIL) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_get_features_op - Do a GET FEATURES operation |
| * @chip: The NAND chip |
| * @feature: feature id |
| * @data: 4 bytes of data |
| * |
| * This function sends a GET FEATURES command and waits for the NAND to be |
| * ready before returning. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| static int nand_get_features_op(struct nand_chip *chip, u8 feature, |
| void *data) |
| { |
| u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2]; |
| int i; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), |
| NAND_OP_ADDR(1, &feature, |
| NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max), |
| NAND_COMMON_TIMING_NS(conf, tRR_min)), |
| NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, |
| data, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| int ret; |
| |
| /* GET_FEATURE data bytes are received twice in NV-DDR mode */ |
| if (nand_interface_is_nvddr(conf)) { |
| instrs[3].ctx.data.len *= 2; |
| instrs[3].ctx.data.buf.in = ddrbuf; |
| } |
| |
| ret = nand_exec_op(chip, &op); |
| if (nand_interface_is_nvddr(conf)) { |
| for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++) |
| params[i] = ddrbuf[i * 2]; |
| } |
| |
| return ret; |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); |
| for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| params[i] = chip->legacy.read_byte(chip); |
| |
| return 0; |
| } |
| |
| static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, |
| unsigned int delay_ns) |
| { |
| if (nand_has_exec_op(chip)) { |
| struct nand_op_instr instrs[] = { |
| NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), |
| PSEC_TO_NSEC(delay_ns)), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| /* Apply delay or wait for ready/busy pin */ |
| if (!chip->legacy.dev_ready) |
| udelay(chip->legacy.chip_delay); |
| else |
| nand_wait_ready(chip); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_reset_op - Do a reset operation |
| * @chip: The NAND chip |
| * |
| * This function sends a RESET command and waits for the NAND to be ready |
| * before returning. |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_reset_op(struct nand_chip *chip) |
| { |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(NAND_CMD_RESET, |
| NAND_COMMON_TIMING_NS(conf, tWB_max)), |
| NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max), |
| 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_reset_op); |
| |
| /** |
| * nand_read_data_op - Read data from the NAND |
| * @chip: The NAND chip |
| * @buf: buffer used to store the data |
| * @len: length of the buffer |
| * @force_8bit: force 8-bit bus access |
| * @check_only: do not actually run the command, only checks if the |
| * controller driver supports it |
| * |
| * This function does a raw data read on the bus. Usually used after launching |
| * another NAND operation like nand_read_page_op(). |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, |
| bool force_8bit, bool check_only) |
| { |
| if (!len || !buf) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) { |
| const struct nand_interface_config *conf = |
| nand_get_interface_config(chip); |
| struct nand_op_instr instrs[] = { |
| NAND_OP_DATA_IN(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| u8 *ddrbuf = NULL; |
| int ret, i; |
| |
| instrs[0].ctx.data.force_8bit = force_8bit; |
| |
| /* |
| * Parameter payloads (ID, status, features, etc) do not go |
| * through the same pipeline as regular data, hence the |
| * force_8bit flag must be set and this also indicates that in |
| * case NV-DDR timings are being used the data will be received |
| * twice. |
| */ |
| if (force_8bit && nand_interface_is_nvddr(conf)) { |
| ddrbuf = kzalloc(len * 2, GFP_KERNEL); |
| if (!ddrbuf) |
| return -ENOMEM; |
| |
| instrs[0].ctx.data.len *= 2; |
| instrs[0].ctx.data.buf.in = ddrbuf; |
| } |
| |
| if (check_only) { |
| ret = nand_check_op(chip, &op); |
| kfree(ddrbuf); |
| return ret; |
| } |
| |
| ret = nand_exec_op(chip, &op); |
| if (!ret && force_8bit && nand_interface_is_nvddr(conf)) { |
| u8 *dst = buf; |
| |
| for (i = 0; i < len; i++) |
| dst[i] = ddrbuf[i * 2]; |
| } |
| |
| kfree(ddrbuf); |
| |
| return ret; |
| } |
| |
| if (check_only) |
| return 0; |
| |
| if (force_8bit) { |
| u8 *p = buf; |
| unsigned int i; |
| |
| for (i = 0; i < len; i++) |
| p[i] = chip->legacy.read_byte(chip); |
| } else { |
| chip->legacy.read_buf(chip, buf, len); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_read_data_op); |
| |
| /** |
| * nand_write_data_op - Write data from the NAND |
| * @chip: The NAND chip |
| * @buf: buffer containing the data to send on the bus |
| * @len: length of the buffer |
| * @force_8bit: force 8-bit bus access |
| * |
| * This function does a raw data write on the bus. Usually used after launching |
| * another NAND operation like nand_write_page_begin_op(). |
| * This function does not select/unselect the CS line. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_write_data_op(struct nand_chip *chip, const void *buf, |
| unsigned int len, bool force_8bit) |
| { |
| if (!len || !buf) |
| return -EINVAL; |
| |
| if (nand_has_exec_op(chip)) { |
| struct nand_op_instr instrs[] = { |
| NAND_OP_DATA_OUT(len, buf, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| |
| instrs[0].ctx.data.force_8bit = force_8bit; |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| if (force_8bit) { |
| const u8 *p = buf; |
| unsigned int i; |
| |
| for (i = 0; i < len; i++) |
| chip->legacy.write_byte(chip, p[i]); |
| } else { |
| chip->legacy.write_buf(chip, buf, len); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_write_data_op); |
| |
| /** |
| * struct nand_op_parser_ctx - Context used by the parser |
| * @instrs: array of all the instructions that must be addressed |
| * @ninstrs: length of the @instrs array |
| * @subop: Sub-operation to be passed to the NAND controller |
| * |
| * This structure is used by the core to split NAND operations into |
| * sub-operations that can be handled by the NAND controller. |
| */ |
| struct nand_op_parser_ctx { |
| const struct nand_op_instr *instrs; |
| unsigned int ninstrs; |
| struct nand_subop subop; |
| }; |
| |
| /** |
| * nand_op_parser_must_split_instr - Checks if an instruction must be split |
| * @pat: the parser pattern element that matches @instr |
| * @instr: pointer to the instruction to check |
| * @start_offset: this is an in/out parameter. If @instr has already been |
| * split, then @start_offset is the offset from which to start |
| * (either an address cycle or an offset in the data buffer). |
| * Conversely, if the function returns true (ie. instr must be |
| * split), this parameter is updated to point to the first |
| * data/address cycle that has not been taken care of. |
| * |
| * Some NAND controllers are limited and cannot send X address cycles with a |
| * unique operation, or cannot read/write more than Y bytes at the same time. |
| * In this case, split the instruction that does not fit in a single |
| * controller-operation into two or more chunks. |
| * |
| * Returns true if the instruction must be split, false otherwise. |
| * The @start_offset parameter is also updated to the offset at which the next |
| * bundle of instruction must start (if an address or a data instruction). |
| */ |
| static bool |
| nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, |
| const struct nand_op_instr *instr, |
| unsigned int *start_offset) |
| { |
| switch (pat->type) { |
| case NAND_OP_ADDR_INSTR: |
| if (!pat->ctx.addr.maxcycles) |
| break; |
| |
| if (instr->ctx.addr.naddrs - *start_offset > |
| pat->ctx.addr.maxcycles) { |
| *start_offset += pat->ctx.addr.maxcycles; |
| return true; |
| } |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| case NAND_OP_DATA_OUT_INSTR: |
| if (!pat->ctx.data.maxlen) |
| break; |
| |
| if (instr->ctx.data.len - *start_offset > |
| pat->ctx.data.maxlen) { |
| *start_offset += pat->ctx.data.maxlen; |
| return true; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * nand_op_parser_match_pat - Checks if a pattern matches the instructions |
| * remaining in the parser context |
| * @pat: the pattern to test |
| * @ctx: the parser context structure to match with the pattern @pat |
| * |
| * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. |
| * Returns true if this is the case, false ortherwise. When true is returned, |
| * @ctx->subop is updated with the set of instructions to be passed to the |
| * controller driver. |
| */ |
| static bool |
| nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, |
| struct nand_op_parser_ctx *ctx) |
| { |
| unsigned int instr_offset = ctx->subop.first_instr_start_off; |
| const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; |
| const struct nand_op_instr *instr = ctx->subop.instrs; |
| unsigned int i, ninstrs; |
| |
| for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { |
| /* |
| * The pattern instruction does not match the operation |
| * instruction. If the instruction is marked optional in the |
| * pattern definition, we skip the pattern element and continue |
| * to the next one. If the element is mandatory, there's no |
| * match and we can return false directly. |
| */ |
| if (instr->type != pat->elems[i].type) { |
| if (!pat->elems[i].optional) |
| return false; |
| |
| continue; |
| } |
| |
| /* |
| * Now check the pattern element constraints. If the pattern is |
| * not able to handle the whole instruction in a single step, |
| * we have to split it. |
| * The last_instr_end_off value comes back updated to point to |
| * the position where we have to split the instruction (the |
| * start of the next subop chunk). |
| */ |
| if (nand_op_parser_must_split_instr(&pat->elems[i], instr, |
| &instr_offset)) { |
| ninstrs++; |
| i++; |
| break; |
| } |
| |
| instr++; |
| ninstrs++; |
| instr_offset = 0; |
| } |
| |
| /* |
| * This can happen if all instructions of a pattern are optional. |
| * Still, if there's not at least one instruction handled by this |
| * pattern, this is not a match, and we should try the next one (if |
| * any). |
| */ |
| if (!ninstrs) |
| return false; |
| |
| /* |
| * We had a match on the pattern head, but the pattern may be longer |
| * than the instructions we're asked to execute. We need to make sure |
| * there's no mandatory elements in the pattern tail. |
| */ |
| for (; i < pat->nelems; i++) { |
| if (!pat->elems[i].optional) |
| return false; |
| } |
| |
| /* |
| * We have a match: update the subop structure accordingly and return |
| * true. |
| */ |
| ctx->subop.ninstrs = ninstrs; |
| ctx->subop.last_instr_end_off = instr_offset; |
| |
| return true; |
| } |
| |
| #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) |
| static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) |
| { |
| const struct nand_op_instr *instr; |
| char *prefix = " "; |
| unsigned int i; |
| |
| pr_debug("executing subop (CS%d):\n", ctx->subop.cs); |
| |
| for (i = 0; i < ctx->ninstrs; i++) { |
| instr = &ctx->instrs[i]; |
| |
| if (instr == &ctx->subop.instrs[0]) |
| prefix = " ->"; |
| |
| nand_op_trace(prefix, instr); |
| |
| if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) |
| prefix = " "; |
| } |
| } |
| #else |
| static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) |
| { |
| /* NOP */ |
| } |
| #endif |
| |
| static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, |
| const struct nand_op_parser_ctx *b) |
| { |
| if (a->subop.ninstrs < b->subop.ninstrs) |
| return -1; |
| else if (a->subop.ninstrs > b->subop.ninstrs) |
| return 1; |
| |
| if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) |
| return -1; |
| else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_op_parser_exec_op - exec_op parser |
| * @chip: the NAND chip |
| * @parser: patterns description provided by the controller driver |
| * @op: the NAND operation to address |
| * @check_only: when true, the function only checks if @op can be handled but |
| * does not execute the operation |
| * |
| * Helper function designed to ease integration of NAND controller drivers that |
| * only support a limited set of instruction sequences. The supported sequences |
| * are described in @parser, and the framework takes care of splitting @op into |
| * multiple sub-operations (if required) and pass them back to the ->exec() |
| * callback of the matching pattern if @check_only is set to false. |
| * |
| * NAND controller drivers should call this function from their own ->exec_op() |
| * implementation. |
| * |
| * Returns 0 on success, a negative error code otherwise. A failure can be |
| * caused by an unsupported operation (none of the supported patterns is able |
| * to handle the requested operation), or an error returned by one of the |
| * matching pattern->exec() hook. |
| */ |
| int nand_op_parser_exec_op(struct nand_chip *chip, |
| const struct nand_op_parser *parser, |
| const struct nand_operation *op, bool check_only) |
| { |
| struct nand_op_parser_ctx ctx = { |
| .subop.cs = op->cs, |
| .subop.instrs = op->instrs, |
| .instrs = op->instrs, |
| .ninstrs = op->ninstrs, |
| }; |
| unsigned int i; |
| |
| while (ctx.subop.instrs < op->instrs + op->ninstrs) { |
| const struct nand_op_parser_pattern *pattern; |
| struct nand_op_parser_ctx best_ctx; |
| int ret, best_pattern = -1; |
| |
| for (i = 0; i < parser->npatterns; i++) { |
| struct nand_op_parser_ctx test_ctx = ctx; |
| |
| pattern = &parser->patterns[i]; |
| if (!nand_op_parser_match_pat(pattern, &test_ctx)) |
| continue; |
| |
| if (best_pattern >= 0 && |
| nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) |
| continue; |
| |
| best_pattern = i; |
| best_ctx = test_ctx; |
| } |
| |
| if (best_pattern < 0) { |
| pr_debug("->exec_op() parser: pattern not found!\n"); |
| return -ENOTSUPP; |
| } |
| |
| ctx = best_ctx; |
| nand_op_parser_trace(&ctx); |
| |
| if (!check_only) { |
| pattern = &parser->patterns[best_pattern]; |
| ret = pattern->exec(chip, &ctx.subop); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Update the context structure by pointing to the start of the |
| * next subop. |
| */ |
| ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; |
| if (ctx.subop.last_instr_end_off) |
| ctx.subop.instrs -= 1; |
| |
| ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); |
| |
| static bool nand_instr_is_data(const struct nand_op_instr *instr) |
| { |
| return instr && (instr->type == NAND_OP_DATA_IN_INSTR || |
| instr->type == NAND_OP_DATA_OUT_INSTR); |
| } |
| |
| static bool nand_subop_instr_is_valid(const struct nand_subop *subop, |
| unsigned int instr_idx) |
| { |
| return subop && instr_idx < subop->ninstrs; |
| } |
| |
| static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, |
| unsigned int instr_idx) |
| { |
| if (instr_idx) |
| return 0; |
| |
| return subop->first_instr_start_off; |
| } |
| |
| /** |
| * nand_subop_get_addr_start_off - Get the start offset in an address array |
| * @subop: The entire sub-operation |
| * @instr_idx: Index of the instruction inside the sub-operation |
| * |
| * During driver development, one could be tempted to directly use the |
| * ->addr.addrs field of address instructions. This is wrong as address |
| * instructions might be split. |
| * |
| * Given an address instruction, returns the offset of the first cycle to issue. |
| */ |
| unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, |
| unsigned int instr_idx) |
| { |
| if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) |
| return 0; |
| |
| return nand_subop_get_start_off(subop, instr_idx); |
| } |
| EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); |
| |
| /** |
| * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert |
| * @subop: The entire sub-operation |
| * @instr_idx: Index of the instruction inside the sub-operation |
| * |
| * During driver development, one could be tempted to directly use the |
| * ->addr->naddrs field of a data instruction. This is wrong as instructions |
| * might be split. |
| * |
| * Given an address instruction, returns the number of address cycle to issue. |
| */ |
| unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, |
| unsigned int instr_idx) |
| { |
| int start_off, end_off; |
| |
| if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) |
| return 0; |
| |
| start_off = nand_subop_get_addr_start_off(subop, instr_idx); |
| |
| if (instr_idx == subop->ninstrs - 1 && |
| subop->last_instr_end_off) |
| end_off = subop->last_instr_end_off; |
| else |
| end_off = subop->instrs[instr_idx].ctx.addr.naddrs; |
| |
| return end_off - start_off; |
| } |
| EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); |
| |
| /** |
| * nand_subop_get_data_start_off - Get the start offset in a data array |
| * @subop: The entire sub-operation |
| * @instr_idx: Index of the instruction inside the sub-operation |
| * |
| * During driver development, one could be tempted to directly use the |
| * ->data->buf.{in,out} field of data instructions. This is wrong as data |
| * instructions might be split. |
| * |
| * Given a data instruction, returns the offset to start from. |
| */ |
| unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, |
| unsigned int instr_idx) |
| { |
| if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| !nand_instr_is_data(&subop->instrs[instr_idx]))) |
| return 0; |
| |
| return nand_subop_get_start_off(subop, instr_idx); |
| } |
| EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); |
| |
| /** |
| * nand_subop_get_data_len - Get the number of bytes to retrieve |
| * @subop: The entire sub-operation |
| * @instr_idx: Index of the instruction inside the sub-operation |
| * |
| * During driver development, one could be tempted to directly use the |
| * ->data->len field of a data instruction. This is wrong as data instructions |
| * might be split. |
| * |
| * Returns the length of the chunk of data to send/receive. |
| */ |
| unsigned int nand_subop_get_data_len(const struct nand_subop *subop, |
| unsigned int instr_idx) |
| { |
| int start_off = 0, end_off; |
| |
| if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| !nand_instr_is_data(&subop->instrs[instr_idx]))) |
| return 0; |
| |
| start_off = nand_subop_get_data_start_off(subop, instr_idx); |
| |
| if (instr_idx == subop->ninstrs - 1 && |
| subop->last_instr_end_off) |
| end_off = subop->last_instr_end_off; |
| else |
| end_off = subop->instrs[instr_idx].ctx.data.len; |
| |
| return end_off - start_off; |
| } |
| EXPORT_SYMBOL_GPL(nand_subop_get_data_len); |
| |
| /** |
| * nand_reset - Reset and initialize a NAND device |
| * @chip: The NAND chip |
| * @chipnr: Internal die id |
| * |
| * Save the timings data structure, then apply SDR timings mode 0 (see |
| * nand_reset_interface for details), do the reset operation, and apply |
| * back the previous timings. |
| * |
| * Returns 0 on success, a negative error code otherwise. |
| */ |
| int nand_reset(struct nand_chip *chip, int chipnr) |
| { |
| int ret; |
| |
| ret = nand_reset_interface(chip, chipnr); |
| if (ret) |
| return ret; |
| |
| /* |
| * The CS line has to be released before we can apply the new NAND |
| * interface settings, hence this weird nand_select_target() |
| * nand_deselect_target() dance. |
| */ |
| nand_select_target(chip, chipnr); |
| ret = nand_reset_op(chip); |
| nand_deselect_target(chip); |
| if (ret) |
| return ret; |
| |
| ret = nand_setup_interface(chip, chipnr); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nand_reset); |
| |
| /** |
| * nand_get_features - wrapper to perform a GET_FEATURE |
| * @chip: NAND chip info structure |
| * @addr: feature address |
| * @subfeature_param: the subfeature parameters, a four bytes array |
| * |
| * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the |
| * operation cannot be handled. |
| */ |
| int nand_get_features(struct nand_chip *chip, int addr, |
| u8 *subfeature_param) |
| { |
| if (!nand_supports_get_features(chip, addr)) |
| return -ENOTSUPP; |
| |
| if (chip->legacy.get_features) |
| return chip->legacy.get_features(chip, addr, subfeature_param); |
| |
| return nand_get_features_op(chip, addr, subfeature_param); |
| } |
| |
| /** |
| * nand_set_features - wrapper to perform a SET_FEATURE |
| * @chip: NAND chip info structure |
| * @addr: feature address |
| * @subfeature_param: the subfeature parameters, a four bytes array |
| * |
| * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the |
| * operation cannot be handled. |
| */ |
| int nand_set_features(struct nand_chip *chip, int addr, |
| u8 *subfeature_param) |
| { |
| if (!nand_supports_set_features(chip, addr)) |
| return -ENOTSUPP; |
| |
| if (chip->legacy.set_features) |
| return chip->legacy.set_features(chip, addr, subfeature_param); |
| |
| return nand_set_features_op(chip, addr, subfeature_param); |
| } |
| |
| /** |
| * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data |
| * @buf: buffer to test |
| * @len: buffer length |
| * @bitflips_threshold: maximum number of bitflips |
| * |
| * Check if a buffer contains only 0xff, which means the underlying region |
| * has been erased and is ready to be programmed. |
| * The bitflips_threshold specify the maximum number of bitflips before |
| * considering the region is not erased. |
| * Note: The logic of this function has been extracted from the memweight |
| * implementation, except that nand_check_erased_buf function exit before |
| * testing the whole buffer if the number of bitflips exceed the |
| * bitflips_threshold value. |
| * |
| * Returns a positive number of bitflips less than or equal to |
| * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the |
| * threshold. |
| */ |
| static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) |
| { |
| const unsigned char *bitmap = buf; |
| int bitflips = 0; |
| int weight; |
| |
| for (; len && ((uintptr_t)bitmap) % sizeof(long); |
| len--, bitmap++) { |
| weight = hweight8(*bitmap); |
| bitflips += BITS_PER_BYTE - weight; |
| if (unlikely(bitflips > bitflips_threshold)) |
| return -EBADMSG; |
| } |
| |
| for (; len >= sizeof(long); |
| len -= sizeof(long), bitmap += sizeof(long)) { |
| unsigned long d = *((unsigned long *)bitmap); |
| if (d == ~0UL) |
| continue; |
| weight = hweight_long(d); |
| bitflips += BITS_PER_LONG - weight; |
| if (unlikely(bitflips > bitflips_threshold)) |
| return -EBADMSG; |
| } |
| |
| for (; len > 0; len--, bitmap++) { |
| weight = hweight8(*bitmap); |
| bitflips += BITS_PER_BYTE - weight; |
| if (unlikely(bitflips > bitflips_threshold)) |
| return -EBADMSG; |
| } |
| |
| return bitflips; |
| } |
| |
| /** |
| * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only |
| * 0xff data |
| * @data: data buffer to test |
| * @datalen: data length |
| * @ecc: ECC buffer |
| * @ecclen: ECC length |
| * @extraoob: extra OOB buffer |
| * @extraooblen: extra OOB length |
| * @bitflips_threshold: maximum number of bitflips |
| * |
| * Check if a data buffer and its associated ECC and OOB data contains only |
| * 0xff pattern, which means the underlying region has been erased and is |
| * ready to be programmed. |
| * The bitflips_threshold specify the maximum number of bitflips before |
| * considering the region as not erased. |
| * |
| * Note: |
| * 1/ ECC algorithms are working on pre-defined block sizes which are usually |
| * different from the NAND page size. When fixing bitflips, ECC engines will |
| * report the number of errors per chunk, and the NAND core infrastructure |
| * expect you to return the maximum number of bitflips for the whole page. |
| * This is why you should always use this function on a single chunk and |
| * not on the whole page. After checking each chunk you should update your |
| * max_bitflips value accordingly. |
| * 2/ When checking for bitflips in erased pages you should not only check |
| * the payload data but also their associated ECC data, because a user might |
| * have programmed almost all bits to 1 but a few. In this case, we |
| * shouldn't consider the chunk as erased, and checking ECC bytes prevent |
| * this case. |
| * 3/ The extraoob argument is optional, and should be used if some of your OOB |
| * data are protected by the ECC engine. |
| * It could also be used if you support subpages and want to attach some |
| * extra OOB data to an ECC chunk. |
| * |
| * Returns a positive number of bitflips less than or equal to |
| * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the |
| * threshold. In case of success, the passed buffers are filled with 0xff. |
| */ |
| int nand_check_erased_ecc_chunk(void *data, int datalen, |
| void *ecc, int ecclen, |
| void *extraoob, int extraooblen, |
| int bitflips_threshold) |
| { |
| int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; |
| |
| data_bitflips = nand_check_erased_buf(data, datalen, |
| bitflips_threshold); |
| if (data_bitflips < 0) |
| return data_bitflips; |
| |
| bitflips_threshold -= data_bitflips; |
| |
| ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); |
| if (ecc_bitflips < 0) |
| return ecc_bitflips; |
| |
| bitflips_threshold -= ecc_bitflips; |
| |
| extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, |
| bitflips_threshold); |
| if (extraoob_bitflips < 0) |
| return extraoob_bitflips; |
| |
| if (data_bitflips) |
| memset(data, 0xff, datalen); |
| |
| if (ecc_bitflips) |
| memset(ecc, 0xff, ecclen); |
| |
| if (extraoob_bitflips) |
| memset(extraoob, 0xff, extraooblen); |
| |
| return data_bitflips + ecc_bitflips + extraoob_bitflips; |
| } |
| EXPORT_SYMBOL(nand_check_erased_ecc_chunk); |
| |
| /** |
| * nand_read_page_raw_notsupp - dummy read raw page function |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Returns -ENOTSUPP unconditionally. |
| */ |
| int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| return -ENOTSUPP; |
| } |
| |
| /** |
| * nand_read_page_raw - [INTERN] read raw page data without ecc |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| */ |
| int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); |
| if (ret) |
| return ret; |
| |
| if (oob_required) { |
| ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, |
| false, false); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(nand_read_page_raw); |
| |
| /** |
| * nand_monolithic_read_page_raw - Monolithic page read in raw mode |
| * @chip: NAND chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * This is a raw page read, ie. without any error detection/correction. |
| * Monolithic means we are requesting all the relevant data (main plus |
| * eventually OOB) to be loaded in the NAND cache and sent over the |
| * bus (from the NAND chip to the NAND controller) in a single |
| * operation. This is an alternative to nand_read_page_raw(), which |
| * first reads the main data, and if the OOB data is requested too, |
| * then reads more data on the bus. |
| */ |
| int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int size = mtd->writesize; |
| u8 *read_buf = buf; |
| int ret; |
| |
| if (oob_required) { |
| size += mtd->oobsize; |
| |
| if (buf != chip->data_buf) |
| read_buf = nand_get_data_buf(chip); |
| } |
| |
| ret = nand_read_page_op(chip, page, 0, read_buf, size); |
| if (ret) |
| return ret; |
| |
| if (buf != chip->data_buf) |
| memcpy(buf, read_buf, mtd->writesize); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(nand_monolithic_read_page_raw); |
| |
| /** |
| * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * We need a special oob layout and handling even when OOB isn't used. |
| */ |
| static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| uint8_t *oob = chip->oob_poi; |
| int steps, size, ret; |
| |
| ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (steps = chip->ecc.steps; steps > 0; steps--) { |
| ret = nand_read_data_op(chip, buf, eccsize, false, false); |
| if (ret) |
| return ret; |
| |
| buf += eccsize; |
| |
| if (chip->ecc.prepad) { |
| ret = nand_read_data_op(chip, oob, chip->ecc.prepad, |
| false, false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.prepad; |
| } |
| |
| ret = nand_read_data_op(chip, oob, eccbytes, false, false); |
| if (ret) |
| return ret; |
| |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| ret = nand_read_data_op(chip, oob, chip->ecc.postpad, |
| false, false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| size = mtd->oobsize - (oob - chip->oob_poi); |
| if (size) { |
| ret = nand_read_data_op(chip, oob, size, false, false); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| */ |
| static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int i, eccsize = chip->ecc.size, ret; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->ecc.calc_buf; |
| uint8_t *ecc_code = chip->ecc.code_buf; |
| unsigned int max_bitflips = 0; |
| |
| chip->ecc.read_page_raw(chip, buf, 1, page); |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| |
| ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function |
| * @chip: nand chip info structure |
| * @data_offs: offset of requested data within the page |
| * @readlen: data length |
| * @bufpoi: buffer to store read data |
| * @page: page number to read |
| */ |
| static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, |
| uint32_t readlen, uint8_t *bufpoi, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int start_step, end_step, num_steps, ret; |
| uint8_t *p; |
| int data_col_addr, i, gaps = 0; |
| int datafrag_len, eccfrag_len, aligned_len, aligned_pos; |
| int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; |
| int index, section = 0; |
| unsigned int max_bitflips = 0; |
| struct mtd_oob_region oobregion = { }; |
| |
| /* Column address within the page aligned to ECC size (256bytes) */ |
| start_step = data_offs / chip->ecc.size; |
| end_step = (data_offs + readlen - 1) / chip->ecc.size; |
| num_steps = end_step - start_step + 1; |
| index = start_step * chip->ecc.bytes; |
| |
| /* Data size aligned to ECC ecc.size */ |
| datafrag_len = num_steps * chip->ecc.size; |
| eccfrag_len = num_steps * chip->ecc.bytes; |
| |
| data_col_addr = start_step * chip->ecc.size; |
| /* If we read not a page aligned data */ |
| p = bufpoi + data_col_addr; |
| ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); |
| if (ret) |
| return ret; |
| |
| /* Calculate ECC */ |
| for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) |
| chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); |
| |
| /* |
| * The performance is faster if we position offsets according to |
| * ecc.pos. Let's make sure that there are no gaps in ECC positions. |
| */ |
| ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); |
| if (ret) |
| return ret; |
| |
| if (oobregion.length < eccfrag_len) |
| gaps = 1; |
| |
| if (gaps) { |
| ret = nand_change_read_column_op(chip, mtd->writesize, |
| chip->oob_poi, mtd->oobsize, |
| false); |
| if (ret) |
| return ret; |
| } else { |
| /* |
| * Send the command to read the particular ECC bytes take care |
| * about buswidth alignment in read_buf. |
| */ |
| aligned_pos = oobregion.offset & ~(busw - 1); |
| aligned_len = eccfrag_len; |
| if (oobregion.offset & (busw - 1)) |
| aligned_len++; |
| if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & |
| (busw - 1)) |
| aligned_len++; |
| |
| ret = nand_change_read_column_op(chip, |
| mtd->writesize + aligned_pos, |
| &chip->oob_poi[aligned_pos], |
| aligned_len, false); |
| if (ret) |
| return ret; |
| } |
| |
| ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, |
| chip->oob_poi, index, eccfrag_len); |
| if (ret) |
| return ret; |
| |
| p = bufpoi + data_col_addr; |
| for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { |
| int stat; |
| |
| stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], |
| &chip->ecc.calc_buf[i]); |
| if (stat == -EBADMSG && |
| (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| /* check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, |
| &chip->ecc.code_buf[i], |
| chip->ecc.bytes, |
| NULL, 0, |
| chip->ecc.strength); |
| } |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Not for syndrome calculating ECC controllers which need a special oob layout. |
| */ |
| static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int i, eccsize = chip->ecc.size, ret; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->ecc.calc_buf; |
| uint8_t *ecc_code = chip->ecc.code_buf; |
| unsigned int max_bitflips = 0; |
| |
| ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| chip->ecc.hwctl(chip, NAND_ECC_READ); |
| |
| ret = nand_read_data_op(chip, p, eccsize, false, false); |
| if (ret) |
| return ret; |
| |
| chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| } |
| |
| ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, |
| false); |
| if (ret) |
| return ret; |
| |
| ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat == -EBADMSG && |
| (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| /* check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, eccsize, |
| &ecc_code[i], eccbytes, |
| NULL, 0, |
| chip->ecc.strength); |
| } |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * The hw generator calculates the error syndrome automatically. Therefore we |
| * need a special oob layout and handling. |
| */ |
| static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret, i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; |
| uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| unsigned int max_bitflips = 0; |
| |
| ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| chip->ecc.hwctl(chip, NAND_ECC_READ); |
| |
| ret = nand_read_data_op(chip, p, eccsize, false, false); |
| if (ret) |
| return ret; |
| |
| if (chip->ecc.prepad) { |
| ret = nand_read_data_op(chip, oob, chip->ecc.prepad, |
| false, false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->ecc.hwctl(chip, NAND_ECC_READSYN); |
| |
| ret = nand_read_data_op(chip, oob, eccbytes, false, false); |
| if (ret) |
| return ret; |
| |
| stat = chip->ecc.correct(chip, p, oob, NULL); |
| |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| ret = nand_read_data_op(chip, oob, chip->ecc.postpad, |
| false, false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.postpad; |
| } |
| |
| if (stat == -EBADMSG && |
| (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| /* check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, |
| oob - eccpadbytes, |
| eccpadbytes, |
| NULL, 0, |
| chip->ecc.strength); |
| } |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| |
| /* Calculate remaining oob bytes */ |
| i = mtd->oobsize - (oob - chip->oob_poi); |
| if (i) { |
| ret = nand_read_data_op(chip, oob, i, false, false); |
| if (ret) |
| return ret; |
| } |
| |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_transfer_oob - [INTERN] Transfer oob to client buffer |
| * @chip: NAND chip object |
| * @oob: oob destination address |
| * @ops: oob ops structure |
| * @len: size of oob to transfer |
| */ |
| static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, |
| struct mtd_oob_ops *ops, size_t len) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| switch (ops->mode) { |
| |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_RAW: |
| memcpy(oob, chip->oob_poi + ops->ooboffs, len); |
| return oob + len; |
| |
| case MTD_OPS_AUTO_OOB: |
| ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, |
| ops->ooboffs, len); |
| BUG_ON(ret); |
| return oob + len; |
| |
| default: |
| BUG(); |
| } |
| return NULL; |
| } |
| |
| /** |
| * nand_setup_read_retry - [INTERN] Set the READ RETRY mode |
| * @chip: NAND chip object |
| * @retry_mode: the retry mode to use |
| * |
| * Some vendors supply a special command to shift the Vt threshold, to be used |
| * when there are too many bitflips in a page (i.e., ECC error). After setting |
| * a new threshold, the host should retry reading the page. |
| */ |
| static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) |
| { |
| pr_debug("setting READ RETRY mode %d\n", retry_mode); |
| |
| if (retry_mode >= chip->read_retries) |
| return -EINVAL; |
| |
| if (!chip->ops.setup_read_retry) |
| return -EOPNOTSUPP; |
| |
| return chip->ops.setup_read_retry(chip, retry_mode); |
| } |
| |
| static void nand_wait_readrdy(struct nand_chip *chip) |
| { |
| const struct nand_interface_config *conf; |
| |
| if (!(chip->options & NAND_NEED_READRDY)) |
| return; |
| |
| conf = nand_get_interface_config(chip); |
| WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0)); |
| } |
| |
| /** |
| * nand_do_read_ops - [INTERN] Read data with ECC |
| * @chip: NAND chip object |
| * @from: offset to read from |
| * @ops: oob ops structure |
| * |
| * Internal function. Called with chip held. |
| */ |
| static int nand_do_read_ops(struct nand_chip *chip, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| int chipnr, page, realpage, col, bytes, aligned, oob_required; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret = 0; |
| uint32_t readlen = ops->len; |
| uint32_t oobreadlen = ops->ooblen; |
| uint32_t max_oobsize = mtd_oobavail(mtd, ops); |
| |
| uint8_t *bufpoi, *oob, *buf; |
| int use_bounce_buf; |
| unsigned int max_bitflips = 0; |
| int retry_mode = 0; |
| bool ecc_fail = false; |
| |
| /* Check if the region is secured */ |
| if (nand_region_is_secured(chip, from, readlen)) |
| return -EIO; |
| |
| chipnr = (int)(from >> chip->chip_shift); |
| nand_select_target(chip, chipnr); |
| |
| realpage = (int)(from >> chip->page_shift); |
| page = realpage & chip->pagemask; |
| |
| col = (int)(from & (mtd->writesize - 1)); |
| |
| buf = ops->datbuf; |
| oob = ops->oobbuf; |
| oob_required = oob ? 1 : 0; |
| |
| while (1) { |
| struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; |
| |
| bytes = min(mtd->writesize - col, readlen); |
| aligned = (bytes == mtd->writesize); |
| |
| if (!aligned) |
| use_bounce_buf = 1; |
| else if (chip->options & NAND_USES_DMA) |
| use_bounce_buf = !virt_addr_valid(buf) || |
| !IS_ALIGNED((unsigned long)buf, |
| chip->buf_align); |
| else |
| use_bounce_buf = 0; |
| |
| /* Is the current page in the buffer? */ |
| if (realpage != chip->pagecache.page || oob) { |
| bufpoi = use_bounce_buf ? chip->data_buf : buf; |
| |
| if (use_bounce_buf && aligned) |
| pr_debug("%s: using read bounce buffer for buf@%p\n", |
| __func__, buf); |
| |
| read_retry: |
| /* |
| * Now read the page into the buffer. Absent an error, |
| * the read methods return max bitflips per ecc step. |
| */ |
| if (unlikely(ops->mode == MTD_OPS_RAW)) |
| ret = chip->ecc.read_page_raw(chip, bufpoi, |
| oob_required, |
| page); |
| else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && |
| !oob) |
| ret = chip->ecc.read_subpage(chip, col, bytes, |
| bufpoi, page); |
| else |
| ret = chip->ecc.read_page(chip, bufpoi, |
| oob_required, page); |
| if (ret < 0) { |
| if (use_bounce_buf) |
| /* Invalidate page cache */ |
| chip->pagecache.page = -1; |
| break; |
| } |
| |
| /* |
| * Copy back the data in the initial buffer when reading |
| * partial pages or when a bounce buffer is required. |
| */ |
| if (use_bounce_buf) { |
| if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && |
| !(mtd->ecc_stats.failed - ecc_stats.failed) && |
| (ops->mode != MTD_OPS_RAW)) { |
| chip->pagecache.page = realpage; |
| chip->pagecache.bitflips = ret; |
| } else { |
| /* Invalidate page cache */ |
| chip->pagecache.page = -1; |
| } |
| memcpy(buf, bufpoi + col, bytes); |
| } |
| |
| if (unlikely(oob)) { |
| int toread = min(oobreadlen, max_oobsize); |
| |
| if (toread) { |
| oob = nand_transfer_oob(chip, oob, ops, |
| toread); |
| oobreadlen -= toread; |
| } |
| } |
| |
| nand_wait_readrdy(chip); |
| |
| if (mtd->ecc_stats.failed - ecc_stats.failed) { |
| if (retry_mode + 1 < chip->read_retries) { |
| retry_mode++; |
| ret = nand_setup_read_retry(chip, |
| retry_mode); |
| if (ret < 0) |
| break; |
| |
| /* Reset ecc_stats; retry */ |
| mtd->ecc_stats = ecc_stats; |
| goto read_retry; |
| } else { |
| /* No more retry modes; real failure */ |
| ecc_fail = true; |
| } |
| } |
| |
| buf += bytes; |
| max_bitflips = max_t(unsigned int, max_bitflips, ret); |
| } else { |
| memcpy(buf, chip->data_buf + col, bytes); |
| buf += bytes; |
| max_bitflips = max_t(unsigned int, max_bitflips, |
| chip->pagecache.bitflips); |
| } |
| |
| readlen -= bytes; |
| |
| /* Reset to retry mode 0 */ |
| if (retry_mode) { |
| ret = nand_setup_read_retry(chip, 0); |
| if (ret < 0) |
| break; |
| retry_mode = 0; |
| } |
| |
| if (!readlen) |
| break; |
| |
| /* For subsequent reads align to page boundary */ |
| col = 0; |
| /* Increment page address */ |
| realpage++; |
| |
| page = realpage & chip->pagemask; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| nand_deselect_target(chip); |
| nand_select_target(chip, chipnr); |
| } |
| } |
| nand_deselect_target(chip); |
| |
| ops->retlen = ops->len - (size_t) readlen; |
| if (oob) |
| ops->oobretlen = ops->ooblen - oobreadlen; |
| |
| if (ret < 0) |
| return ret; |
| |
| if (ecc_fail) |
| return -EBADMSG; |
| |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function |
| * @chip: nand chip info structure |
| * @page: page number to read |
| */ |
| int nand_read_oob_std(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); |
| } |
| EXPORT_SYMBOL(nand_read_oob_std); |
| |
| /** |
| * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC |
| * with syndromes |
| * @chip: nand chip info structure |
| * @page: page number to read |
| */ |
| static int nand_read_oob_syndrome(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int length = mtd->oobsize; |
| int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| int eccsize = chip->ecc.size; |
| uint8_t *bufpoi = chip->oob_poi; |
| int i, toread, sndrnd = 0, pos, ret; |
| |
| ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < chip->ecc.steps; i++) { |
| if (sndrnd) { |
| int ret; |
| |
| pos = eccsize + i * (eccsize + chunk); |
| if (mtd->writesize > 512) |
| ret = nand_change_read_column_op(chip, pos, |
| NULL, 0, |
| false); |
| else |
| ret = nand_read_page_op(chip, page, pos, NULL, |
| 0); |
| |
| if (ret) |
| return ret; |
| } else |
| sndrnd = 1; |
| toread = min_t(int, length, chunk); |
| |
| ret = nand_read_data_op(chip, bufpoi, toread, false, false); |
| if (ret) |
| return ret; |
| |
| bufpoi += toread; |
| length -= toread; |
| } |
| if (length > 0) { |
| ret = nand_read_data_op(chip, bufpoi, length, false, false); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function |
| * @chip: nand chip info structure |
| * @page: page number to write |
| */ |
| int nand_write_oob_std(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, |
| mtd->oobsize); |
| } |
| EXPORT_SYMBOL(nand_write_oob_std); |
| |
| /** |
| * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC |
| * with syndrome - only for large page flash |
| * @chip: nand chip info structure |
| * @page: page number to write |
| */ |
| static int nand_write_oob_syndrome(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| int eccsize = chip->ecc.size, length = mtd->oobsize; |
| int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; |
| const uint8_t *bufpoi = chip->oob_poi; |
| |
| /* |
| * data-ecc-data-ecc ... ecc-oob |
| * or |
| * data-pad-ecc-pad-data-pad .... ecc-pad-oob |
| */ |
| if (!chip->ecc.prepad && !chip->ecc.postpad) { |
| pos = steps * (eccsize + chunk); |
| steps = 0; |
| } else |
| pos = eccsize; |
| |
| ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < steps; i++) { |
| if (sndcmd) { |
| if (mtd->writesize <= 512) { |
| uint32_t fill = 0xFFFFFFFF; |
| |
| len = eccsize; |
| while (len > 0) { |
| int num = min_t(int, len, 4); |
| |
| ret = nand_write_data_op(chip, &fill, |
| num, false); |
| if (ret) |
| return ret; |
| |
| len -= num; |
| } |
| } else { |
| pos = eccsize + i * (eccsize + chunk); |
| ret = nand_change_write_column_op(chip, pos, |
| NULL, 0, |
| false); |
| if (ret) |
| return ret; |
| } |
| } else |
| sndcmd = 1; |
| len = min_t(int, length, chunk); |
| |
| ret = nand_write_data_op(chip, bufpoi, len, false); |
| if (ret) |
| return ret; |
| |
| bufpoi += len; |
| length -= len; |
| } |
| if (length > 0) { |
| ret = nand_write_data_op(chip, bufpoi, length, false); |
| if (ret) |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /** |
| * nand_do_read_oob - [INTERN] NAND read out-of-band |
| * @chip: NAND chip object |
| * @from: offset to read from |
| * @ops: oob operations description structure |
| * |
| * NAND read out-of-band data from the spare area. |
| */ |
| static int nand_do_read_oob(struct nand_chip *chip, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int max_bitflips = 0; |
| int page, realpage, chipnr; |
| struct mtd_ecc_stats stats; |
| int readlen = ops->ooblen; |
| int len; |
| uint8_t *buf = ops->oobbuf; |
| int ret = 0; |
| |
| pr_debug("%s: from = 0x%08Lx, len = %i\n", |
| __func__, (unsigned long long)from, readlen); |
| |
| /* Check if the region is secured */ |
| if (nand_region_is_secured(chip, from, readlen)) |
| return -EIO; |
| |
| stats = mtd->ecc_stats; |
| |
| len = mtd_oobavail(mtd, ops); |
| |
| chipnr = (int)(from >> chip->chip_shift); |
| nand_select_target(chip, chipnr); |
| |
| /* Shift to get page */ |
| realpage = (int)(from >> chip->page_shift); |
| page = realpage & chip->pagemask; |
| |
| while (1) { |
| if (ops->mode == MTD_OPS_RAW) |
| ret = chip->ecc.read_oob_raw(chip, page); |
| else |
| ret = chip->ecc.read_oob(chip, page); |
| |
| if (ret < 0) |
| break; |
| |
| len = min(len, readlen); |
| buf = nand_transfer_oob(chip, buf, ops, len); |
| |
| nand_wait_readrdy(chip); |
| |
| max_bitflips = max_t(unsigned int, max_bitflips, ret); |
| |
| readlen -= len; |
| if (!readlen) |
| break; |
| |
| /* Increment page address */ |
| realpage++; |
| |
| page = realpage & chip->pagemask; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| nand_deselect_target(chip); |
| nand_select_target(chip, chipnr); |
| } |
| } |
| nand_deselect_target(chip); |
| |
| ops->oobretlen = ops->ooblen - readlen; |
| |
| if (ret < 0) |
| return ret; |
| |
| if (mtd->ecc_stats.failed - stats.failed) |
| return -EBADMSG; |
| |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @ops: oob operation description structure |
| * |
| * NAND read data and/or out-of-band data. |
| */ |
| static int nand_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret; |
| |
| ops->retlen = 0; |
| |
| if (ops->mode != MTD_OPS_PLACE_OOB && |
| ops->mode != MTD_OPS_AUTO_OOB && |
| ops->mode != MTD_OPS_RAW) |
| return -ENOTSUPP; |
| |
| ret = nand_get_device(chip); |
| if (ret) |
| return ret; |
| |
| if (!ops->datbuf) |
| ret = nand_do_read_oob(chip, from, ops); |
| else |
| ret = nand_do_read_ops(chip, from, ops); |
| |
| nand_release_device(chip); |
| return ret; |
| } |
| |
| /** |
| * nand_write_page_raw_notsupp - dummy raw page write function |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * Returns -ENOTSUPP unconditionally. |
| */ |
| int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| return -ENOTSUPP; |
| } |
| |
| /** |
| * nand_write_page_raw - [INTERN] raw page write function |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| */ |
| int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); |
| if (ret) |
| return ret; |
| |
| if (oob_required) { |
| ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, |
| false); |
| if (ret) |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| EXPORT_SYMBOL(nand_write_page_raw); |
| |
| /** |
| * nand_monolithic_write_page_raw - Monolithic page write in raw mode |
| * @chip: NAND chip info structure |
| * @buf: data buffer to write |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * This is a raw page write, ie. without any error detection/correction. |
| * Monolithic means we are requesting all the relevant data (main plus |
| * eventually OOB) to be sent over the bus and effectively programmed |
| * into the NAND chip arrays in a single operation. This is an |
| * alternative to nand_write_page_raw(), which first sends the main |
| * data, then eventually send the OOB data by latching more data |
| * cycles on the NAND bus, and finally sends the program command to |
| * synchronyze the NAND chip cache. |
| */ |
| int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int size = mtd->writesize; |
| u8 *write_buf = (u8 *)buf; |
| |
| if (oob_required) { |
| size += mtd->oobsize; |
| |
| if (buf != chip->data_buf) { |
| write_buf = nand_get_data_buf(chip); |
| memcpy(write_buf, buf, mtd->writesize); |
| } |
| } |
| |
| return nand_prog_page_op(chip, page, 0, write_buf, size); |
| } |
| EXPORT_SYMBOL(nand_monolithic_write_page_raw); |
| |
| /** |
| * nand_write_page_raw_syndrome - [INTERN] raw page write function |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * We need a special oob layout and handling even when ECC isn't checked. |
| */ |
| static int nand_write_page_raw_syndrome(struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| uint8_t *oob = chip->oob_poi; |
| int steps, size, ret; |
| |
| ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (steps = chip->ecc.steps; steps > 0; steps--) { |
| ret = nand_write_data_op(chip, buf, eccsize, false); |
| if (ret) |
| return ret; |
| |
| buf += eccsize; |
| |
| if (chip->ecc.prepad) { |
| ret = nand_write_data_op(chip, oob, chip->ecc.prepad, |
| false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.prepad; |
| } |
| |
| ret = nand_write_data_op(chip, oob, eccbytes, false); |
| if (ret) |
| return ret; |
| |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| ret = nand_write_data_op(chip, oob, chip->ecc.postpad, |
| false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| size = mtd->oobsize - (oob - chip->oob_poi); |
| if (size) { |
| ret = nand_write_data_op(chip, oob, size, false); |
| if (ret) |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| /** |
| * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| */ |
| static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int i, eccsize = chip->ecc.size, ret; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *ecc_calc = chip->ecc.calc_buf; |
| const uint8_t *p = buf; |
| |
| /* Software ECC calculation */ |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| |
| ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| return chip->ecc.write_page_raw(chip, buf, 1, page); |
| } |
| |
| /** |
| * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| */ |
| static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int i, eccsize = chip->ecc.size, ret; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *ecc_calc = chip->ecc.calc_buf; |
| const uint8_t *p = buf; |
| |
| ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| |
| ret = nand_write_data_op(chip, p, eccsize, false); |
| if (ret) |
| return ret; |
| |
| chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| } |
| |
| ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); |
| if (ret) |
| return ret; |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| |
| /** |
| * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write |
| * @chip: nand chip info structure |
| * @offset: column address of subpage within the page |
| * @data_len: data length |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| */ |
| static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, |
| uint32_t data_len, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| uint8_t *oob_buf = chip->oob_poi; |
| uint8_t *ecc_calc = chip->ecc.calc_buf; |
| int ecc_size = chip->ecc.size; |
| int ecc_bytes = chip->ecc.bytes; |
| int ecc_steps = chip->ecc.steps; |
| uint32_t start_step = offset / ecc_size; |
| uint32_t end_step = (offset + data_len - 1) / ecc_size; |
| int oob_bytes = mtd->oobsize / ecc_steps; |
| int step, ret; |
| |
| ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (step = 0; step < ecc_steps; step++) { |
| /* configure controller for WRITE access */ |
| chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| |
| /* write data (untouched subpages already masked by 0xFF) */ |
| ret = nand_write_data_op(chip, buf, ecc_size, false); |
| if (ret) |
| return ret; |
| |
| /* mask ECC of un-touched subpages by padding 0xFF */ |
| if ((step < start_step) || (step > end_step)) |
| memset(ecc_calc, 0xff, ecc_bytes); |
| else |
| chip->ecc.calculate(chip, buf, ecc_calc); |
| |
| /* mask OOB of un-touched subpages by padding 0xFF */ |
| /* if oob_required, preserve OOB metadata of written subpage */ |
| if (!oob_required || (step < start_step) || (step > end_step)) |
| memset(oob_buf, 0xff, oob_bytes); |
| |
| buf += ecc_size; |
| ecc_calc += ecc_bytes; |
| oob_buf += oob_bytes; |
| } |
| |
| /* copy calculated ECC for whole page to chip->buffer->oob */ |
| /* this include masked-value(0xFF) for unwritten subpages */ |
| ecc_calc = chip->ecc.calc_buf; |
| ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| chip->ecc.total); |
| if (ret) |
| return ret; |
| |
| /* write OOB buffer to NAND device */ |
| ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); |
| if (ret) |
| return ret; |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| |
| /** |
| * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * The hw generator calculates the error syndrome automatically. Therefore we |
| * need a special oob layout and handling. |
| */ |
| static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| const uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| int ret; |
| |
| ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| |
| ret = nand_write_data_op(chip, p, eccsize, false); |
| if (ret) |
| return ret; |
| |
| if (chip->ecc.prepad) { |
| ret = nand_write_data_op(chip, oob, chip->ecc.prepad, |
| false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->ecc.calculate(chip, p, oob); |
| |
| ret = nand_write_data_op(chip, oob, eccbytes, false); |
| if (ret) |
| return ret; |
| |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| ret = nand_write_data_op(chip, oob, chip->ecc.postpad, |
| false); |
| if (ret) |
| return ret; |
| |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| /* Calculate remaining oob bytes */ |
| i = mtd->oobsize - (oob - chip->oob_poi); |
| if (i) { |
| ret = nand_write_data_op(chip, oob, i, false); |
| if (ret) |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /** |
| * nand_write_page - write one page |
| * @chip: NAND chip descriptor |
| * @offset: address offset within the page |
| * @data_len: length of actual data to be written |
| * @buf: the data to write |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * @raw: use _raw version of write_page |
| */ |
| static int nand_write_page(struct nand_chip *chip, uint32_t offset, |
| int data_len, const uint8_t *buf, int oob_required, |
| int page, int raw) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int status, subpage; |
| |
| if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && |
| chip->ecc.write_subpage) |
| subpage = offset || (data_len < mtd->writesize); |
| else |
| subpage = 0; |
| |
| if (unlikely(raw)) |
| status = chip->ecc.write_page_raw(chip, buf, oob_required, |
| page); |
| else if (subpage) |
| status = chip->ecc.write_subpage(chip, offset, data_len, buf, |
| oob_required, page); |
| else |
| status = chip->ecc.write_page(chip, buf, oob_required, page); |
| |
| if (status < 0) |
| return status; |
| |
| return 0; |
| } |
| |
| #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) |
| |
| /** |
| * nand_do_write_ops - [INTERN] NAND write with ECC |
| * @chip: NAND chip object |
| * @to: offset to write to |
| * @ops: oob operations description structure |
| * |
| * NAND write with ECC. |
| */ |
| static int nand_do_write_ops(struct nand_chip *chip, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int chipnr, realpage, page, column; |
| uint32_t writelen = ops->len; |
| |
| uint32_t oobwritelen = ops->ooblen; |
| uint32_t oobmaxlen = mtd_oobavail(mtd, ops); |
| |
| uint8_t *oob = ops->oobbuf; |
| uint8_t *buf = ops->datbuf; |
| int ret; |
| int oob_required = oob ? 1 : 0; |
| |
| ops->retlen = 0; |
| if (!writelen) |
| return 0; |
| |
| /* Reject writes, which are not page aligned */ |
| if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { |
| pr_notice("%s: attempt to write non page aligned data\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Check if the region is secured */ |
| if (nand_region_is_secured(chip, to, writelen)) |
| return -EIO; |
| |
| column = to & (mtd->writesize - 1); |
| |
| chipnr = (int)(to >> chip->chip_shift); |
| nand_select_target(chip, chipnr); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(chip)) { |
| ret = -EIO; |
| goto err_out; |
| } |
| |
| realpage = (int)(to >> chip->page_shift); |
| page = realpage & chip->pagemask; |
| |
| /* Invalidate the page cache, when we write to the cached page */ |
| if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && |
| ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) |
| chip->pagecache.page = -1; |
| |
| /* Don't allow multipage oob writes with offset */ |
| if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { |
| ret = -EINVAL; |
| goto err_out; |
| } |
| |
| while (1) { |
| int bytes = mtd->writesize; |
| uint8_t *wbuf = buf; |
| int use_bounce_buf; |
| int part_pagewr = (column || writelen < mtd->writesize); |
| |
| if (part_pagewr) |
| use_bounce_buf = 1; |
| else if (chip->options & NAND_USES_DMA) |
| use_bounce_buf = !virt_addr_valid(buf) || |
| !IS_ALIGNED((unsigned long)buf, |
| chip->buf_align); |
| else |
| use_bounce_buf = 0; |
| |
| /* |
| * Copy the data from the initial buffer when doing partial page |
| * writes or when a bounce buffer is required. |
| */ |
| if (use_bounce_buf) { |
| pr_debug("%s: using write bounce buffer for buf@%p\n", |
| __func__, buf); |
| if (part_pagewr) |
| bytes = min_t(int, bytes - column, writelen); |
| wbuf = nand_get_data_buf(chip); |
| memset(wbuf, 0xff, mtd->writesize); |
| memcpy(&wbuf[column], buf, bytes); |
| } |
| |
| if (unlikely(oob)) { |
| size_t len = min(oobwritelen, oobmaxlen); |
| oob = nand_fill_oob(chip, oob, len, ops); |
| oobwritelen -= len; |
| } else { |
| /* We still need to erase leftover OOB data */ |
| memset(chip->oob_poi, 0xff, mtd->oobsize); |
| } |
| |
| ret = nand_write_page(chip, column, bytes, wbuf, |
| oob_required, page, |
| (ops->mode == MTD_OPS_RAW)); |
| if (ret) |
| break; |
| |
| writelen -= bytes; |
| if (!writelen) |
| break; |
| |
| column = 0; |
| buf += bytes; |
| realpage++; |
| |
| page = realpage & chip->pagemask; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| nand_deselect_target(chip); |
| nand_select_target(chip, chipnr); |
| } |
| } |
| |
| ops->retlen = ops->len - writelen; |
| if (unlikely(oob)) |
| ops->oobretlen = ops->ooblen; |
| |
| err_out: |
| nand_deselect_target(chip); |
| return ret; |
| } |
| |
| /** |
| * panic_nand_write - [MTD Interface] NAND write with ECC |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @len: number of bytes to write |
| * @retlen: pointer to variable to store the number of written bytes |
| * @buf: the data to write |
| * |
| * NAND write with ECC. Used when performing writes in interrupt context, this |
| * may for example be called by mtdoops when writing an oops while in panic. |
| */ |
| static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const uint8_t *buf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int chipnr = (int)(to >> chip->chip_shift); |
| struct mtd_oob_ops ops; |
| int ret; |
| |
| nand_select_target(chip, chipnr); |
| |
| /* Wait for the device to get ready */ |
| panic_nand_wait(chip, 400); |
| |
| memset(&ops, 0, sizeof(ops)); |
| ops.len = len; |
| ops.datbuf = (uint8_t *)buf; |
| ops.mode = MTD_OPS_PLACE_OOB; |
| |
| ret = nand_do_write_ops(chip, to, &ops); |
| |
| *retlen = ops.retlen; |
| return ret; |
| } |
| |
| /** |
| * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @ops: oob operation description structure |
| */ |
| static int nand_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret; |
| |
| ops->retlen = 0; |
| |
| ret = nand_get_device(chip); |
| if (ret) |
| return ret; |
| |
| switch (ops->mode) { |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_AUTO_OOB: |
| case MTD_OPS_RAW: |
| break; |
| |
| default: |
| goto out; |
| } |
| |
| if (!ops->datbuf) |
| ret = nand_do_write_oob(chip, to, ops); |
| else |
| ret = nand_do_write_ops(chip, to, ops); |
| |
| out: |
| nand_release_device(chip); |
| return ret; |
| } |
| |
| /** |
| * nand_erase - [MTD Interface] erase block(s) |
| * @mtd: MTD device structure |
| * @instr: erase instruction |
| * |
| * Erase one ore more blocks. |
| */ |
| static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| return nand_erase_nand(mtd_to_nand(mtd), instr, 0); |
| } |
| |
| /** |
| * nand_erase_nand - [INTERN] erase block(s) |
| * @chip: NAND chip object |
| * @instr: erase instruction |
| * @allowbbt: allow erasing the bbt area |
| * |
| * Erase one ore more blocks. |
| */ |
| int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, |
| int allowbbt) |
| { |
| int page, pages_per_block, ret, chipnr; |
| loff_t len; |
| |
| pr_debug("%s: start = 0x%012llx, len = %llu\n", |
| __func__, (unsigned long long)instr->addr, |
| (unsigned long long)instr->len); |
| |
| if (check_offs_len(chip, instr->addr, instr->len)) |
| return -EINVAL; |
| |
| /* Check if the region is secured */ |
| if (nand_region_is_secured(chip, instr->addr, instr->len)) |
| return -EIO; |
| |
| /* Grab the lock and see if the device is available */ |
| ret = nand_get_device(chip); |
| if (ret) |
| return ret; |
| |
| /* Shift to get first page */ |
| page = (int)(instr->addr >> chip->page_shift); |
| chipnr = (int)(instr->addr >> chip->chip_shift); |
| |
| /* Calculate pages in each block */ |
| pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); |
| |
| /* Select the NAND device */ |
| nand_select_target(chip, chipnr); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(chip)) { |
| pr_debug("%s: device is write protected!\n", |
| __func__); |
| ret = -EIO; |
| goto erase_exit; |
| } |
| |
| /* Loop through the pages */ |
| len = instr->len; |
| |
| while (len) { |
| /* Check if we have a bad block, we do not erase bad blocks! */ |
| if (nand_block_checkbad(chip, ((loff_t) page) << |
| chip->page_shift, allowbbt)) { |
| pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", |
| __func__, page); |
| ret = -EIO; |
| goto erase_exit; |
| } |
| |
| /* |
| * Invalidate the page cache, if we erase the block which |
| * contains the current cached page. |
| */ |
| if (page <= chip->pagecache.page && chip->pagecache.page < |
| (page + pages_per_block)) |
| chip->pagecache.page = -1; |
| |
| ret = nand_erase_op(chip, (page & chip->pagemask) >> |
| (chip->phys_erase_shift - chip->page_shift)); |
| if (ret) { |
| pr_debug("%s: failed erase, page 0x%08x\n", |
| __func__, page); |
| instr->fail_addr = |
| ((loff_t)page << chip->page_shift); |
| goto erase_exit; |
| } |
| |
| /* Increment page address and decrement length */ |
| len -= (1ULL << chip->phys_erase_shift); |
| page += pages_per_block; |
| |
| /* Check, if we cross a chip boundary */ |
| if (len && !(page & chip->pagemask)) { |
| chipnr++; |
| nand_deselect_target(chip); |
| nand_select_target(chip, chipnr); |
| } |
| } |
| |
| ret = 0; |
| erase_exit: |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| nand_deselect_target(chip); |
| nand_release_device(chip); |
| |
| /* Return more or less happy */ |
| return ret; |
| } |
| |
| /** |
| * nand_sync - [MTD Interface] sync |
| * @mtd: MTD device structure |
| * |
| * Sync is actually a wait for chip ready function. |
| */ |
| static void nand_sync(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| pr_debug("%s: called\n", __func__); |
| |
| /* Grab the lock and see if the device is available */ |
| WARN_ON(nand_get_device(chip)); |
| /* Release it and go back */ |
| nand_release_device(chip); |
| } |
| |
| /** |
| * nand_block_isbad - [MTD Interface] Check if block at offset is bad |
| * @mtd: MTD device structure |
| * @offs: offset relative to mtd start |
| */ |
| static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int chipnr = (int)(offs >> chip->chip_shift); |
| int ret; |
| |
| /* Select the NAND device */ |
| ret = nand_get_device(chip); |
| if (ret) |
| return ret; |
| |
| nand_select_target(chip, chipnr); |
| |
| ret = nand_block_checkbad(chip, offs, 0); |
| |
| nand_deselect_target(chip); |
| nand_release_device(chip); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad |
| * @mtd: MTD device structure |
| * @ofs: offset relative to mtd start |
| */ |
| static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| int ret; |
| |
| ret = nand_block_isbad(mtd, ofs); |
| if (ret) { |
| /* If it was bad already, return success and do nothing */ |
| if (ret > 0) |
| return 0; |
| return ret; |
| } |
| |
| return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); |
| } |
| |
| /** |
| * nand_suspend - [MTD Interface] Suspend the NAND flash |
| * @mtd: MTD device structure |
| * |
| * Returns 0 for success or negative error code otherwise. |
| */ |
| static int nand_suspend(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret = 0; |
| |
| mutex_lock(&chip->lock); |
| if (chip->ops.suspend) |
| ret = chip->ops.suspend(chip); |
| if (!ret) |
| chip->suspended = 1; |
| mutex_unlock(&chip->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_resume - [MTD Interface] Resume the NAND flash |
| * @mtd: MTD device structure |
| */ |
| static void nand_resume(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| mutex_lock(&chip->lock); |
| if (chip->suspended) { |
| if (chip->ops.resume) |
| chip->ops.resume(chip); |
| chip->suspended = 0; |
| } else { |
| pr_err("%s called for a chip which is not in suspended state\n", |
| __func__); |
| } |
| mutex_unlock(&chip->lock); |
| } |
| |
| /** |
| * nand_shutdown - [MTD Interface] Finish the current NAND operation and |
| * prevent further operations |
| * @mtd: MTD device structure |
| */ |
| static void nand_shutdown(struct mtd_info *mtd) |
| { |
| nand_suspend(mtd); |
| } |
| |
| /** |
| * nand_lock - [MTD Interface] Lock the NAND flash |
| * @mtd: MTD device structure |
| * @ofs: offset byte address |
| * @len: number of bytes to lock (must be a multiple of block/page size) |
| */ |
| static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (!chip->ops.lock_area) |
| return -ENOTSUPP; |
| |
| return chip->ops.lock_area(chip, ofs, len); |
| } |
| |
| /** |
| * nand_unlock - [MTD Interface] Unlock the NAND flash |
| * @mtd: MTD device structure |
| * @ofs: offset byte address |
| * @len: number of bytes to unlock (must be a multiple of block/page size) |
| */ |
| static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (!chip->ops.unlock_area) |
| return -ENOTSUPP; |
| |
| return chip->ops.unlock_area(chip, ofs, len); |
| } |
| |
| /* Set default functions */ |
| static void nand_set_defaults(struct nand_chip *chip) |
| { |
| /* If no controller is provided, use the dummy, legacy one. */ |
| if (!chip->controller) { |
| chip->controller = &chip->legacy.dummy_controller; |
| nand_controller_init(chip->controller); |
| } |
| |
| nand_legacy_set_defaults(chip); |
| |
| if (!chip->buf_align) |
| chip->buf_align = 1; |
| } |
| |
| /* Sanitize ONFI strings so we can safely print them */ |
| void sanitize_string(uint8_t *s, size_t len) |
| { |
| ssize_t i; |
| |
| /* Null terminate */ |
| s[len - 1] = 0; |
| |
| /* Remove non printable chars */ |
| for (i = 0; i < len - 1; i++) { |
| if (s[i] < ' ' || s[i] > 127) |
| s[i] = '?'; |
| } |
| |
| /* Remove trailing spaces */ |
| strim(s); |
| } |
| |
| /* |
| * nand_id_has_period - Check if an ID string has a given wraparound period |
| * @id_data: the ID string |
| * @arrlen: the length of the @id_data array |
| * @period: the period of repitition |
| * |
| * Check if an ID string is repeated within a given sequence of bytes at |
| * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a |
| * period of 3). This is a helper function for nand_id_len(). Returns non-zero |
| * if the repetition has a period of @period; otherwise, returns zero. |
| */ |
| static int nand_id_has_period(u8 *id_data, int arrlen, int period) |
| { |
| int i, j; |
| for (i = 0; i < period; i++) |
| for (j = i + period; j < arrlen; j += period) |
| if (id_data[i] != id_data[j]) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * nand_id_len - Get the length of an ID string returned by CMD_READID |
| * @id_data: the ID string |
| * @arrlen: the length of the @id_data array |
| |
| * Returns the length of the ID string, according to known wraparound/trailing |
| * zero patterns. If no pattern exists, returns the length of the array. |
| */ |
| static int nand_id_len(u8 *id_data, int arrlen) |
| { |
| int last_nonzero, period; |
| |
| /* Find last non-zero byte */ |
| for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) |
| if (id_data[last_nonzero]) |
| break; |
| |
| /* All zeros */ |
| if (last_nonzero < 0) |
| return 0; |
| |
| /* Calculate wraparound period */ |
| for (period = 1; period < arrlen; period++) |
| if (nand_id_has_period(id_data, arrlen, period)) |
| break; |
| |
| /* There's a repeated pattern */ |
| if (period < arrlen) |
| return period; |
| |
| /* There are trailing zeros */ |
| if (last_nonzero < arrlen - 1) |
| return last_nonzero + 1; |
| |
| /* No pattern detected */ |
| return arrlen; |
| } |
| |
| /* Extract the bits of per cell from the 3rd byte of the extended ID */ |
| static int nand_get_bits_per_cell(u8 cellinfo) |
| { |
| int bits; |
| |
| bits = cellinfo & NAND_CI_CELLTYPE_MSK; |
| bits >>= NAND_CI_CELLTYPE_SHIFT; |
| return bits + 1; |
| } |
| |
| /* |
| * Many new NAND share similar device ID codes, which represent the size of the |
| * chip. The rest of the parameters must be decoded according to generic or |
| * manufacturer-specific "extended ID" decoding patterns. |
| */ |
| void nand_decode_ext_id(struct nand_chip *chip) |
| { |
| struct nand_memory_organization *memorg; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int extid; |
| u8 *id_data = chip->id.data; |
| |
| memorg = nanddev_get_memorg(&chip->base); |
| |
| /* The 3rd id byte holds MLC / multichip data */ |
| memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); |
| /* The 4th id byte is the important one */ |
| extid = id_data[3]; |
| |
| /* Calc pagesize */ |
| memorg->pagesize = 1024 << (extid & 0x03); |
| mtd->writesize = memorg->pagesize; |
| extid >>= 2; |
| /* Calc oobsize */ |
| memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); |
| mtd->oobsize = memorg->oobsize; |
| extid >>= 2; |
| /* Calc blocksize. Blocksize is multiples of 64KiB */ |
| memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / |
| memorg->pagesize; |
| mtd->erasesize = (64 * 1024) << (extid & 0x03); |
| extid >>= 2; |
| /* Get buswidth information */ |
| if (extid & 0x1) |
| chip->options |= NAND_BUSWIDTH_16; |
| } |
| EXPORT_SYMBOL_GPL(nand_decode_ext_id); |
| |
| /* |
| * Old devices have chip data hardcoded in the device ID table. nand_decode_id |
| * decodes a matching ID table entry and assigns the MTD size parameters for |
| * the chip. |
| */ |
| static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_memory_organization *memorg; |
| |
| memorg = nanddev_get_memorg(&chip->base); |
| |
| memorg->pages_per_eraseblock = type->erasesize / type->pagesize; |
| mtd->erasesize = type->erasesize; |
| memorg->pagesize = type->pagesize; |
| mtd->writesize = memorg->pagesize; |
| memorg->oobsize = memorg->pagesize / 32; |
| mtd->oobsize = memorg->oobsize; |
| |
| /* All legacy ID NAND are small-page, SLC */ |
| memorg->bits_per_cell = 1; |
| } |
| |
| /* |
| * Set the bad block marker/indicator (BBM/BBI) patterns according to some |
| * heuristic patterns using various detected parameters (e.g., manufacturer, |
| * page size, cell-type information). |
| */ |
| static void nand_decode_bbm_options(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| /* Set the bad block position */ |
| if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) |
| chip->badblockpos = NAND_BBM_POS_LARGE; |
| else |
| chip->badblockpos = NAND_BBM_POS_SMALL; |
| } |
| |
| static inline bool is_full_id_nand(struct nand_flash_dev *type) |
| { |
| return type->id_len; |
| } |
| |
| static bool find_full_id_nand(struct nand_chip *chip, |
| struct nand_flash_dev *type) |
| { |
| struct nand_device *base = &chip->base; |
| struct nand_ecc_props requirements; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_memory_organization *memorg; |
| u8 *id_data = chip->id.data; |
| |
| memorg = nanddev_get_memorg(&chip->base); |
| |
| if (!strncmp(type->id, id_data, type->id_len)) { |
| memorg->pagesize = type->pagesize; |
| mtd->writesize = memorg->pagesize; |
| memorg->pages_per_eraseblock = type->erasesize / |
| type->pagesize; |
| mtd->erasesize = type->erasesize; |
| memorg->oobsize = type->oobsize; |
| mtd->oobsize = memorg->oobsize; |
| |
| memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); |
| memorg->eraseblocks_per_lun = |
| DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, |
| memorg->pagesize * |
| memorg->pages_per_eraseblock); |
| chip->options |= type->options; |
| requirements.strength = NAND_ECC_STRENGTH(type); |
| requirements.step_size = NAND_ECC_STEP(type); |
| nanddev_set_ecc_requirements(base, &requirements); |
| |
| chip->parameters.model = kstrdup(type->name, GFP_KERNEL); |
| if (!chip->parameters.model) |
| return false; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC |
| * compliant and does not have a full-id or legacy-id entry in the nand_ids |
| * table. |
| */ |
| static void nand_manufacturer_detect(struct nand_chip *chip) |
| { |
| /* |
| * Try manufacturer detection if available and use |
| * nand_decode_ext_id() otherwise. |
| */ |
| if (chip->manufacturer.desc && chip->manufacturer.desc->ops && |
| chip->manufacturer.desc->ops->detect) { |
| struct nand_memory_organization *memorg; |
| |
| memorg = nanddev_get_memorg(&chip->base); |
| |
| /* The 3rd id byte holds MLC / multichip data */ |
| memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); |
| chip->manufacturer.desc->ops->detect(chip); |
| } else { |
| nand_decode_ext_id(chip); |
| } |
| } |
| |
| /* |
| * Manufacturer initialization. This function is called for all NANDs including |
| * ONFI and JEDEC compliant ones. |
| * Manufacturer drivers should put all their specific initialization code in |
| * their ->init() hook. |
| */ |
| static int nand_manufacturer_init(struct nand_chip *chip) |
| { |
| if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || |
| !chip->manufacturer.desc->ops->init) |
| return 0; |
| |
| return chip->manufacturer.desc->ops->init(chip); |
| } |
| |
| /* |
| * Manufacturer cleanup. This function is called for all NANDs including |
| * ONFI and JEDEC compliant ones. |
| * Manufacturer drivers should put all their specific cleanup code in their |
| * ->cleanup() hook. |
| */ |
| static void nand_manufacturer_cleanup(struct nand_chip *chip) |
| { |
| /* Release manufacturer private data */ |
| if (chip->manufacturer.desc && chip->manufacturer.desc->ops && |
| chip->manufacturer.desc->ops->cleanup) |
| chip->manufacturer.desc->ops->cleanup(chip); |
| } |
| |
| static const char * |
| nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc) |
| { |
| return manufacturer_desc ? manufacturer_desc->name : "Unknown"; |
| } |
| |
| /* |
| * Get the flash and manufacturer id and lookup if the type is supported. |
| */ |
| static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) |
| { |
| const struct nand_manufacturer_desc *manufacturer_desc; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_memory_organization *memorg; |
| int busw, ret; |
| u8 *id_data = chip->id.data; |
| u8 maf_id, dev_id; |
| u64 targetsize; |
| |
| /* |
| * Let's start by initializing memorg fields that might be left |
| * unassigned by the ID-based detection logic. |
| */ |
| memorg = nanddev_get_memorg(&chip->base); |
| memorg->planes_per_lun = 1; |
| memorg->luns_per_target = 1; |
| |
| /* |
| * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) |
| * after power-up. |
| */ |
| ret = nand_reset(chip, 0); |
| if (ret) |
| return ret; |
| |
| /* Select the device */ |
| nand_select_target(chip, 0); |
| |
| /* Send the command for reading device ID */ |
| ret = nand_readid_op(chip, 0, id_data, 2); |
| if (ret) |
| return ret; |
| |
| /* Read manufacturer and device IDs */ |
| maf_id = id_data[0]; |
| dev_id = id_data[1]; |
| |
| /* |
| * Try again to make sure, as some systems the bus-hold or other |
| * interface concerns can cause random data which looks like a |
| * possibly credible NAND flash to appear. If the two results do |
| * not match, ignore the device completely. |
| */ |
| |
| /* Read entire ID string */ |
| ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); |
| if (ret) |
| return ret; |
| |
| if (id_data[0] != maf_id || id_data[1] != dev_id) { |
| pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", |
| maf_id, dev_id, id_data[0], id_data[1]); |
| return -ENODEV; |
| } |
| |
| chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); |
| |
| /* Try to identify manufacturer */ |
| manufacturer_desc = nand_get_manufacturer_desc(maf_id); |
| chip->manufacturer.desc = manufacturer_desc; |
| |
| if (!type) |
| type = nand_flash_ids; |
| |
| /* |
| * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic |
| * override it. |
| * This is required to make sure initial NAND bus width set by the |
| * NAND controller driver is coherent with the real NAND bus width |
| * (extracted by auto-detection code). |
| */ |
| busw = chip->options & NAND_BUSWIDTH_16; |
| |
| /* |
| * The flag is only set (never cleared), reset it to its default value |
| * before starting auto-detection. |
| */ |
| chip->options &= ~NAND_BUSWIDTH_16; |
| |
| for (; type->name != NULL; type++) { |
| if (is_full_id_nand(type)) { |
| if (find_full_id_nand(chip, type)) |
| goto ident_done; |
| } else if (dev_id == type->dev_id) { |
| break; |
| } |
| } |
| |
| if (!type->name || !type->pagesize) { |
| /* Check if the chip is ONFI compliant */ |
| ret = nand_onfi_detect(chip); |
| if (ret < 0) |
| return ret; |
| else if (ret) |
| goto ident_done; |
| |
| /* Check if the chip is JEDEC compliant */ |
| ret = nand_jedec_detect(chip); |
| if (ret < 0) |
| return ret; |
| else if (ret) |
| goto ident_done; |
| } |
| |
| if (!type->name) |
| return -ENODEV; |
| |
| chip->parameters.model = kstrdup(type->name, GFP_KERNEL); |
| if (!chip->parameters.model) |
| return -ENOMEM; |
| |
| if (!type->pagesize) |
| nand_manufacturer_detect(chip); |
| else |
| nand_decode_id(chip, type); |
| |
| /* Get chip options */ |
| chip->options |= type->options; |
| |
| memorg->eraseblocks_per_lun = |
| DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, |
| memorg->pagesize * |
| memorg->pages_per_eraseblock); |
| |
| ident_done: |
| if (!mtd->name) |
| mtd->name = chip->parameters.model; |
| |
| if (chip->options & NAND_BUSWIDTH_AUTO) { |
| WARN_ON(busw & NAND_BUSWIDTH_16); |
| nand_set_defaults(chip); |
| } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { |
| /* |
| * Check, if buswidth is correct. Hardware drivers should set |
| * chip correct! |
| */ |
| pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", |
| maf_id, dev_id); |
| pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), |
| mtd->name); |
| pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, |
| (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); |
| ret = -EINVAL; |
| |
| goto free_detect_allocation; |
| } |
| |
| nand_decode_bbm_options(chip); |
| |
| /* Calculate the address shift from the page size */ |
| chip->page_shift = ffs(mtd->writesize) - 1; |
| /* Convert chipsize to number of pages per chip -1 */ |
| targetsize = nanddev_target_size(&chip->base); |
| chip->pagemask = (targetsize >> chip->page_shift) - 1; |
| |
| chip->bbt_erase_shift = chip->phys_erase_shift = |
| ffs(mtd->erasesize) - 1; |
| if (targetsize & 0xffffffff) |
| chip->chip_shift = ffs((unsigned)targetsize) - 1; |
| else { |
| chip->chip_shift = ffs((unsigned)(targetsize >> 32)); |
| chip->chip_shift += 32 - 1; |
| } |
| |
| if (chip->chip_shift - chip->page_shift > 16) |
| chip->options |= NAND_ROW_ADDR_3; |
| |
| chip->badblockbits = 8; |
| |
| nand_legacy_adjust_cmdfunc(chip); |
| |
| pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", |
| maf_id, dev_id); |
| pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc), |
| chip->parameters.model); |
| pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", |
| (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", |
| mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); |
| return 0; |
| |
| free_detect_allocation: |
| kfree(chip->parameters.model); |
| |
| return ret; |
| } |
| |
| static enum nand_ecc_engine_type |
| of_get_rawnand_ecc_engine_type_legacy(struct device_node *np) |
| { |
| enum nand_ecc_legacy_mode { |
| NAND_ECC_INVALID, |
| NAND_ECC_NONE, |
| NAND_ECC_SOFT, |
| NAND_ECC_SOFT_BCH, |
| NAND_ECC_HW, |
| NAND_ECC_HW_SYNDROME, |
| NAND_ECC_ON_DIE, |
| }; |
| const char * const nand_ecc_legacy_modes[] = { |
| [NAND_ECC_NONE] = "none", |
| [NAND_ECC_SOFT] = "soft", |
| [NAND_ECC_SOFT_BCH] = "soft_bch", |
| [NAND_ECC_HW] = "hw", |
| [NAND_ECC_HW_SYNDROME] = "hw_syndrome", |
| [NAND_ECC_ON_DIE] = "on-die", |
| }; |
| enum nand_ecc_legacy_mode eng_type; |
| const char *pm; |
| int err; |
| |
| err = of_property_read_string(np, "nand-ecc-mode", &pm); |
| if (err) |
| return NAND_ECC_ENGINE_TYPE_INVALID; |
| |
| for (eng_type = NAND_ECC_NONE; |
| eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) { |
| if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) { |
| switch (eng_type) { |
| case NAND_ECC_NONE: |
| return NAND_ECC_ENGINE_TYPE_NONE; |
| case NAND_ECC_SOFT: |
| case NAND_ECC_SOFT_BCH: |
| return NAND_ECC_ENGINE_TYPE_SOFT; |
| case NAND_ECC_HW: |
| case NAND_ECC_HW_SYNDROME: |
| return NAND_ECC_ENGINE_TYPE_ON_HOST; |
| case NAND_ECC_ON_DIE: |
| return NAND_ECC_ENGINE_TYPE_ON_DIE; |
| default: |
| break; |
| } |
| } |
| } |
| |
| return NAND_ECC_ENGINE_TYPE_INVALID; |
| } |
| |
| static enum nand_ecc_placement |
| of_get_rawnand_ecc_placement_legacy(struct device_node *np) |
| { |
| const char *pm; |
| int err; |
| |
| err = of_property_read_string(np, "nand-ecc-mode", &pm); |
| if (!err) { |
| if (!strcasecmp(pm, "hw_syndrome")) |
| return NAND_ECC_PLACEMENT_INTERLEAVED; |
| } |
| |
| return NAND_ECC_PLACEMENT_UNKNOWN; |
| } |
| |
| static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np) |
| { |
| const char *pm; |
| int err; |
| |
| err = of_property_read_string(np, "nand-ecc-mode", &pm); |
| if (!err) { |
| if (!strcasecmp(pm, "soft")) |
| return NAND_ECC_ALGO_HAMMING; |
| else if (!strcasecmp(pm, "soft_bch")) |
| return NAND_ECC_ALGO_BCH; |
| } |
| |
| return NAND_ECC_ALGO_UNKNOWN; |
| } |
| |
| static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip) |
| { |
| struct device_node *dn = nand_get_flash_node(chip); |
| struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf; |
| |
| if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID) |
| user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn); |
| |
| if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN) |
| user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn); |
| |
| if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN) |
| user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn); |
| } |
| |
| static int of_get_nand_bus_width(struct device_node *np) |
| { |
| u32 val; |
| |
| if (of_property_read_u32(np, "nand-bus-width", &val)) |
| return 8; |
| |
| switch (val) { |
| case 8: |
| case 16: |
| return val; |
| default: |
| return -EIO; |
| } |
| } |
| |
| static bool of_get_nand_on_flash_bbt(struct device_node *np) |
| { |
| return of_property_read_bool(np, "nand-on-flash-bbt"); |
| } |
| |
| static int of_get_nand_secure_regions(struct nand_chip *chip) |
| { |
| struct device_node *dn = nand_get_flash_node(chip); |
| struct property *prop; |
| int nr_elem, i, j; |
| |
| /* Only proceed if the "secure-regions" property is present in DT */ |
| prop = of_find_property(dn, "secure-regions", NULL); |
| if (!prop) |
| return 0; |
| |
| nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64)); |
| if (nr_elem <= 0) |
| return nr_elem; |
| |
| chip->nr_secure_regions = nr_elem / 2; |
| chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions), |
| GFP_KERNEL); |
| if (!chip->secure_regions) |
| return -ENOMEM; |
| |
| for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) { |
| of_property_read_u64_index(dn, "secure-regions", j, |
| &chip->secure_regions[i].offset); |
| of_property_read_u64_index(dn, "secure-regions", j + 1, |
| &chip->secure_regions[i].size); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller |
| * @dev: Device that will be parsed. Also used for managed allocations. |
| * @cs_array: Array of GPIO desc pointers allocated on success |
| * @ncs_array: Number of entries in @cs_array updated on success. |
| * @return 0 on success, an error otherwise. |
| */ |
| int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, |
| unsigned int *ncs_array) |
| { |
| struct device_node *np = dev->of_node; |
| struct gpio_desc **descs; |
| int ndescs, i; |
| |
| ndescs = of_gpio_named_count(np, "cs-gpios"); |
| if (ndescs < 0) { |
| dev_dbg(dev, "No valid cs-gpios property\n"); |
| return 0; |
| } |
| |
| descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL); |
| if (!descs) |
| return -ENOMEM; |
| |
| for (i = 0; i < ndescs; i++) { |
| descs[i] = gpiod_get_index_optional(dev, "cs", i, |
| GPIOD_OUT_HIGH); |
| if (IS_ERR(descs[i])) |
| return PTR_ERR(descs[i]); |
| } |
| |
| *ncs_array = ndescs; |
| *cs_array = descs; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs); |
| |
| static int rawnand_dt_init(struct nand_chip *chip) |
| { |
| struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip)); |
| struct device_node *dn = nand_get_flash_node(chip); |
| |
| if (!dn) |
| return 0; |
| |
| if (of_get_nand_bus_width(dn) == 16) |
| chip->options |= NAND_BUSWIDTH_16; |
| |
| if (of_property_read_bool(dn, "nand-is-boot-medium")) |
| chip->options |= NAND_IS_BOOT_MEDIUM; |
| |
| if (of_get_nand_on_flash_bbt(dn)) |
| chip->bbt_options |= NAND_BBT_USE_FLASH; |
| |
| of_get_nand_ecc_user_config(nand); |
| of_get_nand_ecc_legacy_user_config(chip); |
| |
| /* |
| * If neither the user nor the NAND controller have requested a specific |
| * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST. |
| */ |
| nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| |
| /* |
| * Use the user requested engine type, unless there is none, in this |
| * case default to the NAND controller choice, otherwise fallback to |
| * the raw NAND default one. |
| */ |
| if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID) |
| chip->ecc.engine_type = nand->ecc.user_conf.engine_type; |
| if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) |
| chip->ecc.engine_type = nand->ecc.defaults.engine_type; |
| |
| chip->ecc.placement = nand->ecc.user_conf.placement; |
| chip->ecc.algo = nand->ecc.user_conf.algo; |
| chip->ecc.strength = nand->ecc.user_conf.strength; |
| chip->ecc.size = nand->ecc.user_conf.step_size; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_scan_ident - Scan for the NAND device |
| * @chip: NAND chip object |
| * @maxchips: number of chips to scan for |
| * @table: alternative NAND ID table |
| * |
| * This is the first phase of the normal nand_scan() function. It reads the |
| * flash ID and sets up MTD fields accordingly. |
| * |
| * This helper used to be called directly from controller drivers that needed |
| * to tweak some ECC-related parameters before nand_scan_tail(). This separation |
| * prevented dynamic allocations during this phase which was unconvenient and |
| * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. |
| */ |
| static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, |
| struct nand_flash_dev *table) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_memory_organization *memorg; |
| int nand_maf_id, nand_dev_id; |
| unsigned int i; |
| int ret; |
| |
| memorg = nanddev_get_memorg(&chip->base); |
| |
| /* Assume all dies are deselected when we enter nand_scan_ident(). */ |
| chip->cur_cs = -1; |
| |
| mutex_init(&chip->lock); |
| |
| /* Enforce the right timings for reset/detection */ |
| chip->current_interface_config = nand_get_reset_interface_config(); |
| |
| ret = rawnand_dt_init(chip); |
| if (ret) |
| return ret; |
| |
| if (!mtd->name && mtd->dev.parent) |
| mtd->name = dev_name(mtd->dev.parent); |
| |
| /* Set the default functions */ |
| nand_set_defaults(chip); |
| |
| ret = nand_legacy_check_hooks(chip); |
| if (ret) |
| return ret; |
| |
| memorg->ntargets = maxchips; |
| |
| /* Read the flash type */ |
| ret = nand_detect(chip, table); |
| if (ret) { |
| if (!(chip->options & NAND_SCAN_SILENT_NODEV)) |
| pr_warn("No NAND device found\n"); |
| nand_deselect_target(chip); |
| return ret; |
| } |
| |
| nand_maf_id = chip->id.data[0]; |
| nand_dev_id = chip->id.data[1]; |
| |
| nand_deselect_target(chip); |
| |
| /* Check for a chip array */ |
| for (i = 1; i < maxchips; i++) { |
| u8 id[2]; |
| |
| /* See comment in nand_get_flash_type for reset */ |
| ret = nand_reset(chip, i); |
| if (ret) |
| break; |
| |
| nand_select_target(chip, i); |
| /* Send the command for reading device ID */ |
| ret = nand_readid_op(chip, 0, id, sizeof(id)); |
| if (ret) |
| break; |
| /* Read manufacturer and device IDs */ |
| if (nand_maf_id != id[0] || nand_dev_id != id[1]) { |
| nand_deselect_target(chip); |
| break; |
| } |
| nand_deselect_target(chip); |
| } |
| if (i > 1) |
| pr_info("%d chips detected\n", i); |
| |
| /* Store the number of chips and calc total size for mtd */ |
| memorg->ntargets = i; |
| mtd->size = i * nanddev_target_size(&chip->base); |
| |
| return 0; |
| } |
| |
| static void nand_scan_ident_cleanup(struct nand_chip *chip) |
| { |
| kfree(chip->parameters.model); |
| kfree(chip->parameters.onfi); |
| } |
| |
| int rawnand_sw_hamming_init(struct nand_chip *chip) |
| { |
| struct nand_ecc_sw_hamming_conf *engine_conf; |
| struct nand_device *base = &chip->base; |
| int ret; |
| |
| base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
| base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING; |
| base->ecc.user_conf.strength = chip->ecc.strength; |
| base->ecc.user_conf.step_size = chip->ecc.size; |
| |
| ret = nand_ecc_sw_hamming_init_ctx(base); |
| if (ret) |
| return ret; |
| |
| engine_conf = base->ecc.ctx.priv; |
| |
| if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER) |
| engine_conf->sm_order = true; |
| |
| chip->ecc.size = base->ecc.ctx.conf.step_size; |
| chip->ecc.strength = base->ecc.ctx.conf.strength; |
| chip->ecc.total = base->ecc.ctx.total; |
| chip->ecc.steps = nanddev_get_ecc_nsteps(base); |
| chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rawnand_sw_hamming_init); |
| |
| int rawnand_sw_hamming_calculate(struct nand_chip *chip, |
| const unsigned char *buf, |
| unsigned char *code) |
| { |
| struct nand_device *base = &chip->base; |
| |
| return nand_ecc_sw_hamming_calculate(base, buf, code); |
| } |
| EXPORT_SYMBOL(rawnand_sw_hamming_calculate); |
| |
| int rawnand_sw_hamming_correct(struct nand_chip *chip, |
| unsigned char *buf, |
| unsigned char *read_ecc, |
| unsigned char *calc_ecc) |
| { |
| struct nand_device *base = &chip->base; |
| |
| return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc); |
| } |
| EXPORT_SYMBOL(rawnand_sw_hamming_correct); |
| |
| void rawnand_sw_hamming_cleanup(struct nand_chip *chip) |
| { |
| struct nand_device *base = &chip->base; |
| |
| nand_ecc_sw_hamming_cleanup_ctx(base); |
| } |
| EXPORT_SYMBOL(rawnand_sw_hamming_cleanup); |
| |
| int rawnand_sw_bch_init(struct nand_chip *chip) |
| { |
| struct nand_device *base = &chip->base; |
| const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base); |
| int ret; |
| |
| base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
| base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH; |
| base->ecc.user_conf.step_size = chip->ecc.size; |
| base->ecc.user_conf.strength = chip->ecc.strength; |
| |
| ret = nand_ecc_sw_bch_init_ctx(base); |
| if (ret) |
| return ret; |
| |
| chip->ecc.size = ecc_conf->step_size; |
| chip->ecc.strength = ecc_conf->strength; |
| chip->ecc.total = base->ecc.ctx.total; |
| chip->ecc.steps = nanddev_get_ecc_nsteps(base); |
| chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(rawnand_sw_bch_init); |
| |
| static int rawnand_sw_bch_calculate(struct nand_chip *chip, |
| const unsigned char *buf, |
| unsigned char *code) |
| { |
| struct nand_device *base = &chip->base; |
| |
| return nand_ecc_sw_bch_calculate(base, buf, code); |
| } |
| |
| int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, |
| unsigned char *read_ecc, unsigned char *calc_ecc) |
| { |
| struct nand_device *base = &chip->base; |
| |
| return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc); |
| } |
| EXPORT_SYMBOL(rawnand_sw_bch_correct); |
| |
| void rawnand_sw_bch_cleanup(struct nand_chip *chip) |
| { |
| struct nand_device *base = &chip->base; |
| |
| nand_ecc_sw_bch_cleanup_ctx(base); |
| } |
| EXPORT_SYMBOL(rawnand_sw_bch_cleanup); |
| |
| static int nand_set_ecc_on_host_ops(struct nand_chip *chip) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| switch (ecc->placement) { |
| case NAND_ECC_PLACEMENT_UNKNOWN: |
| case NAND_ECC_PLACEMENT_OOB: |
| /* Use standard hwecc read page function? */ |
| if (!ecc->read_page) |
| ecc->read_page = nand_read_page_hwecc; |
| if (!ecc->write_page) |
| ecc->write_page = nand_write_page_hwecc; |
| if (!ecc->read_page_raw) |
| ecc->read_page_raw = nand_read_page_raw; |
| if (!ecc->write_page_raw) |
| ecc->write_page_raw = nand_write_page_raw; |
| if (!ecc->read_oob) |
| ecc->read_oob = nand_read_oob_std; |
| if (!ecc->write_oob) |
| ecc->write_oob = nand_write_oob_std; |
| if (!ecc->read_subpage) |
| ecc->read_subpage = nand_read_subpage; |
| if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) |
| ecc->write_subpage = nand_write_subpage_hwecc; |
| fallthrough; |
| |
| case NAND_ECC_PLACEMENT_INTERLEAVED: |
| if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && |
| (!ecc->read_page || |
| ecc->read_page == nand_read_page_hwecc || |
| !ecc->write_page || |
| ecc->write_page == nand_write_page_hwecc)) { |
| WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); |
| return -EINVAL; |
| } |
| /* Use standard syndrome read/write page function? */ |
| if (!ecc->read_page) |
| ecc->read_page = nand_read_page_syndrome; |
| if (!ecc->write_page) |
| ecc->write_page = nand_write_page_syndrome; |
| if (!ecc->read_page_raw) |
| ecc->read_page_raw = nand_read_page_raw_syndrome; |
| if (!ecc->write_page_raw) |
| ecc->write_page_raw = nand_write_page_raw_syndrome; |
| if (!ecc->read_oob) |
| ecc->read_oob = nand_read_oob_syndrome; |
| if (!ecc->write_oob) |
| ecc->write_oob = nand_write_oob_syndrome; |
| break; |
| |
| default: |
| pr_warn("Invalid NAND_ECC_PLACEMENT %d\n", |
| ecc->placement); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int nand_set_ecc_soft_ops(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_device *nanddev = mtd_to_nanddev(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int ret; |
| |
| if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT)) |
| return -EINVAL; |
| |
| switch (ecc->algo) { |
| case NAND_ECC_ALGO_HAMMING: |
| ecc->calculate = rawnand_sw_hamming_calculate; |
| ecc->correct = rawnand_sw_hamming_correct; |
| ecc->read_page = nand_read_page_swecc; |
| ecc->read_subpage = nand_read_subpage; |
| ecc->write_page = nand_write_page_swecc; |
| if (!ecc->read_page_raw) |
| ecc->read_page_raw = nand_read_page_raw; |
| if (!ecc->write_page_raw) |
| ecc->write_page_raw = nand_write_page_raw; |
| ecc->read_oob = nand_read_oob_std; |
| ecc->write_oob = nand_write_oob_std; |
| if (!ecc->size) |
| ecc->size = 256; |
| ecc->bytes = 3; |
| ecc->strength = 1; |
| |
| if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) |
| ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; |
| |
| ret = rawnand_sw_hamming_init(chip); |
| if (ret) { |
| WARN(1, "Hamming ECC initialization failed!\n"); |
| return ret; |
| } |
| |
| return 0; |
| case NAND_ECC_ALGO_BCH: |
| if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) { |
| WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); |
| return -EINVAL; |
| } |
| ecc->calculate = rawnand_sw_bch_calculate; |
| ecc->correct = rawnand_sw_bch_correct; |
| ecc->read_page = nand_read_page_swecc; |
| ecc->read_subpage = nand_read_subpage; |
| ecc->write_page = nand_write_page_swecc; |
| if (!ecc->read_page_raw) |
| ecc->read_page_raw = nand_read_page_raw; |
| if (!ecc->write_page_raw) |
| ecc->write_page_raw = nand_write_page_raw; |
| ecc->read_oob = nand_read_oob_std; |
| ecc->write_oob = nand_write_oob_std; |
| |
| /* |
| * We can only maximize ECC config when the default layout is |
| * used, otherwise we don't know how many bytes can really be |
| * used. |
| */ |
| if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH && |
| mtd->ooblayout != nand_get_large_page_ooblayout()) |
| nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH; |
| |
| ret = rawnand_sw_bch_init(chip); |
| if (ret) { |
| WARN(1, "BCH ECC initialization failed!\n"); |
| return ret; |
| } |
| |
| return 0; |
| default: |
| WARN(1, "Unsupported ECC algorithm!\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /** |
| * nand_check_ecc_caps - check the sanity of preset ECC settings |
| * @chip: nand chip info structure |
| * @caps: ECC caps info structure |
| * @oobavail: OOB size that the ECC engine can use |
| * |
| * When ECC step size and strength are already set, check if they are supported |
| * by the controller and the calculated ECC bytes fit within the chip's OOB. |
| * On success, the calculated ECC bytes is set. |
| */ |
| static int |
| nand_check_ecc_caps(struct nand_chip *chip, |
| const struct nand_ecc_caps *caps, int oobavail) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| const struct nand_ecc_step_info *stepinfo; |
| int preset_step = chip->ecc.size; |
| int preset_strength = chip->ecc.strength; |
| int ecc_bytes, nsteps = mtd->writesize / preset_step; |
| int i, j; |
| |
| for (i = 0; i < caps->nstepinfos; i++) { |
| stepinfo = &caps->stepinfos[i]; |
| |
| if (stepinfo->stepsize != preset_step) |
| continue; |
| |
| for (j = 0; j < stepinfo->nstrengths; j++) { |
| if (stepinfo->strengths[j] != preset_strength) |
| continue; |
| |
| ecc_bytes = caps->calc_ecc_bytes(preset_step, |
| preset_strength); |
| if (WARN_ON_ONCE(ecc_bytes < 0)) |
| return ecc_bytes; |
| |
| if (ecc_bytes * nsteps > oobavail) { |
| pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", |
| preset_step, preset_strength); |
| return -ENOSPC; |
| } |
| |
| chip->ecc.bytes = ecc_bytes; |
| |
| return 0; |
| } |
| } |
| |
| pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", |
| preset_step, preset_strength); |
| |
| return -ENOTSUPP; |
| } |
| |
| /** |
| * nand_match_ecc_req - meet the chip's requirement with least ECC bytes |
| * @chip: nand chip info structure |
| * @caps: ECC engine caps info structure |
| * @oobavail: OOB size that the ECC engine can use |
| * |
| * If a chip's ECC requirement is provided, try to meet it with the least |
| * number of ECC bytes (i.e. with the largest number of OOB-free bytes). |
| * On success, the chosen ECC settings are set. |
| */ |
| static int |
| nand_match_ecc_req(struct nand_chip *chip, |
| const struct nand_ecc_caps *caps, int oobavail) |
| { |
| const struct nand_ecc_props *requirements = |
| nanddev_get_ecc_requirements(&chip->base); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| const struct nand_ecc_step_info *stepinfo; |
| int req_step = requirements->step_size; |
| int req_strength = requirements->strength; |
| int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; |
| int best_step, best_strength, best_ecc_bytes; |
| int best_ecc_bytes_total = INT_MAX; |
| int i, j; |
| |
| /* No information provided by the NAND chip */ |
| if (!req_step || !req_strength) |
| return -ENOTSUPP; |
| |
| /* number of correctable bits the chip requires in a page */ |
| req_corr = mtd->writesize / req_step * req_strength; |
| |
| for (i = 0; i < caps->nstepinfos; i++) { |
| stepinfo = &caps->stepinfos[i]; |
| step_size = stepinfo->stepsize; |
| |
| for (j = 0; j < stepinfo->nstrengths; j++) { |
| strength = stepinfo->strengths[j]; |
| |
| /* |
| * If both step size and strength are smaller than the |
| * chip's requirement, it is not easy to compare the |
| * resulted reliability. |
| */ |
| if (step_size < req_step && strength < req_strength) |
| continue; |
| |
| if (mtd->writesize % step_size) |
| continue; |
| |
| nsteps = mtd->writesize / step_size; |
| |
| ecc_bytes = caps->calc_ecc_bytes(step_size, strength); |
| if (WARN_ON_ONCE(ecc_bytes < 0)) |
| continue; |
| ecc_bytes_total = ecc_bytes * nsteps; |
| |
| if (ecc_bytes_total > oobavail || |
| strength * nsteps < req_corr) |
| continue; |
| |
| /* |
| * We assume the best is to meet the chip's requrement |
| * with the least number of ECC bytes. |
| */ |
| if (ecc_bytes_total < best_ecc_bytes_total) { |
| best_ecc_bytes_total = ecc_bytes_total; |
| best_step = step_size; |
| best_strength = strength; |
| best_ecc_bytes = ecc_bytes; |
| } |
| } |
| } |
| |
| if (best_ecc_bytes_total == INT_MAX) |
| return -ENOTSUPP; |
| |
| chip->ecc.size = best_step; |
| chip->ecc.strength = best_strength; |
| chip->ecc.bytes = best_ecc_bytes; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_maximize_ecc - choose the max ECC strength available |
| * @chip: nand chip info structure |
| * @caps: ECC engine caps info structure |
| * @oobavail: OOB size that the ECC engine can use |
| * |
| * Choose the max ECC strength that is supported on the controller, and can fit |
| * within the chip's OOB. On success, the chosen ECC settings are set. |
| */ |
| static int |
| nand_maximize_ecc(struct nand_chip *chip, |
| const struct nand_ecc_caps *caps, int oobavail) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| const struct nand_ecc_step_info *stepinfo; |
| int step_size, strength, nsteps, ecc_bytes, corr; |
| int best_corr = 0; |
| int best_step = 0; |
| int best_strength, best_ecc_bytes; |
| int i, j; |
| |
| for (i = 0; i < caps->nstepinfos; i++) { |
| stepinfo = &caps->stepinfos[i]; |
| step_size = stepinfo->stepsize; |
| |
| /* If chip->ecc.size is already set, respect it */ |
| if (chip->ecc.size && step_size != chip->ecc.size) |
| continue; |
| |
| for (j = 0; j < stepinfo->nstrengths; j++) { |
| strength = stepinfo->strengths[j]; |
| |
| if (mtd->writesize % step_size) |
| continue; |
| |
| nsteps = mtd->writesize / step_size; |
| |
| ecc_bytes = caps->calc_ecc_bytes(step_size, strength); |
| if (WARN_ON_ONCE(ecc_bytes < 0)) |
| continue; |
| |
| if (ecc_bytes * nsteps > oobavail) |
| continue; |
| |
| corr = strength * nsteps; |
| |
| /* |
| * If the number of correctable bits is the same, |
| * bigger step_size has more reliability. |
| */ |
| if (corr > best_corr || |
| (corr == best_corr && step_size > best_step)) { |
| best_corr = corr; |
| best_step = step_size; |
| best_strength = strength; |
| best_ecc_bytes = ecc_bytes; |
| } |
| } |
| } |
| |
| if (!best_corr) |
| return -ENOTSUPP; |
| |
| chip->ecc.size = best_step; |
| chip->ecc.strength = best_strength; |
| chip->ecc.bytes = best_ecc_bytes; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_ecc_choose_conf - Set the ECC strength and ECC step size |
| * @chip: nand chip info structure |
| * @caps: ECC engine caps info structure |
| * @oobavail: OOB size that the ECC engine can use |
| * |
| * Choose the ECC configuration according to following logic. |
| * |
| * 1. If both ECC step size and ECC strength are already set (usually by DT) |
| * then check if it is supported by this controller. |
| * 2. If the user provided the nand-ecc-maximize property, then select maximum |
| * ECC strength. |
| * 3. Otherwise, try to match the ECC step size and ECC strength closest |
| * to the chip's requirement. If available OOB size can't fit the chip |
| * requirement then fallback to the maximum ECC step size and ECC strength. |
| * |
| * On success, the chosen ECC settings are set. |
| */ |
| int nand_ecc_choose_conf(struct nand_chip *chip, |
| const struct nand_ecc_caps *caps, int oobavail) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_device *nanddev = mtd_to_nanddev(mtd); |
| |
| if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) |
| return -EINVAL; |
| |
| if (chip->ecc.size && chip->ecc.strength) |
| return nand_check_ecc_caps(chip, caps, oobavail); |
| |
| if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) |
| return nand_maximize_ecc(chip, caps, oobavail); |
| |
| if (!nand_match_ecc_req(chip, caps, oobavail)) |
| return 0; |
| |
| return nand_maximize_ecc(chip, caps, oobavail); |
| } |
| EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); |
| |
| static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) |
| { |
| struct nand_chip *chip = container_of(nand, struct nand_chip, |
| base); |
| unsigned int eb = nanddev_pos_to_row(nand, pos); |
| int ret; |
| |
| eb >>= nand->rowconv.eraseblock_addr_shift; |
| |
| nand_select_target(chip, pos->target); |
| ret = nand_erase_op(chip, eb); |
| nand_deselect_target(chip); |
| |
| return ret; |
| } |
| |
| static int rawnand_markbad(struct nand_device *nand, |
| const struct nand_pos *pos) |
| { |
| struct nand_chip *chip = container_of(nand, struct nand_chip, |
| base); |
| |
| return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); |
| } |
| |
| static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) |
| { |
| struct nand_chip *chip = container_of(nand, struct nand_chip, |
| base); |
| int ret; |
| |
| nand_select_target(chip, pos->target); |
| ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); |
| nand_deselect_target(chip); |
| |
| return ret; |
| } |
| |
| static const struct nand_ops rawnand_ops = { |
| .erase = rawnand_erase, |
| .markbad = rawnand_markbad, |
| .isbad = rawnand_isbad, |
| }; |
| |
| /** |
| * nand_scan_tail - Scan for the NAND device |
| * @chip: NAND chip object |
| * |
| * This is the second phase of the normal nand_scan() function. It fills out |
| * all the uninitialized function pointers with the defaults and scans for a |
| * bad block table if appropriate. |
| */ |
| static int nand_scan_tail(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int ret, i; |
| |
| /* New bad blocks should be marked in OOB, flash-based BBT, or both */ |
| if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && |
| !(chip->bbt_options & NAND_BBT_USE_FLASH))) { |
| return -EINVAL; |
| } |
| |
| chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); |
| if (!chip->data_buf) |
| return -ENOMEM; |
| |
| /* |
| * FIXME: some NAND manufacturer drivers expect the first die to be |
| * selected when manufacturer->init() is called. They should be fixed |
| * to explictly select the relevant die when interacting with the NAND |
| * chip. |
| */ |
| nand_select_target(chip, 0); |
| ret = nand_manufacturer_init(chip); |
| nand_deselect_target(chip); |
| if (ret) |
| goto err_free_buf; |
| |
| /* Set the internal oob buffer location, just after the page data */ |
| chip->oob_poi = chip->data_buf + mtd->writesize; |
| |
| /* |
| * If no default placement scheme is given, select an appropriate one. |
| */ |
| if (!mtd->ooblayout && |
| !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && |
| ecc->algo == NAND_ECC_ALGO_BCH) && |
| !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT && |
| ecc->algo == NAND_ECC_ALGO_HAMMING)) { |
| switch (mtd->oobsize) { |
| case 8: |
| case 16: |
| mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout()); |
| break; |
| case 64: |
| case 128: |
| mtd_set_ooblayout(mtd, |
| nand_get_large_page_hamming_ooblayout()); |
| break; |
| default: |
| /* |
| * Expose the whole OOB area to users if ECC_NONE |
| * is passed. We could do that for all kind of |
| * ->oobsize, but we must keep the old large/small |
| * page with ECC layout when ->oobsize <= 128 for |
| * compatibility reasons. |
| */ |
| if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) { |
| mtd_set_ooblayout(mtd, |
| nand_get_large_page_ooblayout()); |
| break; |
| } |
| |
| WARN(1, "No oob scheme defined for oobsize %d\n", |
| mtd->oobsize); |
| ret = -EINVAL; |
| goto err_nand_manuf_cleanup; |
| } |
| } |
| |
| /* |
| * Check ECC mode, default to software if 3byte/512byte hardware ECC is |
| * selected and we have 256 byte pagesize fallback to software ECC |
| */ |
| |
| switch (ecc->engine_type) { |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| ret = nand_set_ecc_on_host_ops(chip); |
| if (ret) |
| goto err_nand_manuf_cleanup; |
| |
| if (mtd->writesize >= ecc->size) { |
| if (!ecc->strength) { |
| WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); |
| ret = -EINVAL; |
| goto err_nand_manuf_cleanup; |
| } |
| break; |
| } |
| pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", |
| ecc->size, mtd->writesize); |
| ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; |
| ecc->algo = NAND_ECC_ALGO_HAMMING; |
| fallthrough; |
| |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| ret = nand_set_ecc_soft_ops(chip); |
| if (ret) |
| goto err_nand_manuf_cleanup; |
| break; |
| |
| case NAND_ECC_ENGINE_TYPE_ON_DIE: |
| if (!ecc->read_page || !ecc->write_page) { |
| WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); |
| ret = -EINVAL; |
| goto err_nand_manuf_cleanup; |
| } |
| if (!ecc->read_oob) |
| ecc->read_oob = nand_read_oob_std; |
| if (!ecc->write_oob) |
| ecc->write_oob = nand_write_oob_std; |
| break; |
| |
| case NAND_ECC_ENGINE_TYPE_NONE: |
| pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n"); |
| ecc->read_page = nand_read_page_raw; |
| ecc->write_page = nand_write_page_raw; |
| ecc->read_oob = nand_read_oob_std; |
| ecc->read_page_raw = nand_read_page_raw; |
| ecc->write_page_raw = nand_write_page_raw; |
| ecc->write_oob = nand_write_oob_std; |
| ecc->size = mtd->writesize; |
| ecc->bytes = 0; |
| ecc->strength = 0; |
| break; |
| |
| default: |
| WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type); |
| ret = -EINVAL; |
| goto err_nand_manuf_cleanup; |
| } |
| |
| if (ecc->correct || ecc->calculate) { |
| ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); |
| ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); |
| if (!ecc->calc_buf || !ecc->code_buf) { |
| ret = -ENOMEM; |
| goto err_nand_manuf_cleanup; |
| } |
| } |
| |
| /* For many systems, the standard OOB write also works for raw */ |
| if (!ecc->read_oob_raw) |
| ecc->read_oob_raw = ecc->read_oob; |
| if (!ecc->write_oob_raw) |
| ecc->write_oob_raw = ecc->write_oob; |
| |
| /* propagate ecc info to mtd_info */ |
| mtd->ecc_strength = ecc->strength; |
| mtd->ecc_step_size = ecc->size; |
| |
| /* |
| * Set the number of read / write steps for one page depending on ECC |
| * mode. |
| */ |
| if (!ecc->steps) |
| ecc->steps = mtd->writesize / ecc->size; |
| if (ecc->steps * ecc->size != mtd->writesize) { |
| WARN(1, "Invalid ECC parameters\n"); |
| ret = -EINVAL; |
| goto err_nand_manuf_cleanup; |
| } |
| |
| if (!ecc->total) { |
| ecc->total = ecc->steps * ecc->bytes; |
| chip->base.ecc.ctx.total = ecc->total; |
| } |
| |
| if (ecc->total > mtd->oobsize) { |
| WARN(1, "Total number of ECC bytes exceeded oobsize\n"); |
| ret = -EINVAL; |
| goto err_nand_manuf_cleanup; |
| } |
| |
| /* |
| * The number of bytes available for a client to place data into |
| * the out of band area. |
| */ |
| ret = mtd_ooblayout_count_freebytes(mtd); |
| if (ret < 0) |
| ret = 0; |
| |
| mtd->oobavail = ret; |
| |
| /* ECC sanity check: warn if it's too weak */ |
| if (!nand_ecc_is_strong_enough(&chip->base)) |
| pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", |
| mtd->name, chip->ecc.strength, chip->ecc.size, |
| nanddev_get_ecc_requirements(&chip->base)->strength, |
| nanddev_get_ecc_requirements(&chip->base)->step_size); |
| |
| /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ |
| if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { |
| switch (ecc->steps) { |
| case 2: |
| mtd->subpage_sft = 1; |
| break; |
| case 4: |
| case 8: |
| case 16: |
| mtd->subpage_sft = 2; |
| break; |
| } |
| } |
| chip->subpagesize = mtd->writesize >> mtd->subpage_sft; |
| |
| /* Invalidate the pagebuffer reference */ |
| chip->pagecache.page = -1; |
| |
| /* Large page NAND with SOFT_ECC should support subpage reads */ |
| switch (ecc->engine_type) { |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| if (chip->page_shift > 9) |
| chip->options |= NAND_SUBPAGE_READ; |
| break; |
| |
| default: |
| break; |
| } |
| |
| ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); |
| if (ret) |
| goto err_nand_manuf_cleanup; |
| |
| /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ |
| if (chip->options & NAND_ROM) |
| mtd->flags = MTD_CAP_ROM; |
| |
| /* Fill in remaining MTD driver data */ |
| mtd->_erase = nand_erase; |
| mtd->_point = NULL; |
| mtd->_unpoint = NULL; |
| mtd->_panic_write = panic_nand_write; |
| mtd->_read_oob = nand_read_oob; |
| mtd->_write_oob = nand_write_oob; |
| mtd->_sync = nand_sync; |
| mtd->_lock = nand_lock; |
| mtd->_unlock = nand_unlock; |
| mtd->_suspend = nand_suspend; |
| mtd->_resume = nand_resume; |
| mtd->_reboot = nand_shutdown; |
| mtd->_block_isreserved = nand_block_isreserved; |
| mtd->_block_isbad = nand_block_isbad; |
| mtd->_block_markbad = nand_block_markbad; |
| mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; |
| |
| /* |
| * Initialize bitflip_threshold to its default prior scan_bbt() call. |
| * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be |
| * properly set. |
| */ |
| if (!mtd->bitflip_threshold) |
| mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); |
| |
| /* Find the fastest data interface for this chip */ |
| ret = nand_choose_interface_config(chip); |
| if (ret) |
| goto err_nanddev_cleanup; |
| |
| /* Enter fastest possible mode on all dies. */ |
| for (i = 0; i < nanddev_ntargets(&chip->base); i++) { |
| ret = nand_setup_interface(chip, i); |
| if (ret) |
| goto err_free_interface_config; |
| } |
| |
| /* |
| * Look for secure regions in the NAND chip. These regions are supposed |
| * to be protected by a secure element like Trustzone. So the read/write |
| * accesses to these regions will be blocked in the runtime by this |
| * driver. |
| */ |
| ret = of_get_nand_secure_regions(chip); |
| if (ret) |
| goto err_free_interface_config; |
| |
| /* Check, if we should skip the bad block table scan */ |
| if (chip->options & NAND_SKIP_BBTSCAN) |
| return 0; |
| |
| /* Build bad block table */ |
| ret = nand_create_bbt(chip); |
| if (ret) |
| goto err_free_secure_regions; |
| |
| return 0; |
| |
| err_free_secure_regions: |
| kfree(chip->secure_regions); |
| |
| err_free_interface_config: |
| kfree(chip->best_interface_config); |
| |
| err_nanddev_cleanup: |
| nanddev_cleanup(&chip->base); |
| |
| err_nand_manuf_cleanup: |
| nand_manufacturer_cleanup(chip); |
| |
| err_free_buf: |
| kfree(chip->data_buf); |
| kfree(ecc->code_buf); |
| kfree(ecc->calc_buf); |
| |
| return ret; |
| } |
| |
| static int nand_attach(struct nand_chip *chip) |
| { |
| if (chip->controller->ops && chip->controller->ops->attach_chip) |
| return chip->controller->ops->attach_chip(chip); |
| |
| return 0; |
| } |
| |
| static void nand_detach(struct nand_chip *chip) |
| { |
| if (chip->controller->ops && chip->controller->ops->detach_chip) |
| chip->controller->ops->detach_chip(chip); |
| } |
| |
| /** |
| * nand_scan_with_ids - [NAND Interface] Scan for the NAND device |
| * @chip: NAND chip object |
| * @maxchips: number of chips to scan for. |
| * @ids: optional flash IDs table |
| * |
| * This fills out all the uninitialized function pointers with the defaults. |
| * The flash ID is read and the mtd/chip structures are filled with the |
| * appropriate values. |
| */ |
| int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, |
| struct nand_flash_dev *ids) |
| { |
| int ret; |
| |
| if (!maxchips) |
| return -EINVAL; |
| |
| ret = nand_scan_ident(chip, maxchips, ids); |
| if (ret) |
| return ret; |
| |
| ret = nand_attach(chip); |
| if (ret) |
| goto cleanup_ident; |
| |
| ret = nand_scan_tail(chip); |
| if (ret) |
| goto detach_chip; |
| |
| return 0; |
| |
| detach_chip: |
| nand_detach(chip); |
| cleanup_ident: |
| nand_scan_ident_cleanup(chip); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(nand_scan_with_ids); |
| |
| /** |
| * nand_cleanup - [NAND Interface] Free resources held by the NAND device |
| * @chip: NAND chip object |
| */ |
| void nand_cleanup(struct nand_chip *chip) |
| { |
| if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) { |
| if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) |
| rawnand_sw_hamming_cleanup(chip); |
| else if (chip->ecc.algo == NAND_ECC_ALGO_BCH) |
| rawnand_sw_bch_cleanup(chip); |
| } |
| |
| nanddev_cleanup(&chip->base); |
| |
| /* Free secure regions data */ |
| kfree(chip->secure_regions); |
| |
| /* Free bad block table memory */ |
| kfree(chip->bbt); |
| kfree(chip->data_buf); |
| kfree(chip->ecc.code_buf); |
| kfree(chip->ecc.calc_buf); |
| |
| /* Free bad block descriptor memory */ |
| if (chip->badblock_pattern && chip->badblock_pattern->options |
| & NAND_BBT_DYNAMICSTRUCT) |
| kfree(chip->badblock_pattern); |
| |
| /* Free the data interface */ |
| kfree(chip->best_interface_config); |
| |
| /* Free manufacturer priv data. */ |
| nand_manufacturer_cleanup(chip); |
| |
| /* Free controller specific allocations after chip identification */ |
| nand_detach(chip); |
| |
| /* Free identification phase allocations */ |
| nand_scan_ident_cleanup(chip); |
| } |
| |
| EXPORT_SYMBOL_GPL(nand_cleanup); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); |
| MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); |
| MODULE_DESCRIPTION("Generic NAND flash driver code"); |