| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */ |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <linux/dmaengine.h> |
| #include <uapi/linux/idxd.h> |
| #include "../dmaengine.h" |
| #include "idxd.h" |
| #include "registers.h" |
| |
| enum irq_work_type { |
| IRQ_WORK_NORMAL = 0, |
| IRQ_WORK_PROCESS_FAULT, |
| }; |
| |
| struct idxd_fault { |
| struct work_struct work; |
| u64 addr; |
| struct idxd_device *idxd; |
| }; |
| |
| static void idxd_device_reinit(struct work_struct *work) |
| { |
| struct idxd_device *idxd = container_of(work, struct idxd_device, work); |
| struct device *dev = &idxd->pdev->dev; |
| int rc, i; |
| |
| idxd_device_reset(idxd); |
| rc = idxd_device_config(idxd); |
| if (rc < 0) |
| goto out; |
| |
| rc = idxd_device_enable(idxd); |
| if (rc < 0) |
| goto out; |
| |
| for (i = 0; i < idxd->max_wqs; i++) { |
| struct idxd_wq *wq = idxd->wqs[i]; |
| |
| if (wq->state == IDXD_WQ_ENABLED) { |
| rc = idxd_wq_enable(wq); |
| if (rc < 0) { |
| dev_warn(dev, "Unable to re-enable wq %s\n", |
| dev_name(wq_confdev(wq))); |
| } |
| } |
| } |
| |
| return; |
| |
| out: |
| idxd_device_clear_state(idxd); |
| } |
| |
| static int process_misc_interrupts(struct idxd_device *idxd, u32 cause) |
| { |
| struct device *dev = &idxd->pdev->dev; |
| union gensts_reg gensts; |
| u32 val = 0; |
| int i; |
| bool err = false; |
| |
| if (cause & IDXD_INTC_HALT_STATE) |
| goto halt; |
| |
| if (cause & IDXD_INTC_ERR) { |
| spin_lock(&idxd->dev_lock); |
| for (i = 0; i < 4; i++) |
| idxd->sw_err.bits[i] = ioread64(idxd->reg_base + |
| IDXD_SWERR_OFFSET + i * sizeof(u64)); |
| |
| iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK, |
| idxd->reg_base + IDXD_SWERR_OFFSET); |
| |
| if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) { |
| int id = idxd->sw_err.wq_idx; |
| struct idxd_wq *wq = idxd->wqs[id]; |
| |
| if (wq->type == IDXD_WQT_USER) |
| wake_up_interruptible(&wq->err_queue); |
| } else { |
| int i; |
| |
| for (i = 0; i < idxd->max_wqs; i++) { |
| struct idxd_wq *wq = idxd->wqs[i]; |
| |
| if (wq->type == IDXD_WQT_USER) |
| wake_up_interruptible(&wq->err_queue); |
| } |
| } |
| |
| spin_unlock(&idxd->dev_lock); |
| val |= IDXD_INTC_ERR; |
| |
| for (i = 0; i < 4; i++) |
| dev_warn(dev, "err[%d]: %#16.16llx\n", |
| i, idxd->sw_err.bits[i]); |
| err = true; |
| } |
| |
| if (cause & IDXD_INTC_CMD) { |
| val |= IDXD_INTC_CMD; |
| complete(idxd->cmd_done); |
| } |
| |
| if (cause & IDXD_INTC_OCCUPY) { |
| /* Driver does not utilize occupancy interrupt */ |
| val |= IDXD_INTC_OCCUPY; |
| } |
| |
| if (cause & IDXD_INTC_PERFMON_OVFL) { |
| val |= IDXD_INTC_PERFMON_OVFL; |
| perfmon_counter_overflow(idxd); |
| } |
| |
| val ^= cause; |
| if (val) |
| dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n", |
| val); |
| |
| if (!err) |
| return 0; |
| |
| halt: |
| gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET); |
| if (gensts.state == IDXD_DEVICE_STATE_HALT) { |
| idxd->state = IDXD_DEV_HALTED; |
| if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) { |
| /* |
| * If we need a software reset, we will throw the work |
| * on a system workqueue in order to allow interrupts |
| * for the device command completions. |
| */ |
| INIT_WORK(&idxd->work, idxd_device_reinit); |
| queue_work(idxd->wq, &idxd->work); |
| } else { |
| idxd->state = IDXD_DEV_HALTED; |
| idxd_wqs_quiesce(idxd); |
| idxd_wqs_unmap_portal(idxd); |
| spin_lock(&idxd->dev_lock); |
| idxd_device_clear_state(idxd); |
| dev_err(&idxd->pdev->dev, |
| "idxd halted, need %s.\n", |
| gensts.reset_type == IDXD_DEVICE_RESET_FLR ? |
| "FLR" : "system reset"); |
| spin_unlock(&idxd->dev_lock); |
| return -ENXIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| irqreturn_t idxd_misc_thread(int vec, void *data) |
| { |
| struct idxd_irq_entry *irq_entry = data; |
| struct idxd_device *idxd = irq_entry->idxd; |
| int rc; |
| u32 cause; |
| |
| cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET); |
| if (cause) |
| iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET); |
| |
| while (cause) { |
| rc = process_misc_interrupts(idxd, cause); |
| if (rc < 0) |
| break; |
| cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET); |
| if (cause) |
| iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry) |
| { |
| struct idxd_desc *desc, *t; |
| struct llist_node *head; |
| |
| head = llist_del_all(&irq_entry->pending_llist); |
| if (!head) |
| return; |
| |
| llist_for_each_entry_safe(desc, t, head, llnode) { |
| u8 status = desc->completion->status & DSA_COMP_STATUS_MASK; |
| |
| if (status) { |
| /* |
| * Check against the original status as ABORT is software defined |
| * and 0xff, which DSA_COMP_STATUS_MASK can mask out. |
| */ |
| if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) { |
| complete_desc(desc, IDXD_COMPLETE_ABORT); |
| continue; |
| } |
| |
| complete_desc(desc, IDXD_COMPLETE_NORMAL); |
| } else { |
| spin_lock(&irq_entry->list_lock); |
| list_add_tail(&desc->list, |
| &irq_entry->work_list); |
| spin_unlock(&irq_entry->list_lock); |
| } |
| } |
| } |
| |
| static void irq_process_work_list(struct idxd_irq_entry *irq_entry) |
| { |
| LIST_HEAD(flist); |
| struct idxd_desc *desc, *n; |
| |
| /* |
| * This lock protects list corruption from access of list outside of the irq handler |
| * thread. |
| */ |
| spin_lock(&irq_entry->list_lock); |
| if (list_empty(&irq_entry->work_list)) { |
| spin_unlock(&irq_entry->list_lock); |
| return; |
| } |
| |
| list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) { |
| if (desc->completion->status) { |
| list_move_tail(&desc->list, &flist); |
| } |
| } |
| |
| spin_unlock(&irq_entry->list_lock); |
| |
| list_for_each_entry(desc, &flist, list) { |
| /* |
| * Check against the original status as ABORT is software defined |
| * and 0xff, which DSA_COMP_STATUS_MASK can mask out. |
| */ |
| if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) { |
| complete_desc(desc, IDXD_COMPLETE_ABORT); |
| continue; |
| } |
| |
| complete_desc(desc, IDXD_COMPLETE_NORMAL); |
| } |
| } |
| |
| irqreturn_t idxd_wq_thread(int irq, void *data) |
| { |
| struct idxd_irq_entry *irq_entry = data; |
| |
| /* |
| * There are two lists we are processing. The pending_llist is where |
| * submmiter adds all the submitted descriptor after sending it to |
| * the workqueue. It's a lockless singly linked list. The work_list |
| * is the common linux double linked list. We are in a scenario of |
| * multiple producers and a single consumer. The producers are all |
| * the kernel submitters of descriptors, and the consumer is the |
| * kernel irq handler thread for the msix vector when using threaded |
| * irq. To work with the restrictions of llist to remain lockless, |
| * we are doing the following steps: |
| * 1. Iterate through the work_list and process any completed |
| * descriptor. Delete the completed entries during iteration. |
| * 2. llist_del_all() from the pending list. |
| * 3. Iterate through the llist that was deleted from the pending list |
| * and process the completed entries. |
| * 4. If the entry is still waiting on hardware, list_add_tail() to |
| * the work_list. |
| */ |
| irq_process_work_list(irq_entry); |
| irq_process_pending_llist(irq_entry); |
| |
| return IRQ_HANDLED; |
| } |