| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Based on arch/arm/kernel/traps.c |
| * |
| * Copyright (C) 1995-2009 Russell King |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/context_tracking.h> |
| #include <linux/signal.h> |
| #include <linux/personality.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kprobes.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| #include <linux/hardirq.h> |
| #include <linux/kdebug.h> |
| #include <linux/module.h> |
| #include <linux/kexec.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/sizes.h> |
| #include <linux/syscalls.h> |
| #include <linux/mm_types.h> |
| #include <linux/kasan.h> |
| |
| #include <asm/atomic.h> |
| #include <asm/bug.h> |
| #include <asm/cpufeature.h> |
| #include <asm/daifflags.h> |
| #include <asm/debug-monitors.h> |
| #include <asm/esr.h> |
| #include <asm/exception.h> |
| #include <asm/extable.h> |
| #include <asm/insn.h> |
| #include <asm/kprobes.h> |
| #include <asm/patching.h> |
| #include <asm/traps.h> |
| #include <asm/smp.h> |
| #include <asm/stack_pointer.h> |
| #include <asm/stacktrace.h> |
| #include <asm/system_misc.h> |
| #include <asm/sysreg.h> |
| |
| static bool __kprobes __check_eq(unsigned long pstate) |
| { |
| return (pstate & PSR_Z_BIT) != 0; |
| } |
| |
| static bool __kprobes __check_ne(unsigned long pstate) |
| { |
| return (pstate & PSR_Z_BIT) == 0; |
| } |
| |
| static bool __kprobes __check_cs(unsigned long pstate) |
| { |
| return (pstate & PSR_C_BIT) != 0; |
| } |
| |
| static bool __kprobes __check_cc(unsigned long pstate) |
| { |
| return (pstate & PSR_C_BIT) == 0; |
| } |
| |
| static bool __kprobes __check_mi(unsigned long pstate) |
| { |
| return (pstate & PSR_N_BIT) != 0; |
| } |
| |
| static bool __kprobes __check_pl(unsigned long pstate) |
| { |
| return (pstate & PSR_N_BIT) == 0; |
| } |
| |
| static bool __kprobes __check_vs(unsigned long pstate) |
| { |
| return (pstate & PSR_V_BIT) != 0; |
| } |
| |
| static bool __kprobes __check_vc(unsigned long pstate) |
| { |
| return (pstate & PSR_V_BIT) == 0; |
| } |
| |
| static bool __kprobes __check_hi(unsigned long pstate) |
| { |
| pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ |
| return (pstate & PSR_C_BIT) != 0; |
| } |
| |
| static bool __kprobes __check_ls(unsigned long pstate) |
| { |
| pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ |
| return (pstate & PSR_C_BIT) == 0; |
| } |
| |
| static bool __kprobes __check_ge(unsigned long pstate) |
| { |
| pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */ |
| return (pstate & PSR_N_BIT) == 0; |
| } |
| |
| static bool __kprobes __check_lt(unsigned long pstate) |
| { |
| pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */ |
| return (pstate & PSR_N_BIT) != 0; |
| } |
| |
| static bool __kprobes __check_gt(unsigned long pstate) |
| { |
| /*PSR_N_BIT ^= PSR_V_BIT */ |
| unsigned long temp = pstate ^ (pstate << 3); |
| |
| temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */ |
| return (temp & PSR_N_BIT) == 0; |
| } |
| |
| static bool __kprobes __check_le(unsigned long pstate) |
| { |
| /*PSR_N_BIT ^= PSR_V_BIT */ |
| unsigned long temp = pstate ^ (pstate << 3); |
| |
| temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */ |
| return (temp & PSR_N_BIT) != 0; |
| } |
| |
| static bool __kprobes __check_al(unsigned long pstate) |
| { |
| return true; |
| } |
| |
| /* |
| * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that |
| * it behaves identically to 0b1110 ("al"). |
| */ |
| pstate_check_t * const aarch32_opcode_cond_checks[16] = { |
| __check_eq, __check_ne, __check_cs, __check_cc, |
| __check_mi, __check_pl, __check_vs, __check_vc, |
| __check_hi, __check_ls, __check_ge, __check_lt, |
| __check_gt, __check_le, __check_al, __check_al |
| }; |
| |
| int show_unhandled_signals = 0; |
| |
| static void dump_kernel_instr(const char *lvl, struct pt_regs *regs) |
| { |
| unsigned long addr = instruction_pointer(regs); |
| char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str; |
| int i; |
| |
| if (user_mode(regs)) |
| return; |
| |
| for (i = -4; i < 1; i++) { |
| unsigned int val, bad; |
| |
| bad = aarch64_insn_read(&((u32 *)addr)[i], &val); |
| |
| if (!bad) |
| p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val); |
| else { |
| p += sprintf(p, "bad PC value"); |
| break; |
| } |
| } |
| |
| printk("%sCode: %s\n", lvl, str); |
| } |
| |
| #ifdef CONFIG_PREEMPT |
| #define S_PREEMPT " PREEMPT" |
| #elif defined(CONFIG_PREEMPT_RT) |
| #define S_PREEMPT " PREEMPT_RT" |
| #else |
| #define S_PREEMPT "" |
| #endif |
| |
| #define S_SMP " SMP" |
| |
| static int __die(const char *str, int err, struct pt_regs *regs) |
| { |
| static int die_counter; |
| int ret; |
| |
| pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n", |
| str, err, ++die_counter); |
| |
| /* trap and error numbers are mostly meaningless on ARM */ |
| ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV); |
| if (ret == NOTIFY_STOP) |
| return ret; |
| |
| print_modules(); |
| show_regs(regs); |
| |
| dump_kernel_instr(KERN_EMERG, regs); |
| |
| return ret; |
| } |
| |
| static DEFINE_RAW_SPINLOCK(die_lock); |
| |
| /* |
| * This function is protected against re-entrancy. |
| */ |
| void die(const char *str, struct pt_regs *regs, int err) |
| { |
| int ret; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&die_lock, flags); |
| |
| oops_enter(); |
| |
| console_verbose(); |
| bust_spinlocks(1); |
| ret = __die(str, err, regs); |
| |
| if (regs && kexec_should_crash(current)) |
| crash_kexec(regs); |
| |
| bust_spinlocks(0); |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| oops_exit(); |
| |
| if (in_interrupt()) |
| panic("%s: Fatal exception in interrupt", str); |
| if (panic_on_oops) |
| panic("%s: Fatal exception", str); |
| |
| raw_spin_unlock_irqrestore(&die_lock, flags); |
| |
| if (ret != NOTIFY_STOP) |
| do_exit(SIGSEGV); |
| } |
| |
| static void arm64_show_signal(int signo, const char *str) |
| { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| struct task_struct *tsk = current; |
| unsigned int esr = tsk->thread.fault_code; |
| struct pt_regs *regs = task_pt_regs(tsk); |
| |
| /* Leave if the signal won't be shown */ |
| if (!show_unhandled_signals || |
| !unhandled_signal(tsk, signo) || |
| !__ratelimit(&rs)) |
| return; |
| |
| pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk)); |
| if (esr) |
| pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr); |
| |
| pr_cont("%s", str); |
| print_vma_addr(KERN_CONT " in ", regs->pc); |
| pr_cont("\n"); |
| __show_regs(regs); |
| } |
| |
| void arm64_force_sig_fault(int signo, int code, unsigned long far, |
| const char *str) |
| { |
| arm64_show_signal(signo, str); |
| if (signo == SIGKILL) |
| force_sig(SIGKILL); |
| else |
| force_sig_fault(signo, code, (void __user *)far); |
| } |
| |
| void arm64_force_sig_mceerr(int code, unsigned long far, short lsb, |
| const char *str) |
| { |
| arm64_show_signal(SIGBUS, str); |
| force_sig_mceerr(code, (void __user *)far, lsb); |
| } |
| |
| void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far, |
| const char *str) |
| { |
| arm64_show_signal(SIGTRAP, str); |
| force_sig_ptrace_errno_trap(errno, (void __user *)far); |
| } |
| |
| void arm64_notify_die(const char *str, struct pt_regs *regs, |
| int signo, int sicode, unsigned long far, |
| int err) |
| { |
| if (user_mode(regs)) { |
| WARN_ON(regs != current_pt_regs()); |
| current->thread.fault_address = 0; |
| current->thread.fault_code = err; |
| |
| arm64_force_sig_fault(signo, sicode, far, str); |
| } else { |
| die(str, regs, err); |
| } |
| } |
| |
| #ifdef CONFIG_COMPAT |
| #define PSTATE_IT_1_0_SHIFT 25 |
| #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT) |
| #define PSTATE_IT_7_2_SHIFT 10 |
| #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT) |
| |
| static u32 compat_get_it_state(struct pt_regs *regs) |
| { |
| u32 it, pstate = regs->pstate; |
| |
| it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT; |
| it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2; |
| |
| return it; |
| } |
| |
| static void compat_set_it_state(struct pt_regs *regs, u32 it) |
| { |
| u32 pstate_it; |
| |
| pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK; |
| pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK; |
| |
| regs->pstate &= ~PSR_AA32_IT_MASK; |
| regs->pstate |= pstate_it; |
| } |
| |
| static void advance_itstate(struct pt_regs *regs) |
| { |
| u32 it; |
| |
| /* ARM mode */ |
| if (!(regs->pstate & PSR_AA32_T_BIT) || |
| !(regs->pstate & PSR_AA32_IT_MASK)) |
| return; |
| |
| it = compat_get_it_state(regs); |
| |
| /* |
| * If this is the last instruction of the block, wipe the IT |
| * state. Otherwise advance it. |
| */ |
| if (!(it & 7)) |
| it = 0; |
| else |
| it = (it & 0xe0) | ((it << 1) & 0x1f); |
| |
| compat_set_it_state(regs, it); |
| } |
| #else |
| static void advance_itstate(struct pt_regs *regs) |
| { |
| } |
| #endif |
| |
| void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size) |
| { |
| regs->pc += size; |
| |
| /* |
| * If we were single stepping, we want to get the step exception after |
| * we return from the trap. |
| */ |
| if (user_mode(regs)) |
| user_fastforward_single_step(current); |
| |
| if (compat_user_mode(regs)) |
| advance_itstate(regs); |
| else |
| regs->pstate &= ~PSR_BTYPE_MASK; |
| } |
| |
| static LIST_HEAD(undef_hook); |
| static DEFINE_RAW_SPINLOCK(undef_lock); |
| |
| void register_undef_hook(struct undef_hook *hook) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&undef_lock, flags); |
| list_add(&hook->node, &undef_hook); |
| raw_spin_unlock_irqrestore(&undef_lock, flags); |
| } |
| |
| void unregister_undef_hook(struct undef_hook *hook) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&undef_lock, flags); |
| list_del(&hook->node); |
| raw_spin_unlock_irqrestore(&undef_lock, flags); |
| } |
| |
| static int call_undef_hook(struct pt_regs *regs) |
| { |
| struct undef_hook *hook; |
| unsigned long flags; |
| u32 instr; |
| int (*fn)(struct pt_regs *regs, u32 instr) = NULL; |
| unsigned long pc = instruction_pointer(regs); |
| |
| if (!user_mode(regs)) { |
| __le32 instr_le; |
| if (get_kernel_nofault(instr_le, (__le32 *)pc)) |
| goto exit; |
| instr = le32_to_cpu(instr_le); |
| } else if (compat_thumb_mode(regs)) { |
| /* 16-bit Thumb instruction */ |
| __le16 instr_le; |
| if (get_user(instr_le, (__le16 __user *)pc)) |
| goto exit; |
| instr = le16_to_cpu(instr_le); |
| if (aarch32_insn_is_wide(instr)) { |
| u32 instr2; |
| |
| if (get_user(instr_le, (__le16 __user *)(pc + 2))) |
| goto exit; |
| instr2 = le16_to_cpu(instr_le); |
| instr = (instr << 16) | instr2; |
| } |
| } else { |
| /* 32-bit ARM instruction */ |
| __le32 instr_le; |
| if (get_user(instr_le, (__le32 __user *)pc)) |
| goto exit; |
| instr = le32_to_cpu(instr_le); |
| } |
| |
| raw_spin_lock_irqsave(&undef_lock, flags); |
| list_for_each_entry(hook, &undef_hook, node) |
| if ((instr & hook->instr_mask) == hook->instr_val && |
| (regs->pstate & hook->pstate_mask) == hook->pstate_val) |
| fn = hook->fn; |
| |
| raw_spin_unlock_irqrestore(&undef_lock, flags); |
| exit: |
| return fn ? fn(regs, instr) : 1; |
| } |
| |
| void force_signal_inject(int signal, int code, unsigned long address, unsigned int err) |
| { |
| const char *desc; |
| struct pt_regs *regs = current_pt_regs(); |
| |
| if (WARN_ON(!user_mode(regs))) |
| return; |
| |
| switch (signal) { |
| case SIGILL: |
| desc = "undefined instruction"; |
| break; |
| case SIGSEGV: |
| desc = "illegal memory access"; |
| break; |
| default: |
| desc = "unknown or unrecoverable error"; |
| break; |
| } |
| |
| /* Force signals we don't understand to SIGKILL */ |
| if (WARN_ON(signal != SIGKILL && |
| siginfo_layout(signal, code) != SIL_FAULT)) { |
| signal = SIGKILL; |
| } |
| |
| arm64_notify_die(desc, regs, signal, code, address, err); |
| } |
| |
| /* |
| * Set up process info to signal segmentation fault - called on access error. |
| */ |
| void arm64_notify_segfault(unsigned long addr) |
| { |
| int code; |
| |
| mmap_read_lock(current->mm); |
| if (find_vma(current->mm, untagged_addr(addr)) == NULL) |
| code = SEGV_MAPERR; |
| else |
| code = SEGV_ACCERR; |
| mmap_read_unlock(current->mm); |
| |
| force_signal_inject(SIGSEGV, code, addr, 0); |
| } |
| |
| void do_undefinstr(struct pt_regs *regs) |
| { |
| /* check for AArch32 breakpoint instructions */ |
| if (!aarch32_break_handler(regs)) |
| return; |
| |
| if (call_undef_hook(regs) == 0) |
| return; |
| |
| BUG_ON(!user_mode(regs)); |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| } |
| NOKPROBE_SYMBOL(do_undefinstr); |
| |
| void do_bti(struct pt_regs *regs) |
| { |
| BUG_ON(!user_mode(regs)); |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| } |
| NOKPROBE_SYMBOL(do_bti); |
| |
| void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr) |
| { |
| /* |
| * Unexpected FPAC exception or pointer authentication failure in |
| * the kernel: kill the task before it does any more harm. |
| */ |
| BUG_ON(!user_mode(regs)); |
| force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr); |
| } |
| NOKPROBE_SYMBOL(do_ptrauth_fault); |
| |
| #define __user_cache_maint(insn, address, res) \ |
| if (address >= user_addr_max()) { \ |
| res = -EFAULT; \ |
| } else { \ |
| uaccess_ttbr0_enable(); \ |
| asm volatile ( \ |
| "1: " insn ", %1\n" \ |
| " mov %w0, #0\n" \ |
| "2:\n" \ |
| _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0) \ |
| : "=r" (res) \ |
| : "r" (address)); \ |
| uaccess_ttbr0_disable(); \ |
| } |
| |
| static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| unsigned long tagged_address, address; |
| int rt = ESR_ELx_SYS64_ISS_RT(esr); |
| int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; |
| int ret = 0; |
| |
| tagged_address = pt_regs_read_reg(regs, rt); |
| address = untagged_addr(tagged_address); |
| |
| switch (crm) { |
| case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */ |
| __user_cache_maint("dc civac", address, ret); |
| break; |
| case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */ |
| __user_cache_maint("dc civac", address, ret); |
| break; |
| case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */ |
| __user_cache_maint("sys 3, c7, c13, 1", address, ret); |
| break; |
| case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */ |
| __user_cache_maint("sys 3, c7, c12, 1", address, ret); |
| break; |
| case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */ |
| __user_cache_maint("dc civac", address, ret); |
| break; |
| case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */ |
| __user_cache_maint("ic ivau", address, ret); |
| break; |
| default: |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| return; |
| } |
| |
| if (ret) |
| arm64_notify_segfault(tagged_address); |
| else |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| } |
| |
| static void ctr_read_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| int rt = ESR_ELx_SYS64_ISS_RT(esr); |
| unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0); |
| |
| if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) { |
| /* Hide DIC so that we can trap the unnecessary maintenance...*/ |
| val &= ~BIT(CTR_DIC_SHIFT); |
| |
| /* ... and fake IminLine to reduce the number of traps. */ |
| val &= ~CTR_IMINLINE_MASK; |
| val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK; |
| } |
| |
| pt_regs_write_reg(regs, rt, val); |
| |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| } |
| |
| static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| int rt = ESR_ELx_SYS64_ISS_RT(esr); |
| |
| pt_regs_write_reg(regs, rt, arch_timer_read_counter()); |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| } |
| |
| static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| int rt = ESR_ELx_SYS64_ISS_RT(esr); |
| |
| pt_regs_write_reg(regs, rt, arch_timer_get_rate()); |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| } |
| |
| static void mrs_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| u32 sysreg, rt; |
| |
| rt = ESR_ELx_SYS64_ISS_RT(esr); |
| sysreg = esr_sys64_to_sysreg(esr); |
| |
| if (do_emulate_mrs(regs, sysreg, rt) != 0) |
| force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); |
| } |
| |
| static void wfi_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| } |
| |
| struct sys64_hook { |
| unsigned int esr_mask; |
| unsigned int esr_val; |
| void (*handler)(unsigned int esr, struct pt_regs *regs); |
| }; |
| |
| static const struct sys64_hook sys64_hooks[] = { |
| { |
| .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK, |
| .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL, |
| .handler = user_cache_maint_handler, |
| }, |
| { |
| /* Trap read access to CTR_EL0 */ |
| .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, |
| .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ, |
| .handler = ctr_read_handler, |
| }, |
| { |
| /* Trap read access to CNTVCT_EL0 */ |
| .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, |
| .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT, |
| .handler = cntvct_read_handler, |
| }, |
| { |
| /* Trap read access to CNTVCTSS_EL0 */ |
| .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, |
| .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS, |
| .handler = cntvct_read_handler, |
| }, |
| { |
| /* Trap read access to CNTFRQ_EL0 */ |
| .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, |
| .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ, |
| .handler = cntfrq_read_handler, |
| }, |
| { |
| /* Trap read access to CPUID registers */ |
| .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK, |
| .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL, |
| .handler = mrs_handler, |
| }, |
| { |
| /* Trap WFI instructions executed in userspace */ |
| .esr_mask = ESR_ELx_WFx_MASK, |
| .esr_val = ESR_ELx_WFx_WFI_VAL, |
| .handler = wfi_handler, |
| }, |
| {}, |
| }; |
| |
| #ifdef CONFIG_COMPAT |
| static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs) |
| { |
| int cond; |
| |
| /* Only a T32 instruction can trap without CV being set */ |
| if (!(esr & ESR_ELx_CV)) { |
| u32 it; |
| |
| it = compat_get_it_state(regs); |
| if (!it) |
| return true; |
| |
| cond = it >> 4; |
| } else { |
| cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; |
| } |
| |
| return aarch32_opcode_cond_checks[cond](regs->pstate); |
| } |
| |
| static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT; |
| |
| pt_regs_write_reg(regs, reg, arch_timer_get_rate()); |
| arm64_skip_faulting_instruction(regs, 4); |
| } |
| |
| static const struct sys64_hook cp15_32_hooks[] = { |
| { |
| .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK, |
| .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ, |
| .handler = compat_cntfrq_read_handler, |
| }, |
| {}, |
| }; |
| |
| static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs) |
| { |
| int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT; |
| int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT; |
| u64 val = arch_timer_read_counter(); |
| |
| pt_regs_write_reg(regs, rt, lower_32_bits(val)); |
| pt_regs_write_reg(regs, rt2, upper_32_bits(val)); |
| arm64_skip_faulting_instruction(regs, 4); |
| } |
| |
| static const struct sys64_hook cp15_64_hooks[] = { |
| { |
| .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK, |
| .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT, |
| .handler = compat_cntvct_read_handler, |
| }, |
| { |
| .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK, |
| .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS, |
| .handler = compat_cntvct_read_handler, |
| }, |
| {}, |
| }; |
| |
| void do_cp15instr(unsigned int esr, struct pt_regs *regs) |
| { |
| const struct sys64_hook *hook, *hook_base; |
| |
| if (!cp15_cond_valid(esr, regs)) { |
| /* |
| * There is no T16 variant of a CP access, so we |
| * always advance PC by 4 bytes. |
| */ |
| arm64_skip_faulting_instruction(regs, 4); |
| return; |
| } |
| |
| switch (ESR_ELx_EC(esr)) { |
| case ESR_ELx_EC_CP15_32: |
| hook_base = cp15_32_hooks; |
| break; |
| case ESR_ELx_EC_CP15_64: |
| hook_base = cp15_64_hooks; |
| break; |
| default: |
| do_undefinstr(regs); |
| return; |
| } |
| |
| for (hook = hook_base; hook->handler; hook++) |
| if ((hook->esr_mask & esr) == hook->esr_val) { |
| hook->handler(esr, regs); |
| return; |
| } |
| |
| /* |
| * New cp15 instructions may previously have been undefined at |
| * EL0. Fall back to our usual undefined instruction handler |
| * so that we handle these consistently. |
| */ |
| do_undefinstr(regs); |
| } |
| NOKPROBE_SYMBOL(do_cp15instr); |
| #endif |
| |
| void do_sysinstr(unsigned int esr, struct pt_regs *regs) |
| { |
| const struct sys64_hook *hook; |
| |
| for (hook = sys64_hooks; hook->handler; hook++) |
| if ((hook->esr_mask & esr) == hook->esr_val) { |
| hook->handler(esr, regs); |
| return; |
| } |
| |
| /* |
| * New SYS instructions may previously have been undefined at EL0. Fall |
| * back to our usual undefined instruction handler so that we handle |
| * these consistently. |
| */ |
| do_undefinstr(regs); |
| } |
| NOKPROBE_SYMBOL(do_sysinstr); |
| |
| static const char *esr_class_str[] = { |
| [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC", |
| [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized", |
| [ESR_ELx_EC_WFx] = "WFI/WFE", |
| [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC", |
| [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC", |
| [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC", |
| [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC", |
| [ESR_ELx_EC_FP_ASIMD] = "ASIMD", |
| [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS", |
| [ESR_ELx_EC_PAC] = "PAC", |
| [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC", |
| [ESR_ELx_EC_BTI] = "BTI", |
| [ESR_ELx_EC_ILL] = "PSTATE.IL", |
| [ESR_ELx_EC_SVC32] = "SVC (AArch32)", |
| [ESR_ELx_EC_HVC32] = "HVC (AArch32)", |
| [ESR_ELx_EC_SMC32] = "SMC (AArch32)", |
| [ESR_ELx_EC_SVC64] = "SVC (AArch64)", |
| [ESR_ELx_EC_HVC64] = "HVC (AArch64)", |
| [ESR_ELx_EC_SMC64] = "SMC (AArch64)", |
| [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)", |
| [ESR_ELx_EC_SVE] = "SVE", |
| [ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB", |
| [ESR_ELx_EC_FPAC] = "FPAC", |
| [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF", |
| [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)", |
| [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)", |
| [ESR_ELx_EC_PC_ALIGN] = "PC Alignment", |
| [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)", |
| [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)", |
| [ESR_ELx_EC_SP_ALIGN] = "SP Alignment", |
| [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)", |
| [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)", |
| [ESR_ELx_EC_SERROR] = "SError", |
| [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)", |
| [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)", |
| [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)", |
| [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)", |
| [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)", |
| [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)", |
| [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)", |
| [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)", |
| [ESR_ELx_EC_BRK64] = "BRK (AArch64)", |
| }; |
| |
| const char *esr_get_class_string(u32 esr) |
| { |
| return esr_class_str[ESR_ELx_EC(esr)]; |
| } |
| |
| /* |
| * bad_el0_sync handles unexpected, but potentially recoverable synchronous |
| * exceptions taken from EL0. |
| */ |
| void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| current->thread.fault_address = 0; |
| current->thread.fault_code = esr; |
| |
| arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc, |
| "Bad EL0 synchronous exception"); |
| } |
| |
| #ifdef CONFIG_VMAP_STACK |
| |
| DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack) |
| __aligned(16); |
| |
| void panic_bad_stack(struct pt_regs *regs, unsigned int esr, unsigned long far) |
| { |
| unsigned long tsk_stk = (unsigned long)current->stack; |
| unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr); |
| unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack); |
| |
| console_verbose(); |
| pr_emerg("Insufficient stack space to handle exception!"); |
| |
| pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr)); |
| pr_emerg("FAR: 0x%016lx\n", far); |
| |
| pr_emerg("Task stack: [0x%016lx..0x%016lx]\n", |
| tsk_stk, tsk_stk + THREAD_SIZE); |
| pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n", |
| irq_stk, irq_stk + IRQ_STACK_SIZE); |
| pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n", |
| ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE); |
| |
| __show_regs(regs); |
| |
| /* |
| * We use nmi_panic to limit the potential for recusive overflows, and |
| * to get a better stack trace. |
| */ |
| nmi_panic(NULL, "kernel stack overflow"); |
| cpu_park_loop(); |
| } |
| #endif |
| |
| void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr) |
| { |
| console_verbose(); |
| |
| pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n", |
| smp_processor_id(), esr, esr_get_class_string(esr)); |
| if (regs) |
| __show_regs(regs); |
| |
| nmi_panic(regs, "Asynchronous SError Interrupt"); |
| |
| cpu_park_loop(); |
| unreachable(); |
| } |
| |
| bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr) |
| { |
| u32 aet = arm64_ras_serror_get_severity(esr); |
| |
| switch (aet) { |
| case ESR_ELx_AET_CE: /* corrected error */ |
| case ESR_ELx_AET_UEO: /* restartable, not yet consumed */ |
| /* |
| * The CPU can make progress. We may take UEO again as |
| * a more severe error. |
| */ |
| return false; |
| |
| case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */ |
| case ESR_ELx_AET_UER: /* Uncorrected Recoverable */ |
| /* |
| * The CPU can't make progress. The exception may have |
| * been imprecise. |
| * |
| * Neoverse-N1 #1349291 means a non-KVM SError reported as |
| * Unrecoverable should be treated as Uncontainable. We |
| * call arm64_serror_panic() in both cases. |
| */ |
| return true; |
| |
| case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */ |
| default: |
| /* Error has been silently propagated */ |
| arm64_serror_panic(regs, esr); |
| } |
| } |
| |
| void do_serror(struct pt_regs *regs, unsigned int esr) |
| { |
| /* non-RAS errors are not containable */ |
| if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr)) |
| arm64_serror_panic(regs, esr); |
| } |
| |
| /* GENERIC_BUG traps */ |
| |
| int is_valid_bugaddr(unsigned long addr) |
| { |
| /* |
| * bug_handler() only called for BRK #BUG_BRK_IMM. |
| * So the answer is trivial -- any spurious instances with no |
| * bug table entry will be rejected by report_bug() and passed |
| * back to the debug-monitors code and handled as a fatal |
| * unexpected debug exception. |
| */ |
| return 1; |
| } |
| |
| static int bug_handler(struct pt_regs *regs, unsigned int esr) |
| { |
| switch (report_bug(regs->pc, regs)) { |
| case BUG_TRAP_TYPE_BUG: |
| die("Oops - BUG", regs, 0); |
| break; |
| |
| case BUG_TRAP_TYPE_WARN: |
| break; |
| |
| default: |
| /* unknown/unrecognised bug trap type */ |
| return DBG_HOOK_ERROR; |
| } |
| |
| /* If thread survives, skip over the BUG instruction and continue: */ |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| return DBG_HOOK_HANDLED; |
| } |
| |
| static struct break_hook bug_break_hook = { |
| .fn = bug_handler, |
| .imm = BUG_BRK_IMM, |
| }; |
| |
| static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr) |
| { |
| pr_err("%s generated an invalid instruction at %pS!\n", |
| "Kernel text patching", |
| (void *)instruction_pointer(regs)); |
| |
| /* We cannot handle this */ |
| return DBG_HOOK_ERROR; |
| } |
| |
| static struct break_hook fault_break_hook = { |
| .fn = reserved_fault_handler, |
| .imm = FAULT_BRK_IMM, |
| }; |
| |
| #ifdef CONFIG_KASAN_SW_TAGS |
| |
| #define KASAN_ESR_RECOVER 0x20 |
| #define KASAN_ESR_WRITE 0x10 |
| #define KASAN_ESR_SIZE_MASK 0x0f |
| #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK)) |
| |
| static int kasan_handler(struct pt_regs *regs, unsigned int esr) |
| { |
| bool recover = esr & KASAN_ESR_RECOVER; |
| bool write = esr & KASAN_ESR_WRITE; |
| size_t size = KASAN_ESR_SIZE(esr); |
| u64 addr = regs->regs[0]; |
| u64 pc = regs->pc; |
| |
| kasan_report(addr, size, write, pc); |
| |
| /* |
| * The instrumentation allows to control whether we can proceed after |
| * a crash was detected. This is done by passing the -recover flag to |
| * the compiler. Disabling recovery allows to generate more compact |
| * code. |
| * |
| * Unfortunately disabling recovery doesn't work for the kernel right |
| * now. KASAN reporting is disabled in some contexts (for example when |
| * the allocator accesses slab object metadata; this is controlled by |
| * current->kasan_depth). All these accesses are detected by the tool, |
| * even though the reports for them are not printed. |
| * |
| * This is something that might be fixed at some point in the future. |
| */ |
| if (!recover) |
| die("Oops - KASAN", regs, 0); |
| |
| /* If thread survives, skip over the brk instruction and continue: */ |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| return DBG_HOOK_HANDLED; |
| } |
| |
| static struct break_hook kasan_break_hook = { |
| .fn = kasan_handler, |
| .imm = KASAN_BRK_IMM, |
| .mask = KASAN_BRK_MASK, |
| }; |
| #endif |
| |
| /* |
| * Initial handler for AArch64 BRK exceptions |
| * This handler only used until debug_traps_init(). |
| */ |
| int __init early_brk64(unsigned long addr, unsigned int esr, |
| struct pt_regs *regs) |
| { |
| #ifdef CONFIG_KASAN_SW_TAGS |
| unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK; |
| |
| if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM) |
| return kasan_handler(regs, esr) != DBG_HOOK_HANDLED; |
| #endif |
| return bug_handler(regs, esr) != DBG_HOOK_HANDLED; |
| } |
| |
| void __init trap_init(void) |
| { |
| register_kernel_break_hook(&bug_break_hook); |
| register_kernel_break_hook(&fault_break_hook); |
| #ifdef CONFIG_KASAN_SW_TAGS |
| register_kernel_break_hook(&kasan_break_hook); |
| #endif |
| debug_traps_init(); |
| } |