| # SPDX-License-Identifier: GPL-2.0-only |
| config ARM64 |
| def_bool y |
| select ACPI_CCA_REQUIRED if ACPI |
| select ACPI_GENERIC_GSI if ACPI |
| select ACPI_GTDT if ACPI |
| select ACPI_IORT if ACPI |
| select ACPI_REDUCED_HARDWARE_ONLY if ACPI |
| select ACPI_MCFG if (ACPI && PCI) |
| select ACPI_SPCR_TABLE if ACPI |
| select ACPI_PPTT if ACPI |
| select ARCH_HAS_DEBUG_WX |
| select ARCH_BINFMT_ELF_STATE |
| select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE |
| select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION |
| select ARCH_ENABLE_MEMORY_HOTPLUG |
| select ARCH_ENABLE_MEMORY_HOTREMOVE |
| select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 |
| select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE |
| select ARCH_HAS_CACHE_LINE_SIZE |
| select ARCH_HAS_DEBUG_VIRTUAL |
| select ARCH_HAS_DEBUG_VM_PGTABLE |
| select ARCH_HAS_DMA_PREP_COHERENT |
| select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI |
| select ARCH_HAS_FAST_MULTIPLIER |
| select ARCH_HAS_FORTIFY_SOURCE |
| select ARCH_HAS_GCOV_PROFILE_ALL |
| select ARCH_HAS_GIGANTIC_PAGE |
| select ARCH_HAS_KCOV |
| select ARCH_HAS_KEEPINITRD |
| select ARCH_HAS_MEMBARRIER_SYNC_CORE |
| select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE |
| select ARCH_HAS_PTE_DEVMAP |
| select ARCH_HAS_PTE_SPECIAL |
| select ARCH_HAS_SETUP_DMA_OPS |
| select ARCH_HAS_SET_DIRECT_MAP |
| select ARCH_HAS_SET_MEMORY |
| select ARCH_STACKWALK |
| select ARCH_HAS_STRICT_KERNEL_RWX |
| select ARCH_HAS_STRICT_MODULE_RWX |
| select ARCH_HAS_SYNC_DMA_FOR_DEVICE |
| select ARCH_HAS_SYNC_DMA_FOR_CPU |
| select ARCH_HAS_SYSCALL_WRAPPER |
| select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT |
| select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST |
| select ARCH_HAS_ZONE_DMA_SET if EXPERT |
| select ARCH_HAVE_ELF_PROT |
| select ARCH_HAVE_NMI_SAFE_CMPXCHG |
| select ARCH_INLINE_READ_LOCK if !PREEMPTION |
| select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION |
| select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION |
| select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION |
| select ARCH_INLINE_READ_UNLOCK if !PREEMPTION |
| select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION |
| select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION |
| select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION |
| select ARCH_INLINE_WRITE_LOCK if !PREEMPTION |
| select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION |
| select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION |
| select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION |
| select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION |
| select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION |
| select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION |
| select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION |
| select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION |
| select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION |
| select ARCH_INLINE_SPIN_LOCK if !PREEMPTION |
| select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION |
| select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION |
| select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION |
| select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION |
| select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION |
| select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION |
| select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION |
| select ARCH_KEEP_MEMBLOCK |
| select ARCH_USE_CMPXCHG_LOCKREF |
| select ARCH_USE_GNU_PROPERTY |
| select ARCH_USE_MEMTEST |
| select ARCH_USE_QUEUED_RWLOCKS |
| select ARCH_USE_QUEUED_SPINLOCKS |
| select ARCH_USE_SYM_ANNOTATIONS |
| select ARCH_SUPPORTS_DEBUG_PAGEALLOC |
| select ARCH_SUPPORTS_HUGETLBFS |
| select ARCH_SUPPORTS_MEMORY_FAILURE |
| select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK |
| select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN |
| select ARCH_SUPPORTS_LTO_CLANG_THIN |
| select ARCH_SUPPORTS_CFI_CLANG |
| select ARCH_SUPPORTS_ATOMIC_RMW |
| select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 |
| select ARCH_SUPPORTS_NUMA_BALANCING |
| select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT |
| select ARCH_WANT_DEFAULT_BPF_JIT |
| select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
| select ARCH_WANT_FRAME_POINTERS |
| select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) |
| select ARCH_WANT_LD_ORPHAN_WARN |
| select ARCH_WANTS_NO_INSTR |
| select ARCH_HAS_UBSAN_SANITIZE_ALL |
| select ARM_AMBA |
| select ARM_ARCH_TIMER |
| select ARM_GIC |
| select AUDIT_ARCH_COMPAT_GENERIC |
| select ARM_GIC_V2M if PCI |
| select ARM_GIC_V3 |
| select ARM_GIC_V3_ITS if PCI |
| select ARM_PSCI_FW |
| select BUILDTIME_TABLE_SORT |
| select CLONE_BACKWARDS |
| select COMMON_CLK |
| select CPU_PM if (SUSPEND || CPU_IDLE) |
| select CRC32 |
| select DCACHE_WORD_ACCESS |
| select DMA_DIRECT_REMAP |
| select EDAC_SUPPORT |
| select FRAME_POINTER |
| select GENERIC_ALLOCATOR |
| select GENERIC_ARCH_TOPOLOGY |
| select GENERIC_CLOCKEVENTS_BROADCAST |
| select GENERIC_CPU_AUTOPROBE |
| select GENERIC_CPU_VULNERABILITIES |
| select GENERIC_EARLY_IOREMAP |
| select GENERIC_FIND_FIRST_BIT |
| select GENERIC_IDLE_POLL_SETUP |
| select GENERIC_IRQ_IPI |
| select GENERIC_IRQ_PROBE |
| select GENERIC_IRQ_SHOW |
| select GENERIC_IRQ_SHOW_LEVEL |
| select GENERIC_LIB_DEVMEM_IS_ALLOWED |
| select GENERIC_PCI_IOMAP |
| select GENERIC_PTDUMP |
| select GENERIC_SCHED_CLOCK |
| select GENERIC_SMP_IDLE_THREAD |
| select GENERIC_TIME_VSYSCALL |
| select GENERIC_GETTIMEOFDAY |
| select GENERIC_VDSO_TIME_NS |
| select HARDIRQS_SW_RESEND |
| select HAVE_MOVE_PMD |
| select HAVE_MOVE_PUD |
| select HAVE_PCI |
| select HAVE_ACPI_APEI if (ACPI && EFI) |
| select HAVE_ALIGNED_STRUCT_PAGE if SLUB |
| select HAVE_ARCH_AUDITSYSCALL |
| select HAVE_ARCH_BITREVERSE |
| select HAVE_ARCH_COMPILER_H |
| select HAVE_ARCH_HUGE_VMAP |
| select HAVE_ARCH_JUMP_LABEL |
| select HAVE_ARCH_JUMP_LABEL_RELATIVE |
| select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) |
| select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN |
| select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN |
| select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) |
| # Some instrumentation may be unsound, hence EXPERT |
| select HAVE_ARCH_KCSAN if EXPERT |
| select HAVE_ARCH_KFENCE |
| select HAVE_ARCH_KGDB |
| select HAVE_ARCH_MMAP_RND_BITS |
| select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT |
| select HAVE_ARCH_PREL32_RELOCATIONS |
| select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET |
| select HAVE_ARCH_SECCOMP_FILTER |
| select HAVE_ARCH_STACKLEAK |
| select HAVE_ARCH_THREAD_STRUCT_WHITELIST |
| select HAVE_ARCH_TRACEHOOK |
| select HAVE_ARCH_TRANSPARENT_HUGEPAGE |
| select HAVE_ARCH_VMAP_STACK |
| select HAVE_ARM_SMCCC |
| select HAVE_ASM_MODVERSIONS |
| select HAVE_EBPF_JIT |
| select HAVE_C_RECORDMCOUNT |
| select HAVE_CMPXCHG_DOUBLE |
| select HAVE_CMPXCHG_LOCAL |
| select HAVE_CONTEXT_TRACKING |
| select HAVE_DEBUG_KMEMLEAK |
| select HAVE_DMA_CONTIGUOUS |
| select HAVE_DYNAMIC_FTRACE |
| select HAVE_DYNAMIC_FTRACE_WITH_REGS \ |
| if $(cc-option,-fpatchable-function-entry=2) |
| select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ |
| if DYNAMIC_FTRACE_WITH_REGS |
| select HAVE_EFFICIENT_UNALIGNED_ACCESS |
| select HAVE_FAST_GUP |
| select HAVE_FTRACE_MCOUNT_RECORD |
| select HAVE_FUNCTION_TRACER |
| select HAVE_FUNCTION_ERROR_INJECTION |
| select HAVE_FUNCTION_GRAPH_TRACER |
| select HAVE_GCC_PLUGINS |
| select HAVE_HW_BREAKPOINT if PERF_EVENTS |
| select HAVE_IRQ_TIME_ACCOUNTING |
| select HAVE_KVM |
| select HAVE_NMI |
| select HAVE_PATA_PLATFORM |
| select HAVE_PERF_EVENTS |
| select HAVE_PERF_REGS |
| select HAVE_PERF_USER_STACK_DUMP |
| select HAVE_REGS_AND_STACK_ACCESS_API |
| select HAVE_POSIX_CPU_TIMERS_TASK_WORK |
| select HAVE_FUNCTION_ARG_ACCESS_API |
| select HAVE_FUTEX_CMPXCHG if FUTEX |
| select MMU_GATHER_RCU_TABLE_FREE |
| select HAVE_RSEQ |
| select HAVE_STACKPROTECTOR |
| select HAVE_SYSCALL_TRACEPOINTS |
| select HAVE_KPROBES |
| select HAVE_KRETPROBES |
| select HAVE_GENERIC_VDSO |
| select IOMMU_DMA if IOMMU_SUPPORT |
| select IRQ_DOMAIN |
| select IRQ_FORCED_THREADING |
| select KASAN_VMALLOC if KASAN_GENERIC |
| select MODULES_USE_ELF_RELA |
| select NEED_DMA_MAP_STATE |
| select NEED_SG_DMA_LENGTH |
| select OF |
| select OF_EARLY_FLATTREE |
| select PCI_DOMAINS_GENERIC if PCI |
| select PCI_ECAM if (ACPI && PCI) |
| select PCI_SYSCALL if PCI |
| select POWER_RESET |
| select POWER_SUPPLY |
| select SPARSE_IRQ |
| select SWIOTLB |
| select SYSCTL_EXCEPTION_TRACE |
| select THREAD_INFO_IN_TASK |
| select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD |
| select TRACE_IRQFLAGS_SUPPORT |
| help |
| ARM 64-bit (AArch64) Linux support. |
| |
| config 64BIT |
| def_bool y |
| |
| config MMU |
| def_bool y |
| |
| config ARM64_PAGE_SHIFT |
| int |
| default 16 if ARM64_64K_PAGES |
| default 14 if ARM64_16K_PAGES |
| default 12 |
| |
| config ARM64_CONT_PTE_SHIFT |
| int |
| default 5 if ARM64_64K_PAGES |
| default 7 if ARM64_16K_PAGES |
| default 4 |
| |
| config ARM64_CONT_PMD_SHIFT |
| int |
| default 5 if ARM64_64K_PAGES |
| default 5 if ARM64_16K_PAGES |
| default 4 |
| |
| config ARCH_MMAP_RND_BITS_MIN |
| default 14 if ARM64_64K_PAGES |
| default 16 if ARM64_16K_PAGES |
| default 18 |
| |
| # max bits determined by the following formula: |
| # VA_BITS - PAGE_SHIFT - 3 |
| config ARCH_MMAP_RND_BITS_MAX |
| default 19 if ARM64_VA_BITS=36 |
| default 24 if ARM64_VA_BITS=39 |
| default 27 if ARM64_VA_BITS=42 |
| default 30 if ARM64_VA_BITS=47 |
| default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES |
| default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES |
| default 33 if ARM64_VA_BITS=48 |
| default 14 if ARM64_64K_PAGES |
| default 16 if ARM64_16K_PAGES |
| default 18 |
| |
| config ARCH_MMAP_RND_COMPAT_BITS_MIN |
| default 7 if ARM64_64K_PAGES |
| default 9 if ARM64_16K_PAGES |
| default 11 |
| |
| config ARCH_MMAP_RND_COMPAT_BITS_MAX |
| default 16 |
| |
| config NO_IOPORT_MAP |
| def_bool y if !PCI |
| |
| config STACKTRACE_SUPPORT |
| def_bool y |
| |
| config ILLEGAL_POINTER_VALUE |
| hex |
| default 0xdead000000000000 |
| |
| config LOCKDEP_SUPPORT |
| def_bool y |
| |
| config GENERIC_BUG |
| def_bool y |
| depends on BUG |
| |
| config GENERIC_BUG_RELATIVE_POINTERS |
| def_bool y |
| depends on GENERIC_BUG |
| |
| config GENERIC_HWEIGHT |
| def_bool y |
| |
| config GENERIC_CSUM |
| def_bool y |
| |
| config GENERIC_CALIBRATE_DELAY |
| def_bool y |
| |
| config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE |
| def_bool y |
| |
| config SMP |
| def_bool y |
| |
| config KERNEL_MODE_NEON |
| def_bool y |
| |
| config FIX_EARLYCON_MEM |
| def_bool y |
| |
| config PGTABLE_LEVELS |
| int |
| default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 |
| default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 |
| default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) |
| default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 |
| default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 |
| default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 |
| |
| config ARCH_SUPPORTS_UPROBES |
| def_bool y |
| |
| config ARCH_PROC_KCORE_TEXT |
| def_bool y |
| |
| config BROKEN_GAS_INST |
| def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) |
| |
| config KASAN_SHADOW_OFFSET |
| hex |
| depends on KASAN_GENERIC || KASAN_SW_TAGS |
| default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS |
| default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS |
| default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS |
| default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS |
| default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS |
| default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS |
| default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS |
| default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS |
| default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS |
| default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS |
| default 0xffffffffffffffff |
| |
| source "arch/arm64/Kconfig.platforms" |
| |
| menu "Kernel Features" |
| |
| menu "ARM errata workarounds via the alternatives framework" |
| |
| config ARM64_WORKAROUND_CLEAN_CACHE |
| bool |
| |
| config ARM64_ERRATUM_826319 |
| bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" |
| default y |
| select ARM64_WORKAROUND_CLEAN_CACHE |
| help |
| This option adds an alternative code sequence to work around ARM |
| erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or |
| AXI master interface and an L2 cache. |
| |
| If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors |
| and is unable to accept a certain write via this interface, it will |
| not progress on read data presented on the read data channel and the |
| system can deadlock. |
| |
| The workaround promotes data cache clean instructions to |
| data cache clean-and-invalidate. |
| Please note that this does not necessarily enable the workaround, |
| as it depends on the alternative framework, which will only patch |
| the kernel if an affected CPU is detected. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_827319 |
| bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" |
| default y |
| select ARM64_WORKAROUND_CLEAN_CACHE |
| help |
| This option adds an alternative code sequence to work around ARM |
| erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI |
| master interface and an L2 cache. |
| |
| Under certain conditions this erratum can cause a clean line eviction |
| to occur at the same time as another transaction to the same address |
| on the AMBA 5 CHI interface, which can cause data corruption if the |
| interconnect reorders the two transactions. |
| |
| The workaround promotes data cache clean instructions to |
| data cache clean-and-invalidate. |
| Please note that this does not necessarily enable the workaround, |
| as it depends on the alternative framework, which will only patch |
| the kernel if an affected CPU is detected. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_824069 |
| bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" |
| default y |
| select ARM64_WORKAROUND_CLEAN_CACHE |
| help |
| This option adds an alternative code sequence to work around ARM |
| erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected |
| to a coherent interconnect. |
| |
| If a Cortex-A53 processor is executing a store or prefetch for |
| write instruction at the same time as a processor in another |
| cluster is executing a cache maintenance operation to the same |
| address, then this erratum might cause a clean cache line to be |
| incorrectly marked as dirty. |
| |
| The workaround promotes data cache clean instructions to |
| data cache clean-and-invalidate. |
| Please note that this option does not necessarily enable the |
| workaround, as it depends on the alternative framework, which will |
| only patch the kernel if an affected CPU is detected. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_819472 |
| bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" |
| default y |
| select ARM64_WORKAROUND_CLEAN_CACHE |
| help |
| This option adds an alternative code sequence to work around ARM |
| erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache |
| present when it is connected to a coherent interconnect. |
| |
| If the processor is executing a load and store exclusive sequence at |
| the same time as a processor in another cluster is executing a cache |
| maintenance operation to the same address, then this erratum might |
| cause data corruption. |
| |
| The workaround promotes data cache clean instructions to |
| data cache clean-and-invalidate. |
| Please note that this does not necessarily enable the workaround, |
| as it depends on the alternative framework, which will only patch |
| the kernel if an affected CPU is detected. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_832075 |
| bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" |
| default y |
| help |
| This option adds an alternative code sequence to work around ARM |
| erratum 832075 on Cortex-A57 parts up to r1p2. |
| |
| Affected Cortex-A57 parts might deadlock when exclusive load/store |
| instructions to Write-Back memory are mixed with Device loads. |
| |
| The workaround is to promote device loads to use Load-Acquire |
| semantics. |
| Please note that this does not necessarily enable the workaround, |
| as it depends on the alternative framework, which will only patch |
| the kernel if an affected CPU is detected. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_834220 |
| bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" |
| depends on KVM |
| default y |
| help |
| This option adds an alternative code sequence to work around ARM |
| erratum 834220 on Cortex-A57 parts up to r1p2. |
| |
| Affected Cortex-A57 parts might report a Stage 2 translation |
| fault as the result of a Stage 1 fault for load crossing a |
| page boundary when there is a permission or device memory |
| alignment fault at Stage 1 and a translation fault at Stage 2. |
| |
| The workaround is to verify that the Stage 1 translation |
| doesn't generate a fault before handling the Stage 2 fault. |
| Please note that this does not necessarily enable the workaround, |
| as it depends on the alternative framework, which will only patch |
| the kernel if an affected CPU is detected. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_845719 |
| bool "Cortex-A53: 845719: a load might read incorrect data" |
| depends on COMPAT |
| default y |
| help |
| This option adds an alternative code sequence to work around ARM |
| erratum 845719 on Cortex-A53 parts up to r0p4. |
| |
| When running a compat (AArch32) userspace on an affected Cortex-A53 |
| part, a load at EL0 from a virtual address that matches the bottom 32 |
| bits of the virtual address used by a recent load at (AArch64) EL1 |
| might return incorrect data. |
| |
| The workaround is to write the contextidr_el1 register on exception |
| return to a 32-bit task. |
| Please note that this does not necessarily enable the workaround, |
| as it depends on the alternative framework, which will only patch |
| the kernel if an affected CPU is detected. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_843419 |
| bool "Cortex-A53: 843419: A load or store might access an incorrect address" |
| default y |
| select ARM64_MODULE_PLTS if MODULES |
| help |
| This option links the kernel with '--fix-cortex-a53-843419' and |
| enables PLT support to replace certain ADRP instructions, which can |
| cause subsequent memory accesses to use an incorrect address on |
| Cortex-A53 parts up to r0p4. |
| |
| If unsure, say Y. |
| |
| config ARM64_LD_HAS_FIX_ERRATUM_843419 |
| def_bool $(ld-option,--fix-cortex-a53-843419) |
| |
| config ARM64_ERRATUM_1024718 |
| bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" |
| default y |
| help |
| This option adds a workaround for ARM Cortex-A55 Erratum 1024718. |
| |
| Affected Cortex-A55 cores (all revisions) could cause incorrect |
| update of the hardware dirty bit when the DBM/AP bits are updated |
| without a break-before-make. The workaround is to disable the usage |
| of hardware DBM locally on the affected cores. CPUs not affected by |
| this erratum will continue to use the feature. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_1418040 |
| bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" |
| default y |
| depends on COMPAT |
| help |
| This option adds a workaround for ARM Cortex-A76/Neoverse-N1 |
| errata 1188873 and 1418040. |
| |
| Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could |
| cause register corruption when accessing the timer registers |
| from AArch32 userspace. |
| |
| If unsure, say Y. |
| |
| config ARM64_WORKAROUND_SPECULATIVE_AT |
| bool |
| |
| config ARM64_ERRATUM_1165522 |
| bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" |
| default y |
| select ARM64_WORKAROUND_SPECULATIVE_AT |
| help |
| This option adds a workaround for ARM Cortex-A76 erratum 1165522. |
| |
| Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with |
| corrupted TLBs by speculating an AT instruction during a guest |
| context switch. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_1319367 |
| bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" |
| default y |
| select ARM64_WORKAROUND_SPECULATIVE_AT |
| help |
| This option adds work arounds for ARM Cortex-A57 erratum 1319537 |
| and A72 erratum 1319367 |
| |
| Cortex-A57 and A72 cores could end-up with corrupted TLBs by |
| speculating an AT instruction during a guest context switch. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_1530923 |
| bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" |
| default y |
| select ARM64_WORKAROUND_SPECULATIVE_AT |
| help |
| This option adds a workaround for ARM Cortex-A55 erratum 1530923. |
| |
| Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with |
| corrupted TLBs by speculating an AT instruction during a guest |
| context switch. |
| |
| If unsure, say Y. |
| |
| config ARM64_WORKAROUND_REPEAT_TLBI |
| bool |
| |
| config ARM64_ERRATUM_1286807 |
| bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" |
| default y |
| select ARM64_WORKAROUND_REPEAT_TLBI |
| help |
| This option adds a workaround for ARM Cortex-A76 erratum 1286807. |
| |
| On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual |
| address for a cacheable mapping of a location is being |
| accessed by a core while another core is remapping the virtual |
| address to a new physical page using the recommended |
| break-before-make sequence, then under very rare circumstances |
| TLBI+DSB completes before a read using the translation being |
| invalidated has been observed by other observers. The |
| workaround repeats the TLBI+DSB operation. |
| |
| config ARM64_ERRATUM_1463225 |
| bool "Cortex-A76: Software Step might prevent interrupt recognition" |
| default y |
| help |
| This option adds a workaround for Arm Cortex-A76 erratum 1463225. |
| |
| On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping |
| of a system call instruction (SVC) can prevent recognition of |
| subsequent interrupts when software stepping is disabled in the |
| exception handler of the system call and either kernel debugging |
| is enabled or VHE is in use. |
| |
| Work around the erratum by triggering a dummy step exception |
| when handling a system call from a task that is being stepped |
| in a VHE configuration of the kernel. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_1542419 |
| bool "Neoverse-N1: workaround mis-ordering of instruction fetches" |
| default y |
| help |
| This option adds a workaround for ARM Neoverse-N1 erratum |
| 1542419. |
| |
| Affected Neoverse-N1 cores could execute a stale instruction when |
| modified by another CPU. The workaround depends on a firmware |
| counterpart. |
| |
| Workaround the issue by hiding the DIC feature from EL0. This |
| forces user-space to perform cache maintenance. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_1508412 |
| bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" |
| default y |
| help |
| This option adds a workaround for Arm Cortex-A77 erratum 1508412. |
| |
| Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence |
| of a store-exclusive or read of PAR_EL1 and a load with device or |
| non-cacheable memory attributes. The workaround depends on a firmware |
| counterpart. |
| |
| KVM guests must also have the workaround implemented or they can |
| deadlock the system. |
| |
| Work around the issue by inserting DMB SY barriers around PAR_EL1 |
| register reads and warning KVM users. The DMB barrier is sufficient |
| to prevent a speculative PAR_EL1 read. |
| |
| If unsure, say Y. |
| |
| config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE |
| bool |
| |
| config ARM64_ERRATUM_2119858 |
| bool "Cortex-A710: 2119858: workaround TRBE overwriting trace data in FILL mode" |
| default y |
| depends on CORESIGHT_TRBE |
| select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE |
| help |
| This option adds the workaround for ARM Cortex-A710 erratum 2119858. |
| |
| Affected Cortex-A710 cores could overwrite up to 3 cache lines of trace |
| data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in |
| the event of a WRAP event. |
| |
| Work around the issue by always making sure we move the TRBPTR_EL1 by |
| 256 bytes before enabling the buffer and filling the first 256 bytes of |
| the buffer with ETM ignore packets upon disabling. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_2139208 |
| bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" |
| default y |
| depends on CORESIGHT_TRBE |
| select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE |
| help |
| This option adds the workaround for ARM Neoverse-N2 erratum 2139208. |
| |
| Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace |
| data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in |
| the event of a WRAP event. |
| |
| Work around the issue by always making sure we move the TRBPTR_EL1 by |
| 256 bytes before enabling the buffer and filling the first 256 bytes of |
| the buffer with ETM ignore packets upon disabling. |
| |
| If unsure, say Y. |
| |
| config ARM64_WORKAROUND_TSB_FLUSH_FAILURE |
| bool |
| |
| config ARM64_ERRATUM_2054223 |
| bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" |
| default y |
| select ARM64_WORKAROUND_TSB_FLUSH_FAILURE |
| help |
| Enable workaround for ARM Cortex-A710 erratum 2054223 |
| |
| Affected cores may fail to flush the trace data on a TSB instruction, when |
| the PE is in trace prohibited state. This will cause losing a few bytes |
| of the trace cached. |
| |
| Workaround is to issue two TSB consecutively on affected cores. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_2067961 |
| bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" |
| default y |
| select ARM64_WORKAROUND_TSB_FLUSH_FAILURE |
| help |
| Enable workaround for ARM Neoverse-N2 erratum 2067961 |
| |
| Affected cores may fail to flush the trace data on a TSB instruction, when |
| the PE is in trace prohibited state. This will cause losing a few bytes |
| of the trace cached. |
| |
| Workaround is to issue two TSB consecutively on affected cores. |
| |
| If unsure, say Y. |
| |
| config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE |
| bool |
| |
| config ARM64_ERRATUM_2253138 |
| bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" |
| depends on CORESIGHT_TRBE |
| default y |
| select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE |
| help |
| This option adds the workaround for ARM Neoverse-N2 erratum 2253138. |
| |
| Affected Neoverse-N2 cores might write to an out-of-range address, not reserved |
| for TRBE. Under some conditions, the TRBE might generate a write to the next |
| virtually addressed page following the last page of the TRBE address space |
| (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. |
| |
| Work around this in the driver by always making sure that there is a |
| page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. |
| |
| If unsure, say Y. |
| |
| config ARM64_ERRATUM_2224489 |
| bool "Cortex-A710: 2224489: workaround TRBE writing to address out-of-range" |
| depends on CORESIGHT_TRBE |
| default y |
| select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE |
| help |
| This option adds the workaround for ARM Cortex-A710 erratum 2224489. |
| |
| Affected Cortex-A710 cores might write to an out-of-range address, not reserved |
| for TRBE. Under some conditions, the TRBE might generate a write to the next |
| virtually addressed page following the last page of the TRBE address space |
| (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. |
| |
| Work around this in the driver by always making sure that there is a |
| page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. |
| |
| If unsure, say Y. |
| |
| config CAVIUM_ERRATUM_22375 |
| bool "Cavium erratum 22375, 24313" |
| default y |
| help |
| Enable workaround for errata 22375 and 24313. |
| |
| This implements two gicv3-its errata workarounds for ThunderX. Both |
| with a small impact affecting only ITS table allocation. |
| |
| erratum 22375: only alloc 8MB table size |
| erratum 24313: ignore memory access type |
| |
| The fixes are in ITS initialization and basically ignore memory access |
| type and table size provided by the TYPER and BASER registers. |
| |
| If unsure, say Y. |
| |
| config CAVIUM_ERRATUM_23144 |
| bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" |
| depends on NUMA |
| default y |
| help |
| ITS SYNC command hang for cross node io and collections/cpu mapping. |
| |
| If unsure, say Y. |
| |
| config CAVIUM_ERRATUM_23154 |
| bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" |
| default y |
| help |
| The gicv3 of ThunderX requires a modified version for |
| reading the IAR status to ensure data synchronization |
| (access to icc_iar1_el1 is not sync'ed before and after). |
| |
| If unsure, say Y. |
| |
| config CAVIUM_ERRATUM_27456 |
| bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" |
| default y |
| help |
| On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI |
| instructions may cause the icache to become corrupted if it |
| contains data for a non-current ASID. The fix is to |
| invalidate the icache when changing the mm context. |
| |
| If unsure, say Y. |
| |
| config CAVIUM_ERRATUM_30115 |
| bool "Cavium erratum 30115: Guest may disable interrupts in host" |
| default y |
| help |
| On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through |
| 1.2, and T83 Pass 1.0, KVM guest execution may disable |
| interrupts in host. Trapping both GICv3 group-0 and group-1 |
| accesses sidesteps the issue. |
| |
| If unsure, say Y. |
| |
| config CAVIUM_TX2_ERRATUM_219 |
| bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" |
| default y |
| help |
| On Cavium ThunderX2, a load, store or prefetch instruction between a |
| TTBR update and the corresponding context synchronizing operation can |
| cause a spurious Data Abort to be delivered to any hardware thread in |
| the CPU core. |
| |
| Work around the issue by avoiding the problematic code sequence and |
| trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The |
| trap handler performs the corresponding register access, skips the |
| instruction and ensures context synchronization by virtue of the |
| exception return. |
| |
| If unsure, say Y. |
| |
| config FUJITSU_ERRATUM_010001 |
| bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" |
| default y |
| help |
| This option adds a workaround for Fujitsu-A64FX erratum E#010001. |
| On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory |
| accesses may cause undefined fault (Data abort, DFSC=0b111111). |
| This fault occurs under a specific hardware condition when a |
| load/store instruction performs an address translation using: |
| case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. |
| case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. |
| case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. |
| case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. |
| |
| The workaround is to ensure these bits are clear in TCR_ELx. |
| The workaround only affects the Fujitsu-A64FX. |
| |
| If unsure, say Y. |
| |
| config HISILICON_ERRATUM_161600802 |
| bool "Hip07 161600802: Erroneous redistributor VLPI base" |
| default y |
| help |
| The HiSilicon Hip07 SoC uses the wrong redistributor base |
| when issued ITS commands such as VMOVP and VMAPP, and requires |
| a 128kB offset to be applied to the target address in this commands. |
| |
| If unsure, say Y. |
| |
| config QCOM_FALKOR_ERRATUM_1003 |
| bool "Falkor E1003: Incorrect translation due to ASID change" |
| default y |
| help |
| On Falkor v1, an incorrect ASID may be cached in the TLB when ASID |
| and BADDR are changed together in TTBRx_EL1. Since we keep the ASID |
| in TTBR1_EL1, this situation only occurs in the entry trampoline and |
| then only for entries in the walk cache, since the leaf translation |
| is unchanged. Work around the erratum by invalidating the walk cache |
| entries for the trampoline before entering the kernel proper. |
| |
| config QCOM_FALKOR_ERRATUM_1009 |
| bool "Falkor E1009: Prematurely complete a DSB after a TLBI" |
| default y |
| select ARM64_WORKAROUND_REPEAT_TLBI |
| help |
| On Falkor v1, the CPU may prematurely complete a DSB following a |
| TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation |
| one more time to fix the issue. |
| |
| If unsure, say Y. |
| |
| config QCOM_QDF2400_ERRATUM_0065 |
| bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" |
| default y |
| help |
| On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports |
| ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have |
| been indicated as 16Bytes (0xf), not 8Bytes (0x7). |
| |
| If unsure, say Y. |
| |
| config QCOM_FALKOR_ERRATUM_E1041 |
| bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" |
| default y |
| help |
| Falkor CPU may speculatively fetch instructions from an improper |
| memory location when MMU translation is changed from SCTLR_ELn[M]=1 |
| to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. |
| |
| If unsure, say Y. |
| |
| config NVIDIA_CARMEL_CNP_ERRATUM |
| bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" |
| default y |
| help |
| If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not |
| invalidate shared TLB entries installed by a different core, as it would |
| on standard ARM cores. |
| |
| If unsure, say Y. |
| |
| config SOCIONEXT_SYNQUACER_PREITS |
| bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" |
| default y |
| help |
| Socionext Synquacer SoCs implement a separate h/w block to generate |
| MSI doorbell writes with non-zero values for the device ID. |
| |
| If unsure, say Y. |
| |
| endmenu |
| |
| |
| choice |
| prompt "Page size" |
| default ARM64_4K_PAGES |
| help |
| Page size (translation granule) configuration. |
| |
| config ARM64_4K_PAGES |
| bool "4KB" |
| help |
| This feature enables 4KB pages support. |
| |
| config ARM64_16K_PAGES |
| bool "16KB" |
| help |
| The system will use 16KB pages support. AArch32 emulation |
| requires applications compiled with 16K (or a multiple of 16K) |
| aligned segments. |
| |
| config ARM64_64K_PAGES |
| bool "64KB" |
| help |
| This feature enables 64KB pages support (4KB by default) |
| allowing only two levels of page tables and faster TLB |
| look-up. AArch32 emulation requires applications compiled |
| with 64K aligned segments. |
| |
| endchoice |
| |
| choice |
| prompt "Virtual address space size" |
| default ARM64_VA_BITS_39 if ARM64_4K_PAGES |
| default ARM64_VA_BITS_47 if ARM64_16K_PAGES |
| default ARM64_VA_BITS_42 if ARM64_64K_PAGES |
| help |
| Allows choosing one of multiple possible virtual address |
| space sizes. The level of translation table is determined by |
| a combination of page size and virtual address space size. |
| |
| config ARM64_VA_BITS_36 |
| bool "36-bit" if EXPERT |
| depends on ARM64_16K_PAGES |
| |
| config ARM64_VA_BITS_39 |
| bool "39-bit" |
| depends on ARM64_4K_PAGES |
| |
| config ARM64_VA_BITS_42 |
| bool "42-bit" |
| depends on ARM64_64K_PAGES |
| |
| config ARM64_VA_BITS_47 |
| bool "47-bit" |
| depends on ARM64_16K_PAGES |
| |
| config ARM64_VA_BITS_48 |
| bool "48-bit" |
| |
| config ARM64_VA_BITS_52 |
| bool "52-bit" |
| depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) |
| help |
| Enable 52-bit virtual addressing for userspace when explicitly |
| requested via a hint to mmap(). The kernel will also use 52-bit |
| virtual addresses for its own mappings (provided HW support for |
| this feature is available, otherwise it reverts to 48-bit). |
| |
| NOTE: Enabling 52-bit virtual addressing in conjunction with |
| ARMv8.3 Pointer Authentication will result in the PAC being |
| reduced from 7 bits to 3 bits, which may have a significant |
| impact on its susceptibility to brute-force attacks. |
| |
| If unsure, select 48-bit virtual addressing instead. |
| |
| endchoice |
| |
| config ARM64_FORCE_52BIT |
| bool "Force 52-bit virtual addresses for userspace" |
| depends on ARM64_VA_BITS_52 && EXPERT |
| help |
| For systems with 52-bit userspace VAs enabled, the kernel will attempt |
| to maintain compatibility with older software by providing 48-bit VAs |
| unless a hint is supplied to mmap. |
| |
| This configuration option disables the 48-bit compatibility logic, and |
| forces all userspace addresses to be 52-bit on HW that supports it. One |
| should only enable this configuration option for stress testing userspace |
| memory management code. If unsure say N here. |
| |
| config ARM64_VA_BITS |
| int |
| default 36 if ARM64_VA_BITS_36 |
| default 39 if ARM64_VA_BITS_39 |
| default 42 if ARM64_VA_BITS_42 |
| default 47 if ARM64_VA_BITS_47 |
| default 48 if ARM64_VA_BITS_48 |
| default 52 if ARM64_VA_BITS_52 |
| |
| choice |
| prompt "Physical address space size" |
| default ARM64_PA_BITS_48 |
| help |
| Choose the maximum physical address range that the kernel will |
| support. |
| |
| config ARM64_PA_BITS_48 |
| bool "48-bit" |
| |
| config ARM64_PA_BITS_52 |
| bool "52-bit (ARMv8.2)" |
| depends on ARM64_64K_PAGES |
| depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN |
| help |
| Enable support for a 52-bit physical address space, introduced as |
| part of the ARMv8.2-LPA extension. |
| |
| With this enabled, the kernel will also continue to work on CPUs that |
| do not support ARMv8.2-LPA, but with some added memory overhead (and |
| minor performance overhead). |
| |
| endchoice |
| |
| config ARM64_PA_BITS |
| int |
| default 48 if ARM64_PA_BITS_48 |
| default 52 if ARM64_PA_BITS_52 |
| |
| choice |
| prompt "Endianness" |
| default CPU_LITTLE_ENDIAN |
| help |
| Select the endianness of data accesses performed by the CPU. Userspace |
| applications will need to be compiled and linked for the endianness |
| that is selected here. |
| |
| config CPU_BIG_ENDIAN |
| bool "Build big-endian kernel" |
| depends on !LD_IS_LLD || LLD_VERSION >= 130000 |
| help |
| Say Y if you plan on running a kernel with a big-endian userspace. |
| |
| config CPU_LITTLE_ENDIAN |
| bool "Build little-endian kernel" |
| help |
| Say Y if you plan on running a kernel with a little-endian userspace. |
| This is usually the case for distributions targeting arm64. |
| |
| endchoice |
| |
| config SCHED_MC |
| bool "Multi-core scheduler support" |
| help |
| Multi-core scheduler support improves the CPU scheduler's decision |
| making when dealing with multi-core CPU chips at a cost of slightly |
| increased overhead in some places. If unsure say N here. |
| |
| config SCHED_CLUSTER |
| bool "Cluster scheduler support" |
| help |
| Cluster scheduler support improves the CPU scheduler's decision |
| making when dealing with machines that have clusters of CPUs. |
| Cluster usually means a couple of CPUs which are placed closely |
| by sharing mid-level caches, last-level cache tags or internal |
| busses. |
| |
| config SCHED_SMT |
| bool "SMT scheduler support" |
| help |
| Improves the CPU scheduler's decision making when dealing with |
| MultiThreading at a cost of slightly increased overhead in some |
| places. If unsure say N here. |
| |
| config NR_CPUS |
| int "Maximum number of CPUs (2-4096)" |
| range 2 4096 |
| default "256" |
| |
| config HOTPLUG_CPU |
| bool "Support for hot-pluggable CPUs" |
| select GENERIC_IRQ_MIGRATION |
| help |
| Say Y here to experiment with turning CPUs off and on. CPUs |
| can be controlled through /sys/devices/system/cpu. |
| |
| # Common NUMA Features |
| config NUMA |
| bool "NUMA Memory Allocation and Scheduler Support" |
| select GENERIC_ARCH_NUMA |
| select ACPI_NUMA if ACPI |
| select OF_NUMA |
| help |
| Enable NUMA (Non-Uniform Memory Access) support. |
| |
| The kernel will try to allocate memory used by a CPU on the |
| local memory of the CPU and add some more |
| NUMA awareness to the kernel. |
| |
| config NODES_SHIFT |
| int "Maximum NUMA Nodes (as a power of 2)" |
| range 1 10 |
| default "4" |
| depends on NUMA |
| help |
| Specify the maximum number of NUMA Nodes available on the target |
| system. Increases memory reserved to accommodate various tables. |
| |
| config USE_PERCPU_NUMA_NODE_ID |
| def_bool y |
| depends on NUMA |
| |
| config HAVE_SETUP_PER_CPU_AREA |
| def_bool y |
| depends on NUMA |
| |
| config NEED_PER_CPU_EMBED_FIRST_CHUNK |
| def_bool y |
| depends on NUMA |
| |
| config NEED_PER_CPU_PAGE_FIRST_CHUNK |
| def_bool y |
| depends on NUMA |
| |
| source "kernel/Kconfig.hz" |
| |
| config ARCH_SPARSEMEM_ENABLE |
| def_bool y |
| select SPARSEMEM_VMEMMAP_ENABLE |
| select SPARSEMEM_VMEMMAP |
| |
| config HW_PERF_EVENTS |
| def_bool y |
| depends on ARM_PMU |
| |
| config ARCH_HAS_FILTER_PGPROT |
| def_bool y |
| |
| # Supported by clang >= 7.0 |
| config CC_HAVE_SHADOW_CALL_STACK |
| def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) |
| |
| config PARAVIRT |
| bool "Enable paravirtualization code" |
| help |
| This changes the kernel so it can modify itself when it is run |
| under a hypervisor, potentially improving performance significantly |
| over full virtualization. |
| |
| config PARAVIRT_TIME_ACCOUNTING |
| bool "Paravirtual steal time accounting" |
| select PARAVIRT |
| help |
| Select this option to enable fine granularity task steal time |
| accounting. Time spent executing other tasks in parallel with |
| the current vCPU is discounted from the vCPU power. To account for |
| that, there can be a small performance impact. |
| |
| If in doubt, say N here. |
| |
| config KEXEC |
| depends on PM_SLEEP_SMP |
| select KEXEC_CORE |
| bool "kexec system call" |
| help |
| kexec is a system call that implements the ability to shutdown your |
| current kernel, and to start another kernel. It is like a reboot |
| but it is independent of the system firmware. And like a reboot |
| you can start any kernel with it, not just Linux. |
| |
| config KEXEC_FILE |
| bool "kexec file based system call" |
| select KEXEC_CORE |
| select HAVE_IMA_KEXEC if IMA |
| help |
| This is new version of kexec system call. This system call is |
| file based and takes file descriptors as system call argument |
| for kernel and initramfs as opposed to list of segments as |
| accepted by previous system call. |
| |
| config KEXEC_SIG |
| bool "Verify kernel signature during kexec_file_load() syscall" |
| depends on KEXEC_FILE |
| help |
| Select this option to verify a signature with loaded kernel |
| image. If configured, any attempt of loading a image without |
| valid signature will fail. |
| |
| In addition to that option, you need to enable signature |
| verification for the corresponding kernel image type being |
| loaded in order for this to work. |
| |
| config KEXEC_IMAGE_VERIFY_SIG |
| bool "Enable Image signature verification support" |
| default y |
| depends on KEXEC_SIG |
| depends on EFI && SIGNED_PE_FILE_VERIFICATION |
| help |
| Enable Image signature verification support. |
| |
| comment "Support for PE file signature verification disabled" |
| depends on KEXEC_SIG |
| depends on !EFI || !SIGNED_PE_FILE_VERIFICATION |
| |
| config CRASH_DUMP |
| bool "Build kdump crash kernel" |
| help |
| Generate crash dump after being started by kexec. This should |
| be normally only set in special crash dump kernels which are |
| loaded in the main kernel with kexec-tools into a specially |
| reserved region and then later executed after a crash by |
| kdump/kexec. |
| |
| For more details see Documentation/admin-guide/kdump/kdump.rst |
| |
| config TRANS_TABLE |
| def_bool y |
| depends on HIBERNATION || KEXEC_CORE |
| |
| config XEN_DOM0 |
| def_bool y |
| depends on XEN |
| |
| config XEN |
| bool "Xen guest support on ARM64" |
| depends on ARM64 && OF |
| select SWIOTLB_XEN |
| select PARAVIRT |
| help |
| Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. |
| |
| config FORCE_MAX_ZONEORDER |
| int |
| default "14" if ARM64_64K_PAGES |
| default "12" if ARM64_16K_PAGES |
| default "11" |
| help |
| The kernel memory allocator divides physically contiguous memory |
| blocks into "zones", where each zone is a power of two number of |
| pages. This option selects the largest power of two that the kernel |
| keeps in the memory allocator. If you need to allocate very large |
| blocks of physically contiguous memory, then you may need to |
| increase this value. |
| |
| This config option is actually maximum order plus one. For example, |
| a value of 11 means that the largest free memory block is 2^10 pages. |
| |
| We make sure that we can allocate upto a HugePage size for each configuration. |
| Hence we have : |
| MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 |
| |
| However for 4K, we choose a higher default value, 11 as opposed to 10, giving us |
| 4M allocations matching the default size used by generic code. |
| |
| config UNMAP_KERNEL_AT_EL0 |
| bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT |
| default y |
| help |
| Speculation attacks against some high-performance processors can |
| be used to bypass MMU permission checks and leak kernel data to |
| userspace. This can be defended against by unmapping the kernel |
| when running in userspace, mapping it back in on exception entry |
| via a trampoline page in the vector table. |
| |
| If unsure, say Y. |
| |
| config RODATA_FULL_DEFAULT_ENABLED |
| bool "Apply r/o permissions of VM areas also to their linear aliases" |
| default y |
| help |
| Apply read-only attributes of VM areas to the linear alias of |
| the backing pages as well. This prevents code or read-only data |
| from being modified (inadvertently or intentionally) via another |
| mapping of the same memory page. This additional enhancement can |
| be turned off at runtime by passing rodata=[off|on] (and turned on |
| with rodata=full if this option is set to 'n') |
| |
| This requires the linear region to be mapped down to pages, |
| which may adversely affect performance in some cases. |
| |
| config ARM64_SW_TTBR0_PAN |
| bool "Emulate Privileged Access Never using TTBR0_EL1 switching" |
| help |
| Enabling this option prevents the kernel from accessing |
| user-space memory directly by pointing TTBR0_EL1 to a reserved |
| zeroed area and reserved ASID. The user access routines |
| restore the valid TTBR0_EL1 temporarily. |
| |
| config ARM64_TAGGED_ADDR_ABI |
| bool "Enable the tagged user addresses syscall ABI" |
| default y |
| help |
| When this option is enabled, user applications can opt in to a |
| relaxed ABI via prctl() allowing tagged addresses to be passed |
| to system calls as pointer arguments. For details, see |
| Documentation/arm64/tagged-address-abi.rst. |
| |
| menuconfig COMPAT |
| bool "Kernel support for 32-bit EL0" |
| depends on ARM64_4K_PAGES || EXPERT |
| select HAVE_UID16 |
| select OLD_SIGSUSPEND3 |
| select COMPAT_OLD_SIGACTION |
| help |
| This option enables support for a 32-bit EL0 running under a 64-bit |
| kernel at EL1. AArch32-specific components such as system calls, |
| the user helper functions, VFP support and the ptrace interface are |
| handled appropriately by the kernel. |
| |
| If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware |
| that you will only be able to execute AArch32 binaries that were compiled |
| with page size aligned segments. |
| |
| If you want to execute 32-bit userspace applications, say Y. |
| |
| if COMPAT |
| |
| config KUSER_HELPERS |
| bool "Enable kuser helpers page for 32-bit applications" |
| default y |
| help |
| Warning: disabling this option may break 32-bit user programs. |
| |
| Provide kuser helpers to compat tasks. The kernel provides |
| helper code to userspace in read only form at a fixed location |
| to allow userspace to be independent of the CPU type fitted to |
| the system. This permits binaries to be run on ARMv4 through |
| to ARMv8 without modification. |
| |
| See Documentation/arm/kernel_user_helpers.rst for details. |
| |
| However, the fixed address nature of these helpers can be used |
| by ROP (return orientated programming) authors when creating |
| exploits. |
| |
| If all of the binaries and libraries which run on your platform |
| are built specifically for your platform, and make no use of |
| these helpers, then you can turn this option off to hinder |
| such exploits. However, in that case, if a binary or library |
| relying on those helpers is run, it will not function correctly. |
| |
| Say N here only if you are absolutely certain that you do not |
| need these helpers; otherwise, the safe option is to say Y. |
| |
| config COMPAT_VDSO |
| bool "Enable vDSO for 32-bit applications" |
| depends on !CPU_BIG_ENDIAN |
| depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" |
| select GENERIC_COMPAT_VDSO |
| default y |
| help |
| Place in the process address space of 32-bit applications an |
| ELF shared object providing fast implementations of gettimeofday |
| and clock_gettime. |
| |
| You must have a 32-bit build of glibc 2.22 or later for programs |
| to seamlessly take advantage of this. |
| |
| config THUMB2_COMPAT_VDSO |
| bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT |
| depends on COMPAT_VDSO |
| default y |
| help |
| Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, |
| otherwise with '-marm'. |
| |
| menuconfig ARMV8_DEPRECATED |
| bool "Emulate deprecated/obsolete ARMv8 instructions" |
| depends on SYSCTL |
| help |
| Legacy software support may require certain instructions |
| that have been deprecated or obsoleted in the architecture. |
| |
| Enable this config to enable selective emulation of these |
| features. |
| |
| If unsure, say Y |
| |
| if ARMV8_DEPRECATED |
| |
| config SWP_EMULATION |
| bool "Emulate SWP/SWPB instructions" |
| help |
| ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that |
| they are always undefined. Say Y here to enable software |
| emulation of these instructions for userspace using LDXR/STXR. |
| This feature can be controlled at runtime with the abi.swp |
| sysctl which is disabled by default. |
| |
| In some older versions of glibc [<=2.8] SWP is used during futex |
| trylock() operations with the assumption that the code will not |
| be preempted. This invalid assumption may be more likely to fail |
| with SWP emulation enabled, leading to deadlock of the user |
| application. |
| |
| NOTE: when accessing uncached shared regions, LDXR/STXR rely |
| on an external transaction monitoring block called a global |
| monitor to maintain update atomicity. If your system does not |
| implement a global monitor, this option can cause programs that |
| perform SWP operations to uncached memory to deadlock. |
| |
| If unsure, say Y |
| |
| config CP15_BARRIER_EMULATION |
| bool "Emulate CP15 Barrier instructions" |
| help |
| The CP15 barrier instructions - CP15ISB, CP15DSB, and |
| CP15DMB - are deprecated in ARMv8 (and ARMv7). It is |
| strongly recommended to use the ISB, DSB, and DMB |
| instructions instead. |
| |
| Say Y here to enable software emulation of these |
| instructions for AArch32 userspace code. When this option is |
| enabled, CP15 barrier usage is traced which can help |
| identify software that needs updating. This feature can be |
| controlled at runtime with the abi.cp15_barrier sysctl. |
| |
| If unsure, say Y |
| |
| config SETEND_EMULATION |
| bool "Emulate SETEND instruction" |
| help |
| The SETEND instruction alters the data-endianness of the |
| AArch32 EL0, and is deprecated in ARMv8. |
| |
| Say Y here to enable software emulation of the instruction |
| for AArch32 userspace code. This feature can be controlled |
| at runtime with the abi.setend sysctl. |
| |
| Note: All the cpus on the system must have mixed endian support at EL0 |
| for this feature to be enabled. If a new CPU - which doesn't support mixed |
| endian - is hotplugged in after this feature has been enabled, there could |
| be unexpected results in the applications. |
| |
| If unsure, say Y |
| endif |
| |
| endif |
| |
| menu "ARMv8.1 architectural features" |
| |
| config ARM64_HW_AFDBM |
| bool "Support for hardware updates of the Access and Dirty page flags" |
| default y |
| help |
| The ARMv8.1 architecture extensions introduce support for |
| hardware updates of the access and dirty information in page |
| table entries. When enabled in TCR_EL1 (HA and HD bits) on |
| capable processors, accesses to pages with PTE_AF cleared will |
| set this bit instead of raising an access flag fault. |
| Similarly, writes to read-only pages with the DBM bit set will |
| clear the read-only bit (AP[2]) instead of raising a |
| permission fault. |
| |
| Kernels built with this configuration option enabled continue |
| to work on pre-ARMv8.1 hardware and the performance impact is |
| minimal. If unsure, say Y. |
| |
| config ARM64_PAN |
| bool "Enable support for Privileged Access Never (PAN)" |
| default y |
| help |
| Privileged Access Never (PAN; part of the ARMv8.1 Extensions) |
| prevents the kernel or hypervisor from accessing user-space (EL0) |
| memory directly. |
| |
| Choosing this option will cause any unprotected (not using |
| copy_to_user et al) memory access to fail with a permission fault. |
| |
| The feature is detected at runtime, and will remain as a 'nop' |
| instruction if the cpu does not implement the feature. |
| |
| config AS_HAS_LDAPR |
| def_bool $(as-instr,.arch_extension rcpc) |
| |
| config AS_HAS_LSE_ATOMICS |
| def_bool $(as-instr,.arch_extension lse) |
| |
| config ARM64_LSE_ATOMICS |
| bool |
| default ARM64_USE_LSE_ATOMICS |
| depends on AS_HAS_LSE_ATOMICS |
| |
| config ARM64_USE_LSE_ATOMICS |
| bool "Atomic instructions" |
| depends on JUMP_LABEL |
| default y |
| help |
| As part of the Large System Extensions, ARMv8.1 introduces new |
| atomic instructions that are designed specifically to scale in |
| very large systems. |
| |
| Say Y here to make use of these instructions for the in-kernel |
| atomic routines. This incurs a small overhead on CPUs that do |
| not support these instructions and requires the kernel to be |
| built with binutils >= 2.25 in order for the new instructions |
| to be used. |
| |
| endmenu |
| |
| menu "ARMv8.2 architectural features" |
| |
| config AS_HAS_ARMV8_2 |
| def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) |
| |
| config AS_HAS_SHA3 |
| def_bool $(as-instr,.arch armv8.2-a+sha3) |
| |
| config ARM64_PMEM |
| bool "Enable support for persistent memory" |
| select ARCH_HAS_PMEM_API |
| select ARCH_HAS_UACCESS_FLUSHCACHE |
| help |
| Say Y to enable support for the persistent memory API based on the |
| ARMv8.2 DCPoP feature. |
| |
| The feature is detected at runtime, and the kernel will use DC CVAC |
| operations if DC CVAP is not supported (following the behaviour of |
| DC CVAP itself if the system does not define a point of persistence). |
| |
| config ARM64_RAS_EXTN |
| bool "Enable support for RAS CPU Extensions" |
| default y |
| help |
| CPUs that support the Reliability, Availability and Serviceability |
| (RAS) Extensions, part of ARMv8.2 are able to track faults and |
| errors, classify them and report them to software. |
| |
| On CPUs with these extensions system software can use additional |
| barriers to determine if faults are pending and read the |
| classification from a new set of registers. |
| |
| Selecting this feature will allow the kernel to use these barriers |
| and access the new registers if the system supports the extension. |
| Platform RAS features may additionally depend on firmware support. |
| |
| config ARM64_CNP |
| bool "Enable support for Common Not Private (CNP) translations" |
| default y |
| depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN |
| help |
| Common Not Private (CNP) allows translation table entries to |
| be shared between different PEs in the same inner shareable |
| domain, so the hardware can use this fact to optimise the |
| caching of such entries in the TLB. |
| |
| Selecting this option allows the CNP feature to be detected |
| at runtime, and does not affect PEs that do not implement |
| this feature. |
| |
| endmenu |
| |
| menu "ARMv8.3 architectural features" |
| |
| config ARM64_PTR_AUTH |
| bool "Enable support for pointer authentication" |
| default y |
| help |
| Pointer authentication (part of the ARMv8.3 Extensions) provides |
| instructions for signing and authenticating pointers against secret |
| keys, which can be used to mitigate Return Oriented Programming (ROP) |
| and other attacks. |
| |
| This option enables these instructions at EL0 (i.e. for userspace). |
| Choosing this option will cause the kernel to initialise secret keys |
| for each process at exec() time, with these keys being |
| context-switched along with the process. |
| |
| The feature is detected at runtime. If the feature is not present in |
| hardware it will not be advertised to userspace/KVM guest nor will it |
| be enabled. |
| |
| If the feature is present on the boot CPU but not on a late CPU, then |
| the late CPU will be parked. Also, if the boot CPU does not have |
| address auth and the late CPU has then the late CPU will still boot |
| but with the feature disabled. On such a system, this option should |
| not be selected. |
| |
| config ARM64_PTR_AUTH_KERNEL |
| bool "Use pointer authentication for kernel" |
| default y |
| depends on ARM64_PTR_AUTH |
| depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC |
| # Modern compilers insert a .note.gnu.property section note for PAC |
| # which is only understood by binutils starting with version 2.33.1. |
| depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) |
| depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE |
| depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) |
| help |
| If the compiler supports the -mbranch-protection or |
| -msign-return-address flag (e.g. GCC 7 or later), then this option |
| will cause the kernel itself to be compiled with return address |
| protection. In this case, and if the target hardware is known to |
| support pointer authentication, then CONFIG_STACKPROTECTOR can be |
| disabled with minimal loss of protection. |
| |
| This feature works with FUNCTION_GRAPH_TRACER option only if |
| DYNAMIC_FTRACE_WITH_REGS is enabled. |
| |
| config CC_HAS_BRANCH_PROT_PAC_RET |
| # GCC 9 or later, clang 8 or later |
| def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) |
| |
| config CC_HAS_SIGN_RETURN_ADDRESS |
| # GCC 7, 8 |
| def_bool $(cc-option,-msign-return-address=all) |
| |
| config AS_HAS_PAC |
| def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) |
| |
| config AS_HAS_CFI_NEGATE_RA_STATE |
| def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) |
| |
| endmenu |
| |
| menu "ARMv8.4 architectural features" |
| |
| config ARM64_AMU_EXTN |
| bool "Enable support for the Activity Monitors Unit CPU extension" |
| default y |
| help |
| The activity monitors extension is an optional extension introduced |
| by the ARMv8.4 CPU architecture. This enables support for version 1 |
| of the activity monitors architecture, AMUv1. |
| |
| To enable the use of this extension on CPUs that implement it, say Y. |
| |
| Note that for architectural reasons, firmware _must_ implement AMU |
| support when running on CPUs that present the activity monitors |
| extension. The required support is present in: |
| * Version 1.5 and later of the ARM Trusted Firmware |
| |
| For kernels that have this configuration enabled but boot with broken |
| firmware, you may need to say N here until the firmware is fixed. |
| Otherwise you may experience firmware panics or lockups when |
| accessing the counter registers. Even if you are not observing these |
| symptoms, the values returned by the register reads might not |
| correctly reflect reality. Most commonly, the value read will be 0, |
| indicating that the counter is not enabled. |
| |
| config AS_HAS_ARMV8_4 |
| def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) |
| |
| config ARM64_TLB_RANGE |
| bool "Enable support for tlbi range feature" |
| default y |
| depends on AS_HAS_ARMV8_4 |
| help |
| ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a |
| range of input addresses. |
| |
| The feature introduces new assembly instructions, and they were |
| support when binutils >= 2.30. |
| |
| endmenu |
| |
| menu "ARMv8.5 architectural features" |
| |
| config AS_HAS_ARMV8_5 |
| def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) |
| |
| config ARM64_BTI |
| bool "Branch Target Identification support" |
| default y |
| help |
| Branch Target Identification (part of the ARMv8.5 Extensions) |
| provides a mechanism to limit the set of locations to which computed |
| branch instructions such as BR or BLR can jump. |
| |
| To make use of BTI on CPUs that support it, say Y. |
| |
| BTI is intended to provide complementary protection to other control |
| flow integrity protection mechanisms, such as the Pointer |
| authentication mechanism provided as part of the ARMv8.3 Extensions. |
| For this reason, it does not make sense to enable this option without |
| also enabling support for pointer authentication. Thus, when |
| enabling this option you should also select ARM64_PTR_AUTH=y. |
| |
| Userspace binaries must also be specifically compiled to make use of |
| this mechanism. If you say N here or the hardware does not support |
| BTI, such binaries can still run, but you get no additional |
| enforcement of branch destinations. |
| |
| config ARM64_BTI_KERNEL |
| bool "Use Branch Target Identification for kernel" |
| default y |
| depends on ARM64_BTI |
| depends on ARM64_PTR_AUTH_KERNEL |
| depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI |
| # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 |
| depends on !CC_IS_GCC || GCC_VERSION >= 100100 |
| # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 |
| depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 |
| depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) |
| help |
| Build the kernel with Branch Target Identification annotations |
| and enable enforcement of this for kernel code. When this option |
| is enabled and the system supports BTI all kernel code including |
| modular code must have BTI enabled. |
| |
| config CC_HAS_BRANCH_PROT_PAC_RET_BTI |
| # GCC 9 or later, clang 8 or later |
| def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) |
| |
| config ARM64_E0PD |
| bool "Enable support for E0PD" |
| default y |
| help |
| E0PD (part of the ARMv8.5 extensions) allows us to ensure |
| that EL0 accesses made via TTBR1 always fault in constant time, |
| providing similar benefits to KASLR as those provided by KPTI, but |
| with lower overhead and without disrupting legitimate access to |
| kernel memory such as SPE. |
| |
| This option enables E0PD for TTBR1 where available. |
| |
| config ARCH_RANDOM |
| bool "Enable support for random number generation" |
| default y |
| help |
| Random number generation (part of the ARMv8.5 Extensions) |
| provides a high bandwidth, cryptographically secure |
| hardware random number generator. |
| |
| config ARM64_AS_HAS_MTE |
| # Initial support for MTE went in binutils 2.32.0, checked with |
| # ".arch armv8.5-a+memtag" below. However, this was incomplete |
| # as a late addition to the final architecture spec (LDGM/STGM) |
| # is only supported in the newer 2.32.x and 2.33 binutils |
| # versions, hence the extra "stgm" instruction check below. |
| def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) |
| |
| config ARM64_MTE |
| bool "Memory Tagging Extension support" |
| default y |
| depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI |
| depends on AS_HAS_ARMV8_5 |
| depends on AS_HAS_LSE_ATOMICS |
| # Required for tag checking in the uaccess routines |
| depends on ARM64_PAN |
| select ARCH_USES_HIGH_VMA_FLAGS |
| help |
| Memory Tagging (part of the ARMv8.5 Extensions) provides |
| architectural support for run-time, always-on detection of |
| various classes of memory error to aid with software debugging |
| to eliminate vulnerabilities arising from memory-unsafe |
| languages. |
| |
| This option enables the support for the Memory Tagging |
| Extension at EL0 (i.e. for userspace). |
| |
| Selecting this option allows the feature to be detected at |
| runtime. Any secondary CPU not implementing this feature will |
| not be allowed a late bring-up. |
| |
| Userspace binaries that want to use this feature must |
| explicitly opt in. The mechanism for the userspace is |
| described in: |
| |
| Documentation/arm64/memory-tagging-extension.rst. |
| |
| endmenu |
| |
| menu "ARMv8.7 architectural features" |
| |
| config ARM64_EPAN |
| bool "Enable support for Enhanced Privileged Access Never (EPAN)" |
| default y |
| depends on ARM64_PAN |
| help |
| Enhanced Privileged Access Never (EPAN) allows Privileged |
| Access Never to be used with Execute-only mappings. |
| |
| The feature is detected at runtime, and will remain disabled |
| if the cpu does not implement the feature. |
| endmenu |
| |
| config ARM64_SVE |
| bool "ARM Scalable Vector Extension support" |
| default y |
| help |
| The Scalable Vector Extension (SVE) is an extension to the AArch64 |
| execution state which complements and extends the SIMD functionality |
| of the base architecture to support much larger vectors and to enable |
| additional vectorisation opportunities. |
| |
| To enable use of this extension on CPUs that implement it, say Y. |
| |
| On CPUs that support the SVE2 extensions, this option will enable |
| those too. |
| |
| Note that for architectural reasons, firmware _must_ implement SVE |
| support when running on SVE capable hardware. The required support |
| is present in: |
| |
| * version 1.5 and later of the ARM Trusted Firmware |
| * the AArch64 boot wrapper since commit 5e1261e08abf |
| ("bootwrapper: SVE: Enable SVE for EL2 and below"). |
| |
| For other firmware implementations, consult the firmware documentation |
| or vendor. |
| |
| If you need the kernel to boot on SVE-capable hardware with broken |
| firmware, you may need to say N here until you get your firmware |
| fixed. Otherwise, you may experience firmware panics or lockups when |
| booting the kernel. If unsure and you are not observing these |
| symptoms, you should assume that it is safe to say Y. |
| |
| config ARM64_MODULE_PLTS |
| bool "Use PLTs to allow module memory to spill over into vmalloc area" |
| depends on MODULES |
| select HAVE_MOD_ARCH_SPECIFIC |
| help |
| Allocate PLTs when loading modules so that jumps and calls whose |
| targets are too far away for their relative offsets to be encoded |
| in the instructions themselves can be bounced via veneers in the |
| module's PLT. This allows modules to be allocated in the generic |
| vmalloc area after the dedicated module memory area has been |
| exhausted. |
| |
| When running with address space randomization (KASLR), the module |
| region itself may be too far away for ordinary relative jumps and |
| calls, and so in that case, module PLTs are required and cannot be |
| disabled. |
| |
| Specific errata workaround(s) might also force module PLTs to be |
| enabled (ARM64_ERRATUM_843419). |
| |
| config ARM64_PSEUDO_NMI |
| bool "Support for NMI-like interrupts" |
| select ARM_GIC_V3 |
| help |
| Adds support for mimicking Non-Maskable Interrupts through the use of |
| GIC interrupt priority. This support requires version 3 or later of |
| ARM GIC. |
| |
| This high priority configuration for interrupts needs to be |
| explicitly enabled by setting the kernel parameter |
| "irqchip.gicv3_pseudo_nmi" to 1. |
| |
| If unsure, say N |
| |
| if ARM64_PSEUDO_NMI |
| config ARM64_DEBUG_PRIORITY_MASKING |
| bool "Debug interrupt priority masking" |
| help |
| This adds runtime checks to functions enabling/disabling |
| interrupts when using priority masking. The additional checks verify |
| the validity of ICC_PMR_EL1 when calling concerned functions. |
| |
| If unsure, say N |
| endif |
| |
| config RELOCATABLE |
| bool "Build a relocatable kernel image" if EXPERT |
| select ARCH_HAS_RELR |
| default y |
| help |
| This builds the kernel as a Position Independent Executable (PIE), |
| which retains all relocation metadata required to relocate the |
| kernel binary at runtime to a different virtual address than the |
| address it was linked at. |
| Since AArch64 uses the RELA relocation format, this requires a |
| relocation pass at runtime even if the kernel is loaded at the |
| same address it was linked at. |
| |
| config RANDOMIZE_BASE |
| bool "Randomize the address of the kernel image" |
| select ARM64_MODULE_PLTS if MODULES |
| select RELOCATABLE |
| help |
| Randomizes the virtual address at which the kernel image is |
| loaded, as a security feature that deters exploit attempts |
| relying on knowledge of the location of kernel internals. |
| |
| It is the bootloader's job to provide entropy, by passing a |
| random u64 value in /chosen/kaslr-seed at kernel entry. |
| |
| When booting via the UEFI stub, it will invoke the firmware's |
| EFI_RNG_PROTOCOL implementation (if available) to supply entropy |
| to the kernel proper. In addition, it will randomise the physical |
| location of the kernel Image as well. |
| |
| If unsure, say N. |
| |
| config RANDOMIZE_MODULE_REGION_FULL |
| bool "Randomize the module region over a 2 GB range" |
| depends on RANDOMIZE_BASE |
| default y |
| help |
| Randomizes the location of the module region inside a 2 GB window |
| covering the core kernel. This way, it is less likely for modules |
| to leak information about the location of core kernel data structures |
| but it does imply that function calls between modules and the core |
| kernel will need to be resolved via veneers in the module PLT. |
| |
| When this option is not set, the module region will be randomized over |
| a limited range that contains the [_stext, _etext] interval of the |
| core kernel, so branch relocations are almost always in range unless |
| ARM64_MODULE_PLTS is enabled and the region is exhausted. In this |
| particular case of region exhaustion, modules might be able to fall |
| back to a larger 2GB area. |
| |
| config CC_HAVE_STACKPROTECTOR_SYSREG |
| def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) |
| |
| config STACKPROTECTOR_PER_TASK |
| def_bool y |
| depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG |
| |
| endmenu |
| |
| menu "Boot options" |
| |
| config ARM64_ACPI_PARKING_PROTOCOL |
| bool "Enable support for the ARM64 ACPI parking protocol" |
| depends on ACPI |
| help |
| Enable support for the ARM64 ACPI parking protocol. If disabled |
| the kernel will not allow booting through the ARM64 ACPI parking |
| protocol even if the corresponding data is present in the ACPI |
| MADT table. |
| |
| config CMDLINE |
| string "Default kernel command string" |
| default "" |
| help |
| Provide a set of default command-line options at build time by |
| entering them here. As a minimum, you should specify the the |
| root device (e.g. root=/dev/nfs). |
| |
| choice |
| prompt "Kernel command line type" if CMDLINE != "" |
| default CMDLINE_FROM_BOOTLOADER |
| help |
| Choose how the kernel will handle the provided default kernel |
| command line string. |
| |
| config CMDLINE_FROM_BOOTLOADER |
| bool "Use bootloader kernel arguments if available" |
| help |
| Uses the command-line options passed by the boot loader. If |
| the boot loader doesn't provide any, the default kernel command |
| string provided in CMDLINE will be used. |
| |
| config CMDLINE_FORCE |
| bool "Always use the default kernel command string" |
| help |
| Always use the default kernel command string, even if the boot |
| loader passes other arguments to the kernel. |
| This is useful if you cannot or don't want to change the |
| command-line options your boot loader passes to the kernel. |
| |
| endchoice |
| |
| config EFI_STUB |
| bool |
| |
| config EFI |
| bool "UEFI runtime support" |
| depends on OF && !CPU_BIG_ENDIAN |
| depends on KERNEL_MODE_NEON |
| select ARCH_SUPPORTS_ACPI |
| select LIBFDT |
| select UCS2_STRING |
| select EFI_PARAMS_FROM_FDT |
| select EFI_RUNTIME_WRAPPERS |
| select EFI_STUB |
| select EFI_GENERIC_STUB |
| imply IMA_SECURE_AND_OR_TRUSTED_BOOT |
| default y |
| help |
| This option provides support for runtime services provided |
| by UEFI firmware (such as non-volatile variables, realtime |
| clock, and platform reset). A UEFI stub is also provided to |
| allow the kernel to be booted as an EFI application. This |
| is only useful on systems that have UEFI firmware. |
| |
| config DMI |
| bool "Enable support for SMBIOS (DMI) tables" |
| depends on EFI |
| default y |
| help |
| This enables SMBIOS/DMI feature for systems. |
| |
| This option is only useful on systems that have UEFI firmware. |
| However, even with this option, the resultant kernel should |
| continue to boot on existing non-UEFI platforms. |
| |
| endmenu |
| |
| config SYSVIPC_COMPAT |
| def_bool y |
| depends on COMPAT && SYSVIPC |
| |
| menu "Power management options" |
| |
| source "kernel/power/Kconfig" |
| |
| config ARCH_HIBERNATION_POSSIBLE |
| def_bool y |
| depends on CPU_PM |
| |
| config ARCH_HIBERNATION_HEADER |
| def_bool y |
| depends on HIBERNATION |
| |
| config ARCH_SUSPEND_POSSIBLE |
| def_bool y |
| |
| endmenu |
| |
| menu "CPU Power Management" |
| |
| source "drivers/cpuidle/Kconfig" |
| |
| source "drivers/cpufreq/Kconfig" |
| |
| endmenu |
| |
| source "drivers/acpi/Kconfig" |
| |
| source "arch/arm64/kvm/Kconfig" |
| |
| if CRYPTO |
| source "arch/arm64/crypto/Kconfig" |
| endif |