| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "kvm.h" |
| #include "x86_emulate.h" |
| #include "irq.h" |
| #include "vmx.h" |
| #include "segment_descriptor.h" |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/sched.h> |
| #include <linux/moduleparam.h> |
| |
| #include <asm/io.h> |
| #include <asm/desc.h> |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| static int bypass_guest_pf = 1; |
| module_param(bypass_guest_pf, bool, 0); |
| |
| struct vmcs { |
| u32 revision_id; |
| u32 abort; |
| char data[0]; |
| }; |
| |
| struct vcpu_vmx { |
| struct kvm_vcpu vcpu; |
| int launched; |
| u8 fail; |
| struct kvm_msr_entry *guest_msrs; |
| struct kvm_msr_entry *host_msrs; |
| int nmsrs; |
| int save_nmsrs; |
| int msr_offset_efer; |
| #ifdef CONFIG_X86_64 |
| int msr_offset_kernel_gs_base; |
| #endif |
| struct vmcs *vmcs; |
| struct { |
| int loaded; |
| u16 fs_sel, gs_sel, ldt_sel; |
| int gs_ldt_reload_needed; |
| int fs_reload_needed; |
| int guest_efer_loaded; |
| }host_state; |
| |
| }; |
| |
| static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) |
| { |
| return container_of(vcpu, struct vcpu_vmx, vcpu); |
| } |
| |
| static int init_rmode_tss(struct kvm *kvm); |
| |
| static DEFINE_PER_CPU(struct vmcs *, vmxarea); |
| static DEFINE_PER_CPU(struct vmcs *, current_vmcs); |
| |
| static struct page *vmx_io_bitmap_a; |
| static struct page *vmx_io_bitmap_b; |
| |
| static struct vmcs_config { |
| int size; |
| int order; |
| u32 revision_id; |
| u32 pin_based_exec_ctrl; |
| u32 cpu_based_exec_ctrl; |
| u32 vmexit_ctrl; |
| u32 vmentry_ctrl; |
| } vmcs_config; |
| |
| #define VMX_SEGMENT_FIELD(seg) \ |
| [VCPU_SREG_##seg] = { \ |
| .selector = GUEST_##seg##_SELECTOR, \ |
| .base = GUEST_##seg##_BASE, \ |
| .limit = GUEST_##seg##_LIMIT, \ |
| .ar_bytes = GUEST_##seg##_AR_BYTES, \ |
| } |
| |
| static struct kvm_vmx_segment_field { |
| unsigned selector; |
| unsigned base; |
| unsigned limit; |
| unsigned ar_bytes; |
| } kvm_vmx_segment_fields[] = { |
| VMX_SEGMENT_FIELD(CS), |
| VMX_SEGMENT_FIELD(DS), |
| VMX_SEGMENT_FIELD(ES), |
| VMX_SEGMENT_FIELD(FS), |
| VMX_SEGMENT_FIELD(GS), |
| VMX_SEGMENT_FIELD(SS), |
| VMX_SEGMENT_FIELD(TR), |
| VMX_SEGMENT_FIELD(LDTR), |
| }; |
| |
| /* |
| * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it |
| * away by decrementing the array size. |
| */ |
| static const u32 vmx_msr_index[] = { |
| #ifdef CONFIG_X86_64 |
| MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE, |
| #endif |
| MSR_EFER, MSR_K6_STAR, |
| }; |
| #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index) |
| |
| static void load_msrs(struct kvm_msr_entry *e, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; ++i) |
| wrmsrl(e[i].index, e[i].data); |
| } |
| |
| static void save_msrs(struct kvm_msr_entry *e, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; ++i) |
| rdmsrl(e[i].index, e[i].data); |
| } |
| |
| static inline int is_page_fault(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int is_no_device(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int is_invalid_opcode(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| INTR_INFO_VALID_MASK)) == |
| (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int is_external_interrupt(u32 intr_info) |
| { |
| return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) |
| == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); |
| } |
| |
| static inline int cpu_has_vmx_tpr_shadow(void) |
| { |
| return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW); |
| } |
| |
| static inline int vm_need_tpr_shadow(struct kvm *kvm) |
| { |
| return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm))); |
| } |
| |
| static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) |
| { |
| int i; |
| |
| for (i = 0; i < vmx->nmsrs; ++i) |
| if (vmx->guest_msrs[i].index == msr) |
| return i; |
| return -1; |
| } |
| |
| static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) |
| { |
| int i; |
| |
| i = __find_msr_index(vmx, msr); |
| if (i >= 0) |
| return &vmx->guest_msrs[i]; |
| return NULL; |
| } |
| |
| static void vmcs_clear(struct vmcs *vmcs) |
| { |
| u64 phys_addr = __pa(vmcs); |
| u8 error; |
| |
| asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0" |
| : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) |
| : "cc", "memory"); |
| if (error) |
| printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", |
| vmcs, phys_addr); |
| } |
| |
| static void __vcpu_clear(void *arg) |
| { |
| struct vcpu_vmx *vmx = arg; |
| int cpu = raw_smp_processor_id(); |
| |
| if (vmx->vcpu.cpu == cpu) |
| vmcs_clear(vmx->vmcs); |
| if (per_cpu(current_vmcs, cpu) == vmx->vmcs) |
| per_cpu(current_vmcs, cpu) = NULL; |
| rdtscll(vmx->vcpu.host_tsc); |
| } |
| |
| static void vcpu_clear(struct vcpu_vmx *vmx) |
| { |
| if (vmx->vcpu.cpu == -1) |
| return; |
| smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1); |
| vmx->launched = 0; |
| } |
| |
| static unsigned long vmcs_readl(unsigned long field) |
| { |
| unsigned long value; |
| |
| asm volatile (ASM_VMX_VMREAD_RDX_RAX |
| : "=a"(value) : "d"(field) : "cc"); |
| return value; |
| } |
| |
| static u16 vmcs_read16(unsigned long field) |
| { |
| return vmcs_readl(field); |
| } |
| |
| static u32 vmcs_read32(unsigned long field) |
| { |
| return vmcs_readl(field); |
| } |
| |
| static u64 vmcs_read64(unsigned long field) |
| { |
| #ifdef CONFIG_X86_64 |
| return vmcs_readl(field); |
| #else |
| return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); |
| #endif |
| } |
| |
| static noinline void vmwrite_error(unsigned long field, unsigned long value) |
| { |
| printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", |
| field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| dump_stack(); |
| } |
| |
| static void vmcs_writel(unsigned long field, unsigned long value) |
| { |
| u8 error; |
| |
| asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0" |
| : "=q"(error) : "a"(value), "d"(field) : "cc" ); |
| if (unlikely(error)) |
| vmwrite_error(field, value); |
| } |
| |
| static void vmcs_write16(unsigned long field, u16 value) |
| { |
| vmcs_writel(field, value); |
| } |
| |
| static void vmcs_write32(unsigned long field, u32 value) |
| { |
| vmcs_writel(field, value); |
| } |
| |
| static void vmcs_write64(unsigned long field, u64 value) |
| { |
| #ifdef CONFIG_X86_64 |
| vmcs_writel(field, value); |
| #else |
| vmcs_writel(field, value); |
| asm volatile (""); |
| vmcs_writel(field+1, value >> 32); |
| #endif |
| } |
| |
| static void vmcs_clear_bits(unsigned long field, u32 mask) |
| { |
| vmcs_writel(field, vmcs_readl(field) & ~mask); |
| } |
| |
| static void vmcs_set_bits(unsigned long field, u32 mask) |
| { |
| vmcs_writel(field, vmcs_readl(field) | mask); |
| } |
| |
| static void update_exception_bitmap(struct kvm_vcpu *vcpu) |
| { |
| u32 eb; |
| |
| eb = (1u << PF_VECTOR) | (1u << UD_VECTOR); |
| if (!vcpu->fpu_active) |
| eb |= 1u << NM_VECTOR; |
| if (vcpu->guest_debug.enabled) |
| eb |= 1u << 1; |
| if (vcpu->rmode.active) |
| eb = ~0; |
| vmcs_write32(EXCEPTION_BITMAP, eb); |
| } |
| |
| static void reload_tss(void) |
| { |
| #ifndef CONFIG_X86_64 |
| |
| /* |
| * VT restores TR but not its size. Useless. |
| */ |
| struct descriptor_table gdt; |
| struct segment_descriptor *descs; |
| |
| get_gdt(&gdt); |
| descs = (void *)gdt.base; |
| descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ |
| load_TR_desc(); |
| #endif |
| } |
| |
| static void load_transition_efer(struct vcpu_vmx *vmx) |
| { |
| int efer_offset = vmx->msr_offset_efer; |
| u64 host_efer = vmx->host_msrs[efer_offset].data; |
| u64 guest_efer = vmx->guest_msrs[efer_offset].data; |
| u64 ignore_bits; |
| |
| if (efer_offset < 0) |
| return; |
| /* |
| * NX is emulated; LMA and LME handled by hardware; SCE meaninless |
| * outside long mode |
| */ |
| ignore_bits = EFER_NX | EFER_SCE; |
| #ifdef CONFIG_X86_64 |
| ignore_bits |= EFER_LMA | EFER_LME; |
| /* SCE is meaningful only in long mode on Intel */ |
| if (guest_efer & EFER_LMA) |
| ignore_bits &= ~(u64)EFER_SCE; |
| #endif |
| if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits)) |
| return; |
| |
| vmx->host_state.guest_efer_loaded = 1; |
| guest_efer &= ~ignore_bits; |
| guest_efer |= host_efer & ignore_bits; |
| wrmsrl(MSR_EFER, guest_efer); |
| vmx->vcpu.stat.efer_reload++; |
| } |
| |
| static void reload_host_efer(struct vcpu_vmx *vmx) |
| { |
| if (vmx->host_state.guest_efer_loaded) { |
| vmx->host_state.guest_efer_loaded = 0; |
| load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1); |
| } |
| } |
| |
| static void vmx_save_host_state(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (vmx->host_state.loaded) |
| return; |
| |
| vmx->host_state.loaded = 1; |
| /* |
| * Set host fs and gs selectors. Unfortunately, 22.2.3 does not |
| * allow segment selectors with cpl > 0 or ti == 1. |
| */ |
| vmx->host_state.ldt_sel = read_ldt(); |
| vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; |
| vmx->host_state.fs_sel = read_fs(); |
| if (!(vmx->host_state.fs_sel & 7)) { |
| vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); |
| vmx->host_state.fs_reload_needed = 0; |
| } else { |
| vmcs_write16(HOST_FS_SELECTOR, 0); |
| vmx->host_state.fs_reload_needed = 1; |
| } |
| vmx->host_state.gs_sel = read_gs(); |
| if (!(vmx->host_state.gs_sel & 7)) |
| vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); |
| else { |
| vmcs_write16(HOST_GS_SELECTOR, 0); |
| vmx->host_state.gs_ldt_reload_needed = 1; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); |
| vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); |
| #else |
| vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); |
| vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| if (is_long_mode(&vmx->vcpu)) { |
| save_msrs(vmx->host_msrs + |
| vmx->msr_offset_kernel_gs_base, 1); |
| } |
| #endif |
| load_msrs(vmx->guest_msrs, vmx->save_nmsrs); |
| load_transition_efer(vmx); |
| } |
| |
| static void vmx_load_host_state(struct vcpu_vmx *vmx) |
| { |
| unsigned long flags; |
| |
| if (!vmx->host_state.loaded) |
| return; |
| |
| vmx->host_state.loaded = 0; |
| if (vmx->host_state.fs_reload_needed) |
| load_fs(vmx->host_state.fs_sel); |
| if (vmx->host_state.gs_ldt_reload_needed) { |
| load_ldt(vmx->host_state.ldt_sel); |
| /* |
| * If we have to reload gs, we must take care to |
| * preserve our gs base. |
| */ |
| local_irq_save(flags); |
| load_gs(vmx->host_state.gs_sel); |
| #ifdef CONFIG_X86_64 |
| wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE)); |
| #endif |
| local_irq_restore(flags); |
| } |
| reload_tss(); |
| save_msrs(vmx->guest_msrs, vmx->save_nmsrs); |
| load_msrs(vmx->host_msrs, vmx->save_nmsrs); |
| reload_host_efer(vmx); |
| } |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put(), but assumes |
| * vcpu mutex is already taken. |
| */ |
| static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u64 phys_addr = __pa(vmx->vmcs); |
| u64 tsc_this, delta; |
| |
| if (vcpu->cpu != cpu) { |
| vcpu_clear(vmx); |
| kvm_migrate_apic_timer(vcpu); |
| } |
| |
| if (per_cpu(current_vmcs, cpu) != vmx->vmcs) { |
| u8 error; |
| |
| per_cpu(current_vmcs, cpu) = vmx->vmcs; |
| asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0" |
| : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) |
| : "cc"); |
| if (error) |
| printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n", |
| vmx->vmcs, phys_addr); |
| } |
| |
| if (vcpu->cpu != cpu) { |
| struct descriptor_table dt; |
| unsigned long sysenter_esp; |
| |
| vcpu->cpu = cpu; |
| /* |
| * Linux uses per-cpu TSS and GDT, so set these when switching |
| * processors. |
| */ |
| vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */ |
| get_gdt(&dt); |
| vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */ |
| |
| rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); |
| vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ |
| |
| /* |
| * Make sure the time stamp counter is monotonous. |
| */ |
| rdtscll(tsc_this); |
| delta = vcpu->host_tsc - tsc_this; |
| vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta); |
| } |
| } |
| |
| static void vmx_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| vmx_load_host_state(to_vmx(vcpu)); |
| kvm_put_guest_fpu(vcpu); |
| } |
| |
| static void vmx_fpu_activate(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->fpu_active) |
| return; |
| vcpu->fpu_active = 1; |
| vmcs_clear_bits(GUEST_CR0, X86_CR0_TS); |
| if (vcpu->cr0 & X86_CR0_TS) |
| vmcs_set_bits(GUEST_CR0, X86_CR0_TS); |
| update_exception_bitmap(vcpu); |
| } |
| |
| static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->fpu_active) |
| return; |
| vcpu->fpu_active = 0; |
| vmcs_set_bits(GUEST_CR0, X86_CR0_TS); |
| update_exception_bitmap(vcpu); |
| } |
| |
| static void vmx_vcpu_decache(struct kvm_vcpu *vcpu) |
| { |
| vcpu_clear(to_vmx(vcpu)); |
| } |
| |
| static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| return vmcs_readl(GUEST_RFLAGS); |
| } |
| |
| static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| if (vcpu->rmode.active) |
| rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| vmcs_writel(GUEST_RFLAGS, rflags); |
| } |
| |
| static void skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rip; |
| u32 interruptibility; |
| |
| rip = vmcs_readl(GUEST_RIP); |
| rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| vmcs_writel(GUEST_RIP, rip); |
| |
| /* |
| * We emulated an instruction, so temporary interrupt blocking |
| * should be removed, if set. |
| */ |
| interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| if (interruptibility & 3) |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, |
| interruptibility & ~3); |
| vcpu->interrupt_window_open = 1; |
| } |
| |
| static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code) |
| { |
| printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n", |
| vmcs_readl(GUEST_RIP)); |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| GP_VECTOR | |
| INTR_TYPE_EXCEPTION | |
| INTR_INFO_DELIEVER_CODE_MASK | |
| INTR_INFO_VALID_MASK); |
| } |
| |
| static void vmx_inject_ud(struct kvm_vcpu *vcpu) |
| { |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| UD_VECTOR | |
| INTR_TYPE_EXCEPTION | |
| INTR_INFO_VALID_MASK); |
| } |
| |
| /* |
| * Swap MSR entry in host/guest MSR entry array. |
| */ |
| #ifdef CONFIG_X86_64 |
| static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) |
| { |
| struct kvm_msr_entry tmp; |
| |
| tmp = vmx->guest_msrs[to]; |
| vmx->guest_msrs[to] = vmx->guest_msrs[from]; |
| vmx->guest_msrs[from] = tmp; |
| tmp = vmx->host_msrs[to]; |
| vmx->host_msrs[to] = vmx->host_msrs[from]; |
| vmx->host_msrs[from] = tmp; |
| } |
| #endif |
| |
| /* |
| * Set up the vmcs to automatically save and restore system |
| * msrs. Don't touch the 64-bit msrs if the guest is in legacy |
| * mode, as fiddling with msrs is very expensive. |
| */ |
| static void setup_msrs(struct vcpu_vmx *vmx) |
| { |
| int save_nmsrs; |
| |
| save_nmsrs = 0; |
| #ifdef CONFIG_X86_64 |
| if (is_long_mode(&vmx->vcpu)) { |
| int index; |
| |
| index = __find_msr_index(vmx, MSR_SYSCALL_MASK); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_LSTAR); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_CSTAR); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE); |
| if (index >= 0) |
| move_msr_up(vmx, index, save_nmsrs++); |
| /* |
| * MSR_K6_STAR is only needed on long mode guests, and only |
| * if efer.sce is enabled. |
| */ |
| index = __find_msr_index(vmx, MSR_K6_STAR); |
| if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE)) |
| move_msr_up(vmx, index, save_nmsrs++); |
| } |
| #endif |
| vmx->save_nmsrs = save_nmsrs; |
| |
| #ifdef CONFIG_X86_64 |
| vmx->msr_offset_kernel_gs_base = |
| __find_msr_index(vmx, MSR_KERNEL_GS_BASE); |
| #endif |
| vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER); |
| } |
| |
| /* |
| * reads and returns guest's timestamp counter "register" |
| * guest_tsc = host_tsc + tsc_offset -- 21.3 |
| */ |
| static u64 guest_read_tsc(void) |
| { |
| u64 host_tsc, tsc_offset; |
| |
| rdtscll(host_tsc); |
| tsc_offset = vmcs_read64(TSC_OFFSET); |
| return host_tsc + tsc_offset; |
| } |
| |
| /* |
| * writes 'guest_tsc' into guest's timestamp counter "register" |
| * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc |
| */ |
| static void guest_write_tsc(u64 guest_tsc) |
| { |
| u64 host_tsc; |
| |
| rdtscll(host_tsc); |
| vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc); |
| } |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| u64 data; |
| struct kvm_msr_entry *msr; |
| |
| if (!pdata) { |
| printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); |
| return -EINVAL; |
| } |
| |
| switch (msr_index) { |
| #ifdef CONFIG_X86_64 |
| case MSR_FS_BASE: |
| data = vmcs_readl(GUEST_FS_BASE); |
| break; |
| case MSR_GS_BASE: |
| data = vmcs_readl(GUEST_GS_BASE); |
| break; |
| case MSR_EFER: |
| return kvm_get_msr_common(vcpu, msr_index, pdata); |
| #endif |
| case MSR_IA32_TIME_STAMP_COUNTER: |
| data = guest_read_tsc(); |
| break; |
| case MSR_IA32_SYSENTER_CS: |
| data = vmcs_read32(GUEST_SYSENTER_CS); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| data = vmcs_readl(GUEST_SYSENTER_EIP); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| data = vmcs_readl(GUEST_SYSENTER_ESP); |
| break; |
| default: |
| msr = find_msr_entry(to_vmx(vcpu), msr_index); |
| if (msr) { |
| data = msr->data; |
| break; |
| } |
| return kvm_get_msr_common(vcpu, msr_index, pdata); |
| } |
| |
| *pdata = data; |
| return 0; |
| } |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_msr_entry *msr; |
| int ret = 0; |
| |
| switch (msr_index) { |
| #ifdef CONFIG_X86_64 |
| case MSR_EFER: |
| ret = kvm_set_msr_common(vcpu, msr_index, data); |
| if (vmx->host_state.loaded) { |
| reload_host_efer(vmx); |
| load_transition_efer(vmx); |
| } |
| break; |
| case MSR_FS_BASE: |
| vmcs_writel(GUEST_FS_BASE, data); |
| break; |
| case MSR_GS_BASE: |
| vmcs_writel(GUEST_GS_BASE, data); |
| break; |
| #endif |
| case MSR_IA32_SYSENTER_CS: |
| vmcs_write32(GUEST_SYSENTER_CS, data); |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| vmcs_writel(GUEST_SYSENTER_EIP, data); |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| vmcs_writel(GUEST_SYSENTER_ESP, data); |
| break; |
| case MSR_IA32_TIME_STAMP_COUNTER: |
| guest_write_tsc(data); |
| break; |
| default: |
| msr = find_msr_entry(vmx, msr_index); |
| if (msr) { |
| msr->data = data; |
| if (vmx->host_state.loaded) |
| load_msrs(vmx->guest_msrs, vmx->save_nmsrs); |
| break; |
| } |
| ret = kvm_set_msr_common(vcpu, msr_index, data); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Sync the rsp and rip registers into the vcpu structure. This allows |
| * registers to be accessed by indexing vcpu->regs. |
| */ |
| static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu) |
| { |
| vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); |
| vcpu->rip = vmcs_readl(GUEST_RIP); |
| } |
| |
| /* |
| * Syncs rsp and rip back into the vmcs. Should be called after possible |
| * modification. |
| */ |
| static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu) |
| { |
| vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]); |
| vmcs_writel(GUEST_RIP, vcpu->rip); |
| } |
| |
| static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) |
| { |
| unsigned long dr7 = 0x400; |
| int old_singlestep; |
| |
| old_singlestep = vcpu->guest_debug.singlestep; |
| |
| vcpu->guest_debug.enabled = dbg->enabled; |
| if (vcpu->guest_debug.enabled) { |
| int i; |
| |
| dr7 |= 0x200; /* exact */ |
| for (i = 0; i < 4; ++i) { |
| if (!dbg->breakpoints[i].enabled) |
| continue; |
| vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address; |
| dr7 |= 2 << (i*2); /* global enable */ |
| dr7 |= 0 << (i*4+16); /* execution breakpoint */ |
| } |
| |
| vcpu->guest_debug.singlestep = dbg->singlestep; |
| } else |
| vcpu->guest_debug.singlestep = 0; |
| |
| if (old_singlestep && !vcpu->guest_debug.singlestep) { |
| unsigned long flags; |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| vmcs_writel(GUEST_RFLAGS, flags); |
| } |
| |
| update_exception_bitmap(vcpu); |
| vmcs_writel(GUEST_DR7, dr7); |
| |
| return 0; |
| } |
| |
| static int vmx_get_irq(struct kvm_vcpu *vcpu) |
| { |
| u32 idtv_info_field; |
| |
| idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| if (idtv_info_field & INTR_INFO_VALID_MASK) { |
| if (is_external_interrupt(idtv_info_field)) |
| return idtv_info_field & VECTORING_INFO_VECTOR_MASK; |
| else |
| printk("pending exception: not handled yet\n"); |
| } |
| return -1; |
| } |
| |
| static __init int cpu_has_kvm_support(void) |
| { |
| unsigned long ecx = cpuid_ecx(1); |
| return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */ |
| } |
| |
| static __init int vmx_disabled_by_bios(void) |
| { |
| u64 msr; |
| |
| rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); |
| return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED | |
| MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED)) |
| == MSR_IA32_FEATURE_CONTROL_LOCKED; |
| /* locked but not enabled */ |
| } |
| |
| static void hardware_enable(void *garbage) |
| { |
| int cpu = raw_smp_processor_id(); |
| u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); |
| u64 old; |
| |
| rdmsrl(MSR_IA32_FEATURE_CONTROL, old); |
| if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED | |
| MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED)) |
| != (MSR_IA32_FEATURE_CONTROL_LOCKED | |
| MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED)) |
| /* enable and lock */ |
| wrmsrl(MSR_IA32_FEATURE_CONTROL, old | |
| MSR_IA32_FEATURE_CONTROL_LOCKED | |
| MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED); |
| write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */ |
| asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr) |
| : "memory", "cc"); |
| } |
| |
| static void hardware_disable(void *garbage) |
| { |
| asm volatile (ASM_VMX_VMXOFF : : : "cc"); |
| } |
| |
| static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, |
| u32 msr, u32* result) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 ctl = ctl_min | ctl_opt; |
| |
| rdmsr(msr, vmx_msr_low, vmx_msr_high); |
| |
| ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ |
| ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ |
| |
| /* Ensure minimum (required) set of control bits are supported. */ |
| if (ctl_min & ~ctl) |
| return -EIO; |
| |
| *result = ctl; |
| return 0; |
| } |
| |
| static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) |
| { |
| u32 vmx_msr_low, vmx_msr_high; |
| u32 min, opt; |
| u32 _pin_based_exec_control = 0; |
| u32 _cpu_based_exec_control = 0; |
| u32 _vmexit_control = 0; |
| u32 _vmentry_control = 0; |
| |
| min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; |
| opt = 0; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, |
| &_pin_based_exec_control) < 0) |
| return -EIO; |
| |
| min = CPU_BASED_HLT_EXITING | |
| #ifdef CONFIG_X86_64 |
| CPU_BASED_CR8_LOAD_EXITING | |
| CPU_BASED_CR8_STORE_EXITING | |
| #endif |
| CPU_BASED_USE_IO_BITMAPS | |
| CPU_BASED_MOV_DR_EXITING | |
| CPU_BASED_USE_TSC_OFFSETING; |
| #ifdef CONFIG_X86_64 |
| opt = CPU_BASED_TPR_SHADOW; |
| #else |
| opt = 0; |
| #endif |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, |
| &_cpu_based_exec_control) < 0) |
| return -EIO; |
| #ifdef CONFIG_X86_64 |
| if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) |
| _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & |
| ~CPU_BASED_CR8_STORE_EXITING; |
| #endif |
| |
| min = 0; |
| #ifdef CONFIG_X86_64 |
| min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; |
| #endif |
| opt = 0; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, |
| &_vmexit_control) < 0) |
| return -EIO; |
| |
| min = opt = 0; |
| if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, |
| &_vmentry_control) < 0) |
| return -EIO; |
| |
| rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); |
| |
| /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ |
| if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) |
| return -EIO; |
| |
| #ifdef CONFIG_X86_64 |
| /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ |
| if (vmx_msr_high & (1u<<16)) |
| return -EIO; |
| #endif |
| |
| /* Require Write-Back (WB) memory type for VMCS accesses. */ |
| if (((vmx_msr_high >> 18) & 15) != 6) |
| return -EIO; |
| |
| vmcs_conf->size = vmx_msr_high & 0x1fff; |
| vmcs_conf->order = get_order(vmcs_config.size); |
| vmcs_conf->revision_id = vmx_msr_low; |
| |
| vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; |
| vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; |
| vmcs_conf->vmexit_ctrl = _vmexit_control; |
| vmcs_conf->vmentry_ctrl = _vmentry_control; |
| |
| return 0; |
| } |
| |
| static struct vmcs *alloc_vmcs_cpu(int cpu) |
| { |
| int node = cpu_to_node(cpu); |
| struct page *pages; |
| struct vmcs *vmcs; |
| |
| pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); |
| if (!pages) |
| return NULL; |
| vmcs = page_address(pages); |
| memset(vmcs, 0, vmcs_config.size); |
| vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ |
| return vmcs; |
| } |
| |
| static struct vmcs *alloc_vmcs(void) |
| { |
| return alloc_vmcs_cpu(raw_smp_processor_id()); |
| } |
| |
| static void free_vmcs(struct vmcs *vmcs) |
| { |
| free_pages((unsigned long)vmcs, vmcs_config.order); |
| } |
| |
| static void free_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| free_vmcs(per_cpu(vmxarea, cpu)); |
| } |
| |
| static __init int alloc_kvm_area(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| struct vmcs *vmcs; |
| |
| vmcs = alloc_vmcs_cpu(cpu); |
| if (!vmcs) { |
| free_kvm_area(); |
| return -ENOMEM; |
| } |
| |
| per_cpu(vmxarea, cpu) = vmcs; |
| } |
| return 0; |
| } |
| |
| static __init int hardware_setup(void) |
| { |
| if (setup_vmcs_config(&vmcs_config) < 0) |
| return -EIO; |
| return alloc_kvm_area(); |
| } |
| |
| static __exit void hardware_unsetup(void) |
| { |
| free_kvm_area(); |
| } |
| |
| static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) { |
| vmcs_write16(sf->selector, save->selector); |
| vmcs_writel(sf->base, save->base); |
| vmcs_write32(sf->limit, save->limit); |
| vmcs_write32(sf->ar_bytes, save->ar); |
| } else { |
| u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK) |
| << AR_DPL_SHIFT; |
| vmcs_write32(sf->ar_bytes, 0x93 | dpl); |
| } |
| } |
| |
| static void enter_pmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| |
| vcpu->rmode.active = 0; |
| |
| vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base); |
| vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit); |
| vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM); |
| flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT); |
| vmcs_writel(GUEST_RFLAGS, flags); |
| |
| vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | |
| (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); |
| |
| update_exception_bitmap(vcpu); |
| |
| fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es); |
| fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds); |
| fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs); |
| fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs); |
| |
| vmcs_write16(GUEST_SS_SELECTOR, 0); |
| vmcs_write32(GUEST_SS_AR_BYTES, 0x93); |
| |
| vmcs_write16(GUEST_CS_SELECTOR, |
| vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK); |
| vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); |
| } |
| |
| static gva_t rmode_tss_base(struct kvm* kvm) |
| { |
| gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3; |
| return base_gfn << PAGE_SHIFT; |
| } |
| |
| static void fix_rmode_seg(int seg, struct kvm_save_segment *save) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| save->selector = vmcs_read16(sf->selector); |
| save->base = vmcs_readl(sf->base); |
| save->limit = vmcs_read32(sf->limit); |
| save->ar = vmcs_read32(sf->ar_bytes); |
| vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4); |
| vmcs_write32(sf->limit, 0xffff); |
| vmcs_write32(sf->ar_bytes, 0xf3); |
| } |
| |
| static void enter_rmode(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| |
| vcpu->rmode.active = 1; |
| |
| vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE); |
| vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm)); |
| |
| vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT); |
| vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); |
| |
| vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; |
| |
| flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| |
| vmcs_writel(GUEST_RFLAGS, flags); |
| vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); |
| update_exception_bitmap(vcpu); |
| |
| vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4); |
| vmcs_write32(GUEST_SS_LIMIT, 0xffff); |
| vmcs_write32(GUEST_SS_AR_BYTES, 0xf3); |
| |
| vmcs_write32(GUEST_CS_AR_BYTES, 0xf3); |
| vmcs_write32(GUEST_CS_LIMIT, 0xffff); |
| if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000) |
| vmcs_writel(GUEST_CS_BASE, 0xf0000); |
| vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4); |
| |
| fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es); |
| fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds); |
| fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs); |
| fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs); |
| |
| kvm_mmu_reset_context(vcpu); |
| init_rmode_tss(vcpu->kvm); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void enter_lmode(struct kvm_vcpu *vcpu) |
| { |
| u32 guest_tr_ar; |
| |
| guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { |
| printk(KERN_DEBUG "%s: tss fixup for long mode. \n", |
| __FUNCTION__); |
| vmcs_write32(GUEST_TR_AR_BYTES, |
| (guest_tr_ar & ~AR_TYPE_MASK) |
| | AR_TYPE_BUSY_64_TSS); |
| } |
| |
| vcpu->shadow_efer |= EFER_LMA; |
| |
| find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME; |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) |
| | VM_ENTRY_IA32E_MODE); |
| } |
| |
| static void exit_lmode(struct kvm_vcpu *vcpu) |
| { |
| vcpu->shadow_efer &= ~EFER_LMA; |
| |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) |
| & ~VM_ENTRY_IA32E_MODE); |
| } |
| |
| #endif |
| |
| static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) |
| { |
| vcpu->cr4 &= KVM_GUEST_CR4_MASK; |
| vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK; |
| } |
| |
| static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| vmx_fpu_deactivate(vcpu); |
| |
| if (vcpu->rmode.active && (cr0 & X86_CR0_PE)) |
| enter_pmode(vcpu); |
| |
| if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE)) |
| enter_rmode(vcpu); |
| |
| #ifdef CONFIG_X86_64 |
| if (vcpu->shadow_efer & EFER_LME) { |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) |
| enter_lmode(vcpu); |
| if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) |
| exit_lmode(vcpu); |
| } |
| #endif |
| |
| vmcs_writel(CR0_READ_SHADOW, cr0); |
| vmcs_writel(GUEST_CR0, |
| (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON); |
| vcpu->cr0 = cr0; |
| |
| if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE)) |
| vmx_fpu_activate(vcpu); |
| } |
| |
| static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| vmcs_writel(GUEST_CR3, cr3); |
| if (vcpu->cr0 & X86_CR0_PE) |
| vmx_fpu_deactivate(vcpu); |
| } |
| |
| static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| vmcs_writel(CR4_READ_SHADOW, cr4); |
| vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ? |
| KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON)); |
| vcpu->cr4 = cr4; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); |
| |
| vcpu->shadow_efer = efer; |
| if (efer & EFER_LMA) { |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) | |
| VM_ENTRY_IA32E_MODE); |
| msr->data = efer; |
| |
| } else { |
| vmcs_write32(VM_ENTRY_CONTROLS, |
| vmcs_read32(VM_ENTRY_CONTROLS) & |
| ~VM_ENTRY_IA32E_MODE); |
| |
| msr->data = efer & ~EFER_LME; |
| } |
| setup_msrs(vmx); |
| } |
| |
| #endif |
| |
| static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| return vmcs_readl(sf->base); |
| } |
| |
| static void vmx_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| u32 ar; |
| |
| var->base = vmcs_readl(sf->base); |
| var->limit = vmcs_read32(sf->limit); |
| var->selector = vmcs_read16(sf->selector); |
| ar = vmcs_read32(sf->ar_bytes); |
| if (ar & AR_UNUSABLE_MASK) |
| ar = 0; |
| var->type = ar & 15; |
| var->s = (ar >> 4) & 1; |
| var->dpl = (ar >> 5) & 3; |
| var->present = (ar >> 7) & 1; |
| var->avl = (ar >> 12) & 1; |
| var->l = (ar >> 13) & 1; |
| var->db = (ar >> 14) & 1; |
| var->g = (ar >> 15) & 1; |
| var->unusable = (ar >> 16) & 1; |
| } |
| |
| static u32 vmx_segment_access_rights(struct kvm_segment *var) |
| { |
| u32 ar; |
| |
| if (var->unusable) |
| ar = 1 << 16; |
| else { |
| ar = var->type & 15; |
| ar |= (var->s & 1) << 4; |
| ar |= (var->dpl & 3) << 5; |
| ar |= (var->present & 1) << 7; |
| ar |= (var->avl & 1) << 12; |
| ar |= (var->l & 1) << 13; |
| ar |= (var->db & 1) << 14; |
| ar |= (var->g & 1) << 15; |
| } |
| if (ar == 0) /* a 0 value means unusable */ |
| ar = AR_UNUSABLE_MASK; |
| |
| return ar; |
| } |
| |
| static void vmx_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| u32 ar; |
| |
| if (vcpu->rmode.active && seg == VCPU_SREG_TR) { |
| vcpu->rmode.tr.selector = var->selector; |
| vcpu->rmode.tr.base = var->base; |
| vcpu->rmode.tr.limit = var->limit; |
| vcpu->rmode.tr.ar = vmx_segment_access_rights(var); |
| return; |
| } |
| vmcs_writel(sf->base, var->base); |
| vmcs_write32(sf->limit, var->limit); |
| vmcs_write16(sf->selector, var->selector); |
| if (vcpu->rmode.active && var->s) { |
| /* |
| * Hack real-mode segments into vm86 compatibility. |
| */ |
| if (var->base == 0xffff0000 && var->selector == 0xf000) |
| vmcs_writel(sf->base, 0xf0000); |
| ar = 0xf3; |
| } else |
| ar = vmx_segment_access_rights(var); |
| vmcs_write32(sf->ar_bytes, ar); |
| } |
| |
| static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| u32 ar = vmcs_read32(GUEST_CS_AR_BYTES); |
| |
| *db = (ar >> 14) & 1; |
| *l = (ar >> 13) & 1; |
| } |
| |
| static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| dt->limit = vmcs_read32(GUEST_IDTR_LIMIT); |
| dt->base = vmcs_readl(GUEST_IDTR_BASE); |
| } |
| |
| static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| vmcs_write32(GUEST_IDTR_LIMIT, dt->limit); |
| vmcs_writel(GUEST_IDTR_BASE, dt->base); |
| } |
| |
| static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| dt->limit = vmcs_read32(GUEST_GDTR_LIMIT); |
| dt->base = vmcs_readl(GUEST_GDTR_BASE); |
| } |
| |
| static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) |
| { |
| vmcs_write32(GUEST_GDTR_LIMIT, dt->limit); |
| vmcs_writel(GUEST_GDTR_BASE, dt->base); |
| } |
| |
| static int init_rmode_tss(struct kvm* kvm) |
| { |
| gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT; |
| u16 data = 0; |
| int r; |
| |
| r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| if (r < 0) |
| return 0; |
| data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; |
| r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16)); |
| if (r < 0) |
| return 0; |
| r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); |
| if (r < 0) |
| return 0; |
| r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| if (r < 0) |
| return 0; |
| data = ~0; |
| r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, |
| sizeof(u8)); |
| if (r < 0) |
| return 0; |
| return 1; |
| } |
| |
| static void seg_setup(int seg) |
| { |
| struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| |
| vmcs_write16(sf->selector, 0); |
| vmcs_writel(sf->base, 0); |
| vmcs_write32(sf->limit, 0xffff); |
| vmcs_write32(sf->ar_bytes, 0x93); |
| } |
| |
| /* |
| * Sets up the vmcs for emulated real mode. |
| */ |
| static int vmx_vcpu_setup(struct vcpu_vmx *vmx) |
| { |
| u32 host_sysenter_cs; |
| u32 junk; |
| unsigned long a; |
| struct descriptor_table dt; |
| int i; |
| int ret = 0; |
| unsigned long kvm_vmx_return; |
| u64 msr; |
| u32 exec_control; |
| |
| if (!init_rmode_tss(vmx->vcpu.kvm)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| vmx->vcpu.rmode.active = 0; |
| |
| vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val(); |
| set_cr8(&vmx->vcpu, 0); |
| msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; |
| if (vmx->vcpu.vcpu_id == 0) |
| msr |= MSR_IA32_APICBASE_BSP; |
| kvm_set_apic_base(&vmx->vcpu, msr); |
| |
| fx_init(&vmx->vcpu); |
| |
| /* |
| * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode |
| * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh. |
| */ |
| if (vmx->vcpu.vcpu_id == 0) { |
| vmcs_write16(GUEST_CS_SELECTOR, 0xf000); |
| vmcs_writel(GUEST_CS_BASE, 0x000f0000); |
| } else { |
| vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8); |
| vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12); |
| } |
| vmcs_write32(GUEST_CS_LIMIT, 0xffff); |
| vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); |
| |
| seg_setup(VCPU_SREG_DS); |
| seg_setup(VCPU_SREG_ES); |
| seg_setup(VCPU_SREG_FS); |
| seg_setup(VCPU_SREG_GS); |
| seg_setup(VCPU_SREG_SS); |
| |
| vmcs_write16(GUEST_TR_SELECTOR, 0); |
| vmcs_writel(GUEST_TR_BASE, 0); |
| vmcs_write32(GUEST_TR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| |
| vmcs_write16(GUEST_LDTR_SELECTOR, 0); |
| vmcs_writel(GUEST_LDTR_BASE, 0); |
| vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); |
| vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); |
| |
| vmcs_write32(GUEST_SYSENTER_CS, 0); |
| vmcs_writel(GUEST_SYSENTER_ESP, 0); |
| vmcs_writel(GUEST_SYSENTER_EIP, 0); |
| |
| vmcs_writel(GUEST_RFLAGS, 0x02); |
| if (vmx->vcpu.vcpu_id == 0) |
| vmcs_writel(GUEST_RIP, 0xfff0); |
| else |
| vmcs_writel(GUEST_RIP, 0); |
| vmcs_writel(GUEST_RSP, 0); |
| |
| //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 |
| vmcs_writel(GUEST_DR7, 0x400); |
| |
| vmcs_writel(GUEST_GDTR_BASE, 0); |
| vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); |
| |
| vmcs_writel(GUEST_IDTR_BASE, 0); |
| vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); |
| |
| vmcs_write32(GUEST_ACTIVITY_STATE, 0); |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); |
| vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); |
| |
| /* I/O */ |
| vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a)); |
| vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b)); |
| |
| guest_write_tsc(0); |
| |
| vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ |
| |
| /* Special registers */ |
| vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| |
| /* Control */ |
| vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, |
| vmcs_config.pin_based_exec_ctrl); |
| |
| exec_control = vmcs_config.cpu_based_exec_ctrl; |
| if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) { |
| exec_control &= ~CPU_BASED_TPR_SHADOW; |
| #ifdef CONFIG_X86_64 |
| exec_control |= CPU_BASED_CR8_STORE_EXITING | |
| CPU_BASED_CR8_LOAD_EXITING; |
| #endif |
| } |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); |
| |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf); |
| vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ |
| |
| vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */ |
| vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */ |
| vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */ |
| |
| vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ |
| vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */ |
| vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */ |
| vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| #ifdef CONFIG_X86_64 |
| rdmsrl(MSR_FS_BASE, a); |
| vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ |
| rdmsrl(MSR_GS_BASE, a); |
| vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ |
| #else |
| vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ |
| vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ |
| #endif |
| |
| vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ |
| |
| get_idt(&dt); |
| vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */ |
| |
| asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return)); |
| vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */ |
| vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| |
| rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk); |
| vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs); |
| rdmsrl(MSR_IA32_SYSENTER_ESP, a); |
| vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */ |
| rdmsrl(MSR_IA32_SYSENTER_EIP, a); |
| vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */ |
| |
| for (i = 0; i < NR_VMX_MSR; ++i) { |
| u32 index = vmx_msr_index[i]; |
| u32 data_low, data_high; |
| u64 data; |
| int j = vmx->nmsrs; |
| |
| if (rdmsr_safe(index, &data_low, &data_high) < 0) |
| continue; |
| if (wrmsr_safe(index, data_low, data_high) < 0) |
| continue; |
| data = data_low | ((u64)data_high << 32); |
| vmx->host_msrs[j].index = index; |
| vmx->host_msrs[j].reserved = 0; |
| vmx->host_msrs[j].data = data; |
| vmx->guest_msrs[j] = vmx->host_msrs[j]; |
| ++vmx->nmsrs; |
| } |
| |
| setup_msrs(vmx); |
| |
| vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); |
| |
| /* 22.2.1, 20.8.1 */ |
| vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl); |
| |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ |
| |
| #ifdef CONFIG_X86_64 |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); |
| if (vm_need_tpr_shadow(vmx->vcpu.kvm)) |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, |
| page_to_phys(vmx->vcpu.apic->regs_page)); |
| vmcs_write32(TPR_THRESHOLD, 0); |
| #endif |
| |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); |
| vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK); |
| |
| vmx->vcpu.cr0 = 0x60000010; |
| vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode |
| vmx_set_cr4(&vmx->vcpu, 0); |
| #ifdef CONFIG_X86_64 |
| vmx_set_efer(&vmx->vcpu, 0); |
| #endif |
| vmx_fpu_activate(&vmx->vcpu); |
| update_exception_bitmap(&vmx->vcpu); |
| |
| return 0; |
| |
| out: |
| return ret; |
| } |
| |
| static void vmx_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| vmx_vcpu_setup(vmx); |
| } |
| |
| static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq) |
| { |
| u16 ent[2]; |
| u16 cs; |
| u16 ip; |
| unsigned long flags; |
| unsigned long ss_base = vmcs_readl(GUEST_SS_BASE); |
| u16 sp = vmcs_readl(GUEST_RSP); |
| u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT); |
| |
| if (sp > ss_limit || sp < 6 ) { |
| vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n", |
| __FUNCTION__, |
| vmcs_readl(GUEST_RSP), |
| vmcs_readl(GUEST_SS_BASE), |
| vmcs_read32(GUEST_SS_LIMIT)); |
| return; |
| } |
| |
| if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) != |
| X86EMUL_CONTINUE) { |
| vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__); |
| return; |
| } |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| cs = vmcs_readl(GUEST_CS_BASE) >> 4; |
| ip = vmcs_readl(GUEST_RIP); |
| |
| |
| if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE || |
| emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE || |
| emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) { |
| vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__); |
| return; |
| } |
| |
| vmcs_writel(GUEST_RFLAGS, flags & |
| ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF)); |
| vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ; |
| vmcs_writel(GUEST_CS_BASE, ent[1] << 4); |
| vmcs_writel(GUEST_RIP, ent[0]); |
| vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6)); |
| } |
| |
| static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (vcpu->rmode.active) { |
| inject_rmode_irq(vcpu, irq); |
| return; |
| } |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); |
| } |
| |
| static void kvm_do_inject_irq(struct kvm_vcpu *vcpu) |
| { |
| int word_index = __ffs(vcpu->irq_summary); |
| int bit_index = __ffs(vcpu->irq_pending[word_index]); |
| int irq = word_index * BITS_PER_LONG + bit_index; |
| |
| clear_bit(bit_index, &vcpu->irq_pending[word_index]); |
| if (!vcpu->irq_pending[word_index]) |
| clear_bit(word_index, &vcpu->irq_summary); |
| vmx_inject_irq(vcpu, irq); |
| } |
| |
| |
| static void do_interrupt_requests(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| vcpu->interrupt_window_open = |
| ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && |
| (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0); |
| |
| if (vcpu->interrupt_window_open && |
| vcpu->irq_summary && |
| !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK)) |
| /* |
| * If interrupts enabled, and not blocked by sti or mov ss. Good. |
| */ |
| kvm_do_inject_irq(vcpu); |
| |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| if (!vcpu->interrupt_window_open && |
| (vcpu->irq_summary || kvm_run->request_interrupt_window)) |
| /* |
| * Interrupts blocked. Wait for unblock. |
| */ |
| cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; |
| else |
| cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| } |
| |
| static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_guest_debug *dbg = &vcpu->guest_debug; |
| |
| set_debugreg(dbg->bp[0], 0); |
| set_debugreg(dbg->bp[1], 1); |
| set_debugreg(dbg->bp[2], 2); |
| set_debugreg(dbg->bp[3], 3); |
| |
| if (dbg->singlestep) { |
| unsigned long flags; |
| |
| flags = vmcs_readl(GUEST_RFLAGS); |
| flags |= X86_EFLAGS_TF | X86_EFLAGS_RF; |
| vmcs_writel(GUEST_RFLAGS, flags); |
| } |
| } |
| |
| static int handle_rmode_exception(struct kvm_vcpu *vcpu, |
| int vec, u32 err_code) |
| { |
| if (!vcpu->rmode.active) |
| return 0; |
| |
| /* |
| * Instruction with address size override prefix opcode 0x67 |
| * Cause the #SS fault with 0 error code in VM86 mode. |
| */ |
| if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) |
| if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE) |
| return 1; |
| return 0; |
| } |
| |
| static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| u32 intr_info, error_code; |
| unsigned long cr2, rip; |
| u32 vect_info; |
| enum emulation_result er; |
| int r; |
| |
| vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| |
| if ((vect_info & VECTORING_INFO_VALID_MASK) && |
| !is_page_fault(intr_info)) { |
| printk(KERN_ERR "%s: unexpected, vectoring info 0x%x " |
| "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info); |
| } |
| |
| if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) { |
| int irq = vect_info & VECTORING_INFO_VECTOR_MASK; |
| set_bit(irq, vcpu->irq_pending); |
| set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary); |
| } |
| |
| if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */ |
| return 1; /* already handled by vmx_vcpu_run() */ |
| |
| if (is_no_device(intr_info)) { |
| vmx_fpu_activate(vcpu); |
| return 1; |
| } |
| |
| if (is_invalid_opcode(intr_info)) { |
| er = emulate_instruction(vcpu, kvm_run, 0, 0, 0); |
| if (er != EMULATE_DONE) |
| vmx_inject_ud(vcpu); |
| |
| return 1; |
| } |
| |
| error_code = 0; |
| rip = vmcs_readl(GUEST_RIP); |
| if (intr_info & INTR_INFO_DELIEVER_CODE_MASK) |
| error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| if (is_page_fault(intr_info)) { |
| cr2 = vmcs_readl(EXIT_QUALIFICATION); |
| |
| mutex_lock(&vcpu->kvm->lock); |
| r = kvm_mmu_page_fault(vcpu, cr2, error_code); |
| if (r < 0) { |
| mutex_unlock(&vcpu->kvm->lock); |
| return r; |
| } |
| if (!r) { |
| mutex_unlock(&vcpu->kvm->lock); |
| return 1; |
| } |
| |
| er = emulate_instruction(vcpu, kvm_run, cr2, error_code, 0); |
| mutex_unlock(&vcpu->kvm->lock); |
| |
| switch (er) { |
| case EMULATE_DONE: |
| return 1; |
| case EMULATE_DO_MMIO: |
| ++vcpu->stat.mmio_exits; |
| return 0; |
| case EMULATE_FAIL: |
| kvm_report_emulation_failure(vcpu, "pagetable"); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| if (vcpu->rmode.active && |
| handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK, |
| error_code)) { |
| if (vcpu->halt_request) { |
| vcpu->halt_request = 0; |
| return kvm_emulate_halt(vcpu); |
| } |
| return 1; |
| } |
| |
| if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) { |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| return 0; |
| } |
| kvm_run->exit_reason = KVM_EXIT_EXCEPTION; |
| kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK; |
| kvm_run->ex.error_code = error_code; |
| return 0; |
| } |
| |
| static int handle_external_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| ++vcpu->stat.irq_exits; |
| return 1; |
| } |
| |
| static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; |
| return 0; |
| } |
| |
| static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification; |
| int size, down, in, string, rep; |
| unsigned port; |
| |
| ++vcpu->stat.io_exits; |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| string = (exit_qualification & 16) != 0; |
| |
| if (string) { |
| if (emulate_instruction(vcpu, |
| kvm_run, 0, 0, 0) == EMULATE_DO_MMIO) |
| return 0; |
| return 1; |
| } |
| |
| size = (exit_qualification & 7) + 1; |
| in = (exit_qualification & 8) != 0; |
| down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0; |
| rep = (exit_qualification & 32) != 0; |
| port = exit_qualification >> 16; |
| |
| return kvm_emulate_pio(vcpu, kvm_run, in, size, port); |
| } |
| |
| static void |
| vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| { |
| /* |
| * Patch in the VMCALL instruction: |
| */ |
| hypercall[0] = 0x0f; |
| hypercall[1] = 0x01; |
| hypercall[2] = 0xc1; |
| } |
| |
| static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification; |
| int cr; |
| int reg; |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| cr = exit_qualification & 15; |
| reg = (exit_qualification >> 8) & 15; |
| switch ((exit_qualification >> 4) & 3) { |
| case 0: /* mov to cr */ |
| switch (cr) { |
| case 0: |
| vcpu_load_rsp_rip(vcpu); |
| set_cr0(vcpu, vcpu->regs[reg]); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 3: |
| vcpu_load_rsp_rip(vcpu); |
| set_cr3(vcpu, vcpu->regs[reg]); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 4: |
| vcpu_load_rsp_rip(vcpu); |
| set_cr4(vcpu, vcpu->regs[reg]); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 8: |
| vcpu_load_rsp_rip(vcpu); |
| set_cr8(vcpu, vcpu->regs[reg]); |
| skip_emulated_instruction(vcpu); |
| kvm_run->exit_reason = KVM_EXIT_SET_TPR; |
| return 0; |
| }; |
| break; |
| case 2: /* clts */ |
| vcpu_load_rsp_rip(vcpu); |
| vmx_fpu_deactivate(vcpu); |
| vcpu->cr0 &= ~X86_CR0_TS; |
| vmcs_writel(CR0_READ_SHADOW, vcpu->cr0); |
| vmx_fpu_activate(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 1: /*mov from cr*/ |
| switch (cr) { |
| case 3: |
| vcpu_load_rsp_rip(vcpu); |
| vcpu->regs[reg] = vcpu->cr3; |
| vcpu_put_rsp_rip(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| case 8: |
| vcpu_load_rsp_rip(vcpu); |
| vcpu->regs[reg] = get_cr8(vcpu); |
| vcpu_put_rsp_rip(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| break; |
| case 3: /* lmsw */ |
| lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f); |
| |
| skip_emulated_instruction(vcpu); |
| return 1; |
| default: |
| break; |
| } |
| kvm_run->exit_reason = 0; |
| pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n", |
| (int)(exit_qualification >> 4) & 3, cr); |
| return 0; |
| } |
| |
| static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| unsigned long exit_qualification; |
| unsigned long val; |
| int dr, reg; |
| |
| /* |
| * FIXME: this code assumes the host is debugging the guest. |
| * need to deal with guest debugging itself too. |
| */ |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| dr = exit_qualification & 7; |
| reg = (exit_qualification >> 8) & 15; |
| vcpu_load_rsp_rip(vcpu); |
| if (exit_qualification & 16) { |
| /* mov from dr */ |
| switch (dr) { |
| case 6: |
| val = 0xffff0ff0; |
| break; |
| case 7: |
| val = 0x400; |
| break; |
| default: |
| val = 0; |
| } |
| vcpu->regs[reg] = val; |
| } else { |
| /* mov to dr */ |
| } |
| vcpu_put_rsp_rip(vcpu); |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| kvm_emulate_cpuid(vcpu); |
| return 1; |
| } |
| |
| static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| u32 ecx = vcpu->regs[VCPU_REGS_RCX]; |
| u64 data; |
| |
| if (vmx_get_msr(vcpu, ecx, &data)) { |
| vmx_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| /* FIXME: handling of bits 32:63 of rax, rdx */ |
| vcpu->regs[VCPU_REGS_RAX] = data & -1u; |
| vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u; |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| u32 ecx = vcpu->regs[VCPU_REGS_RCX]; |
| u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u) |
| | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32); |
| |
| if (vmx_set_msr(vcpu, ecx, data) != 0) { |
| vmx_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| return 1; |
| } |
| |
| static int handle_interrupt_window(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| /* clear pending irq */ |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| /* |
| * If the user space waits to inject interrupts, exit as soon as |
| * possible |
| */ |
| if (kvm_run->request_interrupt_window && |
| !vcpu->irq_summary) { |
| kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| ++vcpu->stat.irq_window_exits; |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| skip_emulated_instruction(vcpu); |
| return kvm_emulate_halt(vcpu); |
| } |
| |
| static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| skip_emulated_instruction(vcpu); |
| kvm_emulate_hypercall(vcpu); |
| return 1; |
| } |
| |
| /* |
| * The exit handlers return 1 if the exit was handled fully and guest execution |
| * may resume. Otherwise they set the kvm_run parameter to indicate what needs |
| * to be done to userspace and return 0. |
| */ |
| static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu, |
| struct kvm_run *kvm_run) = { |
| [EXIT_REASON_EXCEPTION_NMI] = handle_exception, |
| [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, |
| [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, |
| [EXIT_REASON_IO_INSTRUCTION] = handle_io, |
| [EXIT_REASON_CR_ACCESS] = handle_cr, |
| [EXIT_REASON_DR_ACCESS] = handle_dr, |
| [EXIT_REASON_CPUID] = handle_cpuid, |
| [EXIT_REASON_MSR_READ] = handle_rdmsr, |
| [EXIT_REASON_MSR_WRITE] = handle_wrmsr, |
| [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, |
| [EXIT_REASON_HLT] = handle_halt, |
| [EXIT_REASON_VMCALL] = handle_vmcall, |
| [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold |
| }; |
| |
| static const int kvm_vmx_max_exit_handlers = |
| ARRAY_SIZE(kvm_vmx_exit_handlers); |
| |
| /* |
| * The guest has exited. See if we can fix it or if we need userspace |
| * assistance. |
| */ |
| static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| { |
| u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| u32 exit_reason = vmcs_read32(VM_EXIT_REASON); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (unlikely(vmx->fail)) { |
| kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| kvm_run->fail_entry.hardware_entry_failure_reason |
| = vmcs_read32(VM_INSTRUCTION_ERROR); |
| return 0; |
| } |
| |
| if ( (vectoring_info & VECTORING_INFO_VALID_MASK) && |
| exit_reason != EXIT_REASON_EXCEPTION_NMI ) |
| printk(KERN_WARNING "%s: unexpected, valid vectoring info and " |
| "exit reason is 0x%x\n", __FUNCTION__, exit_reason); |
| if (exit_reason < kvm_vmx_max_exit_handlers |
| && kvm_vmx_exit_handlers[exit_reason]) |
| return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run); |
| else { |
| kvm_run->exit_reason = KVM_EXIT_UNKNOWN; |
| kvm_run->hw.hardware_exit_reason = exit_reason; |
| } |
| return 0; |
| } |
| |
| static void vmx_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| static void update_tpr_threshold(struct kvm_vcpu *vcpu) |
| { |
| int max_irr, tpr; |
| |
| if (!vm_need_tpr_shadow(vcpu->kvm)) |
| return; |
| |
| if (!kvm_lapic_enabled(vcpu) || |
| ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) { |
| vmcs_write32(TPR_THRESHOLD, 0); |
| return; |
| } |
| |
| tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4; |
| vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4); |
| } |
| |
| static void enable_irq_window(struct kvm_vcpu *vcpu) |
| { |
| u32 cpu_based_vm_exec_control; |
| |
| cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); |
| } |
| |
| static void vmx_intr_assist(struct kvm_vcpu *vcpu) |
| { |
| u32 idtv_info_field, intr_info_field; |
| int has_ext_irq, interrupt_window_open; |
| int vector; |
| |
| kvm_inject_pending_timer_irqs(vcpu); |
| update_tpr_threshold(vcpu); |
| |
| has_ext_irq = kvm_cpu_has_interrupt(vcpu); |
| intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD); |
| idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| if (intr_info_field & INTR_INFO_VALID_MASK) { |
| if (idtv_info_field & INTR_INFO_VALID_MASK) { |
| /* TODO: fault when IDT_Vectoring */ |
| printk(KERN_ERR "Fault when IDT_Vectoring\n"); |
| } |
| if (has_ext_irq) |
| enable_irq_window(vcpu); |
| return; |
| } |
| if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) { |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); |
| |
| if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK)) |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, |
| vmcs_read32(IDT_VECTORING_ERROR_CODE)); |
| if (unlikely(has_ext_irq)) |
| enable_irq_window(vcpu); |
| return; |
| } |
| if (!has_ext_irq) |
| return; |
| interrupt_window_open = |
| ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && |
| (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0); |
| if (interrupt_window_open) { |
| vector = kvm_cpu_get_interrupt(vcpu); |
| vmx_inject_irq(vcpu, vector); |
| kvm_timer_intr_post(vcpu, vector); |
| } else |
| enable_irq_window(vcpu); |
| } |
| |
| static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 intr_info; |
| |
| /* |
| * Loading guest fpu may have cleared host cr0.ts |
| */ |
| vmcs_writel(HOST_CR0, read_cr0()); |
| |
| asm ( |
| /* Store host registers */ |
| #ifdef CONFIG_X86_64 |
| "push %%rax; push %%rbx; push %%rdx;" |
| "push %%rsi; push %%rdi; push %%rbp;" |
| "push %%r8; push %%r9; push %%r10; push %%r11;" |
| "push %%r12; push %%r13; push %%r14; push %%r15;" |
| "push %%rcx \n\t" |
| ASM_VMX_VMWRITE_RSP_RDX "\n\t" |
| #else |
| "pusha; push %%ecx \n\t" |
| ASM_VMX_VMWRITE_RSP_RDX "\n\t" |
| #endif |
| /* Check if vmlaunch of vmresume is needed */ |
| "cmp $0, %1 \n\t" |
| /* Load guest registers. Don't clobber flags. */ |
| #ifdef CONFIG_X86_64 |
| "mov %c[cr2](%3), %%rax \n\t" |
| "mov %%rax, %%cr2 \n\t" |
| "mov %c[rax](%3), %%rax \n\t" |
| "mov %c[rbx](%3), %%rbx \n\t" |
| "mov %c[rdx](%3), %%rdx \n\t" |
| "mov %c[rsi](%3), %%rsi \n\t" |
| "mov %c[rdi](%3), %%rdi \n\t" |
| "mov %c[rbp](%3), %%rbp \n\t" |
| "mov %c[r8](%3), %%r8 \n\t" |
| "mov %c[r9](%3), %%r9 \n\t" |
| "mov %c[r10](%3), %%r10 \n\t" |
| "mov %c[r11](%3), %%r11 \n\t" |
| "mov %c[r12](%3), %%r12 \n\t" |
| "mov %c[r13](%3), %%r13 \n\t" |
| "mov %c[r14](%3), %%r14 \n\t" |
| "mov %c[r15](%3), %%r15 \n\t" |
| "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */ |
| #else |
| "mov %c[cr2](%3), %%eax \n\t" |
| "mov %%eax, %%cr2 \n\t" |
| "mov %c[rax](%3), %%eax \n\t" |
| "mov %c[rbx](%3), %%ebx \n\t" |
| "mov %c[rdx](%3), %%edx \n\t" |
| "mov %c[rsi](%3), %%esi \n\t" |
| "mov %c[rdi](%3), %%edi \n\t" |
| "mov %c[rbp](%3), %%ebp \n\t" |
| "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */ |
| #endif |
| /* Enter guest mode */ |
| "jne .Llaunched \n\t" |
| ASM_VMX_VMLAUNCH "\n\t" |
| "jmp .Lkvm_vmx_return \n\t" |
| ".Llaunched: " ASM_VMX_VMRESUME "\n\t" |
| ".Lkvm_vmx_return: " |
| /* Save guest registers, load host registers, keep flags */ |
| #ifdef CONFIG_X86_64 |
| "xchg %3, (%%rsp) \n\t" |
| "mov %%rax, %c[rax](%3) \n\t" |
| "mov %%rbx, %c[rbx](%3) \n\t" |
| "pushq (%%rsp); popq %c[rcx](%3) \n\t" |
| "mov %%rdx, %c[rdx](%3) \n\t" |
| "mov %%rsi, %c[rsi](%3) \n\t" |
| "mov %%rdi, %c[rdi](%3) \n\t" |
| "mov %%rbp, %c[rbp](%3) \n\t" |
| "mov %%r8, %c[r8](%3) \n\t" |
| "mov %%r9, %c[r9](%3) \n\t" |
| "mov %%r10, %c[r10](%3) \n\t" |
| "mov %%r11, %c[r11](%3) \n\t" |
| "mov %%r12, %c[r12](%3) \n\t" |
| "mov %%r13, %c[r13](%3) \n\t" |
| "mov %%r14, %c[r14](%3) \n\t" |
| "mov %%r15, %c[r15](%3) \n\t" |
| "mov %%cr2, %%rax \n\t" |
| "mov %%rax, %c[cr2](%3) \n\t" |
| "mov (%%rsp), %3 \n\t" |
| |
| "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;" |
| "pop %%r11; pop %%r10; pop %%r9; pop %%r8;" |
| "pop %%rbp; pop %%rdi; pop %%rsi;" |
| "pop %%rdx; pop %%rbx; pop %%rax \n\t" |
| #else |
| "xchg %3, (%%esp) \n\t" |
| "mov %%eax, %c[rax](%3) \n\t" |
| "mov %%ebx, %c[rbx](%3) \n\t" |
| "pushl (%%esp); popl %c[rcx](%3) \n\t" |
| "mov %%edx, %c[rdx](%3) \n\t" |
| "mov %%esi, %c[rsi](%3) \n\t" |
| "mov %%edi, %c[rdi](%3) \n\t" |
| "mov %%ebp, %c[rbp](%3) \n\t" |
| "mov %%cr2, %%eax \n\t" |
| "mov %%eax, %c[cr2](%3) \n\t" |
| "mov (%%esp), %3 \n\t" |
| |
| "pop %%ecx; popa \n\t" |
| #endif |
| "setbe %0 \n\t" |
| : "=q" (vmx->fail) |
| : "r"(vmx->launched), "d"((unsigned long)HOST_RSP), |
| "c"(vcpu), |
| [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])), |
| [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])), |
| [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])), |
| [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])), |
| [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])), |
| [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])), |
| [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])), |
| #ifdef CONFIG_X86_64 |
| [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])), |
| [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])), |
| [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])), |
| [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])), |
| [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])), |
| [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])), |
| [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])), |
| [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])), |
| #endif |
| [cr2]"i"(offsetof(struct kvm_vcpu, cr2)) |
| : "cc", "memory" ); |
| |
| vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0; |
| |
| asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); |
| vmx->launched = 1; |
| |
| intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| |
| /* We need to handle NMIs before interrupts are enabled */ |
| if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */ |
| asm("int $2"); |
| } |
| |
| static void vmx_inject_page_fault(struct kvm_vcpu *vcpu, |
| unsigned long addr, |
| u32 err_code) |
| { |
| u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| |
| ++vcpu->stat.pf_guest; |
| |
| if (is_page_fault(vect_info)) { |
| printk(KERN_DEBUG "inject_page_fault: " |
| "double fault 0x%lx @ 0x%lx\n", |
| addr, vmcs_readl(GUEST_RIP)); |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0); |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| DF_VECTOR | |
| INTR_TYPE_EXCEPTION | |
| INTR_INFO_DELIEVER_CODE_MASK | |
| INTR_INFO_VALID_MASK); |
| return; |
| } |
| vcpu->cr2 = addr; |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code); |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| PF_VECTOR | |
| INTR_TYPE_EXCEPTION | |
| INTR_INFO_DELIEVER_CODE_MASK | |
| INTR_INFO_VALID_MASK); |
| |
| } |
| |
| static void vmx_free_vmcs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (vmx->vmcs) { |
| on_each_cpu(__vcpu_clear, vmx, 0, 1); |
| free_vmcs(vmx->vmcs); |
| vmx->vmcs = NULL; |
| } |
| } |
| |
| static void vmx_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| vmx_free_vmcs(vcpu); |
| kfree(vmx->host_msrs); |
| kfree(vmx->guest_msrs); |
| kvm_vcpu_uninit(vcpu); |
| kmem_cache_free(kvm_vcpu_cache, vmx); |
| } |
| |
| static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) |
| { |
| int err; |
| struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| int cpu; |
| |
| if (!vmx) |
| return ERR_PTR(-ENOMEM); |
| |
| err = kvm_vcpu_init(&vmx->vcpu, kvm, id); |
| if (err) |
| goto free_vcpu; |
| |
| vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!vmx->guest_msrs) { |
| err = -ENOMEM; |
| goto uninit_vcpu; |
| } |
| |
| vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!vmx->host_msrs) |
| goto free_guest_msrs; |
| |
| vmx->vmcs = alloc_vmcs(); |
| if (!vmx->vmcs) |
| goto free_msrs; |
| |
| vmcs_clear(vmx->vmcs); |
| |
| cpu = get_cpu(); |
| vmx_vcpu_load(&vmx->vcpu, cpu); |
| err = vmx_vcpu_setup(vmx); |
| vmx_vcpu_put(&vmx->vcpu); |
| put_cpu(); |
| if (err) |
| goto free_vmcs; |
| |
| return &vmx->vcpu; |
| |
| free_vmcs: |
| free_vmcs(vmx->vmcs); |
| free_msrs: |
| kfree(vmx->host_msrs); |
| free_guest_msrs: |
| kfree(vmx->guest_msrs); |
| uninit_vcpu: |
| kvm_vcpu_uninit(&vmx->vcpu); |
| free_vcpu: |
| kmem_cache_free(kvm_vcpu_cache, vmx); |
| return ERR_PTR(err); |
| } |
| |
| static void __init vmx_check_processor_compat(void *rtn) |
| { |
| struct vmcs_config vmcs_conf; |
| |
| *(int *)rtn = 0; |
| if (setup_vmcs_config(&vmcs_conf) < 0) |
| *(int *)rtn = -EIO; |
| if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { |
| printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", |
| smp_processor_id()); |
| *(int *)rtn = -EIO; |
| } |
| } |
| |
| static struct kvm_x86_ops vmx_x86_ops = { |
| .cpu_has_kvm_support = cpu_has_kvm_support, |
| .disabled_by_bios = vmx_disabled_by_bios, |
| .hardware_setup = hardware_setup, |
| .hardware_unsetup = hardware_unsetup, |
| .check_processor_compatibility = vmx_check_processor_compat, |
| .hardware_enable = hardware_enable, |
| .hardware_disable = hardware_disable, |
| |
| .vcpu_create = vmx_create_vcpu, |
| .vcpu_free = vmx_free_vcpu, |
| .vcpu_reset = vmx_vcpu_reset, |
| |
| .prepare_guest_switch = vmx_save_host_state, |
| .vcpu_load = vmx_vcpu_load, |
| .vcpu_put = vmx_vcpu_put, |
| .vcpu_decache = vmx_vcpu_decache, |
| |
| .set_guest_debug = set_guest_debug, |
| .guest_debug_pre = kvm_guest_debug_pre, |
| .get_msr = vmx_get_msr, |
| .set_msr = vmx_set_msr, |
| .get_segment_base = vmx_get_segment_base, |
| .get_segment = vmx_get_segment, |
| .set_segment = vmx_set_segment, |
| .get_cs_db_l_bits = vmx_get_cs_db_l_bits, |
| .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, |
| .set_cr0 = vmx_set_cr0, |
| .set_cr3 = vmx_set_cr3, |
| .set_cr4 = vmx_set_cr4, |
| #ifdef CONFIG_X86_64 |
| .set_efer = vmx_set_efer, |
| #endif |
| .get_idt = vmx_get_idt, |
| .set_idt = vmx_set_idt, |
| .get_gdt = vmx_get_gdt, |
| .set_gdt = vmx_set_gdt, |
| .cache_regs = vcpu_load_rsp_rip, |
| .decache_regs = vcpu_put_rsp_rip, |
| .get_rflags = vmx_get_rflags, |
| .set_rflags = vmx_set_rflags, |
| |
| .tlb_flush = vmx_flush_tlb, |
| .inject_page_fault = vmx_inject_page_fault, |
| |
| .inject_gp = vmx_inject_gp, |
| |
| .run = vmx_vcpu_run, |
| .handle_exit = kvm_handle_exit, |
| .skip_emulated_instruction = skip_emulated_instruction, |
| .patch_hypercall = vmx_patch_hypercall, |
| .get_irq = vmx_get_irq, |
| .set_irq = vmx_inject_irq, |
| .inject_pending_irq = vmx_intr_assist, |
| .inject_pending_vectors = do_interrupt_requests, |
| }; |
| |
| static int __init vmx_init(void) |
| { |
| void *iova; |
| int r; |
| |
| vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); |
| if (!vmx_io_bitmap_a) |
| return -ENOMEM; |
| |
| vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); |
| if (!vmx_io_bitmap_b) { |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Allow direct access to the PC debug port (it is often used for I/O |
| * delays, but the vmexits simply slow things down). |
| */ |
| iova = kmap(vmx_io_bitmap_a); |
| memset(iova, 0xff, PAGE_SIZE); |
| clear_bit(0x80, iova); |
| kunmap(vmx_io_bitmap_a); |
| |
| iova = kmap(vmx_io_bitmap_b); |
| memset(iova, 0xff, PAGE_SIZE); |
| kunmap(vmx_io_bitmap_b); |
| |
| r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE); |
| if (r) |
| goto out1; |
| |
| if (bypass_guest_pf) |
| kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull); |
| |
| return 0; |
| |
| out1: |
| __free_page(vmx_io_bitmap_b); |
| out: |
| __free_page(vmx_io_bitmap_a); |
| return r; |
| } |
| |
| static void __exit vmx_exit(void) |
| { |
| __free_page(vmx_io_bitmap_b); |
| __free_page(vmx_io_bitmap_a); |
| |
| kvm_exit_x86(); |
| } |
| |
| module_init(vmx_init) |
| module_exit(vmx_exit) |