| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * Task-based RCU implementations. |
| * |
| * Copyright (C) 2020 Paul E. McKenney |
| */ |
| |
| #ifdef CONFIG_TASKS_RCU_GENERIC |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Generic data structures. |
| |
| struct rcu_tasks; |
| typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); |
| typedef void (*pregp_func_t)(void); |
| typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); |
| typedef void (*postscan_func_t)(void); |
| typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); |
| typedef void (*postgp_func_t)(struct rcu_tasks *rtp); |
| |
| /** |
| * Definition for a Tasks-RCU-like mechanism. |
| * @cbs_head: Head of callback list. |
| * @cbs_tail: Tail pointer for callback list. |
| * @cbs_wq: Wait queue allowning new callback to get kthread's attention. |
| * @cbs_lock: Lock protecting callback list. |
| * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. |
| * @gp_func: This flavor's grace-period-wait function. |
| * @gp_state: Grace period's most recent state transition (debugging). |
| * @gp_jiffies: Time of last @gp_state transition. |
| * @gp_start: Most recent grace-period start in jiffies. |
| * @n_gps: Number of grace periods completed since boot. |
| * @n_ipis: Number of IPIs sent to encourage grace periods to end. |
| * @pregp_func: This flavor's pre-grace-period function (optional). |
| * @pertask_func: This flavor's per-task scan function (optional). |
| * @postscan_func: This flavor's post-task scan function (optional). |
| * @holdout_func: This flavor's holdout-list scan function (optional). |
| * @postgp_func: This flavor's post-grace-period function (optional). |
| * @call_func: This flavor's call_rcu()-equivalent function. |
| * @name: This flavor's textual name. |
| * @kname: This flavor's kthread name. |
| */ |
| struct rcu_tasks { |
| struct rcu_head *cbs_head; |
| struct rcu_head **cbs_tail; |
| struct wait_queue_head cbs_wq; |
| raw_spinlock_t cbs_lock; |
| int gp_state; |
| unsigned long gp_jiffies; |
| unsigned long gp_start; |
| unsigned long n_gps; |
| unsigned long n_ipis; |
| struct task_struct *kthread_ptr; |
| rcu_tasks_gp_func_t gp_func; |
| pregp_func_t pregp_func; |
| pertask_func_t pertask_func; |
| postscan_func_t postscan_func; |
| holdouts_func_t holdouts_func; |
| postgp_func_t postgp_func; |
| call_rcu_func_t call_func; |
| char *name; |
| char *kname; |
| }; |
| |
| #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ |
| static struct rcu_tasks rt_name = \ |
| { \ |
| .cbs_tail = &rt_name.cbs_head, \ |
| .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ |
| .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ |
| .gp_func = gp, \ |
| .call_func = call, \ |
| .name = n, \ |
| .kname = #rt_name, \ |
| } |
| |
| /* Track exiting tasks in order to allow them to be waited for. */ |
| DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); |
| |
| /* Avoid IPIing CPUs early in the grace period. */ |
| #define RCU_TASK_IPI_DELAY (HZ / 2) |
| static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; |
| module_param(rcu_task_ipi_delay, int, 0644); |
| |
| /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ |
| #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) |
| static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; |
| module_param(rcu_task_stall_timeout, int, 0644); |
| |
| /* RCU tasks grace-period state for debugging. */ |
| #define RTGS_INIT 0 |
| #define RTGS_WAIT_WAIT_CBS 1 |
| #define RTGS_WAIT_GP 2 |
| #define RTGS_PRE_WAIT_GP 3 |
| #define RTGS_SCAN_TASKLIST 4 |
| #define RTGS_POST_SCAN_TASKLIST 5 |
| #define RTGS_WAIT_SCAN_HOLDOUTS 6 |
| #define RTGS_SCAN_HOLDOUTS 7 |
| #define RTGS_POST_GP 8 |
| #define RTGS_WAIT_READERS 9 |
| #define RTGS_INVOKE_CBS 10 |
| #define RTGS_WAIT_CBS 11 |
| static const char * const rcu_tasks_gp_state_names[] = { |
| "RTGS_INIT", |
| "RTGS_WAIT_WAIT_CBS", |
| "RTGS_WAIT_GP", |
| "RTGS_PRE_WAIT_GP", |
| "RTGS_SCAN_TASKLIST", |
| "RTGS_POST_SCAN_TASKLIST", |
| "RTGS_WAIT_SCAN_HOLDOUTS", |
| "RTGS_SCAN_HOLDOUTS", |
| "RTGS_POST_GP", |
| "RTGS_WAIT_READERS", |
| "RTGS_INVOKE_CBS", |
| "RTGS_WAIT_CBS", |
| }; |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Generic code. |
| |
| /* Record grace-period phase and time. */ |
| static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) |
| { |
| rtp->gp_state = newstate; |
| rtp->gp_jiffies = jiffies; |
| } |
| |
| /* Return state name. */ |
| static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) |
| { |
| int i = data_race(rtp->gp_state); // Let KCSAN detect update races |
| int j = READ_ONCE(i); // Prevent the compiler from reading twice |
| |
| if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) |
| return "???"; |
| return rcu_tasks_gp_state_names[j]; |
| } |
| |
| // Enqueue a callback for the specified flavor of Tasks RCU. |
| static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, |
| struct rcu_tasks *rtp) |
| { |
| unsigned long flags; |
| bool needwake; |
| |
| rhp->next = NULL; |
| rhp->func = func; |
| raw_spin_lock_irqsave(&rtp->cbs_lock, flags); |
| needwake = !rtp->cbs_head; |
| WRITE_ONCE(*rtp->cbs_tail, rhp); |
| rtp->cbs_tail = &rhp->next; |
| raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); |
| /* We can't create the thread unless interrupts are enabled. */ |
| if (needwake && READ_ONCE(rtp->kthread_ptr)) |
| wake_up(&rtp->cbs_wq); |
| } |
| |
| // Wait for a grace period for the specified flavor of Tasks RCU. |
| static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) |
| { |
| /* Complain if the scheduler has not started. */ |
| RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, |
| "synchronize_rcu_tasks called too soon"); |
| |
| /* Wait for the grace period. */ |
| wait_rcu_gp(rtp->call_func); |
| } |
| |
| /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ |
| static int __noreturn rcu_tasks_kthread(void *arg) |
| { |
| unsigned long flags; |
| struct rcu_head *list; |
| struct rcu_head *next; |
| struct rcu_tasks *rtp = arg; |
| |
| /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ |
| housekeeping_affine(current, HK_FLAG_RCU); |
| WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! |
| |
| /* |
| * Each pass through the following loop makes one check for |
| * newly arrived callbacks, and, if there are some, waits for |
| * one RCU-tasks grace period and then invokes the callbacks. |
| * This loop is terminated by the system going down. ;-) |
| */ |
| for (;;) { |
| |
| /* Pick up any new callbacks. */ |
| raw_spin_lock_irqsave(&rtp->cbs_lock, flags); |
| smp_mb__after_spinlock(); // Order updates vs. GP. |
| list = rtp->cbs_head; |
| rtp->cbs_head = NULL; |
| rtp->cbs_tail = &rtp->cbs_head; |
| raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); |
| |
| /* If there were none, wait a bit and start over. */ |
| if (!list) { |
| wait_event_interruptible(rtp->cbs_wq, |
| READ_ONCE(rtp->cbs_head)); |
| if (!rtp->cbs_head) { |
| WARN_ON(signal_pending(current)); |
| set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); |
| schedule_timeout_interruptible(HZ/10); |
| } |
| continue; |
| } |
| |
| // Wait for one grace period. |
| set_tasks_gp_state(rtp, RTGS_WAIT_GP); |
| rtp->gp_start = jiffies; |
| rtp->gp_func(rtp); |
| rtp->n_gps++; |
| |
| /* Invoke the callbacks. */ |
| set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); |
| while (list) { |
| next = list->next; |
| local_bh_disable(); |
| list->func(list); |
| local_bh_enable(); |
| list = next; |
| cond_resched(); |
| } |
| /* Paranoid sleep to keep this from entering a tight loop */ |
| schedule_timeout_uninterruptible(HZ/10); |
| |
| set_tasks_gp_state(rtp, RTGS_WAIT_CBS); |
| } |
| } |
| |
| /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */ |
| static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) |
| { |
| struct task_struct *t; |
| |
| t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); |
| if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) |
| return; |
| smp_mb(); /* Ensure others see full kthread. */ |
| } |
| |
| /* Do the srcu_read_lock() for the above synchronize_srcu(). */ |
| void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) |
| { |
| preempt_disable(); |
| current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); |
| preempt_enable(); |
| } |
| |
| static void exit_tasks_rcu_finish_trace(struct task_struct *t); |
| |
| /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ |
| void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) |
| { |
| struct task_struct *t = current; |
| |
| preempt_disable(); |
| __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); |
| preempt_enable(); |
| exit_tasks_rcu_finish_trace(t); |
| } |
| |
| #ifndef CONFIG_TINY_RCU |
| |
| /* |
| * Print any non-default Tasks RCU settings. |
| */ |
| static void __init rcu_tasks_bootup_oddness(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) |
| if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) |
| pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| #ifdef CONFIG_TASKS_RCU |
| pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| #ifdef CONFIG_TASKS_RUDE_RCU |
| pr_info("\tRude variant of Tasks RCU enabled.\n"); |
| #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| pr_info("\tTracing variant of Tasks RCU enabled.\n"); |
| #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| } |
| |
| #endif /* #ifndef CONFIG_TINY_RCU */ |
| |
| /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ |
| static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) |
| { |
| pr_info("%s: %s(%d) since %lu g:%lu i:%lu %c%c %s\n", |
| rtp->kname, |
| tasks_gp_state_getname(rtp), |
| data_race(rtp->gp_state), |
| jiffies - data_race(rtp->gp_jiffies), |
| data_race(rtp->n_gps), data_race(rtp->n_ipis), |
| ".k"[!!data_race(rtp->kthread_ptr)], |
| ".C"[!!data_race(rtp->cbs_head)], |
| s); |
| } |
| |
| #ifdef CONFIG_TASKS_RCU |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Shared code between task-list-scanning variants of Tasks RCU. |
| |
| /* Wait for one RCU-tasks grace period. */ |
| static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) |
| { |
| struct task_struct *g, *t; |
| unsigned long lastreport; |
| LIST_HEAD(holdouts); |
| int fract; |
| |
| set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); |
| rtp->pregp_func(); |
| |
| /* |
| * There were callbacks, so we need to wait for an RCU-tasks |
| * grace period. Start off by scanning the task list for tasks |
| * that are not already voluntarily blocked. Mark these tasks |
| * and make a list of them in holdouts. |
| */ |
| set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); |
| rcu_read_lock(); |
| for_each_process_thread(g, t) |
| rtp->pertask_func(t, &holdouts); |
| rcu_read_unlock(); |
| |
| set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); |
| rtp->postscan_func(); |
| |
| /* |
| * Each pass through the following loop scans the list of holdout |
| * tasks, removing any that are no longer holdouts. When the list |
| * is empty, we are done. |
| */ |
| lastreport = jiffies; |
| |
| /* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */ |
| fract = 10; |
| |
| for (;;) { |
| bool firstreport; |
| bool needreport; |
| int rtst; |
| |
| if (list_empty(&holdouts)) |
| break; |
| |
| /* Slowly back off waiting for holdouts */ |
| set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); |
| schedule_timeout_interruptible(HZ/fract); |
| |
| if (fract > 1) |
| fract--; |
| |
| rtst = READ_ONCE(rcu_task_stall_timeout); |
| needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); |
| if (needreport) |
| lastreport = jiffies; |
| firstreport = true; |
| WARN_ON(signal_pending(current)); |
| set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); |
| rtp->holdouts_func(&holdouts, needreport, &firstreport); |
| } |
| |
| set_tasks_gp_state(rtp, RTGS_POST_GP); |
| rtp->postgp_func(rtp); |
| } |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Simple variant of RCU whose quiescent states are voluntary context |
| // switch, cond_resched_rcu_qs(), user-space execution, and idle. |
| // As such, grace periods can take one good long time. There are no |
| // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() |
| // because this implementation is intended to get the system into a safe |
| // state for some of the manipulations involved in tracing and the like. |
| // Finally, this implementation does not support high call_rcu_tasks() |
| // rates from multiple CPUs. If this is required, per-CPU callback lists |
| // will be needed. |
| |
| /* Pre-grace-period preparation. */ |
| static void rcu_tasks_pregp_step(void) |
| { |
| /* |
| * Wait for all pre-existing t->on_rq and t->nvcsw transitions |
| * to complete. Invoking synchronize_rcu() suffices because all |
| * these transitions occur with interrupts disabled. Without this |
| * synchronize_rcu(), a read-side critical section that started |
| * before the grace period might be incorrectly seen as having |
| * started after the grace period. |
| * |
| * This synchronize_rcu() also dispenses with the need for a |
| * memory barrier on the first store to t->rcu_tasks_holdout, |
| * as it forces the store to happen after the beginning of the |
| * grace period. |
| */ |
| synchronize_rcu(); |
| } |
| |
| /* Per-task initial processing. */ |
| static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) |
| { |
| if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { |
| get_task_struct(t); |
| t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); |
| WRITE_ONCE(t->rcu_tasks_holdout, true); |
| list_add(&t->rcu_tasks_holdout_list, hop); |
| } |
| } |
| |
| /* Processing between scanning taskslist and draining the holdout list. */ |
| void rcu_tasks_postscan(void) |
| { |
| /* |
| * Wait for tasks that are in the process of exiting. This |
| * does only part of the job, ensuring that all tasks that were |
| * previously exiting reach the point where they have disabled |
| * preemption, allowing the later synchronize_rcu() to finish |
| * the job. |
| */ |
| synchronize_srcu(&tasks_rcu_exit_srcu); |
| } |
| |
| /* See if tasks are still holding out, complain if so. */ |
| static void check_holdout_task(struct task_struct *t, |
| bool needreport, bool *firstreport) |
| { |
| int cpu; |
| |
| if (!READ_ONCE(t->rcu_tasks_holdout) || |
| t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || |
| !READ_ONCE(t->on_rq) || |
| (IS_ENABLED(CONFIG_NO_HZ_FULL) && |
| !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { |
| WRITE_ONCE(t->rcu_tasks_holdout, false); |
| list_del_init(&t->rcu_tasks_holdout_list); |
| put_task_struct(t); |
| return; |
| } |
| rcu_request_urgent_qs_task(t); |
| if (!needreport) |
| return; |
| if (*firstreport) { |
| pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); |
| *firstreport = false; |
| } |
| cpu = task_cpu(t); |
| pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", |
| t, ".I"[is_idle_task(t)], |
| "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], |
| t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, |
| t->rcu_tasks_idle_cpu, cpu); |
| sched_show_task(t); |
| } |
| |
| /* Scan the holdout lists for tasks no longer holding out. */ |
| static void check_all_holdout_tasks(struct list_head *hop, |
| bool needreport, bool *firstreport) |
| { |
| struct task_struct *t, *t1; |
| |
| list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { |
| check_holdout_task(t, needreport, firstreport); |
| cond_resched(); |
| } |
| } |
| |
| /* Finish off the Tasks-RCU grace period. */ |
| static void rcu_tasks_postgp(struct rcu_tasks *rtp) |
| { |
| /* |
| * Because ->on_rq and ->nvcsw are not guaranteed to have a full |
| * memory barriers prior to them in the schedule() path, memory |
| * reordering on other CPUs could cause their RCU-tasks read-side |
| * critical sections to extend past the end of the grace period. |
| * However, because these ->nvcsw updates are carried out with |
| * interrupts disabled, we can use synchronize_rcu() to force the |
| * needed ordering on all such CPUs. |
| * |
| * This synchronize_rcu() also confines all ->rcu_tasks_holdout |
| * accesses to be within the grace period, avoiding the need for |
| * memory barriers for ->rcu_tasks_holdout accesses. |
| * |
| * In addition, this synchronize_rcu() waits for exiting tasks |
| * to complete their final preempt_disable() region of execution, |
| * cleaning up after the synchronize_srcu() above. |
| */ |
| synchronize_rcu(); |
| } |
| |
| void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); |
| DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); |
| |
| /** |
| * call_rcu_tasks() - Queue an RCU for invocation task-based grace period |
| * @rhp: structure to be used for queueing the RCU updates. |
| * @func: actual callback function to be invoked after the grace period |
| * |
| * The callback function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. call_rcu_tasks() assumes |
| * that the read-side critical sections end at a voluntary context |
| * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, |
| * or transition to usermode execution. As such, there are no read-side |
| * primitives analogous to rcu_read_lock() and rcu_read_unlock() because |
| * this primitive is intended to determine that all tasks have passed |
| * through a safe state, not so much for data-strcuture synchronization. |
| * |
| * See the description of call_rcu() for more detailed information on |
| * memory ordering guarantees. |
| */ |
| void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) |
| { |
| call_rcu_tasks_generic(rhp, func, &rcu_tasks); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_tasks); |
| |
| /** |
| * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. |
| * |
| * Control will return to the caller some time after a full rcu-tasks |
| * grace period has elapsed, in other words after all currently |
| * executing rcu-tasks read-side critical sections have elapsed. These |
| * read-side critical sections are delimited by calls to schedule(), |
| * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls |
| * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). |
| * |
| * This is a very specialized primitive, intended only for a few uses in |
| * tracing and other situations requiring manipulation of function |
| * preambles and profiling hooks. The synchronize_rcu_tasks() function |
| * is not (yet) intended for heavy use from multiple CPUs. |
| * |
| * See the description of synchronize_rcu() for more detailed information |
| * on memory ordering guarantees. |
| */ |
| void synchronize_rcu_tasks(void) |
| { |
| synchronize_rcu_tasks_generic(&rcu_tasks); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); |
| |
| /** |
| * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. |
| * |
| * Although the current implementation is guaranteed to wait, it is not |
| * obligated to, for example, if there are no pending callbacks. |
| */ |
| void rcu_barrier_tasks(void) |
| { |
| /* There is only one callback queue, so this is easy. ;-) */ |
| synchronize_rcu_tasks(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks); |
| |
| static int __init rcu_spawn_tasks_kthread(void) |
| { |
| rcu_tasks.pregp_func = rcu_tasks_pregp_step; |
| rcu_tasks.pertask_func = rcu_tasks_pertask; |
| rcu_tasks.postscan_func = rcu_tasks_postscan; |
| rcu_tasks.holdouts_func = check_all_holdout_tasks; |
| rcu_tasks.postgp_func = rcu_tasks_postgp; |
| rcu_spawn_tasks_kthread_generic(&rcu_tasks); |
| return 0; |
| } |
| core_initcall(rcu_spawn_tasks_kthread); |
| |
| static void show_rcu_tasks_classic_gp_kthread(void) |
| { |
| show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); |
| } |
| |
| #else /* #ifdef CONFIG_TASKS_RCU */ |
| static void show_rcu_tasks_classic_gp_kthread(void) { } |
| #endif /* #else #ifdef CONFIG_TASKS_RCU */ |
| |
| #ifdef CONFIG_TASKS_RUDE_RCU |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of |
| // passing an empty function to schedule_on_each_cpu(). This approach |
| // provides an asynchronous call_rcu_tasks_rude() API and batching |
| // of concurrent calls to the synchronous synchronize_rcu_rude() API. |
| // This sends IPIs far and wide and induces otherwise unnecessary context |
| // switches on all online CPUs, whether idle or not. |
| |
| // Empty function to allow workqueues to force a context switch. |
| static void rcu_tasks_be_rude(struct work_struct *work) |
| { |
| } |
| |
| // Wait for one rude RCU-tasks grace period. |
| static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) |
| { |
| rtp->n_ipis += cpumask_weight(cpu_online_mask); |
| schedule_on_each_cpu(rcu_tasks_be_rude); |
| } |
| |
| void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); |
| DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, |
| "RCU Tasks Rude"); |
| |
| /** |
| * call_rcu_tasks_rude() - Queue a callback rude task-based grace period |
| * @rhp: structure to be used for queueing the RCU updates. |
| * @func: actual callback function to be invoked after the grace period |
| * |
| * The callback function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. call_rcu_tasks_rude() |
| * assumes that the read-side critical sections end at context switch, |
| * cond_resched_rcu_qs(), or transition to usermode execution. As such, |
| * there are no read-side primitives analogous to rcu_read_lock() and |
| * rcu_read_unlock() because this primitive is intended to determine |
| * that all tasks have passed through a safe state, not so much for |
| * data-strcuture synchronization. |
| * |
| * See the description of call_rcu() for more detailed information on |
| * memory ordering guarantees. |
| */ |
| void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) |
| { |
| call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); |
| |
| /** |
| * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period |
| * |
| * Control will return to the caller some time after a rude rcu-tasks |
| * grace period has elapsed, in other words after all currently |
| * executing rcu-tasks read-side critical sections have elapsed. These |
| * read-side critical sections are delimited by calls to schedule(), |
| * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, |
| * anyway) cond_resched(). |
| * |
| * This is a very specialized primitive, intended only for a few uses in |
| * tracing and other situations requiring manipulation of function preambles |
| * and profiling hooks. The synchronize_rcu_tasks_rude() function is not |
| * (yet) intended for heavy use from multiple CPUs. |
| * |
| * See the description of synchronize_rcu() for more detailed information |
| * on memory ordering guarantees. |
| */ |
| void synchronize_rcu_tasks_rude(void) |
| { |
| synchronize_rcu_tasks_generic(&rcu_tasks_rude); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); |
| |
| /** |
| * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. |
| * |
| * Although the current implementation is guaranteed to wait, it is not |
| * obligated to, for example, if there are no pending callbacks. |
| */ |
| void rcu_barrier_tasks_rude(void) |
| { |
| /* There is only one callback queue, so this is easy. ;-) */ |
| synchronize_rcu_tasks_rude(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); |
| |
| static int __init rcu_spawn_tasks_rude_kthread(void) |
| { |
| rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); |
| return 0; |
| } |
| core_initcall(rcu_spawn_tasks_rude_kthread); |
| |
| static void show_rcu_tasks_rude_gp_kthread(void) |
| { |
| show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); |
| } |
| |
| #else /* #ifdef CONFIG_TASKS_RUDE_RCU */ |
| static void show_rcu_tasks_rude_gp_kthread(void) {} |
| #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */ |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Tracing variant of Tasks RCU. This variant is designed to be used |
| // to protect tracing hooks, including those of BPF. This variant |
| // therefore: |
| // |
| // 1. Has explicit read-side markers to allow finite grace periods |
| // in the face of in-kernel loops for PREEMPT=n builds. |
| // |
| // 2. Protects code in the idle loop, exception entry/exit, and |
| // CPU-hotplug code paths, similar to the capabilities of SRCU. |
| // |
| // 3. Avoids expensive read-side instruction, having overhead similar |
| // to that of Preemptible RCU. |
| // |
| // There are of course downsides. The grace-period code can send IPIs to |
| // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. |
| // It is necessary to scan the full tasklist, much as for Tasks RCU. There |
| // is a single callback queue guarded by a single lock, again, much as for |
| // Tasks RCU. If needed, these downsides can be at least partially remedied. |
| // |
| // Perhaps most important, this variant of RCU does not affect the vanilla |
| // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace |
| // readers can operate from idle, offline, and exception entry/exit in no |
| // way allows rcu_preempt and rcu_sched readers to also do so. |
| |
| // The lockdep state must be outside of #ifdef to be useful. |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| static struct lock_class_key rcu_lock_trace_key; |
| struct lockdep_map rcu_trace_lock_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); |
| EXPORT_SYMBOL_GPL(rcu_trace_lock_map); |
| #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| |
| atomic_t trc_n_readers_need_end; // Number of waited-for readers. |
| DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. |
| |
| // Record outstanding IPIs to each CPU. No point in sending two... |
| static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); |
| |
| void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); |
| DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, |
| "RCU Tasks Trace"); |
| |
| /* |
| * This irq_work handler allows rcu_read_unlock_trace() to be invoked |
| * while the scheduler locks are held. |
| */ |
| static void rcu_read_unlock_iw(struct irq_work *iwp) |
| { |
| wake_up(&trc_wait); |
| } |
| static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); |
| |
| /* If we are the last reader, wake up the grace-period kthread. */ |
| void rcu_read_unlock_trace_special(struct task_struct *t, int nesting) |
| { |
| int nq = t->trc_reader_special.b.need_qs; |
| |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && |
| t->trc_reader_special.b.need_mb) |
| smp_mb(); // Pairs with update-side barriers. |
| // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. |
| if (nq) |
| WRITE_ONCE(t->trc_reader_special.b.need_qs, false); |
| WRITE_ONCE(t->trc_reader_nesting, nesting); |
| if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) |
| irq_work_queue(&rcu_tasks_trace_iw); |
| } |
| EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); |
| |
| /* Add a task to the holdout list, if it is not already on the list. */ |
| static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) |
| { |
| if (list_empty(&t->trc_holdout_list)) { |
| get_task_struct(t); |
| list_add(&t->trc_holdout_list, bhp); |
| } |
| } |
| |
| /* Remove a task from the holdout list, if it is in fact present. */ |
| static void trc_del_holdout(struct task_struct *t) |
| { |
| if (!list_empty(&t->trc_holdout_list)) { |
| list_del_init(&t->trc_holdout_list); |
| put_task_struct(t); |
| } |
| } |
| |
| /* IPI handler to check task state. */ |
| static void trc_read_check_handler(void *t_in) |
| { |
| struct task_struct *t = current; |
| struct task_struct *texp = t_in; |
| |
| // If the task is no longer running on this CPU, leave. |
| if (unlikely(texp != t)) { |
| if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) |
| wake_up(&trc_wait); |
| goto reset_ipi; // Already on holdout list, so will check later. |
| } |
| |
| // If the task is not in a read-side critical section, and |
| // if this is the last reader, awaken the grace-period kthread. |
| if (likely(!t->trc_reader_nesting)) { |
| if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) |
| wake_up(&trc_wait); |
| // Mark as checked after decrement to avoid false |
| // positives on the above WARN_ON_ONCE(). |
| WRITE_ONCE(t->trc_reader_checked, true); |
| goto reset_ipi; |
| } |
| WRITE_ONCE(t->trc_reader_checked, true); |
| |
| // Get here if the task is in a read-side critical section. Set |
| // its state so that it will awaken the grace-period kthread upon |
| // exit from that critical section. |
| WARN_ON_ONCE(t->trc_reader_special.b.need_qs); |
| WRITE_ONCE(t->trc_reader_special.b.need_qs, true); |
| |
| reset_ipi: |
| // Allow future IPIs to be sent on CPU and for task. |
| // Also order this IPI handler against any later manipulations of |
| // the intended task. |
| smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ |
| smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ |
| } |
| |
| /* Callback function for scheduler to check locked-down task. */ |
| static bool trc_inspect_reader(struct task_struct *t, void *arg) |
| { |
| int cpu = task_cpu(t); |
| bool in_qs = false; |
| bool ofl = cpu_is_offline(cpu); |
| |
| if (task_curr(t)) { |
| WARN_ON_ONCE(ofl & !is_idle_task(t)); |
| |
| // If no chance of heavyweight readers, do it the hard way. |
| if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| return false; |
| |
| // If heavyweight readers are enabled on the remote task, |
| // we can inspect its state despite its currently running. |
| // However, we cannot safely change its state. |
| if (!ofl && // Check for "running" idle tasks on offline CPUs. |
| !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) |
| return false; // No quiescent state, do it the hard way. |
| in_qs = true; |
| } else { |
| in_qs = likely(!t->trc_reader_nesting); |
| } |
| |
| // Mark as checked. Because this is called from the grace-period |
| // kthread, also remove the task from the holdout list. |
| t->trc_reader_checked = true; |
| trc_del_holdout(t); |
| |
| if (in_qs) |
| return true; // Already in quiescent state, done!!! |
| |
| // The task is in a read-side critical section, so set up its |
| // state so that it will awaken the grace-period kthread upon exit |
| // from that critical section. |
| atomic_inc(&trc_n_readers_need_end); // One more to wait on. |
| WARN_ON_ONCE(t->trc_reader_special.b.need_qs); |
| WRITE_ONCE(t->trc_reader_special.b.need_qs, true); |
| return true; |
| } |
| |
| /* Attempt to extract the state for the specified task. */ |
| static void trc_wait_for_one_reader(struct task_struct *t, |
| struct list_head *bhp) |
| { |
| int cpu; |
| |
| // If a previous IPI is still in flight, let it complete. |
| if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI |
| return; |
| |
| // The current task had better be in a quiescent state. |
| if (t == current) { |
| t->trc_reader_checked = true; |
| trc_del_holdout(t); |
| WARN_ON_ONCE(t->trc_reader_nesting); |
| return; |
| } |
| |
| // Attempt to nail down the task for inspection. |
| get_task_struct(t); |
| if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) { |
| put_task_struct(t); |
| return; |
| } |
| put_task_struct(t); |
| |
| // If currently running, send an IPI, either way, add to list. |
| trc_add_holdout(t, bhp); |
| if (task_curr(t) && time_after(jiffies, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { |
| // The task is currently running, so try IPIing it. |
| cpu = task_cpu(t); |
| |
| // If there is already an IPI outstanding, let it happen. |
| if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) |
| return; |
| |
| atomic_inc(&trc_n_readers_need_end); |
| per_cpu(trc_ipi_to_cpu, cpu) = true; |
| t->trc_ipi_to_cpu = cpu; |
| rcu_tasks_trace.n_ipis++; |
| if (smp_call_function_single(cpu, |
| trc_read_check_handler, t, 0)) { |
| // Just in case there is some other reason for |
| // failure than the target CPU being offline. |
| per_cpu(trc_ipi_to_cpu, cpu) = false; |
| t->trc_ipi_to_cpu = cpu; |
| if (atomic_dec_and_test(&trc_n_readers_need_end)) { |
| WARN_ON_ONCE(1); |
| wake_up(&trc_wait); |
| } |
| } |
| } |
| } |
| |
| /* Initialize for a new RCU-tasks-trace grace period. */ |
| static void rcu_tasks_trace_pregp_step(void) |
| { |
| int cpu; |
| |
| // Allow for fast-acting IPIs. |
| atomic_set(&trc_n_readers_need_end, 1); |
| |
| // There shouldn't be any old IPIs, but... |
| for_each_possible_cpu(cpu) |
| WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); |
| |
| // Disable CPU hotplug across the tasklist scan. |
| // This also waits for all readers in CPU-hotplug code paths. |
| cpus_read_lock(); |
| } |
| |
| /* Do first-round processing for the specified task. */ |
| static void rcu_tasks_trace_pertask(struct task_struct *t, |
| struct list_head *hop) |
| { |
| WRITE_ONCE(t->trc_reader_special.b.need_qs, false); |
| WRITE_ONCE(t->trc_reader_checked, false); |
| t->trc_ipi_to_cpu = -1; |
| trc_wait_for_one_reader(t, hop); |
| } |
| |
| /* Do intermediate processing between task and holdout scans. */ |
| static void rcu_tasks_trace_postscan(void) |
| { |
| // Re-enable CPU hotplug now that the tasklist scan has completed. |
| cpus_read_unlock(); |
| |
| // Wait for late-stage exiting tasks to finish exiting. |
| // These might have passed the call to exit_tasks_rcu_finish(). |
| synchronize_rcu(); |
| // Any tasks that exit after this point will set ->trc_reader_checked. |
| } |
| |
| /* Show the state of a task stalling the current RCU tasks trace GP. */ |
| static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) |
| { |
| int cpu; |
| |
| if (*firstreport) { |
| pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); |
| *firstreport = false; |
| } |
| // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). |
| cpu = task_cpu(t); |
| pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", |
| t->pid, |
| ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0], |
| ".i"[is_idle_task(t)], |
| ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)], |
| t->trc_reader_nesting, |
| " N"[!!t->trc_reader_special.b.need_qs], |
| cpu); |
| sched_show_task(t); |
| } |
| |
| /* List stalled IPIs for RCU tasks trace. */ |
| static void show_stalled_ipi_trace(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| if (per_cpu(trc_ipi_to_cpu, cpu)) |
| pr_alert("\tIPI outstanding to CPU %d\n", cpu); |
| } |
| |
| /* Do one scan of the holdout list. */ |
| static void check_all_holdout_tasks_trace(struct list_head *hop, |
| bool needreport, bool *firstreport) |
| { |
| struct task_struct *g, *t; |
| |
| // Disable CPU hotplug across the holdout list scan. |
| cpus_read_lock(); |
| |
| list_for_each_entry_safe(t, g, hop, trc_holdout_list) { |
| // If safe and needed, try to check the current task. |
| if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && |
| !READ_ONCE(t->trc_reader_checked)) |
| trc_wait_for_one_reader(t, hop); |
| |
| // If check succeeded, remove this task from the list. |
| if (READ_ONCE(t->trc_reader_checked)) |
| trc_del_holdout(t); |
| else if (needreport) |
| show_stalled_task_trace(t, firstreport); |
| } |
| |
| // Re-enable CPU hotplug now that the holdout list scan has completed. |
| cpus_read_unlock(); |
| |
| if (needreport) { |
| if (firstreport) |
| pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); |
| show_stalled_ipi_trace(); |
| } |
| } |
| |
| /* Wait for grace period to complete and provide ordering. */ |
| static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) |
| { |
| bool firstreport; |
| struct task_struct *g, *t; |
| LIST_HEAD(holdouts); |
| long ret; |
| |
| // Remove the safety count. |
| smp_mb__before_atomic(); // Order vs. earlier atomics |
| atomic_dec(&trc_n_readers_need_end); |
| smp_mb__after_atomic(); // Order vs. later atomics |
| |
| // Wait for readers. |
| set_tasks_gp_state(rtp, RTGS_WAIT_READERS); |
| for (;;) { |
| ret = wait_event_idle_exclusive_timeout( |
| trc_wait, |
| atomic_read(&trc_n_readers_need_end) == 0, |
| READ_ONCE(rcu_task_stall_timeout)); |
| if (ret) |
| break; // Count reached zero. |
| // Stall warning time, so make a list of the offenders. |
| for_each_process_thread(g, t) |
| if (READ_ONCE(t->trc_reader_special.b.need_qs)) |
| trc_add_holdout(t, &holdouts); |
| firstreport = true; |
| list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) |
| if (READ_ONCE(t->trc_reader_special.b.need_qs)) { |
| show_stalled_task_trace(t, &firstreport); |
| trc_del_holdout(t); |
| } |
| if (firstreport) |
| pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); |
| show_stalled_ipi_trace(); |
| pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); |
| } |
| smp_mb(); // Caller's code must be ordered after wakeup. |
| // Pairs with pretty much every ordering primitive. |
| } |
| |
| /* Report any needed quiescent state for this exiting task. */ |
| void exit_tasks_rcu_finish_trace(struct task_struct *t) |
| { |
| WRITE_ONCE(t->trc_reader_checked, true); |
| WARN_ON_ONCE(t->trc_reader_nesting); |
| WRITE_ONCE(t->trc_reader_nesting, 0); |
| if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) |
| rcu_read_unlock_trace_special(t, 0); |
| } |
| |
| /** |
| * call_rcu_tasks_trace() - Queue a callback trace task-based grace period |
| * @rhp: structure to be used for queueing the RCU updates. |
| * @func: actual callback function to be invoked after the grace period |
| * |
| * The callback function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. call_rcu_tasks_trace() |
| * assumes that the read-side critical sections end at context switch, |
| * cond_resched_rcu_qs(), or transition to usermode execution. As such, |
| * there are no read-side primitives analogous to rcu_read_lock() and |
| * rcu_read_unlock() because this primitive is intended to determine |
| * that all tasks have passed through a safe state, not so much for |
| * data-strcuture synchronization. |
| * |
| * See the description of call_rcu() for more detailed information on |
| * memory ordering guarantees. |
| */ |
| void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) |
| { |
| call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); |
| |
| /** |
| * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period |
| * |
| * Control will return to the caller some time after a trace rcu-tasks |
| * grace period has elapsed, in other words after all currently |
| * executing rcu-tasks read-side critical sections have elapsed. These |
| * read-side critical sections are delimited by calls to schedule(), |
| * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, |
| * anyway) cond_resched(). |
| * |
| * This is a very specialized primitive, intended only for a few uses in |
| * tracing and other situations requiring manipulation of function preambles |
| * and profiling hooks. The synchronize_rcu_tasks_trace() function is not |
| * (yet) intended for heavy use from multiple CPUs. |
| * |
| * See the description of synchronize_rcu() for more detailed information |
| * on memory ordering guarantees. |
| */ |
| void synchronize_rcu_tasks_trace(void) |
| { |
| RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); |
| synchronize_rcu_tasks_generic(&rcu_tasks_trace); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); |
| |
| /** |
| * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. |
| * |
| * Although the current implementation is guaranteed to wait, it is not |
| * obligated to, for example, if there are no pending callbacks. |
| */ |
| void rcu_barrier_tasks_trace(void) |
| { |
| /* There is only one callback queue, so this is easy. ;-) */ |
| synchronize_rcu_tasks_trace(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); |
| |
| static int __init rcu_spawn_tasks_trace_kthread(void) |
| { |
| rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; |
| rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; |
| rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; |
| rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; |
| rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; |
| rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); |
| return 0; |
| } |
| core_initcall(rcu_spawn_tasks_trace_kthread); |
| |
| static void show_rcu_tasks_trace_gp_kthread(void) |
| { |
| char buf[32]; |
| |
| sprintf(buf, "N%d", atomic_read(&trc_n_readers_need_end)); |
| show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); |
| } |
| |
| #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| void exit_tasks_rcu_finish_trace(struct task_struct *t) { } |
| static inline void show_rcu_tasks_trace_gp_kthread(void) {} |
| #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ |
| |
| void show_rcu_tasks_gp_kthreads(void) |
| { |
| show_rcu_tasks_classic_gp_kthread(); |
| show_rcu_tasks_rude_gp_kthread(); |
| show_rcu_tasks_trace_gp_kthread(); |
| } |
| |
| #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ |
| static inline void rcu_tasks_bootup_oddness(void) {} |
| void show_rcu_tasks_gp_kthreads(void) {} |
| #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ |