| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/prctl.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/module.h> |
| #include <linux/pm.h> |
| #include <linux/clockchips.h> |
| #include <linux/random.h> |
| #include <linux/user-return-notifier.h> |
| #include <linux/dmi.h> |
| #include <linux/utsname.h> |
| #include <trace/events/power.h> |
| #include <linux/hw_breakpoint.h> |
| #include <asm/system.h> |
| #include <asm/apic.h> |
| #include <asm/syscalls.h> |
| #include <asm/idle.h> |
| #include <asm/uaccess.h> |
| #include <asm/i387.h> |
| #include <asm/debugreg.h> |
| |
| unsigned long idle_halt; |
| EXPORT_SYMBOL(idle_halt); |
| unsigned long idle_nomwait; |
| EXPORT_SYMBOL(idle_nomwait); |
| |
| struct kmem_cache *task_xstate_cachep; |
| EXPORT_SYMBOL_GPL(task_xstate_cachep); |
| |
| int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| { |
| int ret; |
| |
| *dst = *src; |
| if (fpu_allocated(&src->thread.fpu)) { |
| memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu)); |
| ret = fpu_alloc(&dst->thread.fpu); |
| if (ret) |
| return ret; |
| fpu_copy(&dst->thread.fpu, &src->thread.fpu); |
| } |
| return 0; |
| } |
| |
| void free_thread_xstate(struct task_struct *tsk) |
| { |
| fpu_free(&tsk->thread.fpu); |
| } |
| |
| void free_thread_info(struct thread_info *ti) |
| { |
| free_thread_xstate(ti->task); |
| free_pages((unsigned long)ti, get_order(THREAD_SIZE)); |
| } |
| |
| void arch_task_cache_init(void) |
| { |
| task_xstate_cachep = |
| kmem_cache_create("task_xstate", xstate_size, |
| __alignof__(union thread_xstate), |
| SLAB_PANIC | SLAB_NOTRACK, NULL); |
| } |
| |
| /* |
| * Free current thread data structures etc.. |
| */ |
| void exit_thread(void) |
| { |
| struct task_struct *me = current; |
| struct thread_struct *t = &me->thread; |
| unsigned long *bp = t->io_bitmap_ptr; |
| |
| if (bp) { |
| struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); |
| |
| t->io_bitmap_ptr = NULL; |
| clear_thread_flag(TIF_IO_BITMAP); |
| /* |
| * Careful, clear this in the TSS too: |
| */ |
| memset(tss->io_bitmap, 0xff, t->io_bitmap_max); |
| t->io_bitmap_max = 0; |
| put_cpu(); |
| kfree(bp); |
| } |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| show_registers(regs); |
| show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), |
| regs->bp); |
| } |
| |
| void show_regs_common(void) |
| { |
| const char *board, *product; |
| |
| board = dmi_get_system_info(DMI_BOARD_NAME); |
| if (!board) |
| board = ""; |
| product = dmi_get_system_info(DMI_PRODUCT_NAME); |
| if (!product) |
| product = ""; |
| |
| printk(KERN_CONT "\n"); |
| printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n", |
| current->pid, current->comm, print_tainted(), |
| init_utsname()->release, |
| (int)strcspn(init_utsname()->version, " "), |
| init_utsname()->version, board, product); |
| } |
| |
| void flush_thread(void) |
| { |
| struct task_struct *tsk = current; |
| |
| flush_ptrace_hw_breakpoint(tsk); |
| memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
| /* |
| * Forget coprocessor state.. |
| */ |
| tsk->fpu_counter = 0; |
| clear_fpu(tsk); |
| clear_used_math(); |
| } |
| |
| static void hard_disable_TSC(void) |
| { |
| write_cr4(read_cr4() | X86_CR4_TSD); |
| } |
| |
| void disable_TSC(void) |
| { |
| preempt_disable(); |
| if (!test_and_set_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| hard_disable_TSC(); |
| preempt_enable(); |
| } |
| |
| static void hard_enable_TSC(void) |
| { |
| write_cr4(read_cr4() & ~X86_CR4_TSD); |
| } |
| |
| static void enable_TSC(void) |
| { |
| preempt_disable(); |
| if (test_and_clear_thread_flag(TIF_NOTSC)) |
| /* |
| * Must flip the CPU state synchronously with |
| * TIF_NOTSC in the current running context. |
| */ |
| hard_enable_TSC(); |
| preempt_enable(); |
| } |
| |
| int get_tsc_mode(unsigned long adr) |
| { |
| unsigned int val; |
| |
| if (test_thread_flag(TIF_NOTSC)) |
| val = PR_TSC_SIGSEGV; |
| else |
| val = PR_TSC_ENABLE; |
| |
| return put_user(val, (unsigned int __user *)adr); |
| } |
| |
| int set_tsc_mode(unsigned int val) |
| { |
| if (val == PR_TSC_SIGSEGV) |
| disable_TSC(); |
| else if (val == PR_TSC_ENABLE) |
| enable_TSC(); |
| else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, |
| struct tss_struct *tss) |
| { |
| struct thread_struct *prev, *next; |
| |
| prev = &prev_p->thread; |
| next = &next_p->thread; |
| |
| if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^ |
| test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) { |
| unsigned long debugctl = get_debugctlmsr(); |
| |
| debugctl &= ~DEBUGCTLMSR_BTF; |
| if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) |
| debugctl |= DEBUGCTLMSR_BTF; |
| |
| update_debugctlmsr(debugctl); |
| } |
| |
| if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ |
| test_tsk_thread_flag(next_p, TIF_NOTSC)) { |
| /* prev and next are different */ |
| if (test_tsk_thread_flag(next_p, TIF_NOTSC)) |
| hard_disable_TSC(); |
| else |
| hard_enable_TSC(); |
| } |
| |
| if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { |
| /* |
| * Copy the relevant range of the IO bitmap. |
| * Normally this is 128 bytes or less: |
| */ |
| memcpy(tss->io_bitmap, next->io_bitmap_ptr, |
| max(prev->io_bitmap_max, next->io_bitmap_max)); |
| } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { |
| /* |
| * Clear any possible leftover bits: |
| */ |
| memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); |
| } |
| propagate_user_return_notify(prev_p, next_p); |
| } |
| |
| int sys_fork(struct pt_regs *regs) |
| { |
| return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); |
| } |
| |
| /* |
| * This is trivial, and on the face of it looks like it |
| * could equally well be done in user mode. |
| * |
| * Not so, for quite unobvious reasons - register pressure. |
| * In user mode vfork() cannot have a stack frame, and if |
| * done by calling the "clone()" system call directly, you |
| * do not have enough call-clobbered registers to hold all |
| * the information you need. |
| */ |
| int sys_vfork(struct pt_regs *regs) |
| { |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, |
| NULL, NULL); |
| } |
| |
| long |
| sys_clone(unsigned long clone_flags, unsigned long newsp, |
| void __user *parent_tid, void __user *child_tid, struct pt_regs *regs) |
| { |
| if (!newsp) |
| newsp = regs->sp; |
| return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid); |
| } |
| |
| /* |
| * This gets run with %si containing the |
| * function to call, and %di containing |
| * the "args". |
| */ |
| extern void kernel_thread_helper(void); |
| |
| /* |
| * Create a kernel thread |
| */ |
| int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) |
| { |
| struct pt_regs regs; |
| |
| memset(®s, 0, sizeof(regs)); |
| |
| regs.si = (unsigned long) fn; |
| regs.di = (unsigned long) arg; |
| |
| #ifdef CONFIG_X86_32 |
| regs.ds = __USER_DS; |
| regs.es = __USER_DS; |
| regs.fs = __KERNEL_PERCPU; |
| regs.gs = __KERNEL_STACK_CANARY; |
| #else |
| regs.ss = __KERNEL_DS; |
| #endif |
| |
| regs.orig_ax = -1; |
| regs.ip = (unsigned long) kernel_thread_helper; |
| regs.cs = __KERNEL_CS | get_kernel_rpl(); |
| regs.flags = X86_EFLAGS_IF | 0x2; |
| |
| /* Ok, create the new process.. */ |
| return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); |
| } |
| EXPORT_SYMBOL(kernel_thread); |
| |
| /* |
| * sys_execve() executes a new program. |
| */ |
| long sys_execve(char __user *name, char __user * __user *argv, |
| char __user * __user *envp, struct pt_regs *regs) |
| { |
| long error; |
| char *filename; |
| |
| filename = getname(name); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| return error; |
| error = do_execve(filename, argv, envp, regs); |
| |
| #ifdef CONFIG_X86_32 |
| if (error == 0) { |
| /* Make sure we don't return using sysenter.. */ |
| set_thread_flag(TIF_IRET); |
| } |
| #endif |
| |
| putname(filename); |
| return error; |
| } |
| |
| /* |
| * Idle related variables and functions |
| */ |
| unsigned long boot_option_idle_override = 0; |
| EXPORT_SYMBOL(boot_option_idle_override); |
| |
| /* |
| * Powermanagement idle function, if any.. |
| */ |
| void (*pm_idle)(void); |
| EXPORT_SYMBOL(pm_idle); |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * This halt magic was a workaround for ancient floppy DMA |
| * wreckage. It should be safe to remove. |
| */ |
| static int hlt_counter; |
| void disable_hlt(void) |
| { |
| hlt_counter++; |
| } |
| EXPORT_SYMBOL(disable_hlt); |
| |
| void enable_hlt(void) |
| { |
| hlt_counter--; |
| } |
| EXPORT_SYMBOL(enable_hlt); |
| |
| static inline int hlt_use_halt(void) |
| { |
| return (!hlt_counter && boot_cpu_data.hlt_works_ok); |
| } |
| #else |
| static inline int hlt_use_halt(void) |
| { |
| return 1; |
| } |
| #endif |
| |
| /* |
| * We use this if we don't have any better |
| * idle routine.. |
| */ |
| void default_idle(void) |
| { |
| if (hlt_use_halt()) { |
| trace_power_start(POWER_CSTATE, 1); |
| current_thread_info()->status &= ~TS_POLLING; |
| /* |
| * TS_POLLING-cleared state must be visible before we |
| * test NEED_RESCHED: |
| */ |
| smp_mb(); |
| |
| if (!need_resched()) |
| safe_halt(); /* enables interrupts racelessly */ |
| else |
| local_irq_enable(); |
| current_thread_info()->status |= TS_POLLING; |
| } else { |
| local_irq_enable(); |
| /* loop is done by the caller */ |
| cpu_relax(); |
| } |
| } |
| #ifdef CONFIG_APM_MODULE |
| EXPORT_SYMBOL(default_idle); |
| #endif |
| |
| void stop_this_cpu(void *dummy) |
| { |
| local_irq_disable(); |
| /* |
| * Remove this CPU: |
| */ |
| set_cpu_online(smp_processor_id(), false); |
| disable_local_APIC(); |
| |
| for (;;) { |
| if (hlt_works(smp_processor_id())) |
| halt(); |
| } |
| } |
| |
| static void do_nothing(void *unused) |
| { |
| } |
| |
| /* |
| * cpu_idle_wait - Used to ensure that all the CPUs discard old value of |
| * pm_idle and update to new pm_idle value. Required while changing pm_idle |
| * handler on SMP systems. |
| * |
| * Caller must have changed pm_idle to the new value before the call. Old |
| * pm_idle value will not be used by any CPU after the return of this function. |
| */ |
| void cpu_idle_wait(void) |
| { |
| smp_mb(); |
| /* kick all the CPUs so that they exit out of pm_idle */ |
| smp_call_function(do_nothing, NULL, 1); |
| } |
| EXPORT_SYMBOL_GPL(cpu_idle_wait); |
| |
| /* |
| * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, |
| * which can obviate IPI to trigger checking of need_resched. |
| * We execute MONITOR against need_resched and enter optimized wait state |
| * through MWAIT. Whenever someone changes need_resched, we would be woken |
| * up from MWAIT (without an IPI). |
| * |
| * New with Core Duo processors, MWAIT can take some hints based on CPU |
| * capability. |
| */ |
| void mwait_idle_with_hints(unsigned long ax, unsigned long cx) |
| { |
| trace_power_start(POWER_CSTATE, (ax>>4)+1); |
| if (!need_resched()) { |
| if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) |
| clflush((void *)¤t_thread_info()->flags); |
| |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| smp_mb(); |
| if (!need_resched()) |
| __mwait(ax, cx); |
| } |
| } |
| |
| /* Default MONITOR/MWAIT with no hints, used for default C1 state */ |
| static void mwait_idle(void) |
| { |
| if (!need_resched()) { |
| trace_power_start(POWER_CSTATE, 1); |
| if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) |
| clflush((void *)¤t_thread_info()->flags); |
| |
| __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| smp_mb(); |
| if (!need_resched()) |
| __sti_mwait(0, 0); |
| else |
| local_irq_enable(); |
| } else |
| local_irq_enable(); |
| } |
| |
| /* |
| * On SMP it's slightly faster (but much more power-consuming!) |
| * to poll the ->work.need_resched flag instead of waiting for the |
| * cross-CPU IPI to arrive. Use this option with caution. |
| */ |
| static void poll_idle(void) |
| { |
| trace_power_start(POWER_CSTATE, 0); |
| local_irq_enable(); |
| while (!need_resched()) |
| cpu_relax(); |
| trace_power_end(0); |
| } |
| |
| /* |
| * mwait selection logic: |
| * |
| * It depends on the CPU. For AMD CPUs that support MWAIT this is |
| * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings |
| * then depend on a clock divisor and current Pstate of the core. If |
| * all cores of a processor are in halt state (C1) the processor can |
| * enter the C1E (C1 enhanced) state. If mwait is used this will never |
| * happen. |
| * |
| * idle=mwait overrides this decision and forces the usage of mwait. |
| */ |
| static int __cpuinitdata force_mwait; |
| |
| #define MWAIT_INFO 0x05 |
| #define MWAIT_ECX_EXTENDED_INFO 0x01 |
| #define MWAIT_EDX_C1 0xf0 |
| |
| static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) |
| { |
| u32 eax, ebx, ecx, edx; |
| |
| if (force_mwait) |
| return 1; |
| |
| if (c->cpuid_level < MWAIT_INFO) |
| return 0; |
| |
| cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); |
| /* Check, whether EDX has extended info about MWAIT */ |
| if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) |
| return 1; |
| |
| /* |
| * edx enumeratios MONITOR/MWAIT extensions. Check, whether |
| * C1 supports MWAIT |
| */ |
| return (edx & MWAIT_EDX_C1); |
| } |
| |
| /* |
| * Check for AMD CPUs, where APIC timer interrupt does not wake up CPU from C1e. |
| * For more information see |
| * - Erratum #400 for NPT family 0xf and family 0x10 CPUs |
| * - Erratum #365 for family 0x11 (not affected because C1e not in use) |
| */ |
| static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) |
| { |
| u64 val; |
| if (c->x86_vendor != X86_VENDOR_AMD) |
| goto no_c1e_idle; |
| |
| /* Family 0x0f models < rev F do not have C1E */ |
| if (c->x86 == 0x0F && c->x86_model >= 0x40) |
| return 1; |
| |
| if (c->x86 == 0x10) { |
| /* |
| * check OSVW bit for CPUs that are not affected |
| * by erratum #400 |
| */ |
| if (cpu_has(c, X86_FEATURE_OSVW)) { |
| rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, val); |
| if (val >= 2) { |
| rdmsrl(MSR_AMD64_OSVW_STATUS, val); |
| if (!(val & BIT(1))) |
| goto no_c1e_idle; |
| } |
| } |
| return 1; |
| } |
| |
| no_c1e_idle: |
| return 0; |
| } |
| |
| static cpumask_var_t c1e_mask; |
| static int c1e_detected; |
| |
| void c1e_remove_cpu(int cpu) |
| { |
| if (c1e_mask != NULL) |
| cpumask_clear_cpu(cpu, c1e_mask); |
| } |
| |
| /* |
| * C1E aware idle routine. We check for C1E active in the interrupt |
| * pending message MSR. If we detect C1E, then we handle it the same |
| * way as C3 power states (local apic timer and TSC stop) |
| */ |
| static void c1e_idle(void) |
| { |
| if (need_resched()) |
| return; |
| |
| if (!c1e_detected) { |
| u32 lo, hi; |
| |
| rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); |
| if (lo & K8_INTP_C1E_ACTIVE_MASK) { |
| c1e_detected = 1; |
| if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| mark_tsc_unstable("TSC halt in AMD C1E"); |
| printk(KERN_INFO "System has AMD C1E enabled\n"); |
| set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); |
| } |
| } |
| |
| if (c1e_detected) { |
| int cpu = smp_processor_id(); |
| |
| if (!cpumask_test_cpu(cpu, c1e_mask)) { |
| cpumask_set_cpu(cpu, c1e_mask); |
| /* |
| * Force broadcast so ACPI can not interfere. |
| */ |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, |
| &cpu); |
| printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", |
| cpu); |
| } |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); |
| |
| default_idle(); |
| |
| /* |
| * The switch back from broadcast mode needs to be |
| * called with interrupts disabled. |
| */ |
| local_irq_disable(); |
| clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); |
| local_irq_enable(); |
| } else |
| default_idle(); |
| } |
| |
| void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_SMP |
| if (pm_idle == poll_idle && smp_num_siblings > 1) { |
| printk_once(KERN_WARNING "WARNING: polling idle and HT enabled," |
| " performance may degrade.\n"); |
| } |
| #endif |
| if (pm_idle) |
| return; |
| |
| if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { |
| /* |
| * One CPU supports mwait => All CPUs supports mwait |
| */ |
| printk(KERN_INFO "using mwait in idle threads.\n"); |
| pm_idle = mwait_idle; |
| } else if (check_c1e_idle(c)) { |
| printk(KERN_INFO "using C1E aware idle routine\n"); |
| pm_idle = c1e_idle; |
| } else |
| pm_idle = default_idle; |
| } |
| |
| void __init init_c1e_mask(void) |
| { |
| /* If we're using c1e_idle, we need to allocate c1e_mask. */ |
| if (pm_idle == c1e_idle) |
| zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); |
| } |
| |
| static int __init idle_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "poll")) { |
| printk("using polling idle threads.\n"); |
| pm_idle = poll_idle; |
| } else if (!strcmp(str, "mwait")) |
| force_mwait = 1; |
| else if (!strcmp(str, "halt")) { |
| /* |
| * When the boot option of idle=halt is added, halt is |
| * forced to be used for CPU idle. In such case CPU C2/C3 |
| * won't be used again. |
| * To continue to load the CPU idle driver, don't touch |
| * the boot_option_idle_override. |
| */ |
| pm_idle = default_idle; |
| idle_halt = 1; |
| return 0; |
| } else if (!strcmp(str, "nomwait")) { |
| /* |
| * If the boot option of "idle=nomwait" is added, |
| * it means that mwait will be disabled for CPU C2/C3 |
| * states. In such case it won't touch the variable |
| * of boot_option_idle_override. |
| */ |
| idle_nomwait = 1; |
| return 0; |
| } else |
| return -1; |
| |
| boot_option_idle_override = 1; |
| return 0; |
| } |
| early_param("idle", idle_setup); |
| |
| unsigned long arch_align_stack(unsigned long sp) |
| { |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| sp -= get_random_int() % 8192; |
| return sp & ~0xf; |
| } |
| |
| unsigned long arch_randomize_brk(struct mm_struct *mm) |
| { |
| unsigned long range_end = mm->brk + 0x02000000; |
| return randomize_range(mm->brk, range_end, 0) ? : mm->brk; |
| } |
| |