| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/fs/nfs/dir.c |
| * |
| * Copyright (C) 1992 Rick Sladkey |
| * |
| * nfs directory handling functions |
| * |
| * 10 Apr 1996 Added silly rename for unlink --okir |
| * 28 Sep 1996 Improved directory cache --okir |
| * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de |
| * Re-implemented silly rename for unlink, newly implemented |
| * silly rename for nfs_rename() following the suggestions |
| * of Olaf Kirch (okir) found in this file. |
| * Following Linus comments on my original hack, this version |
| * depends only on the dcache stuff and doesn't touch the inode |
| * layer (iput() and friends). |
| * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/time.h> |
| #include <linux/errno.h> |
| #include <linux/stat.h> |
| #include <linux/fcntl.h> |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/sunrpc/clnt.h> |
| #include <linux/nfs_fs.h> |
| #include <linux/nfs_mount.h> |
| #include <linux/pagemap.h> |
| #include <linux/pagevec.h> |
| #include <linux/namei.h> |
| #include <linux/mount.h> |
| #include <linux/swap.h> |
| #include <linux/sched.h> |
| #include <linux/kmemleak.h> |
| #include <linux/xattr.h> |
| |
| #include "delegation.h" |
| #include "iostat.h" |
| #include "internal.h" |
| #include "fscache.h" |
| |
| #include "nfstrace.h" |
| |
| /* #define NFS_DEBUG_VERBOSE 1 */ |
| |
| static int nfs_opendir(struct inode *, struct file *); |
| static int nfs_closedir(struct inode *, struct file *); |
| static int nfs_readdir(struct file *, struct dir_context *); |
| static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); |
| static loff_t nfs_llseek_dir(struct file *, loff_t, int); |
| static void nfs_readdir_clear_array(struct page*); |
| |
| const struct file_operations nfs_dir_operations = { |
| .llseek = nfs_llseek_dir, |
| .read = generic_read_dir, |
| .iterate_shared = nfs_readdir, |
| .open = nfs_opendir, |
| .release = nfs_closedir, |
| .fsync = nfs_fsync_dir, |
| }; |
| |
| const struct address_space_operations nfs_dir_aops = { |
| .freepage = nfs_readdir_clear_array, |
| }; |
| |
| static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir) |
| { |
| struct nfs_inode *nfsi = NFS_I(dir); |
| struct nfs_open_dir_context *ctx; |
| ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); |
| if (ctx != NULL) { |
| ctx->duped = 0; |
| ctx->attr_gencount = nfsi->attr_gencount; |
| ctx->dir_cookie = 0; |
| ctx->dup_cookie = 0; |
| spin_lock(&dir->i_lock); |
| if (list_empty(&nfsi->open_files) && |
| (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) |
| nfsi->cache_validity |= NFS_INO_INVALID_DATA | |
| NFS_INO_REVAL_FORCED; |
| list_add(&ctx->list, &nfsi->open_files); |
| spin_unlock(&dir->i_lock); |
| return ctx; |
| } |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) |
| { |
| spin_lock(&dir->i_lock); |
| list_del(&ctx->list); |
| spin_unlock(&dir->i_lock); |
| kfree(ctx); |
| } |
| |
| /* |
| * Open file |
| */ |
| static int |
| nfs_opendir(struct inode *inode, struct file *filp) |
| { |
| int res = 0; |
| struct nfs_open_dir_context *ctx; |
| |
| dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); |
| |
| nfs_inc_stats(inode, NFSIOS_VFSOPEN); |
| |
| ctx = alloc_nfs_open_dir_context(inode); |
| if (IS_ERR(ctx)) { |
| res = PTR_ERR(ctx); |
| goto out; |
| } |
| filp->private_data = ctx; |
| out: |
| return res; |
| } |
| |
| static int |
| nfs_closedir(struct inode *inode, struct file *filp) |
| { |
| put_nfs_open_dir_context(file_inode(filp), filp->private_data); |
| return 0; |
| } |
| |
| struct nfs_cache_array_entry { |
| u64 cookie; |
| u64 ino; |
| const char *name; |
| unsigned int name_len; |
| unsigned char d_type; |
| }; |
| |
| struct nfs_cache_array { |
| u64 last_cookie; |
| unsigned int size; |
| unsigned char page_full : 1, |
| page_is_eof : 1, |
| cookies_are_ordered : 1; |
| struct nfs_cache_array_entry array[]; |
| }; |
| |
| struct nfs_readdir_descriptor { |
| struct file *file; |
| struct page *page; |
| struct dir_context *ctx; |
| pgoff_t page_index; |
| u64 dir_cookie; |
| u64 last_cookie; |
| u64 dup_cookie; |
| loff_t current_index; |
| loff_t prev_index; |
| |
| __be32 verf[NFS_DIR_VERIFIER_SIZE]; |
| unsigned long dir_verifier; |
| unsigned long timestamp; |
| unsigned long gencount; |
| unsigned long attr_gencount; |
| unsigned int cache_entry_index; |
| signed char duped; |
| bool plus; |
| bool eof; |
| }; |
| |
| static void nfs_readdir_array_init(struct nfs_cache_array *array) |
| { |
| memset(array, 0, sizeof(struct nfs_cache_array)); |
| } |
| |
| static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie) |
| { |
| struct nfs_cache_array *array; |
| |
| array = kmap_atomic(page); |
| nfs_readdir_array_init(array); |
| array->last_cookie = last_cookie; |
| array->cookies_are_ordered = 1; |
| kunmap_atomic(array); |
| } |
| |
| /* |
| * we are freeing strings created by nfs_add_to_readdir_array() |
| */ |
| static |
| void nfs_readdir_clear_array(struct page *page) |
| { |
| struct nfs_cache_array *array; |
| int i; |
| |
| array = kmap_atomic(page); |
| for (i = 0; i < array->size; i++) |
| kfree(array->array[i].name); |
| nfs_readdir_array_init(array); |
| kunmap_atomic(array); |
| } |
| |
| static struct page * |
| nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags) |
| { |
| struct page *page = alloc_page(gfp_flags); |
| if (page) |
| nfs_readdir_page_init_array(page, last_cookie); |
| return page; |
| } |
| |
| static void nfs_readdir_page_array_free(struct page *page) |
| { |
| if (page) { |
| nfs_readdir_clear_array(page); |
| put_page(page); |
| } |
| } |
| |
| static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) |
| { |
| array->page_is_eof = 1; |
| array->page_full = 1; |
| } |
| |
| static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) |
| { |
| return array->page_full; |
| } |
| |
| /* |
| * the caller is responsible for freeing qstr.name |
| * when called by nfs_readdir_add_to_array, the strings will be freed in |
| * nfs_clear_readdir_array() |
| */ |
| static const char *nfs_readdir_copy_name(const char *name, unsigned int len) |
| { |
| const char *ret = kmemdup_nul(name, len, GFP_KERNEL); |
| |
| /* |
| * Avoid a kmemleak false positive. The pointer to the name is stored |
| * in a page cache page which kmemleak does not scan. |
| */ |
| if (ret != NULL) |
| kmemleak_not_leak(ret); |
| return ret; |
| } |
| |
| /* |
| * Check that the next array entry lies entirely within the page bounds |
| */ |
| static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) |
| { |
| struct nfs_cache_array_entry *cache_entry; |
| |
| if (array->page_full) |
| return -ENOSPC; |
| cache_entry = &array->array[array->size + 1]; |
| if ((char *)cache_entry - (char *)array > PAGE_SIZE) { |
| array->page_full = 1; |
| return -ENOSPC; |
| } |
| return 0; |
| } |
| |
| static |
| int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) |
| { |
| struct nfs_cache_array *array; |
| struct nfs_cache_array_entry *cache_entry; |
| const char *name; |
| int ret; |
| |
| name = nfs_readdir_copy_name(entry->name, entry->len); |
| if (!name) |
| return -ENOMEM; |
| |
| array = kmap_atomic(page); |
| ret = nfs_readdir_array_can_expand(array); |
| if (ret) { |
| kfree(name); |
| goto out; |
| } |
| |
| cache_entry = &array->array[array->size]; |
| cache_entry->cookie = entry->prev_cookie; |
| cache_entry->ino = entry->ino; |
| cache_entry->d_type = entry->d_type; |
| cache_entry->name_len = entry->len; |
| cache_entry->name = name; |
| array->last_cookie = entry->cookie; |
| if (array->last_cookie <= cache_entry->cookie) |
| array->cookies_are_ordered = 0; |
| array->size++; |
| if (entry->eof != 0) |
| nfs_readdir_array_set_eof(array); |
| out: |
| kunmap_atomic(array); |
| return ret; |
| } |
| |
| static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, |
| pgoff_t index, u64 last_cookie) |
| { |
| struct page *page; |
| |
| page = grab_cache_page(mapping, index); |
| if (page && !PageUptodate(page)) { |
| nfs_readdir_page_init_array(page, last_cookie); |
| if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0) |
| nfs_zap_mapping(mapping->host, mapping); |
| SetPageUptodate(page); |
| } |
| |
| return page; |
| } |
| |
| static u64 nfs_readdir_page_last_cookie(struct page *page) |
| { |
| struct nfs_cache_array *array; |
| u64 ret; |
| |
| array = kmap_atomic(page); |
| ret = array->last_cookie; |
| kunmap_atomic(array); |
| return ret; |
| } |
| |
| static bool nfs_readdir_page_needs_filling(struct page *page) |
| { |
| struct nfs_cache_array *array; |
| bool ret; |
| |
| array = kmap_atomic(page); |
| ret = !nfs_readdir_array_is_full(array); |
| kunmap_atomic(array); |
| return ret; |
| } |
| |
| static void nfs_readdir_page_set_eof(struct page *page) |
| { |
| struct nfs_cache_array *array; |
| |
| array = kmap_atomic(page); |
| nfs_readdir_array_set_eof(array); |
| kunmap_atomic(array); |
| } |
| |
| static void nfs_readdir_page_unlock_and_put(struct page *page) |
| { |
| unlock_page(page); |
| put_page(page); |
| } |
| |
| static struct page *nfs_readdir_page_get_next(struct address_space *mapping, |
| pgoff_t index, u64 cookie) |
| { |
| struct page *page; |
| |
| page = nfs_readdir_page_get_locked(mapping, index, cookie); |
| if (page) { |
| if (nfs_readdir_page_last_cookie(page) == cookie) |
| return page; |
| nfs_readdir_page_unlock_and_put(page); |
| } |
| return NULL; |
| } |
| |
| static inline |
| int is_32bit_api(void) |
| { |
| #ifdef CONFIG_COMPAT |
| return in_compat_syscall(); |
| #else |
| return (BITS_PER_LONG == 32); |
| #endif |
| } |
| |
| static |
| bool nfs_readdir_use_cookie(const struct file *filp) |
| { |
| if ((filp->f_mode & FMODE_32BITHASH) || |
| (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) |
| return false; |
| return true; |
| } |
| |
| static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, |
| struct nfs_readdir_descriptor *desc) |
| { |
| loff_t diff = desc->ctx->pos - desc->current_index; |
| unsigned int index; |
| |
| if (diff < 0) |
| goto out_eof; |
| if (diff >= array->size) { |
| if (array->page_is_eof) |
| goto out_eof; |
| return -EAGAIN; |
| } |
| |
| index = (unsigned int)diff; |
| desc->dir_cookie = array->array[index].cookie; |
| desc->cache_entry_index = index; |
| return 0; |
| out_eof: |
| desc->eof = true; |
| return -EBADCOOKIE; |
| } |
| |
| static bool |
| nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) |
| { |
| if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) |
| return false; |
| smp_rmb(); |
| return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); |
| } |
| |
| static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, |
| u64 cookie) |
| { |
| if (!array->cookies_are_ordered) |
| return true; |
| /* Optimisation for monotonically increasing cookies */ |
| if (cookie >= array->last_cookie) |
| return false; |
| if (array->size && cookie < array->array[0].cookie) |
| return false; |
| return true; |
| } |
| |
| static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, |
| struct nfs_readdir_descriptor *desc) |
| { |
| int i; |
| loff_t new_pos; |
| int status = -EAGAIN; |
| |
| if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) |
| goto check_eof; |
| |
| for (i = 0; i < array->size; i++) { |
| if (array->array[i].cookie == desc->dir_cookie) { |
| struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); |
| |
| new_pos = desc->current_index + i; |
| if (desc->attr_gencount != nfsi->attr_gencount || |
| !nfs_readdir_inode_mapping_valid(nfsi)) { |
| desc->duped = 0; |
| desc->attr_gencount = nfsi->attr_gencount; |
| } else if (new_pos < desc->prev_index) { |
| if (desc->duped > 0 |
| && desc->dup_cookie == desc->dir_cookie) { |
| if (printk_ratelimit()) { |
| pr_notice("NFS: directory %pD2 contains a readdir loop." |
| "Please contact your server vendor. " |
| "The file: %s has duplicate cookie %llu\n", |
| desc->file, array->array[i].name, desc->dir_cookie); |
| } |
| status = -ELOOP; |
| goto out; |
| } |
| desc->dup_cookie = desc->dir_cookie; |
| desc->duped = -1; |
| } |
| if (nfs_readdir_use_cookie(desc->file)) |
| desc->ctx->pos = desc->dir_cookie; |
| else |
| desc->ctx->pos = new_pos; |
| desc->prev_index = new_pos; |
| desc->cache_entry_index = i; |
| return 0; |
| } |
| } |
| check_eof: |
| if (array->page_is_eof) { |
| status = -EBADCOOKIE; |
| if (desc->dir_cookie == array->last_cookie) |
| desc->eof = true; |
| } |
| out: |
| return status; |
| } |
| |
| static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) |
| { |
| struct nfs_cache_array *array; |
| int status; |
| |
| array = kmap_atomic(desc->page); |
| |
| if (desc->dir_cookie == 0) |
| status = nfs_readdir_search_for_pos(array, desc); |
| else |
| status = nfs_readdir_search_for_cookie(array, desc); |
| |
| if (status == -EAGAIN) { |
| desc->last_cookie = array->last_cookie; |
| desc->current_index += array->size; |
| desc->page_index++; |
| } |
| kunmap_atomic(array); |
| return status; |
| } |
| |
| /* Fill a page with xdr information before transferring to the cache page */ |
| static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, |
| __be32 *verf, u64 cookie, |
| struct page **pages, size_t bufsize, |
| __be32 *verf_res) |
| { |
| struct inode *inode = file_inode(desc->file); |
| struct nfs_readdir_arg arg = { |
| .dentry = file_dentry(desc->file), |
| .cred = desc->file->f_cred, |
| .verf = verf, |
| .cookie = cookie, |
| .pages = pages, |
| .page_len = bufsize, |
| .plus = desc->plus, |
| }; |
| struct nfs_readdir_res res = { |
| .verf = verf_res, |
| }; |
| unsigned long timestamp, gencount; |
| int error; |
| |
| again: |
| timestamp = jiffies; |
| gencount = nfs_inc_attr_generation_counter(); |
| desc->dir_verifier = nfs_save_change_attribute(inode); |
| error = NFS_PROTO(inode)->readdir(&arg, &res); |
| if (error < 0) { |
| /* We requested READDIRPLUS, but the server doesn't grok it */ |
| if (error == -ENOTSUPP && desc->plus) { |
| NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; |
| clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); |
| desc->plus = arg.plus = false; |
| goto again; |
| } |
| goto error; |
| } |
| desc->timestamp = timestamp; |
| desc->gencount = gencount; |
| error: |
| return error; |
| } |
| |
| static int xdr_decode(struct nfs_readdir_descriptor *desc, |
| struct nfs_entry *entry, struct xdr_stream *xdr) |
| { |
| struct inode *inode = file_inode(desc->file); |
| int error; |
| |
| error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); |
| if (error) |
| return error; |
| entry->fattr->time_start = desc->timestamp; |
| entry->fattr->gencount = desc->gencount; |
| return 0; |
| } |
| |
| /* Match file and dirent using either filehandle or fileid |
| * Note: caller is responsible for checking the fsid |
| */ |
| static |
| int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) |
| { |
| struct inode *inode; |
| struct nfs_inode *nfsi; |
| |
| if (d_really_is_negative(dentry)) |
| return 0; |
| |
| inode = d_inode(dentry); |
| if (is_bad_inode(inode) || NFS_STALE(inode)) |
| return 0; |
| |
| nfsi = NFS_I(inode); |
| if (entry->fattr->fileid != nfsi->fileid) |
| return 0; |
| if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) |
| return 0; |
| return 1; |
| } |
| |
| static |
| bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) |
| { |
| if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) |
| return false; |
| if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) |
| return true; |
| if (ctx->pos == 0) |
| return true; |
| return false; |
| } |
| |
| /* |
| * This function is called by the lookup and getattr code to request the |
| * use of readdirplus to accelerate any future lookups in the same |
| * directory. |
| */ |
| void nfs_advise_use_readdirplus(struct inode *dir) |
| { |
| struct nfs_inode *nfsi = NFS_I(dir); |
| |
| if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && |
| !list_empty(&nfsi->open_files)) |
| set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); |
| } |
| |
| /* |
| * This function is mainly for use by nfs_getattr(). |
| * |
| * If this is an 'ls -l', we want to force use of readdirplus. |
| * Do this by checking if there is an active file descriptor |
| * and calling nfs_advise_use_readdirplus, then forcing a |
| * cache flush. |
| */ |
| void nfs_force_use_readdirplus(struct inode *dir) |
| { |
| struct nfs_inode *nfsi = NFS_I(dir); |
| |
| if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && |
| !list_empty(&nfsi->open_files)) { |
| set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); |
| invalidate_mapping_pages(dir->i_mapping, |
| nfsi->page_index + 1, -1); |
| } |
| } |
| |
| static |
| void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, |
| unsigned long dir_verifier) |
| { |
| struct qstr filename = QSTR_INIT(entry->name, entry->len); |
| DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); |
| struct dentry *dentry; |
| struct dentry *alias; |
| struct inode *inode; |
| int status; |
| |
| if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) |
| return; |
| if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) |
| return; |
| if (filename.len == 0) |
| return; |
| /* Validate that the name doesn't contain any illegal '\0' */ |
| if (strnlen(filename.name, filename.len) != filename.len) |
| return; |
| /* ...or '/' */ |
| if (strnchr(filename.name, filename.len, '/')) |
| return; |
| if (filename.name[0] == '.') { |
| if (filename.len == 1) |
| return; |
| if (filename.len == 2 && filename.name[1] == '.') |
| return; |
| } |
| filename.hash = full_name_hash(parent, filename.name, filename.len); |
| |
| dentry = d_lookup(parent, &filename); |
| again: |
| if (!dentry) { |
| dentry = d_alloc_parallel(parent, &filename, &wq); |
| if (IS_ERR(dentry)) |
| return; |
| } |
| if (!d_in_lookup(dentry)) { |
| /* Is there a mountpoint here? If so, just exit */ |
| if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, |
| &entry->fattr->fsid)) |
| goto out; |
| if (nfs_same_file(dentry, entry)) { |
| if (!entry->fh->size) |
| goto out; |
| nfs_set_verifier(dentry, dir_verifier); |
| status = nfs_refresh_inode(d_inode(dentry), entry->fattr); |
| if (!status) |
| nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); |
| goto out; |
| } else { |
| d_invalidate(dentry); |
| dput(dentry); |
| dentry = NULL; |
| goto again; |
| } |
| } |
| if (!entry->fh->size) { |
| d_lookup_done(dentry); |
| goto out; |
| } |
| |
| inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); |
| alias = d_splice_alias(inode, dentry); |
| d_lookup_done(dentry); |
| if (alias) { |
| if (IS_ERR(alias)) |
| goto out; |
| dput(dentry); |
| dentry = alias; |
| } |
| nfs_set_verifier(dentry, dir_verifier); |
| out: |
| dput(dentry); |
| } |
| |
| /* Perform conversion from xdr to cache array */ |
| static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, |
| struct nfs_entry *entry, |
| struct page **xdr_pages, |
| unsigned int buflen, |
| struct page **arrays, |
| size_t narrays) |
| { |
| struct address_space *mapping = desc->file->f_mapping; |
| struct xdr_stream stream; |
| struct xdr_buf buf; |
| struct page *scratch, *new, *page = *arrays; |
| int status; |
| |
| scratch = alloc_page(GFP_KERNEL); |
| if (scratch == NULL) |
| return -ENOMEM; |
| |
| xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); |
| xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); |
| |
| do { |
| if (entry->label) |
| entry->label->len = NFS4_MAXLABELLEN; |
| |
| status = xdr_decode(desc, entry, &stream); |
| if (status != 0) |
| break; |
| |
| if (desc->plus) |
| nfs_prime_dcache(file_dentry(desc->file), entry, |
| desc->dir_verifier); |
| |
| status = nfs_readdir_add_to_array(entry, page); |
| if (status != -ENOSPC) |
| continue; |
| |
| if (page->mapping != mapping) { |
| if (!--narrays) |
| break; |
| new = nfs_readdir_page_array_alloc(entry->prev_cookie, |
| GFP_KERNEL); |
| if (!new) |
| break; |
| arrays++; |
| *arrays = page = new; |
| } else { |
| new = nfs_readdir_page_get_next(mapping, |
| page->index + 1, |
| entry->prev_cookie); |
| if (!new) |
| break; |
| if (page != *arrays) |
| nfs_readdir_page_unlock_and_put(page); |
| page = new; |
| } |
| status = nfs_readdir_add_to_array(entry, page); |
| } while (!status && !entry->eof); |
| |
| switch (status) { |
| case -EBADCOOKIE: |
| if (entry->eof) { |
| nfs_readdir_page_set_eof(page); |
| status = 0; |
| } |
| break; |
| case -ENOSPC: |
| case -EAGAIN: |
| status = 0; |
| break; |
| } |
| |
| if (page != *arrays) |
| nfs_readdir_page_unlock_and_put(page); |
| |
| put_page(scratch); |
| return status; |
| } |
| |
| static void nfs_readdir_free_pages(struct page **pages, size_t npages) |
| { |
| while (npages--) |
| put_page(pages[npages]); |
| kfree(pages); |
| } |
| |
| /* |
| * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call |
| * to nfs_readdir_free_pages() |
| */ |
| static struct page **nfs_readdir_alloc_pages(size_t npages) |
| { |
| struct page **pages; |
| size_t i; |
| |
| pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); |
| if (!pages) |
| return NULL; |
| for (i = 0; i < npages; i++) { |
| struct page *page = alloc_page(GFP_KERNEL); |
| if (page == NULL) |
| goto out_freepages; |
| pages[i] = page; |
| } |
| return pages; |
| |
| out_freepages: |
| nfs_readdir_free_pages(pages, i); |
| return NULL; |
| } |
| |
| static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, |
| __be32 *verf_arg, __be32 *verf_res, |
| struct page **arrays, size_t narrays) |
| { |
| struct page **pages; |
| struct page *page = *arrays; |
| struct nfs_entry *entry; |
| size_t array_size; |
| struct inode *inode = file_inode(desc->file); |
| size_t dtsize = NFS_SERVER(inode)->dtsize; |
| int status = -ENOMEM; |
| |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return -ENOMEM; |
| entry->cookie = nfs_readdir_page_last_cookie(page); |
| entry->fh = nfs_alloc_fhandle(); |
| entry->fattr = nfs_alloc_fattr(); |
| entry->server = NFS_SERVER(inode); |
| if (entry->fh == NULL || entry->fattr == NULL) |
| goto out; |
| |
| entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); |
| if (IS_ERR(entry->label)) { |
| status = PTR_ERR(entry->label); |
| goto out; |
| } |
| |
| array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| pages = nfs_readdir_alloc_pages(array_size); |
| if (!pages) |
| goto out_release_label; |
| |
| do { |
| unsigned int pglen; |
| status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, |
| pages, dtsize, |
| verf_res); |
| if (status < 0) |
| break; |
| |
| pglen = status; |
| if (pglen == 0) { |
| nfs_readdir_page_set_eof(page); |
| break; |
| } |
| |
| status = nfs_readdir_page_filler(desc, entry, pages, pglen, |
| arrays, narrays); |
| } while (!status && nfs_readdir_page_needs_filling(page)); |
| |
| nfs_readdir_free_pages(pages, array_size); |
| out_release_label: |
| nfs4_label_free(entry->label); |
| out: |
| nfs_free_fattr(entry->fattr); |
| nfs_free_fhandle(entry->fh); |
| kfree(entry); |
| return status; |
| } |
| |
| static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) |
| { |
| put_page(desc->page); |
| desc->page = NULL; |
| } |
| |
| static void |
| nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) |
| { |
| unlock_page(desc->page); |
| nfs_readdir_page_put(desc); |
| } |
| |
| static struct page * |
| nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) |
| { |
| return nfs_readdir_page_get_locked(desc->file->f_mapping, |
| desc->page_index, |
| desc->last_cookie); |
| } |
| |
| /* |
| * Returns 0 if desc->dir_cookie was found on page desc->page_index |
| * and locks the page to prevent removal from the page cache. |
| */ |
| static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) |
| { |
| struct inode *inode = file_inode(desc->file); |
| struct nfs_inode *nfsi = NFS_I(inode); |
| __be32 verf[NFS_DIR_VERIFIER_SIZE]; |
| int res; |
| |
| desc->page = nfs_readdir_page_get_cached(desc); |
| if (!desc->page) |
| return -ENOMEM; |
| if (nfs_readdir_page_needs_filling(desc->page)) { |
| res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, |
| &desc->page, 1); |
| if (res < 0) { |
| nfs_readdir_page_unlock_and_put_cached(desc); |
| if (res == -EBADCOOKIE || res == -ENOTSYNC) { |
| invalidate_inode_pages2(desc->file->f_mapping); |
| desc->page_index = 0; |
| return -EAGAIN; |
| } |
| return res; |
| } |
| memcpy(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf)); |
| } |
| res = nfs_readdir_search_array(desc); |
| if (res == 0) { |
| nfsi->page_index = desc->page_index; |
| return 0; |
| } |
| nfs_readdir_page_unlock_and_put_cached(desc); |
| return res; |
| } |
| |
| static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc) |
| { |
| struct address_space *mapping = desc->file->f_mapping; |
| struct inode *dir = file_inode(desc->file); |
| unsigned int dtsize = NFS_SERVER(dir)->dtsize; |
| loff_t size = i_size_read(dir); |
| |
| /* |
| * Default to uncached readdir if the page cache is empty, and |
| * we're looking for a non-zero cookie in a large directory. |
| */ |
| return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize; |
| } |
| |
| /* Search for desc->dir_cookie from the beginning of the page cache */ |
| static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) |
| { |
| int res; |
| |
| if (nfs_readdir_dont_search_cache(desc)) |
| return -EBADCOOKIE; |
| |
| do { |
| if (desc->page_index == 0) { |
| desc->current_index = 0; |
| desc->prev_index = 0; |
| desc->last_cookie = 0; |
| } |
| res = find_and_lock_cache_page(desc); |
| } while (res == -EAGAIN); |
| return res; |
| } |
| |
| /* |
| * Once we've found the start of the dirent within a page: fill 'er up... |
| */ |
| static void nfs_do_filldir(struct nfs_readdir_descriptor *desc) |
| { |
| struct file *file = desc->file; |
| struct nfs_inode *nfsi = NFS_I(file_inode(file)); |
| struct nfs_cache_array *array; |
| unsigned int i = 0; |
| |
| array = kmap(desc->page); |
| for (i = desc->cache_entry_index; i < array->size; i++) { |
| struct nfs_cache_array_entry *ent; |
| |
| ent = &array->array[i]; |
| if (!dir_emit(desc->ctx, ent->name, ent->name_len, |
| nfs_compat_user_ino64(ent->ino), ent->d_type)) { |
| desc->eof = true; |
| break; |
| } |
| memcpy(desc->verf, nfsi->cookieverf, sizeof(desc->verf)); |
| if (i < (array->size-1)) |
| desc->dir_cookie = array->array[i+1].cookie; |
| else |
| desc->dir_cookie = array->last_cookie; |
| if (nfs_readdir_use_cookie(file)) |
| desc->ctx->pos = desc->dir_cookie; |
| else |
| desc->ctx->pos++; |
| if (desc->duped != 0) |
| desc->duped = 1; |
| } |
| if (array->page_is_eof) |
| desc->eof = true; |
| |
| kunmap(desc->page); |
| dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", |
| (unsigned long long)desc->dir_cookie); |
| } |
| |
| /* |
| * If we cannot find a cookie in our cache, we suspect that this is |
| * because it points to a deleted file, so we ask the server to return |
| * whatever it thinks is the next entry. We then feed this to filldir. |
| * If all goes well, we should then be able to find our way round the |
| * cache on the next call to readdir_search_pagecache(); |
| * |
| * NOTE: we cannot add the anonymous page to the pagecache because |
| * the data it contains might not be page aligned. Besides, |
| * we should already have a complete representation of the |
| * directory in the page cache by the time we get here. |
| */ |
| static int uncached_readdir(struct nfs_readdir_descriptor *desc) |
| { |
| struct page **arrays; |
| size_t i, sz = 512; |
| __be32 verf[NFS_DIR_VERIFIER_SIZE]; |
| int status = -ENOMEM; |
| |
| dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", |
| (unsigned long long)desc->dir_cookie); |
| |
| arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); |
| if (!arrays) |
| goto out; |
| arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL); |
| if (!arrays[0]) |
| goto out; |
| |
| desc->page_index = 0; |
| desc->last_cookie = desc->dir_cookie; |
| desc->duped = 0; |
| |
| status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); |
| |
| for (i = 0; !desc->eof && i < sz && arrays[i]; i++) { |
| desc->page = arrays[i]; |
| nfs_do_filldir(desc); |
| } |
| desc->page = NULL; |
| |
| |
| for (i = 0; i < sz && arrays[i]; i++) |
| nfs_readdir_page_array_free(arrays[i]); |
| out: |
| kfree(arrays); |
| dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); |
| return status; |
| } |
| |
| /* The file offset position represents the dirent entry number. A |
| last cookie cache takes care of the common case of reading the |
| whole directory. |
| */ |
| static int nfs_readdir(struct file *file, struct dir_context *ctx) |
| { |
| struct dentry *dentry = file_dentry(file); |
| struct inode *inode = d_inode(dentry); |
| struct nfs_open_dir_context *dir_ctx = file->private_data; |
| struct nfs_readdir_descriptor *desc; |
| int res; |
| |
| dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", |
| file, (long long)ctx->pos); |
| nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); |
| |
| /* |
| * ctx->pos points to the dirent entry number. |
| * *desc->dir_cookie has the cookie for the next entry. We have |
| * to either find the entry with the appropriate number or |
| * revalidate the cookie. |
| */ |
| if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) { |
| res = nfs_revalidate_mapping(inode, file->f_mapping); |
| if (res < 0) |
| goto out; |
| } |
| |
| res = -ENOMEM; |
| desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| if (!desc) |
| goto out; |
| desc->file = file; |
| desc->ctx = ctx; |
| desc->plus = nfs_use_readdirplus(inode, ctx); |
| |
| spin_lock(&file->f_lock); |
| desc->dir_cookie = dir_ctx->dir_cookie; |
| desc->dup_cookie = dir_ctx->dup_cookie; |
| desc->duped = dir_ctx->duped; |
| desc->attr_gencount = dir_ctx->attr_gencount; |
| memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); |
| spin_unlock(&file->f_lock); |
| |
| do { |
| res = readdir_search_pagecache(desc); |
| |
| if (res == -EBADCOOKIE) { |
| res = 0; |
| /* This means either end of directory */ |
| if (desc->dir_cookie && !desc->eof) { |
| /* Or that the server has 'lost' a cookie */ |
| res = uncached_readdir(desc); |
| if (res == 0) |
| continue; |
| if (res == -EBADCOOKIE || res == -ENOTSYNC) |
| res = 0; |
| } |
| break; |
| } |
| if (res == -ETOOSMALL && desc->plus) { |
| clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); |
| nfs_zap_caches(inode); |
| desc->page_index = 0; |
| desc->plus = false; |
| desc->eof = false; |
| continue; |
| } |
| if (res < 0) |
| break; |
| |
| nfs_do_filldir(desc); |
| nfs_readdir_page_unlock_and_put_cached(desc); |
| } while (!desc->eof); |
| |
| spin_lock(&file->f_lock); |
| dir_ctx->dir_cookie = desc->dir_cookie; |
| dir_ctx->dup_cookie = desc->dup_cookie; |
| dir_ctx->duped = desc->duped; |
| dir_ctx->attr_gencount = desc->attr_gencount; |
| memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); |
| spin_unlock(&file->f_lock); |
| |
| kfree(desc); |
| |
| out: |
| dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); |
| return res; |
| } |
| |
| static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) |
| { |
| struct nfs_open_dir_context *dir_ctx = filp->private_data; |
| |
| dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", |
| filp, offset, whence); |
| |
| switch (whence) { |
| default: |
| return -EINVAL; |
| case SEEK_SET: |
| if (offset < 0) |
| return -EINVAL; |
| spin_lock(&filp->f_lock); |
| break; |
| case SEEK_CUR: |
| if (offset == 0) |
| return filp->f_pos; |
| spin_lock(&filp->f_lock); |
| offset += filp->f_pos; |
| if (offset < 0) { |
| spin_unlock(&filp->f_lock); |
| return -EINVAL; |
| } |
| } |
| if (offset != filp->f_pos) { |
| filp->f_pos = offset; |
| if (nfs_readdir_use_cookie(filp)) |
| dir_ctx->dir_cookie = offset; |
| else |
| dir_ctx->dir_cookie = 0; |
| if (offset == 0) |
| memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf)); |
| dir_ctx->duped = 0; |
| } |
| spin_unlock(&filp->f_lock); |
| return offset; |
| } |
| |
| /* |
| * All directory operations under NFS are synchronous, so fsync() |
| * is a dummy operation. |
| */ |
| static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, |
| int datasync) |
| { |
| dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); |
| |
| nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); |
| return 0; |
| } |
| |
| /** |
| * nfs_force_lookup_revalidate - Mark the directory as having changed |
| * @dir: pointer to directory inode |
| * |
| * This forces the revalidation code in nfs_lookup_revalidate() to do a |
| * full lookup on all child dentries of 'dir' whenever a change occurs |
| * on the server that might have invalidated our dcache. |
| * |
| * Note that we reserve bit '0' as a tag to let us know when a dentry |
| * was revalidated while holding a delegation on its inode. |
| * |
| * The caller should be holding dir->i_lock |
| */ |
| void nfs_force_lookup_revalidate(struct inode *dir) |
| { |
| NFS_I(dir)->cache_change_attribute += 2; |
| } |
| EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); |
| |
| /** |
| * nfs_verify_change_attribute - Detects NFS remote directory changes |
| * @dir: pointer to parent directory inode |
| * @verf: previously saved change attribute |
| * |
| * Return "false" if the verifiers doesn't match the change attribute. |
| * This would usually indicate that the directory contents have changed on |
| * the server, and that any dentries need revalidating. |
| */ |
| static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) |
| { |
| return (verf & ~1UL) == nfs_save_change_attribute(dir); |
| } |
| |
| static void nfs_set_verifier_delegated(unsigned long *verf) |
| { |
| *verf |= 1UL; |
| } |
| |
| #if IS_ENABLED(CONFIG_NFS_V4) |
| static void nfs_unset_verifier_delegated(unsigned long *verf) |
| { |
| *verf &= ~1UL; |
| } |
| #endif /* IS_ENABLED(CONFIG_NFS_V4) */ |
| |
| static bool nfs_test_verifier_delegated(unsigned long verf) |
| { |
| return verf & 1; |
| } |
| |
| static bool nfs_verifier_is_delegated(struct dentry *dentry) |
| { |
| return nfs_test_verifier_delegated(dentry->d_time); |
| } |
| |
| static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) |
| { |
| struct inode *inode = d_inode(dentry); |
| |
| if (!nfs_verifier_is_delegated(dentry) && |
| !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf)) |
| goto out; |
| if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) |
| nfs_set_verifier_delegated(&verf); |
| out: |
| dentry->d_time = verf; |
| } |
| |
| /** |
| * nfs_set_verifier - save a parent directory verifier in the dentry |
| * @dentry: pointer to dentry |
| * @verf: verifier to save |
| * |
| * Saves the parent directory verifier in @dentry. If the inode has |
| * a delegation, we also tag the dentry as having been revalidated |
| * while holding a delegation so that we know we don't have to |
| * look it up again after a directory change. |
| */ |
| void nfs_set_verifier(struct dentry *dentry, unsigned long verf) |
| { |
| |
| spin_lock(&dentry->d_lock); |
| nfs_set_verifier_locked(dentry, verf); |
| spin_unlock(&dentry->d_lock); |
| } |
| EXPORT_SYMBOL_GPL(nfs_set_verifier); |
| |
| #if IS_ENABLED(CONFIG_NFS_V4) |
| /** |
| * nfs_clear_verifier_delegated - clear the dir verifier delegation tag |
| * @inode: pointer to inode |
| * |
| * Iterates through the dentries in the inode alias list and clears |
| * the tag used to indicate that the dentry has been revalidated |
| * while holding a delegation. |
| * This function is intended for use when the delegation is being |
| * returned or revoked. |
| */ |
| void nfs_clear_verifier_delegated(struct inode *inode) |
| { |
| struct dentry *alias; |
| |
| if (!inode) |
| return; |
| spin_lock(&inode->i_lock); |
| hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { |
| spin_lock(&alias->d_lock); |
| nfs_unset_verifier_delegated(&alias->d_time); |
| spin_unlock(&alias->d_lock); |
| } |
| spin_unlock(&inode->i_lock); |
| } |
| EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); |
| #endif /* IS_ENABLED(CONFIG_NFS_V4) */ |
| |
| /* |
| * A check for whether or not the parent directory has changed. |
| * In the case it has, we assume that the dentries are untrustworthy |
| * and may need to be looked up again. |
| * If rcu_walk prevents us from performing a full check, return 0. |
| */ |
| static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, |
| int rcu_walk) |
| { |
| if (IS_ROOT(dentry)) |
| return 1; |
| if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) |
| return 0; |
| if (!nfs_verify_change_attribute(dir, dentry->d_time)) |
| return 0; |
| /* Revalidate nfsi->cache_change_attribute before we declare a match */ |
| if (nfs_mapping_need_revalidate_inode(dir)) { |
| if (rcu_walk) |
| return 0; |
| if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) |
| return 0; |
| } |
| if (!nfs_verify_change_attribute(dir, dentry->d_time)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * Use intent information to check whether or not we're going to do |
| * an O_EXCL create using this path component. |
| */ |
| static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) |
| { |
| if (NFS_PROTO(dir)->version == 2) |
| return 0; |
| return flags & LOOKUP_EXCL; |
| } |
| |
| /* |
| * Inode and filehandle revalidation for lookups. |
| * |
| * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, |
| * or if the intent information indicates that we're about to open this |
| * particular file and the "nocto" mount flag is not set. |
| * |
| */ |
| static |
| int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) |
| { |
| struct nfs_server *server = NFS_SERVER(inode); |
| int ret; |
| |
| if (IS_AUTOMOUNT(inode)) |
| return 0; |
| |
| if (flags & LOOKUP_OPEN) { |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFREG: |
| /* A NFSv4 OPEN will revalidate later */ |
| if (server->caps & NFS_CAP_ATOMIC_OPEN) |
| goto out; |
| fallthrough; |
| case S_IFDIR: |
| if (server->flags & NFS_MOUNT_NOCTO) |
| break; |
| /* NFS close-to-open cache consistency validation */ |
| goto out_force; |
| } |
| } |
| |
| /* VFS wants an on-the-wire revalidation */ |
| if (flags & LOOKUP_REVAL) |
| goto out_force; |
| out: |
| return (inode->i_nlink == 0) ? -ESTALE : 0; |
| out_force: |
| if (flags & LOOKUP_RCU) |
| return -ECHILD; |
| ret = __nfs_revalidate_inode(server, inode); |
| if (ret != 0) |
| return ret; |
| goto out; |
| } |
| |
| /* |
| * We judge how long we want to trust negative |
| * dentries by looking at the parent inode mtime. |
| * |
| * If parent mtime has changed, we revalidate, else we wait for a |
| * period corresponding to the parent's attribute cache timeout value. |
| * |
| * If LOOKUP_RCU prevents us from performing a full check, return 1 |
| * suggesting a reval is needed. |
| * |
| * Note that when creating a new file, or looking up a rename target, |
| * then it shouldn't be necessary to revalidate a negative dentry. |
| */ |
| static inline |
| int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, |
| unsigned int flags) |
| { |
| if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) |
| return 0; |
| if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) |
| return 1; |
| return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); |
| } |
| |
| static int |
| nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, |
| struct inode *inode, int error) |
| { |
| switch (error) { |
| case 1: |
| dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", |
| __func__, dentry); |
| return 1; |
| case 0: |
| nfs_mark_for_revalidate(dir); |
| if (inode && S_ISDIR(inode->i_mode)) { |
| /* Purge readdir caches. */ |
| nfs_zap_caches(inode); |
| /* |
| * We can't d_drop the root of a disconnected tree: |
| * its d_hash is on the s_anon list and d_drop() would hide |
| * it from shrink_dcache_for_unmount(), leading to busy |
| * inodes on unmount and further oopses. |
| */ |
| if (IS_ROOT(dentry)) |
| return 1; |
| } |
| dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", |
| __func__, dentry); |
| return 0; |
| } |
| dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", |
| __func__, dentry, error); |
| return error; |
| } |
| |
| static int |
| nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, |
| unsigned int flags) |
| { |
| int ret = 1; |
| if (nfs_neg_need_reval(dir, dentry, flags)) { |
| if (flags & LOOKUP_RCU) |
| return -ECHILD; |
| ret = 0; |
| } |
| return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); |
| } |
| |
| static int |
| nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, |
| struct inode *inode) |
| { |
| nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); |
| return nfs_lookup_revalidate_done(dir, dentry, inode, 1); |
| } |
| |
| static int |
| nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, |
| struct inode *inode) |
| { |
| struct nfs_fh *fhandle; |
| struct nfs_fattr *fattr; |
| struct nfs4_label *label; |
| unsigned long dir_verifier; |
| int ret; |
| |
| ret = -ENOMEM; |
| fhandle = nfs_alloc_fhandle(); |
| fattr = nfs_alloc_fattr(); |
| label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); |
| if (fhandle == NULL || fattr == NULL || IS_ERR(label)) |
| goto out; |
| |
| dir_verifier = nfs_save_change_attribute(dir); |
| ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); |
| if (ret < 0) { |
| switch (ret) { |
| case -ESTALE: |
| case -ENOENT: |
| ret = 0; |
| break; |
| case -ETIMEDOUT: |
| if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) |
| ret = 1; |
| } |
| goto out; |
| } |
| ret = 0; |
| if (nfs_compare_fh(NFS_FH(inode), fhandle)) |
| goto out; |
| if (nfs_refresh_inode(inode, fattr) < 0) |
| goto out; |
| |
| nfs_setsecurity(inode, fattr, label); |
| nfs_set_verifier(dentry, dir_verifier); |
| |
| /* set a readdirplus hint that we had a cache miss */ |
| nfs_force_use_readdirplus(dir); |
| ret = 1; |
| out: |
| nfs_free_fattr(fattr); |
| nfs_free_fhandle(fhandle); |
| nfs4_label_free(label); |
| return nfs_lookup_revalidate_done(dir, dentry, inode, ret); |
| } |
| |
| /* |
| * This is called every time the dcache has a lookup hit, |
| * and we should check whether we can really trust that |
| * lookup. |
| * |
| * NOTE! The hit can be a negative hit too, don't assume |
| * we have an inode! |
| * |
| * If the parent directory is seen to have changed, we throw out the |
| * cached dentry and do a new lookup. |
| */ |
| static int |
| nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, |
| unsigned int flags) |
| { |
| struct inode *inode; |
| int error; |
| |
| nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); |
| inode = d_inode(dentry); |
| |
| if (!inode) |
| return nfs_lookup_revalidate_negative(dir, dentry, flags); |
| |
| if (is_bad_inode(inode)) { |
| dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", |
| __func__, dentry); |
| goto out_bad; |
| } |
| |
| if (nfs_verifier_is_delegated(dentry)) |
| return nfs_lookup_revalidate_delegated(dir, dentry, inode); |
| |
| /* Force a full look up iff the parent directory has changed */ |
| if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && |
| nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { |
| error = nfs_lookup_verify_inode(inode, flags); |
| if (error) { |
| if (error == -ESTALE) |
| nfs_zap_caches(dir); |
| goto out_bad; |
| } |
| nfs_advise_use_readdirplus(dir); |
| goto out_valid; |
| } |
| |
| if (flags & LOOKUP_RCU) |
| return -ECHILD; |
| |
| if (NFS_STALE(inode)) |
| goto out_bad; |
| |
| trace_nfs_lookup_revalidate_enter(dir, dentry, flags); |
| error = nfs_lookup_revalidate_dentry(dir, dentry, inode); |
| trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); |
| return error; |
| out_valid: |
| return nfs_lookup_revalidate_done(dir, dentry, inode, 1); |
| out_bad: |
| if (flags & LOOKUP_RCU) |
| return -ECHILD; |
| return nfs_lookup_revalidate_done(dir, dentry, inode, 0); |
| } |
| |
| static int |
| __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, |
| int (*reval)(struct inode *, struct dentry *, unsigned int)) |
| { |
| struct dentry *parent; |
| struct inode *dir; |
| int ret; |
| |
| if (flags & LOOKUP_RCU) { |
| parent = READ_ONCE(dentry->d_parent); |
| dir = d_inode_rcu(parent); |
| if (!dir) |
| return -ECHILD; |
| ret = reval(dir, dentry, flags); |
| if (parent != READ_ONCE(dentry->d_parent)) |
| return -ECHILD; |
| } else { |
| parent = dget_parent(dentry); |
| ret = reval(d_inode(parent), dentry, flags); |
| dput(parent); |
| } |
| return ret; |
| } |
| |
| static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) |
| { |
| return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); |
| } |
| |
| /* |
| * A weaker form of d_revalidate for revalidating just the d_inode(dentry) |
| * when we don't really care about the dentry name. This is called when a |
| * pathwalk ends on a dentry that was not found via a normal lookup in the |
| * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). |
| * |
| * In this situation, we just want to verify that the inode itself is OK |
| * since the dentry might have changed on the server. |
| */ |
| static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) |
| { |
| struct inode *inode = d_inode(dentry); |
| int error = 0; |
| |
| /* |
| * I believe we can only get a negative dentry here in the case of a |
| * procfs-style symlink. Just assume it's correct for now, but we may |
| * eventually need to do something more here. |
| */ |
| if (!inode) { |
| dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", |
| __func__, dentry); |
| return 1; |
| } |
| |
| if (is_bad_inode(inode)) { |
| dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", |
| __func__, dentry); |
| return 0; |
| } |
| |
| error = nfs_lookup_verify_inode(inode, flags); |
| dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", |
| __func__, inode->i_ino, error ? "invalid" : "valid"); |
| return !error; |
| } |
| |
| /* |
| * This is called from dput() when d_count is going to 0. |
| */ |
| static int nfs_dentry_delete(const struct dentry *dentry) |
| { |
| dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", |
| dentry, dentry->d_flags); |
| |
| /* Unhash any dentry with a stale inode */ |
| if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) |
| return 1; |
| |
| if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { |
| /* Unhash it, so that ->d_iput() would be called */ |
| return 1; |
| } |
| if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { |
| /* Unhash it, so that ancestors of killed async unlink |
| * files will be cleaned up during umount */ |
| return 1; |
| } |
| return 0; |
| |
| } |
| |
| /* Ensure that we revalidate inode->i_nlink */ |
| static void nfs_drop_nlink(struct inode *inode) |
| { |
| spin_lock(&inode->i_lock); |
| /* drop the inode if we're reasonably sure this is the last link */ |
| if (inode->i_nlink > 0) |
| drop_nlink(inode); |
| NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); |
| NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE |
| | NFS_INO_INVALID_CTIME |
| | NFS_INO_INVALID_OTHER |
| | NFS_INO_REVAL_FORCED; |
| spin_unlock(&inode->i_lock); |
| } |
| |
| /* |
| * Called when the dentry loses inode. |
| * We use it to clean up silly-renamed files. |
| */ |
| static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) |
| { |
| if (S_ISDIR(inode->i_mode)) |
| /* drop any readdir cache as it could easily be old */ |
| NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; |
| |
| if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { |
| nfs_complete_unlink(dentry, inode); |
| nfs_drop_nlink(inode); |
| } |
| iput(inode); |
| } |
| |
| static void nfs_d_release(struct dentry *dentry) |
| { |
| /* free cached devname value, if it survived that far */ |
| if (unlikely(dentry->d_fsdata)) { |
| if (dentry->d_flags & DCACHE_NFSFS_RENAMED) |
| WARN_ON(1); |
| else |
| kfree(dentry->d_fsdata); |
| } |
| } |
| |
| const struct dentry_operations nfs_dentry_operations = { |
| .d_revalidate = nfs_lookup_revalidate, |
| .d_weak_revalidate = nfs_weak_revalidate, |
| .d_delete = nfs_dentry_delete, |
| .d_iput = nfs_dentry_iput, |
| .d_automount = nfs_d_automount, |
| .d_release = nfs_d_release, |
| }; |
| EXPORT_SYMBOL_GPL(nfs_dentry_operations); |
| |
| struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) |
| { |
| struct dentry *res; |
| struct inode *inode = NULL; |
| struct nfs_fh *fhandle = NULL; |
| struct nfs_fattr *fattr = NULL; |
| struct nfs4_label *label = NULL; |
| unsigned long dir_verifier; |
| int error; |
| |
| dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); |
| nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); |
| |
| if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) |
| return ERR_PTR(-ENAMETOOLONG); |
| |
| /* |
| * If we're doing an exclusive create, optimize away the lookup |
| * but don't hash the dentry. |
| */ |
| if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) |
| return NULL; |
| |
| res = ERR_PTR(-ENOMEM); |
| fhandle = nfs_alloc_fhandle(); |
| fattr = nfs_alloc_fattr(); |
| if (fhandle == NULL || fattr == NULL) |
| goto out; |
| |
| label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); |
| if (IS_ERR(label)) |
| goto out; |
| |
| dir_verifier = nfs_save_change_attribute(dir); |
| trace_nfs_lookup_enter(dir, dentry, flags); |
| error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); |
| if (error == -ENOENT) |
| goto no_entry; |
| if (error < 0) { |
| res = ERR_PTR(error); |
| goto out_label; |
| } |
| inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); |
| res = ERR_CAST(inode); |
| if (IS_ERR(res)) |
| goto out_label; |
| |
| /* Notify readdir to use READDIRPLUS */ |
| nfs_force_use_readdirplus(dir); |
| |
| no_entry: |
| res = d_splice_alias(inode, dentry); |
| if (res != NULL) { |
| if (IS_ERR(res)) |
| goto out_label; |
| dentry = res; |
| } |
| nfs_set_verifier(dentry, dir_verifier); |
| out_label: |
| trace_nfs_lookup_exit(dir, dentry, flags, error); |
| nfs4_label_free(label); |
| out: |
| nfs_free_fattr(fattr); |
| nfs_free_fhandle(fhandle); |
| return res; |
| } |
| EXPORT_SYMBOL_GPL(nfs_lookup); |
| |
| #if IS_ENABLED(CONFIG_NFS_V4) |
| static int nfs4_lookup_revalidate(struct dentry *, unsigned int); |
| |
| const struct dentry_operations nfs4_dentry_operations = { |
| .d_revalidate = nfs4_lookup_revalidate, |
| .d_weak_revalidate = nfs_weak_revalidate, |
| .d_delete = nfs_dentry_delete, |
| .d_iput = nfs_dentry_iput, |
| .d_automount = nfs_d_automount, |
| .d_release = nfs_d_release, |
| }; |
| EXPORT_SYMBOL_GPL(nfs4_dentry_operations); |
| |
| static fmode_t flags_to_mode(int flags) |
| { |
| fmode_t res = (__force fmode_t)flags & FMODE_EXEC; |
| if ((flags & O_ACCMODE) != O_WRONLY) |
| res |= FMODE_READ; |
| if ((flags & O_ACCMODE) != O_RDONLY) |
| res |= FMODE_WRITE; |
| return res; |
| } |
| |
| static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) |
| { |
| return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); |
| } |
| |
| static int do_open(struct inode *inode, struct file *filp) |
| { |
| nfs_fscache_open_file(inode, filp); |
| return 0; |
| } |
| |
| static int nfs_finish_open(struct nfs_open_context *ctx, |
| struct dentry *dentry, |
| struct file *file, unsigned open_flags) |
| { |
| int err; |
| |
| err = finish_open(file, dentry, do_open); |
| if (err) |
| goto out; |
| if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) |
| nfs_file_set_open_context(file, ctx); |
| else |
| err = -EOPENSTALE; |
| out: |
| return err; |
| } |
| |
| int nfs_atomic_open(struct inode *dir, struct dentry *dentry, |
| struct file *file, unsigned open_flags, |
| umode_t mode) |
| { |
| DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); |
| struct nfs_open_context *ctx; |
| struct dentry *res; |
| struct iattr attr = { .ia_valid = ATTR_OPEN }; |
| struct inode *inode; |
| unsigned int lookup_flags = 0; |
| bool switched = false; |
| int created = 0; |
| int err; |
| |
| /* Expect a negative dentry */ |
| BUG_ON(d_inode(dentry)); |
| |
| dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", |
| dir->i_sb->s_id, dir->i_ino, dentry); |
| |
| err = nfs_check_flags(open_flags); |
| if (err) |
| return err; |
| |
| /* NFS only supports OPEN on regular files */ |
| if ((open_flags & O_DIRECTORY)) { |
| if (!d_in_lookup(dentry)) { |
| /* |
| * Hashed negative dentry with O_DIRECTORY: dentry was |
| * revalidated and is fine, no need to perform lookup |
| * again |
| */ |
| return -ENOENT; |
| } |
| lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; |
| goto no_open; |
| } |
| |
| if (dentry->d_name.len > NFS_SERVER(dir)->namelen) |
| return -ENAMETOOLONG; |
| |
| if (open_flags & O_CREAT) { |
| struct nfs_server *server = NFS_SERVER(dir); |
| |
| if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) |
| mode &= ~current_umask(); |
| |
| attr.ia_valid |= ATTR_MODE; |
| attr.ia_mode = mode; |
| } |
| if (open_flags & O_TRUNC) { |
| attr.ia_valid |= ATTR_SIZE; |
| attr.ia_size = 0; |
| } |
| |
| if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { |
| d_drop(dentry); |
| switched = true; |
| dentry = d_alloc_parallel(dentry->d_parent, |
| &dentry->d_name, &wq); |
| if (IS_ERR(dentry)) |
| return PTR_ERR(dentry); |
| if (unlikely(!d_in_lookup(dentry))) |
| return finish_no_open(file, dentry); |
| } |
| |
| ctx = create_nfs_open_context(dentry, open_flags, file); |
| err = PTR_ERR(ctx); |
| if (IS_ERR(ctx)) |
| goto out; |
| |
| trace_nfs_atomic_open_enter(dir, ctx, open_flags); |
| inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); |
| if (created) |
| file->f_mode |= FMODE_CREATED; |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); |
| put_nfs_open_context(ctx); |
| d_drop(dentry); |
| switch (err) { |
| case -ENOENT: |
| d_splice_alias(NULL, dentry); |
| nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); |
| break; |
| case -EISDIR: |
| case -ENOTDIR: |
| goto no_open; |
| case -ELOOP: |
| if (!(open_flags & O_NOFOLLOW)) |
| goto no_open; |
| break; |
| /* case -EINVAL: */ |
| default: |
| break; |
| } |
| goto out; |
| } |
| |
| err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); |
| trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); |
| put_nfs_open_context(ctx); |
| out: |
| if (unlikely(switched)) { |
| d_lookup_done(dentry); |
| dput(dentry); |
| } |
| return err; |
| |
| no_open: |
| res = nfs_lookup(dir, dentry, lookup_flags); |
| if (switched) { |
| d_lookup_done(dentry); |
| if (!res) |
| res = dentry; |
| else |
| dput(dentry); |
| } |
| if (IS_ERR(res)) |
| return PTR_ERR(res); |
| return finish_no_open(file, res); |
| } |
| EXPORT_SYMBOL_GPL(nfs_atomic_open); |
| |
| static int |
| nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, |
| unsigned int flags) |
| { |
| struct inode *inode; |
| |
| if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) |
| goto full_reval; |
| if (d_mountpoint(dentry)) |
| goto full_reval; |
| |
| inode = d_inode(dentry); |
| |
| /* We can't create new files in nfs_open_revalidate(), so we |
| * optimize away revalidation of negative dentries. |
| */ |
| if (inode == NULL) |
| goto full_reval; |
| |
| if (nfs_verifier_is_delegated(dentry)) |
| return nfs_lookup_revalidate_delegated(dir, dentry, inode); |
| |
| /* NFS only supports OPEN on regular files */ |
| if (!S_ISREG(inode->i_mode)) |
| goto full_reval; |
| |
| /* We cannot do exclusive creation on a positive dentry */ |
| if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) |
| goto reval_dentry; |
| |
| /* Check if the directory changed */ |
| if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) |
| goto reval_dentry; |
| |
| /* Let f_op->open() actually open (and revalidate) the file */ |
| return 1; |
| reval_dentry: |
| if (flags & LOOKUP_RCU) |
| return -ECHILD; |
| return nfs_lookup_revalidate_dentry(dir, dentry, inode); |
| |
| full_reval: |
| return nfs_do_lookup_revalidate(dir, dentry, flags); |
| } |
| |
| static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) |
| { |
| return __nfs_lookup_revalidate(dentry, flags, |
| nfs4_do_lookup_revalidate); |
| } |
| |
| #endif /* CONFIG_NFSV4 */ |
| |
| struct dentry * |
| nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, |
| struct nfs_fattr *fattr, |
| struct nfs4_label *label) |
| { |
| struct dentry *parent = dget_parent(dentry); |
| struct inode *dir = d_inode(parent); |
| struct inode *inode; |
| struct dentry *d; |
| int error; |
| |
| d_drop(dentry); |
| |
| if (fhandle->size == 0) { |
| error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); |
| if (error) |
| goto out_error; |
| } |
| nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); |
| if (!(fattr->valid & NFS_ATTR_FATTR)) { |
| struct nfs_server *server = NFS_SB(dentry->d_sb); |
| error = server->nfs_client->rpc_ops->getattr(server, fhandle, |
| fattr, NULL, NULL); |
| if (error < 0) |
| goto out_error; |
| } |
| inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); |
| d = d_splice_alias(inode, dentry); |
| out: |
| dput(parent); |
| return d; |
| out_error: |
| nfs_mark_for_revalidate(dir); |
| d = ERR_PTR(error); |
| goto out; |
| } |
| EXPORT_SYMBOL_GPL(nfs_add_or_obtain); |
| |
| /* |
| * Code common to create, mkdir, and mknod. |
| */ |
| int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, |
| struct nfs_fattr *fattr, |
| struct nfs4_label *label) |
| { |
| struct dentry *d; |
| |
| d = nfs_add_or_obtain(dentry, fhandle, fattr, label); |
| if (IS_ERR(d)) |
| return PTR_ERR(d); |
| |
| /* Callers don't care */ |
| dput(d); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nfs_instantiate); |
| |
| /* |
| * Following a failed create operation, we drop the dentry rather |
| * than retain a negative dentry. This avoids a problem in the event |
| * that the operation succeeded on the server, but an error in the |
| * reply path made it appear to have failed. |
| */ |
| int nfs_create(struct inode *dir, struct dentry *dentry, |
| umode_t mode, bool excl) |
| { |
| struct iattr attr; |
| int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; |
| int error; |
| |
| dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", |
| dir->i_sb->s_id, dir->i_ino, dentry); |
| |
| attr.ia_mode = mode; |
| attr.ia_valid = ATTR_MODE; |
| |
| trace_nfs_create_enter(dir, dentry, open_flags); |
| error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); |
| trace_nfs_create_exit(dir, dentry, open_flags, error); |
| if (error != 0) |
| goto out_err; |
| return 0; |
| out_err: |
| d_drop(dentry); |
| return error; |
| } |
| EXPORT_SYMBOL_GPL(nfs_create); |
| |
| /* |
| * See comments for nfs_proc_create regarding failed operations. |
| */ |
| int |
| nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) |
| { |
| struct iattr attr; |
| int status; |
| |
| dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", |
| dir->i_sb->s_id, dir->i_ino, dentry); |
| |
| attr.ia_mode = mode; |
| attr.ia_valid = ATTR_MODE; |
| |
| trace_nfs_mknod_enter(dir, dentry); |
| status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); |
| trace_nfs_mknod_exit(dir, dentry, status); |
| if (status != 0) |
| goto out_err; |
| return 0; |
| out_err: |
| d_drop(dentry); |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(nfs_mknod); |
| |
| /* |
| * See comments for nfs_proc_create regarding failed operations. |
| */ |
| int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) |
| { |
| struct iattr attr; |
| int error; |
| |
| dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", |
| dir->i_sb->s_id, dir->i_ino, dentry); |
| |
| attr.ia_valid = ATTR_MODE; |
| attr.ia_mode = mode | S_IFDIR; |
| |
| trace_nfs_mkdir_enter(dir, dentry); |
| error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); |
| trace_nfs_mkdir_exit(dir, dentry, error); |
| if (error != 0) |
| goto out_err; |
| return 0; |
| out_err: |
| d_drop(dentry); |
| return error; |
| } |
| EXPORT_SYMBOL_GPL(nfs_mkdir); |
| |
| static void nfs_dentry_handle_enoent(struct dentry *dentry) |
| { |
| if (simple_positive(dentry)) |
| d_delete(dentry); |
| } |
| |
| int nfs_rmdir(struct inode *dir, struct dentry *dentry) |
| { |
| int error; |
| |
| dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", |
| dir->i_sb->s_id, dir->i_ino, dentry); |
| |
| trace_nfs_rmdir_enter(dir, dentry); |
| if (d_really_is_positive(dentry)) { |
| down_write(&NFS_I(d_inode(dentry))->rmdir_sem); |
| error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); |
| /* Ensure the VFS deletes this inode */ |
| switch (error) { |
| case 0: |
| clear_nlink(d_inode(dentry)); |
| break; |
| case -ENOENT: |
| nfs_dentry_handle_enoent(dentry); |
| } |
| up_write(&NFS_I(d_inode(dentry))->rmdir_sem); |
| } else |
| error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); |
| trace_nfs_rmdir_exit(dir, dentry, error); |
| |
| return error; |
| } |
| EXPORT_SYMBOL_GPL(nfs_rmdir); |
| |
| /* |
| * Remove a file after making sure there are no pending writes, |
| * and after checking that the file has only one user. |
| * |
| * We invalidate the attribute cache and free the inode prior to the operation |
| * to avoid possible races if the server reuses the inode. |
| */ |
| static int nfs_safe_remove(struct dentry *dentry) |
| { |
| struct inode *dir = d_inode(dentry->d_parent); |
| struct inode *inode = d_inode(dentry); |
| int error = -EBUSY; |
| |
| dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); |
| |
| /* If the dentry was sillyrenamed, we simply call d_delete() */ |
| if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { |
| error = 0; |
| goto out; |
| } |
| |
| trace_nfs_remove_enter(dir, dentry); |
| if (inode != NULL) { |
| error = NFS_PROTO(dir)->remove(dir, dentry); |
| if (error == 0) |
| nfs_drop_nlink(inode); |
| } else |
| error = NFS_PROTO(dir)->remove(dir, dentry); |
| if (error == -ENOENT) |
| nfs_dentry_handle_enoent(dentry); |
| trace_nfs_remove_exit(dir, dentry, error); |
| out: |
| return error; |
| } |
| |
| /* We do silly rename. In case sillyrename() returns -EBUSY, the inode |
| * belongs to an active ".nfs..." file and we return -EBUSY. |
| * |
| * If sillyrename() returns 0, we do nothing, otherwise we unlink. |
| */ |
| int nfs_unlink(struct inode *dir, struct dentry *dentry) |
| { |
| int error; |
| int need_rehash = 0; |
| |
| dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, |
| dir->i_ino, dentry); |
| |
| trace_nfs_unlink_enter(dir, dentry); |
| spin_lock(&dentry->d_lock); |
| if (d_count(dentry) > 1) { |
| spin_unlock(&dentry->d_lock); |
| /* Start asynchronous writeout of the inode */ |
| write_inode_now(d_inode(dentry), 0); |
| error = nfs_sillyrename(dir, dentry); |
| goto out; |
| } |
| if (!d_unhashed(dentry)) { |
| __d_drop(dentry); |
| need_rehash = 1; |
| } |
| spin_unlock(&dentry->d_lock); |
| error = nfs_safe_remove(dentry); |
| if (!error || error == -ENOENT) { |
| nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); |
| } else if (need_rehash) |
| d_rehash(dentry); |
| out: |
| trace_nfs_unlink_exit(dir, dentry, error); |
| return error; |
| } |
| EXPORT_SYMBOL_GPL(nfs_unlink); |
| |
| /* |
| * To create a symbolic link, most file systems instantiate a new inode, |
| * add a page to it containing the path, then write it out to the disk |
| * using prepare_write/commit_write. |
| * |
| * Unfortunately the NFS client can't create the in-core inode first |
| * because it needs a file handle to create an in-core inode (see |
| * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the |
| * symlink request has completed on the server. |
| * |
| * So instead we allocate a raw page, copy the symname into it, then do |
| * the SYMLINK request with the page as the buffer. If it succeeds, we |
| * now have a new file handle and can instantiate an in-core NFS inode |
| * and move the raw page into its mapping. |
| */ |
| int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) |
| { |
| struct page *page; |
| char *kaddr; |
| struct iattr attr; |
| unsigned int pathlen = strlen(symname); |
| int error; |
| |
| dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, |
| dir->i_ino, dentry, symname); |
| |
| if (pathlen > PAGE_SIZE) |
| return -ENAMETOOLONG; |
| |
| attr.ia_mode = S_IFLNK | S_IRWXUGO; |
| attr.ia_valid = ATTR_MODE; |
| |
| page = alloc_page(GFP_USER); |
| if (!page) |
| return -ENOMEM; |
| |
| kaddr = page_address(page); |
| memcpy(kaddr, symname, pathlen); |
| if (pathlen < PAGE_SIZE) |
| memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); |
| |
| trace_nfs_symlink_enter(dir, dentry); |
| error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); |
| trace_nfs_symlink_exit(dir, dentry, error); |
| if (error != 0) { |
| dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", |
| dir->i_sb->s_id, dir->i_ino, |
| dentry, symname, error); |
| d_drop(dentry); |
| __free_page(page); |
| return error; |
| } |
| |
| /* |
| * No big deal if we can't add this page to the page cache here. |
| * READLINK will get the missing page from the server if needed. |
| */ |
| if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, |
| GFP_KERNEL)) { |
| SetPageUptodate(page); |
| unlock_page(page); |
| /* |
| * add_to_page_cache_lru() grabs an extra page refcount. |
| * Drop it here to avoid leaking this page later. |
| */ |
| put_page(page); |
| } else |
| __free_page(page); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nfs_symlink); |
| |
| int |
| nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = d_inode(old_dentry); |
| int error; |
| |
| dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", |
| old_dentry, dentry); |
| |
| trace_nfs_link_enter(inode, dir, dentry); |
| d_drop(dentry); |
| error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); |
| if (error == 0) { |
| ihold(inode); |
| d_add(dentry, inode); |
| } |
| trace_nfs_link_exit(inode, dir, dentry, error); |
| return error; |
| } |
| EXPORT_SYMBOL_GPL(nfs_link); |
| |
| /* |
| * RENAME |
| * FIXME: Some nfsds, like the Linux user space nfsd, may generate a |
| * different file handle for the same inode after a rename (e.g. when |
| * moving to a different directory). A fail-safe method to do so would |
| * be to look up old_dir/old_name, create a link to new_dir/new_name and |
| * rename the old file using the sillyrename stuff. This way, the original |
| * file in old_dir will go away when the last process iput()s the inode. |
| * |
| * FIXED. |
| * |
| * It actually works quite well. One needs to have the possibility for |
| * at least one ".nfs..." file in each directory the file ever gets |
| * moved or linked to which happens automagically with the new |
| * implementation that only depends on the dcache stuff instead of |
| * using the inode layer |
| * |
| * Unfortunately, things are a little more complicated than indicated |
| * above. For a cross-directory move, we want to make sure we can get |
| * rid of the old inode after the operation. This means there must be |
| * no pending writes (if it's a file), and the use count must be 1. |
| * If these conditions are met, we can drop the dentries before doing |
| * the rename. |
| */ |
| int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry, |
| unsigned int flags) |
| { |
| struct inode *old_inode = d_inode(old_dentry); |
| struct inode *new_inode = d_inode(new_dentry); |
| struct dentry *dentry = NULL, *rehash = NULL; |
| struct rpc_task *task; |
| int error = -EBUSY; |
| |
| if (flags) |
| return -EINVAL; |
| |
| dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", |
| old_dentry, new_dentry, |
| d_count(new_dentry)); |
| |
| trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); |
| /* |
| * For non-directories, check whether the target is busy and if so, |
| * make a copy of the dentry and then do a silly-rename. If the |
| * silly-rename succeeds, the copied dentry is hashed and becomes |
| * the new target. |
| */ |
| if (new_inode && !S_ISDIR(new_inode->i_mode)) { |
| /* |
| * To prevent any new references to the target during the |
| * rename, we unhash the dentry in advance. |
| */ |
| if (!d_unhashed(new_dentry)) { |
| d_drop(new_dentry); |
| rehash = new_dentry; |
| } |
| |
| if (d_count(new_dentry) > 2) { |
| int err; |
| |
| /* copy the target dentry's name */ |
| dentry = d_alloc(new_dentry->d_parent, |
| &new_dentry->d_name); |
| if (!dentry) |
| goto out; |
| |
| /* silly-rename the existing target ... */ |
| err = nfs_sillyrename(new_dir, new_dentry); |
| if (err) |
| goto out; |
| |
| new_dentry = dentry; |
| rehash = NULL; |
| new_inode = NULL; |
| } |
| } |
| |
| task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); |
| if (IS_ERR(task)) { |
| error = PTR_ERR(task); |
| goto out; |
| } |
| |
| error = rpc_wait_for_completion_task(task); |
| if (error != 0) { |
| ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; |
| /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ |
| smp_wmb(); |
| } else |
| error = task->tk_status; |
| rpc_put_task(task); |
| /* Ensure the inode attributes are revalidated */ |
| if (error == 0) { |
| spin_lock(&old_inode->i_lock); |
| NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); |
| NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE |
| | NFS_INO_INVALID_CTIME |
| | NFS_INO_REVAL_FORCED; |
| spin_unlock(&old_inode->i_lock); |
| } |
| out: |
| if (rehash) |
| d_rehash(rehash); |
| trace_nfs_rename_exit(old_dir, old_dentry, |
| new_dir, new_dentry, error); |
| if (!error) { |
| if (new_inode != NULL) |
| nfs_drop_nlink(new_inode); |
| /* |
| * The d_move() should be here instead of in an async RPC completion |
| * handler because we need the proper locks to move the dentry. If |
| * we're interrupted by a signal, the async RPC completion handler |
| * should mark the directories for revalidation. |
| */ |
| d_move(old_dentry, new_dentry); |
| nfs_set_verifier(old_dentry, |
| nfs_save_change_attribute(new_dir)); |
| } else if (error == -ENOENT) |
| nfs_dentry_handle_enoent(old_dentry); |
| |
| /* new dentry created? */ |
| if (dentry) |
| dput(dentry); |
| return error; |
| } |
| EXPORT_SYMBOL_GPL(nfs_rename); |
| |
| static DEFINE_SPINLOCK(nfs_access_lru_lock); |
| static LIST_HEAD(nfs_access_lru_list); |
| static atomic_long_t nfs_access_nr_entries; |
| |
| static unsigned long nfs_access_max_cachesize = 4*1024*1024; |
| module_param(nfs_access_max_cachesize, ulong, 0644); |
| MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); |
| |
| static void nfs_access_free_entry(struct nfs_access_entry *entry) |
| { |
| put_cred(entry->cred); |
| kfree_rcu(entry, rcu_head); |
| smp_mb__before_atomic(); |
| atomic_long_dec(&nfs_access_nr_entries); |
| smp_mb__after_atomic(); |
| } |
| |
| static void nfs_access_free_list(struct list_head *head) |
| { |
| struct nfs_access_entry *cache; |
| |
| while (!list_empty(head)) { |
| cache = list_entry(head->next, struct nfs_access_entry, lru); |
| list_del(&cache->lru); |
| nfs_access_free_entry(cache); |
| } |
| } |
| |
| static unsigned long |
| nfs_do_access_cache_scan(unsigned int nr_to_scan) |
| { |
| LIST_HEAD(head); |
| struct nfs_inode *nfsi, *next; |
| struct nfs_access_entry *cache; |
| long freed = 0; |
| |
| spin_lock(&nfs_access_lru_lock); |
| list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { |
| struct inode *inode; |
| |
| if (nr_to_scan-- == 0) |
| break; |
| inode = &nfsi->vfs_inode; |
| spin_lock(&inode->i_lock); |
| if (list_empty(&nfsi->access_cache_entry_lru)) |
| goto remove_lru_entry; |
| cache = list_entry(nfsi->access_cache_entry_lru.next, |
| struct nfs_access_entry, lru); |
| list_move(&cache->lru, &head); |
| rb_erase(&cache->rb_node, &nfsi->access_cache); |
| freed++; |
| if (!list_empty(&nfsi->access_cache_entry_lru)) |
| list_move_tail(&nfsi->access_cache_inode_lru, |
| &nfs_access_lru_list); |
| else { |
| remove_lru_entry: |
| list_del_init(&nfsi->access_cache_inode_lru); |
| smp_mb__before_atomic(); |
| clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); |
| smp_mb__after_atomic(); |
| } |
| spin_unlock(&inode->i_lock); |
| } |
| spin_unlock(&nfs_access_lru_lock); |
| nfs_access_free_list(&head); |
| return freed; |
| } |
| |
| unsigned long |
| nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| int nr_to_scan = sc->nr_to_scan; |
| gfp_t gfp_mask = sc->gfp_mask; |
| |
| if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) |
| return SHRINK_STOP; |
| return nfs_do_access_cache_scan(nr_to_scan); |
| } |
| |
| |
| unsigned long |
| nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); |
| } |
| |
| static void |
| nfs_access_cache_enforce_limit(void) |
| { |
| long nr_entries = atomic_long_read(&nfs_access_nr_entries); |
| unsigned long diff; |
| unsigned int nr_to_scan; |
| |
| if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) |
| return; |
| nr_to_scan = 100; |
| diff = nr_entries - nfs_access_max_cachesize; |
| if (diff < nr_to_scan) |
| nr_to_scan = diff; |
| nfs_do_access_cache_scan(nr_to_scan); |
| } |
| |
| static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) |
| { |
| struct rb_root *root_node = &nfsi->access_cache; |
| struct rb_node *n; |
| struct nfs_access_entry *entry; |
| |
| /* Unhook entries from the cache */ |
| while ((n = rb_first(root_node)) != NULL) { |
| entry = rb_entry(n, struct nfs_access_entry, rb_node); |
| rb_erase(n, root_node); |
| list_move(&entry->lru, head); |
| } |
| nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; |
| } |
| |
| void nfs_access_zap_cache(struct inode *inode) |
| { |
| LIST_HEAD(head); |
| |
| if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) |
| return; |
| /* Remove from global LRU init */ |
| spin_lock(&nfs_access_lru_lock); |
| if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) |
| list_del_init(&NFS_I(inode)->access_cache_inode_lru); |
| |
| spin_lock(&inode->i_lock); |
| __nfs_access_zap_cache(NFS_I(inode), &head); |
| spin_unlock(&inode->i_lock); |
| spin_unlock(&nfs_access_lru_lock); |
| nfs_access_free_list(&head); |
| } |
| EXPORT_SYMBOL_GPL(nfs_access_zap_cache); |
| |
| static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) |
| { |
| struct rb_node *n = NFS_I(inode)->access_cache.rb_node; |
| |
| while (n != NULL) { |
| struct nfs_access_entry *entry = |
| rb_entry(n, struct nfs_access_entry, rb_node); |
| int cmp = cred_fscmp(cred, entry->cred); |
| |
| if (cmp < 0) |
| n = n->rb_left; |
| else if (cmp > 0) |
| n = n->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) |
| { |
| struct nfs_inode *nfsi = NFS_I(inode); |
| struct nfs_access_entry *cache; |
| bool retry = true; |
| int err; |
| |
| spin_lock(&inode->i_lock); |
| for(;;) { |
| if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) |
| goto out_zap; |
| cache = nfs_access_search_rbtree(inode, cred); |
| err = -ENOENT; |
| if (cache == NULL) |
| goto out; |
| /* Found an entry, is our attribute cache valid? */ |
| if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) |
| break; |
| if (!retry) |
| break; |
| err = -ECHILD; |
| if (!may_block) |
| goto out; |
| spin_unlock(&inode->i_lock); |
| err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); |
| if (err) |
| return err; |
| spin_lock(&inode->i_lock); |
| retry = false; |
| } |
| res->cred = cache->cred; |
| res->mask = cache->mask; |
| list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); |
| err = 0; |
| out: |
| spin_unlock(&inode->i_lock); |
| return err; |
| out_zap: |
| spin_unlock(&inode->i_lock); |
| nfs_access_zap_cache(inode); |
| return -ENOENT; |
| } |
| |
| static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) |
| { |
| /* Only check the most recently returned cache entry, |
| * but do it without locking. |
| */ |
| struct nfs_inode *nfsi = NFS_I(inode); |
| struct nfs_access_entry *cache; |
| int err = -ECHILD; |
| struct list_head *lh; |
| |
| rcu_read_lock(); |
| if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) |
| goto out; |
| lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); |
| cache = list_entry(lh, struct nfs_access_entry, lru); |
| if (lh == &nfsi->access_cache_entry_lru || |
| cred_fscmp(cred, cache->cred) != 0) |
| cache = NULL; |
| if (cache == NULL) |
| goto out; |
| if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) |
| goto out; |
| res->cred = cache->cred; |
| res->mask = cache->mask; |
| err = 0; |
| out: |
| rcu_read_unlock(); |
| return err; |
| } |
| |
| int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct |
| nfs_access_entry *res, bool may_block) |
| { |
| int status; |
| |
| status = nfs_access_get_cached_rcu(inode, cred, res); |
| if (status != 0) |
| status = nfs_access_get_cached_locked(inode, cred, res, |
| may_block); |
| |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(nfs_access_get_cached); |
| |
| static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) |
| { |
| struct nfs_inode *nfsi = NFS_I(inode); |
| struct rb_root *root_node = &nfsi->access_cache; |
| struct rb_node **p = &root_node->rb_node; |
| struct rb_node *parent = NULL; |
| struct nfs_access_entry *entry; |
| int cmp; |
| |
| spin_lock(&inode->i_lock); |
| while (*p != NULL) { |
| parent = *p; |
| entry = rb_entry(parent, struct nfs_access_entry, rb_node); |
| cmp = cred_fscmp(set->cred, entry->cred); |
| |
| if (cmp < 0) |
| p = &parent->rb_left; |
| else if (cmp > 0) |
| p = &parent->rb_right; |
| else |
| goto found; |
| } |
| rb_link_node(&set->rb_node, parent, p); |
| rb_insert_color(&set->rb_node, root_node); |
| list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); |
| spin_unlock(&inode->i_lock); |
| return; |
| found: |
| rb_replace_node(parent, &set->rb_node, root_node); |
| list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); |
| list_del(&entry->lru); |
| spin_unlock(&inode->i_lock); |
| nfs_access_free_entry(entry); |
| } |
| |
| void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) |
| { |
| struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); |
| if (cache == NULL) |
| return; |
| RB_CLEAR_NODE(&cache->rb_node); |
| cache->cred = get_cred(set->cred); |
| cache->mask = set->mask; |
| |
| /* The above field assignments must be visible |
| * before this item appears on the lru. We cannot easily |
| * use rcu_assign_pointer, so just force the memory barrier. |
| */ |
| smp_wmb(); |
| nfs_access_add_rbtree(inode, cache); |
| |
| /* Update accounting */ |
| smp_mb__before_atomic(); |
| atomic_long_inc(&nfs_access_nr_entries); |
| smp_mb__after_atomic(); |
| |
| /* Add inode to global LRU list */ |
| if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { |
| spin_lock(&nfs_access_lru_lock); |
| if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) |
| list_add_tail(&NFS_I(inode)->access_cache_inode_lru, |
| &nfs_access_lru_list); |
| spin_unlock(&nfs_access_lru_lock); |
| } |
| nfs_access_cache_enforce_limit(); |
| } |
| EXPORT_SYMBOL_GPL(nfs_access_add_cache); |
| |
| #define NFS_MAY_READ (NFS_ACCESS_READ) |
| #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ |
| NFS_ACCESS_EXTEND | \ |
| NFS_ACCESS_DELETE) |
| #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ |
| NFS_ACCESS_EXTEND) |
| #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE |
| #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) |
| #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) |
| static int |
| nfs_access_calc_mask(u32 access_result, umode_t umode) |
| { |
| int mask = 0; |
| |
| if (access_result & NFS_MAY_READ) |
| mask |= MAY_READ; |
| if (S_ISDIR(umode)) { |
| if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) |
| mask |= MAY_WRITE; |
| if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) |
| mask |= MAY_EXEC; |
| } else if (S_ISREG(umode)) { |
| if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) |
| mask |= MAY_WRITE; |
| if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) |
| mask |= MAY_EXEC; |
| } else if (access_result & NFS_MAY_WRITE) |
| mask |= MAY_WRITE; |
| return mask; |
| } |
| |
| void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) |
| { |
| entry->mask = access_result; |
| } |
| EXPORT_SYMBOL_GPL(nfs_access_set_mask); |
| |
| static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) |
| { |
| struct nfs_access_entry cache; |
| bool may_block = (mask & MAY_NOT_BLOCK) == 0; |
| int cache_mask = -1; |
| int status; |
| |
| trace_nfs_access_enter(inode); |
| |
| status = nfs_access_get_cached(inode, cred, &cache, may_block); |
| if (status == 0) |
| goto out_cached; |
| |
| status = -ECHILD; |
| if (!may_block) |
| goto out; |
| |
| /* |
| * Determine which access bits we want to ask for... |
| */ |
| cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; |
| if (nfs_server_capable(inode, NFS_CAP_XATTR)) { |
| cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | |
| NFS_ACCESS_XALIST; |
| } |
| if (S_ISDIR(inode->i_mode)) |
| cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; |
| else |
| cache.mask |= NFS_ACCESS_EXECUTE; |
| cache.cred = cred; |
| status = NFS_PROTO(inode)->access(inode, &cache); |
| if (status != 0) { |
| if (status == -ESTALE) { |
| if (!S_ISDIR(inode->i_mode)) |
| nfs_set_inode_stale(inode); |
| else |
| nfs_zap_caches(inode); |
| } |
| goto out; |
| } |
| nfs_access_add_cache(inode, &cache); |
| out_cached: |
| cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); |
| if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) |
| status = -EACCES; |
| out: |
| trace_nfs_access_exit(inode, mask, cache_mask, status); |
| return status; |
| } |
| |
| static int nfs_open_permission_mask(int openflags) |
| { |
| int mask = 0; |
| |
| if (openflags & __FMODE_EXEC) { |
| /* ONLY check exec rights */ |
| mask = MAY_EXEC; |
| } else { |
| if ((openflags & O_ACCMODE) != O_WRONLY) |
| mask |= MAY_READ; |
| if ((openflags & O_ACCMODE) != O_RDONLY) |
| mask |= MAY_WRITE; |
| } |
| |
| return mask; |
| } |
| |
| int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) |
| { |
| return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); |
| } |
| EXPORT_SYMBOL_GPL(nfs_may_open); |
| |
| static int nfs_execute_ok(struct inode *inode, int mask) |
| { |
| struct nfs_server *server = NFS_SERVER(inode); |
| int ret = 0; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return 0; |
| if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { |
| if (mask & MAY_NOT_BLOCK) |
| return -ECHILD; |
| ret = __nfs_revalidate_inode(server, inode); |
| } |
| if (ret == 0 && !execute_ok(inode)) |
| ret = -EACCES; |
| return ret; |
| } |
| |
| int nfs_permission(struct inode *inode, int mask) |
| { |
| const struct cred *cred = current_cred(); |
| int res = 0; |
| |
| nfs_inc_stats(inode, NFSIOS_VFSACCESS); |
| |
| if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) |
| goto out; |
| /* Is this sys_access() ? */ |
| if (mask & (MAY_ACCESS | MAY_CHDIR)) |
| goto force_lookup; |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFLNK: |
| goto out; |
| case S_IFREG: |
| if ((mask & MAY_OPEN) && |
| nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) |
| return 0; |
| break; |
| case S_IFDIR: |
| /* |
| * Optimize away all write operations, since the server |
| * will check permissions when we perform the op. |
| */ |
| if ((mask & MAY_WRITE) && !(mask & MAY_READ)) |
| goto out; |
| } |
| |
| force_lookup: |
| if (!NFS_PROTO(inode)->access) |
| goto out_notsup; |
| |
| res = nfs_do_access(inode, cred, mask); |
| out: |
| if (!res && (mask & MAY_EXEC)) |
| res = nfs_execute_ok(inode, mask); |
| |
| dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", |
| inode->i_sb->s_id, inode->i_ino, mask, res); |
| return res; |
| out_notsup: |
| if (mask & MAY_NOT_BLOCK) |
| return -ECHILD; |
| |
| res = nfs_revalidate_inode(NFS_SERVER(inode), inode); |
| if (res == 0) |
| res = generic_permission(inode, mask); |
| goto out; |
| } |
| EXPORT_SYMBOL_GPL(nfs_permission); |
| |
| /* |
| * Local variables: |
| * version-control: t |
| * kept-new-versions: 5 |
| * End: |
| */ |