| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Authors: Artem Bityutskiy (Битюцкий Артём) |
| * Adrian Hunter |
| */ |
| |
| /* |
| * This file implements UBIFS journal. |
| * |
| * The journal consists of 2 parts - the log and bud LEBs. The log has fixed |
| * length and position, while a bud logical eraseblock is any LEB in the main |
| * area. Buds contain file system data - data nodes, inode nodes, etc. The log |
| * contains only references to buds and some other stuff like commit |
| * start node. The idea is that when we commit the journal, we do |
| * not copy the data, the buds just become indexed. Since after the commit the |
| * nodes in bud eraseblocks become leaf nodes of the file system index tree, we |
| * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will |
| * become leafs in the future. |
| * |
| * The journal is multi-headed because we want to write data to the journal as |
| * optimally as possible. It is nice to have nodes belonging to the same inode |
| * in one LEB, so we may write data owned by different inodes to different |
| * journal heads, although at present only one data head is used. |
| * |
| * For recovery reasons, the base head contains all inode nodes, all directory |
| * entry nodes and all truncate nodes. This means that the other heads contain |
| * only data nodes. |
| * |
| * Bud LEBs may be half-indexed. For example, if the bud was not full at the |
| * time of commit, the bud is retained to continue to be used in the journal, |
| * even though the "front" of the LEB is now indexed. In that case, the log |
| * reference contains the offset where the bud starts for the purposes of the |
| * journal. |
| * |
| * The journal size has to be limited, because the larger is the journal, the |
| * longer it takes to mount UBIFS (scanning the journal) and the more memory it |
| * takes (indexing in the TNC). |
| * |
| * All the journal write operations like 'ubifs_jnl_update()' here, which write |
| * multiple UBIFS nodes to the journal at one go, are atomic with respect to |
| * unclean reboots. Should the unclean reboot happen, the recovery code drops |
| * all the nodes. |
| */ |
| |
| #include "ubifs.h" |
| |
| /** |
| * zero_ino_node_unused - zero out unused fields of an on-flash inode node. |
| * @ino: the inode to zero out |
| */ |
| static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) |
| { |
| memset(ino->padding1, 0, 4); |
| memset(ino->padding2, 0, 26); |
| } |
| |
| /** |
| * zero_dent_node_unused - zero out unused fields of an on-flash directory |
| * entry node. |
| * @dent: the directory entry to zero out |
| */ |
| static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) |
| { |
| dent->padding1 = 0; |
| memset(dent->padding2, 0, 4); |
| } |
| |
| /** |
| * zero_trun_node_unused - zero out unused fields of an on-flash truncation |
| * node. |
| * @trun: the truncation node to zero out |
| */ |
| static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) |
| { |
| memset(trun->padding, 0, 12); |
| } |
| |
| /** |
| * reserve_space - reserve space in the journal. |
| * @c: UBIFS file-system description object |
| * @jhead: journal head number |
| * @len: node length |
| * |
| * This function reserves space in journal head @head. If the reservation |
| * succeeded, the journal head stays locked and later has to be unlocked using |
| * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock |
| * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and |
| * other negative error codes in case of other failures. |
| */ |
| static int reserve_space(struct ubifs_info *c, int jhead, int len) |
| { |
| int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; |
| struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; |
| |
| /* |
| * Typically, the base head has smaller nodes written to it, so it is |
| * better to try to allocate space at the ends of eraseblocks. This is |
| * what the squeeze parameter does. |
| */ |
| ubifs_assert(!c->ro_media && !c->ro_mount); |
| squeeze = (jhead == BASEHD); |
| again: |
| mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| |
| if (c->ro_error) { |
| err = -EROFS; |
| goto out_unlock; |
| } |
| |
| avail = c->leb_size - wbuf->offs - wbuf->used; |
| if (wbuf->lnum != -1 && avail >= len) |
| return 0; |
| |
| /* |
| * Write buffer wasn't seek'ed or there is no enough space - look for an |
| * LEB with some empty space. |
| */ |
| lnum = ubifs_find_free_space(c, len, &offs, squeeze); |
| if (lnum >= 0) |
| goto out; |
| |
| err = lnum; |
| if (err != -ENOSPC) |
| goto out_unlock; |
| |
| /* |
| * No free space, we have to run garbage collector to make |
| * some. But the write-buffer mutex has to be unlocked because |
| * GC also takes it. |
| */ |
| dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); |
| mutex_unlock(&wbuf->io_mutex); |
| |
| lnum = ubifs_garbage_collect(c, 0); |
| if (lnum < 0) { |
| err = lnum; |
| if (err != -ENOSPC) |
| return err; |
| |
| /* |
| * GC could not make a free LEB. But someone else may |
| * have allocated new bud for this journal head, |
| * because we dropped @wbuf->io_mutex, so try once |
| * again. |
| */ |
| dbg_jnl("GC couldn't make a free LEB for jhead %s", |
| dbg_jhead(jhead)); |
| if (retries++ < 2) { |
| dbg_jnl("retry (%d)", retries); |
| goto again; |
| } |
| |
| dbg_jnl("return -ENOSPC"); |
| return err; |
| } |
| |
| mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); |
| avail = c->leb_size - wbuf->offs - wbuf->used; |
| |
| if (wbuf->lnum != -1 && avail >= len) { |
| /* |
| * Someone else has switched the journal head and we have |
| * enough space now. This happens when more than one process is |
| * trying to write to the same journal head at the same time. |
| */ |
| dbg_jnl("return LEB %d back, already have LEB %d:%d", |
| lnum, wbuf->lnum, wbuf->offs + wbuf->used); |
| err = ubifs_return_leb(c, lnum); |
| if (err) |
| goto out_unlock; |
| return 0; |
| } |
| |
| offs = 0; |
| |
| out: |
| /* |
| * Make sure we synchronize the write-buffer before we add the new bud |
| * to the log. Otherwise we may have a power cut after the log |
| * reference node for the last bud (@lnum) is written but before the |
| * write-buffer data are written to the next-to-last bud |
| * (@wbuf->lnum). And the effect would be that the recovery would see |
| * that there is corruption in the next-to-last bud. |
| */ |
| err = ubifs_wbuf_sync_nolock(wbuf); |
| if (err) |
| goto out_return; |
| err = ubifs_add_bud_to_log(c, jhead, lnum, offs); |
| if (err) |
| goto out_return; |
| err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs); |
| if (err) |
| goto out_unlock; |
| |
| return 0; |
| |
| out_unlock: |
| mutex_unlock(&wbuf->io_mutex); |
| return err; |
| |
| out_return: |
| /* An error occurred and the LEB has to be returned to lprops */ |
| ubifs_assert(err < 0); |
| err1 = ubifs_return_leb(c, lnum); |
| if (err1 && err == -EAGAIN) |
| /* |
| * Return original error code only if it is not %-EAGAIN, |
| * which is not really an error. Otherwise, return the error |
| * code of 'ubifs_return_leb()'. |
| */ |
| err = err1; |
| mutex_unlock(&wbuf->io_mutex); |
| return err; |
| } |
| |
| /** |
| * write_node - write node to a journal head. |
| * @c: UBIFS file-system description object |
| * @jhead: journal head |
| * @node: node to write |
| * @len: node length |
| * @lnum: LEB number written is returned here |
| * @offs: offset written is returned here |
| * |
| * This function writes a node to reserved space of journal head @jhead. |
| * Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int write_node(struct ubifs_info *c, int jhead, void *node, int len, |
| int *lnum, int *offs) |
| { |
| struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; |
| |
| ubifs_assert(jhead != GCHD); |
| |
| *lnum = c->jheads[jhead].wbuf.lnum; |
| *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; |
| |
| dbg_jnl("jhead %s, LEB %d:%d, len %d", |
| dbg_jhead(jhead), *lnum, *offs, len); |
| ubifs_prepare_node(c, node, len, 0); |
| |
| return ubifs_wbuf_write_nolock(wbuf, node, len); |
| } |
| |
| /** |
| * write_head - write data to a journal head. |
| * @c: UBIFS file-system description object |
| * @jhead: journal head |
| * @buf: buffer to write |
| * @len: length to write |
| * @lnum: LEB number written is returned here |
| * @offs: offset written is returned here |
| * @sync: non-zero if the write-buffer has to by synchronized |
| * |
| * This function is the same as 'write_node()' but it does not assume the |
| * buffer it is writing is a node, so it does not prepare it (which means |
| * initializing common header and calculating CRC). |
| */ |
| static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, |
| int *lnum, int *offs, int sync) |
| { |
| int err; |
| struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; |
| |
| ubifs_assert(jhead != GCHD); |
| |
| *lnum = c->jheads[jhead].wbuf.lnum; |
| *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; |
| dbg_jnl("jhead %s, LEB %d:%d, len %d", |
| dbg_jhead(jhead), *lnum, *offs, len); |
| |
| err = ubifs_wbuf_write_nolock(wbuf, buf, len); |
| if (err) |
| return err; |
| if (sync) |
| err = ubifs_wbuf_sync_nolock(wbuf); |
| return err; |
| } |
| |
| /** |
| * make_reservation - reserve journal space. |
| * @c: UBIFS file-system description object |
| * @jhead: journal head |
| * @len: how many bytes to reserve |
| * |
| * This function makes space reservation in journal head @jhead. The function |
| * takes the commit lock and locks the journal head, and the caller has to |
| * unlock the head and finish the reservation with 'finish_reservation()'. |
| * Returns zero in case of success and a negative error code in case of |
| * failure. |
| * |
| * Note, the journal head may be unlocked as soon as the data is written, while |
| * the commit lock has to be released after the data has been added to the |
| * TNC. |
| */ |
| static int make_reservation(struct ubifs_info *c, int jhead, int len) |
| { |
| int err, cmt_retries = 0, nospc_retries = 0; |
| |
| again: |
| down_read(&c->commit_sem); |
| err = reserve_space(c, jhead, len); |
| if (!err) |
| return 0; |
| up_read(&c->commit_sem); |
| |
| if (err == -ENOSPC) { |
| /* |
| * GC could not make any progress. We should try to commit |
| * once because it could make some dirty space and GC would |
| * make progress, so make the error -EAGAIN so that the below |
| * will commit and re-try. |
| */ |
| if (nospc_retries++ < 2) { |
| dbg_jnl("no space, retry"); |
| err = -EAGAIN; |
| } |
| |
| /* |
| * This means that the budgeting is incorrect. We always have |
| * to be able to write to the media, because all operations are |
| * budgeted. Deletions are not budgeted, though, but we reserve |
| * an extra LEB for them. |
| */ |
| } |
| |
| if (err != -EAGAIN) |
| goto out; |
| |
| /* |
| * -EAGAIN means that the journal is full or too large, or the above |
| * code wants to do one commit. Do this and re-try. |
| */ |
| if (cmt_retries > 128) { |
| /* |
| * This should not happen unless the journal size limitations |
| * are too tough. |
| */ |
| ubifs_err(c, "stuck in space allocation"); |
| err = -ENOSPC; |
| goto out; |
| } else if (cmt_retries > 32) |
| ubifs_warn(c, "too many space allocation re-tries (%d)", |
| cmt_retries); |
| |
| dbg_jnl("-EAGAIN, commit and retry (retried %d times)", |
| cmt_retries); |
| cmt_retries += 1; |
| |
| err = ubifs_run_commit(c); |
| if (err) |
| return err; |
| goto again; |
| |
| out: |
| ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d", |
| len, jhead, err); |
| if (err == -ENOSPC) { |
| /* This are some budgeting problems, print useful information */ |
| down_write(&c->commit_sem); |
| dump_stack(); |
| ubifs_dump_budg(c, &c->bi); |
| ubifs_dump_lprops(c); |
| cmt_retries = dbg_check_lprops(c); |
| up_write(&c->commit_sem); |
| } |
| return err; |
| } |
| |
| /** |
| * release_head - release a journal head. |
| * @c: UBIFS file-system description object |
| * @jhead: journal head |
| * |
| * This function releases journal head @jhead which was locked by |
| * the 'make_reservation()' function. It has to be called after each successful |
| * 'make_reservation()' invocation. |
| */ |
| static inline void release_head(struct ubifs_info *c, int jhead) |
| { |
| mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); |
| } |
| |
| /** |
| * finish_reservation - finish a reservation. |
| * @c: UBIFS file-system description object |
| * |
| * This function finishes journal space reservation. It must be called after |
| * 'make_reservation()'. |
| */ |
| static void finish_reservation(struct ubifs_info *c) |
| { |
| up_read(&c->commit_sem); |
| } |
| |
| /** |
| * get_dent_type - translate VFS inode mode to UBIFS directory entry type. |
| * @mode: inode mode |
| */ |
| static int get_dent_type(int mode) |
| { |
| switch (mode & S_IFMT) { |
| case S_IFREG: |
| return UBIFS_ITYPE_REG; |
| case S_IFDIR: |
| return UBIFS_ITYPE_DIR; |
| case S_IFLNK: |
| return UBIFS_ITYPE_LNK; |
| case S_IFBLK: |
| return UBIFS_ITYPE_BLK; |
| case S_IFCHR: |
| return UBIFS_ITYPE_CHR; |
| case S_IFIFO: |
| return UBIFS_ITYPE_FIFO; |
| case S_IFSOCK: |
| return UBIFS_ITYPE_SOCK; |
| default: |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * pack_inode - pack an inode node. |
| * @c: UBIFS file-system description object |
| * @ino: buffer in which to pack inode node |
| * @inode: inode to pack |
| * @last: indicates the last node of the group |
| */ |
| static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, |
| const struct inode *inode, int last) |
| { |
| int data_len = 0, last_reference = !inode->i_nlink; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| ino->ch.node_type = UBIFS_INO_NODE; |
| ino_key_init_flash(c, &ino->key, inode->i_ino); |
| ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); |
| ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); |
| ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); |
| ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); |
| ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); |
| ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); |
| ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); |
| ino->uid = cpu_to_le32(i_uid_read(inode)); |
| ino->gid = cpu_to_le32(i_gid_read(inode)); |
| ino->mode = cpu_to_le32(inode->i_mode); |
| ino->flags = cpu_to_le32(ui->flags); |
| ino->size = cpu_to_le64(ui->ui_size); |
| ino->nlink = cpu_to_le32(inode->i_nlink); |
| ino->compr_type = cpu_to_le16(ui->compr_type); |
| ino->data_len = cpu_to_le32(ui->data_len); |
| ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); |
| ino->xattr_size = cpu_to_le32(ui->xattr_size); |
| ino->xattr_names = cpu_to_le32(ui->xattr_names); |
| zero_ino_node_unused(ino); |
| |
| /* |
| * Drop the attached data if this is a deletion inode, the data is not |
| * needed anymore. |
| */ |
| if (!last_reference) { |
| memcpy(ino->data, ui->data, ui->data_len); |
| data_len = ui->data_len; |
| } |
| |
| ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); |
| } |
| |
| /** |
| * mark_inode_clean - mark UBIFS inode as clean. |
| * @c: UBIFS file-system description object |
| * @ui: UBIFS inode to mark as clean |
| * |
| * This helper function marks UBIFS inode @ui as clean by cleaning the |
| * @ui->dirty flag and releasing its budget. Note, VFS may still treat the |
| * inode as dirty and try to write it back, but 'ubifs_write_inode()' would |
| * just do nothing. |
| */ |
| static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) |
| { |
| if (ui->dirty) |
| ubifs_release_dirty_inode_budget(c, ui); |
| ui->dirty = 0; |
| } |
| |
| /** |
| * ubifs_jnl_update - update inode. |
| * @c: UBIFS file-system description object |
| * @dir: parent inode or host inode in case of extended attributes |
| * @nm: directory entry name |
| * @inode: inode to update |
| * @deletion: indicates a directory entry deletion i.e unlink or rmdir |
| * @xent: non-zero if the directory entry is an extended attribute entry |
| * |
| * This function updates an inode by writing a directory entry (or extended |
| * attribute entry), the inode itself, and the parent directory inode (or the |
| * host inode) to the journal. |
| * |
| * The function writes the host inode @dir last, which is important in case of |
| * extended attributes. Indeed, then we guarantee that if the host inode gets |
| * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, |
| * the extended attribute inode gets flushed too. And this is exactly what the |
| * user expects - synchronizing the host inode synchronizes its extended |
| * attributes. Similarly, this guarantees that if @dir is synchronized, its |
| * directory entry corresponding to @nm gets synchronized too. |
| * |
| * If the inode (@inode) or the parent directory (@dir) are synchronous, this |
| * function synchronizes the write-buffer. |
| * |
| * This function marks the @dir and @inode inodes as clean and returns zero on |
| * success. In case of failure, a negative error code is returned. |
| */ |
| int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, |
| const struct qstr *nm, const struct inode *inode, |
| int deletion, int xent) |
| { |
| int err, dlen, ilen, len, lnum, ino_offs, dent_offs; |
| int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); |
| int last_reference = !!(deletion && inode->i_nlink == 0); |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| struct ubifs_inode *host_ui = ubifs_inode(dir); |
| struct ubifs_dent_node *dent; |
| struct ubifs_ino_node *ino; |
| union ubifs_key dent_key, ino_key; |
| |
| dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu", |
| inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino); |
| ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); |
| |
| dlen = UBIFS_DENT_NODE_SZ + nm->len + 1; |
| ilen = UBIFS_INO_NODE_SZ; |
| |
| /* |
| * If the last reference to the inode is being deleted, then there is |
| * no need to attach and write inode data, it is being deleted anyway. |
| * And if the inode is being deleted, no need to synchronize |
| * write-buffer even if the inode is synchronous. |
| */ |
| if (!last_reference) { |
| ilen += ui->data_len; |
| sync |= IS_SYNC(inode); |
| } |
| |
| aligned_dlen = ALIGN(dlen, 8); |
| aligned_ilen = ALIGN(ilen, 8); |
| |
| len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; |
| /* Make sure to also account for extended attributes */ |
| len += host_ui->data_len; |
| |
| dent = kmalloc(len, GFP_NOFS); |
| if (!dent) |
| return -ENOMEM; |
| |
| /* Make reservation before allocating sequence numbers */ |
| err = make_reservation(c, BASEHD, len); |
| if (err) |
| goto out_free; |
| |
| if (!xent) { |
| dent->ch.node_type = UBIFS_DENT_NODE; |
| dent_key_init(c, &dent_key, dir->i_ino, nm); |
| } else { |
| dent->ch.node_type = UBIFS_XENT_NODE; |
| xent_key_init(c, &dent_key, dir->i_ino, nm); |
| } |
| |
| key_write(c, &dent_key, dent->key); |
| dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); |
| dent->type = get_dent_type(inode->i_mode); |
| dent->nlen = cpu_to_le16(nm->len); |
| memcpy(dent->name, nm->name, nm->len); |
| dent->name[nm->len] = '\0'; |
| zero_dent_node_unused(dent); |
| ubifs_prep_grp_node(c, dent, dlen, 0); |
| |
| ino = (void *)dent + aligned_dlen; |
| pack_inode(c, ino, inode, 0); |
| ino = (void *)ino + aligned_ilen; |
| pack_inode(c, ino, dir, 1); |
| |
| if (last_reference) { |
| err = ubifs_add_orphan(c, inode->i_ino); |
| if (err) { |
| release_head(c, BASEHD); |
| goto out_finish; |
| } |
| ui->del_cmtno = c->cmt_no; |
| } |
| |
| err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); |
| if (err) |
| goto out_release; |
| if (!sync) { |
| struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; |
| |
| ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); |
| ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); |
| } |
| release_head(c, BASEHD); |
| kfree(dent); |
| |
| if (deletion) { |
| err = ubifs_tnc_remove_nm(c, &dent_key, nm); |
| if (err) |
| goto out_ro; |
| err = ubifs_add_dirt(c, lnum, dlen); |
| } else |
| err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); |
| if (err) |
| goto out_ro; |
| |
| /* |
| * Note, we do not remove the inode from TNC even if the last reference |
| * to it has just been deleted, because the inode may still be opened. |
| * Instead, the inode has been added to orphan lists and the orphan |
| * subsystem will take further care about it. |
| */ |
| ino_key_init(c, &ino_key, inode->i_ino); |
| ino_offs = dent_offs + aligned_dlen; |
| err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); |
| if (err) |
| goto out_ro; |
| |
| ino_key_init(c, &ino_key, dir->i_ino); |
| ino_offs += aligned_ilen; |
| err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, |
| UBIFS_INO_NODE_SZ + host_ui->data_len); |
| if (err) |
| goto out_ro; |
| |
| finish_reservation(c); |
| spin_lock(&ui->ui_lock); |
| ui->synced_i_size = ui->ui_size; |
| spin_unlock(&ui->ui_lock); |
| mark_inode_clean(c, ui); |
| mark_inode_clean(c, host_ui); |
| return 0; |
| |
| out_finish: |
| finish_reservation(c); |
| out_free: |
| kfree(dent); |
| return err; |
| |
| out_release: |
| release_head(c, BASEHD); |
| kfree(dent); |
| out_ro: |
| ubifs_ro_mode(c, err); |
| if (last_reference) |
| ubifs_delete_orphan(c, inode->i_ino); |
| finish_reservation(c); |
| return err; |
| } |
| |
| /** |
| * ubifs_jnl_write_data - write a data node to the journal. |
| * @c: UBIFS file-system description object |
| * @inode: inode the data node belongs to |
| * @key: node key |
| * @buf: buffer to write |
| * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) |
| * |
| * This function writes a data node to the journal. Returns %0 if the data node |
| * was successfully written, and a negative error code in case of failure. |
| */ |
| int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, |
| const union ubifs_key *key, const void *buf, int len) |
| { |
| struct ubifs_data_node *data; |
| int err, lnum, offs, compr_type, out_len, compr_len; |
| int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| bool encrypted = ubifs_crypt_is_encrypted(inode); |
| |
| dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", |
| (unsigned long)key_inum(c, key), key_block(c, key), len); |
| ubifs_assert(len <= UBIFS_BLOCK_SIZE); |
| |
| if (encrypted) |
| dlen += UBIFS_CIPHER_BLOCK_SIZE; |
| |
| data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN); |
| if (!data) { |
| /* |
| * Fall-back to the write reserve buffer. Note, we might be |
| * currently on the memory reclaim path, when the kernel is |
| * trying to free some memory by writing out dirty pages. The |
| * write reserve buffer helps us to guarantee that we are |
| * always able to write the data. |
| */ |
| allocated = 0; |
| mutex_lock(&c->write_reserve_mutex); |
| data = c->write_reserve_buf; |
| } |
| |
| data->ch.node_type = UBIFS_DATA_NODE; |
| key_write(c, key, &data->key); |
| data->size = cpu_to_le32(len); |
| |
| if (!(ui->flags & UBIFS_COMPR_FL)) |
| /* Compression is disabled for this inode */ |
| compr_type = UBIFS_COMPR_NONE; |
| else |
| compr_type = ui->compr_type; |
| |
| out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ; |
| ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type); |
| ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE); |
| |
| if (encrypted) { |
| err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key)); |
| if (err) |
| goto out_free; |
| |
| } else { |
| data->compr_size = 0; |
| } |
| |
| dlen = UBIFS_DATA_NODE_SZ + out_len; |
| data->compr_type = cpu_to_le16(compr_type); |
| |
| /* Make reservation before allocating sequence numbers */ |
| err = make_reservation(c, DATAHD, dlen); |
| if (err) |
| goto out_free; |
| |
| err = write_node(c, DATAHD, data, dlen, &lnum, &offs); |
| if (err) |
| goto out_release; |
| ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); |
| release_head(c, DATAHD); |
| |
| err = ubifs_tnc_add(c, key, lnum, offs, dlen); |
| if (err) |
| goto out_ro; |
| |
| finish_reservation(c); |
| if (!allocated) |
| mutex_unlock(&c->write_reserve_mutex); |
| else |
| kfree(data); |
| return 0; |
| |
| out_release: |
| release_head(c, DATAHD); |
| out_ro: |
| ubifs_ro_mode(c, err); |
| finish_reservation(c); |
| out_free: |
| if (!allocated) |
| mutex_unlock(&c->write_reserve_mutex); |
| else |
| kfree(data); |
| return err; |
| } |
| |
| /** |
| * ubifs_jnl_write_inode - flush inode to the journal. |
| * @c: UBIFS file-system description object |
| * @inode: inode to flush |
| * |
| * This function writes inode @inode to the journal. If the inode is |
| * synchronous, it also synchronizes the write-buffer. Returns zero in case of |
| * success and a negative error code in case of failure. |
| */ |
| int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) |
| { |
| int err, lnum, offs; |
| struct ubifs_ino_node *ino; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; |
| |
| dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); |
| |
| /* |
| * If the inode is being deleted, do not write the attached data. No |
| * need to synchronize the write-buffer either. |
| */ |
| if (!last_reference) { |
| len += ui->data_len; |
| sync = IS_SYNC(inode); |
| } |
| ino = kmalloc(len, GFP_NOFS); |
| if (!ino) |
| return -ENOMEM; |
| |
| /* Make reservation before allocating sequence numbers */ |
| err = make_reservation(c, BASEHD, len); |
| if (err) |
| goto out_free; |
| |
| pack_inode(c, ino, inode, 1); |
| err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); |
| if (err) |
| goto out_release; |
| if (!sync) |
| ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, |
| inode->i_ino); |
| release_head(c, BASEHD); |
| |
| if (last_reference) { |
| err = ubifs_tnc_remove_ino(c, inode->i_ino); |
| if (err) |
| goto out_ro; |
| ubifs_delete_orphan(c, inode->i_ino); |
| err = ubifs_add_dirt(c, lnum, len); |
| } else { |
| union ubifs_key key; |
| |
| ino_key_init(c, &key, inode->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs, len); |
| } |
| if (err) |
| goto out_ro; |
| |
| finish_reservation(c); |
| spin_lock(&ui->ui_lock); |
| ui->synced_i_size = ui->ui_size; |
| spin_unlock(&ui->ui_lock); |
| kfree(ino); |
| return 0; |
| |
| out_release: |
| release_head(c, BASEHD); |
| out_ro: |
| ubifs_ro_mode(c, err); |
| finish_reservation(c); |
| out_free: |
| kfree(ino); |
| return err; |
| } |
| |
| /** |
| * ubifs_jnl_delete_inode - delete an inode. |
| * @c: UBIFS file-system description object |
| * @inode: inode to delete |
| * |
| * This function deletes inode @inode which includes removing it from orphans, |
| * deleting it from TNC and, in some cases, writing a deletion inode to the |
| * journal. |
| * |
| * When regular file inodes are unlinked or a directory inode is removed, the |
| * 'ubifs_jnl_update()' function writes a corresponding deletion inode and |
| * direntry to the media, and adds the inode to orphans. After this, when the |
| * last reference to this inode has been dropped, this function is called. In |
| * general, it has to write one more deletion inode to the media, because if |
| * a commit happened between 'ubifs_jnl_update()' and |
| * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal |
| * anymore, and in fact it might not be on the flash anymore, because it might |
| * have been garbage-collected already. And for optimization reasons UBIFS does |
| * not read the orphan area if it has been unmounted cleanly, so it would have |
| * no indication in the journal that there is a deleted inode which has to be |
| * removed from TNC. |
| * |
| * However, if there was no commit between 'ubifs_jnl_update()' and |
| * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion |
| * inode to the media for the second time. And this is quite a typical case. |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) |
| { |
| int err; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| ubifs_assert(inode->i_nlink == 0); |
| |
| if (ui->del_cmtno != c->cmt_no) |
| /* A commit happened for sure */ |
| return ubifs_jnl_write_inode(c, inode); |
| |
| down_read(&c->commit_sem); |
| /* |
| * Check commit number again, because the first test has been done |
| * without @c->commit_sem, so a commit might have happened. |
| */ |
| if (ui->del_cmtno != c->cmt_no) { |
| up_read(&c->commit_sem); |
| return ubifs_jnl_write_inode(c, inode); |
| } |
| |
| err = ubifs_tnc_remove_ino(c, inode->i_ino); |
| if (err) |
| ubifs_ro_mode(c, err); |
| else |
| ubifs_delete_orphan(c, inode->i_ino); |
| up_read(&c->commit_sem); |
| return err; |
| } |
| |
| /** |
| * ubifs_jnl_xrename - cross rename two directory entries. |
| * @c: UBIFS file-system description object |
| * @fst_dir: parent inode of 1st directory entry to exchange |
| * @fst_dentry: 1st directory entry to exchange |
| * @snd_dir: parent inode of 2nd directory entry to exchange |
| * @snd_dentry: 2nd directory entry to exchange |
| * @sync: non-zero if the write-buffer has to be synchronized |
| * |
| * This function implements the cross rename operation which may involve |
| * writing 2 inodes and 2 directory entries. It marks the written inodes as clean |
| * and returns zero on success. In case of failure, a negative error code is |
| * returned. |
| */ |
| int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, |
| const struct dentry *fst_dentry, |
| const struct inode *snd_dir, |
| const struct dentry *snd_dentry, int sync) |
| { |
| union ubifs_key key; |
| struct ubifs_dent_node *dent1, *dent2; |
| int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ; |
| int aligned_dlen1, aligned_dlen2; |
| int twoparents = (fst_dir != snd_dir); |
| const struct inode *fst_inode = d_inode(fst_dentry); |
| const struct inode *snd_inode = d_inode(snd_dentry); |
| void *p; |
| |
| dbg_jnl("dent '%pd' in dir ino %lu between dent '%pd' in dir ino %lu", |
| fst_dentry, fst_dir->i_ino, snd_dentry, snd_dir->i_ino); |
| |
| ubifs_assert(ubifs_inode(fst_dir)->data_len == 0); |
| ubifs_assert(ubifs_inode(snd_dir)->data_len == 0); |
| ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex)); |
| ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex)); |
| |
| dlen1 = UBIFS_DENT_NODE_SZ + snd_dentry->d_name.len + 1; |
| dlen2 = UBIFS_DENT_NODE_SZ + fst_dentry->d_name.len + 1; |
| aligned_dlen1 = ALIGN(dlen1, 8); |
| aligned_dlen2 = ALIGN(dlen2, 8); |
| |
| len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8); |
| if (twoparents) |
| len += plen; |
| |
| dent1 = kmalloc(len, GFP_NOFS); |
| if (!dent1) |
| return -ENOMEM; |
| |
| /* Make reservation before allocating sequence numbers */ |
| err = make_reservation(c, BASEHD, len); |
| if (err) |
| goto out_free; |
| |
| /* Make new dent for 1st entry */ |
| dent1->ch.node_type = UBIFS_DENT_NODE; |
| dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, &snd_dentry->d_name); |
| dent1->inum = cpu_to_le64(fst_inode->i_ino); |
| dent1->type = get_dent_type(fst_inode->i_mode); |
| dent1->nlen = cpu_to_le16(snd_dentry->d_name.len); |
| memcpy(dent1->name, snd_dentry->d_name.name, snd_dentry->d_name.len); |
| dent1->name[snd_dentry->d_name.len] = '\0'; |
| zero_dent_node_unused(dent1); |
| ubifs_prep_grp_node(c, dent1, dlen1, 0); |
| |
| /* Make new dent for 2nd entry */ |
| dent2 = (void *)dent1 + aligned_dlen1; |
| dent2->ch.node_type = UBIFS_DENT_NODE; |
| dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, &fst_dentry->d_name); |
| dent2->inum = cpu_to_le64(snd_inode->i_ino); |
| dent2->type = get_dent_type(snd_inode->i_mode); |
| dent2->nlen = cpu_to_le16(fst_dentry->d_name.len); |
| memcpy(dent2->name, fst_dentry->d_name.name, fst_dentry->d_name.len); |
| dent2->name[fst_dentry->d_name.len] = '\0'; |
| zero_dent_node_unused(dent2); |
| ubifs_prep_grp_node(c, dent2, dlen2, 0); |
| |
| p = (void *)dent2 + aligned_dlen2; |
| if (!twoparents) |
| pack_inode(c, p, fst_dir, 1); |
| else { |
| pack_inode(c, p, fst_dir, 0); |
| p += ALIGN(plen, 8); |
| pack_inode(c, p, snd_dir, 1); |
| } |
| |
| err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync); |
| if (err) |
| goto out_release; |
| if (!sync) { |
| struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; |
| |
| ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino); |
| ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino); |
| } |
| release_head(c, BASEHD); |
| |
| dent_key_init(c, &key, snd_dir->i_ino, &snd_dentry->d_name); |
| err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &snd_dentry->d_name); |
| if (err) |
| goto out_ro; |
| |
| offs += aligned_dlen1; |
| dent_key_init(c, &key, fst_dir->i_ino, &fst_dentry->d_name); |
| err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, &fst_dentry->d_name); |
| if (err) |
| goto out_ro; |
| |
| offs += aligned_dlen2; |
| |
| ino_key_init(c, &key, fst_dir->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs, plen); |
| if (err) |
| goto out_ro; |
| |
| if (twoparents) { |
| offs += ALIGN(plen, 8); |
| ino_key_init(c, &key, snd_dir->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs, plen); |
| if (err) |
| goto out_ro; |
| } |
| |
| finish_reservation(c); |
| |
| mark_inode_clean(c, ubifs_inode(fst_dir)); |
| if (twoparents) |
| mark_inode_clean(c, ubifs_inode(snd_dir)); |
| kfree(dent1); |
| return 0; |
| |
| out_release: |
| release_head(c, BASEHD); |
| out_ro: |
| ubifs_ro_mode(c, err); |
| finish_reservation(c); |
| out_free: |
| kfree(dent1); |
| return err; |
| } |
| |
| /** |
| * ubifs_jnl_rename - rename a directory entry. |
| * @c: UBIFS file-system description object |
| * @old_dir: parent inode of directory entry to rename |
| * @old_dentry: directory entry to rename |
| * @new_dir: parent inode of directory entry to rename |
| * @new_dentry: new directory entry (or directory entry to replace) |
| * @sync: non-zero if the write-buffer has to be synchronized |
| * |
| * This function implements the re-name operation which may involve writing up |
| * to 4 inodes and 2 directory entries. It marks the written inodes as clean |
| * and returns zero on success. In case of failure, a negative error code is |
| * returned. |
| */ |
| int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, |
| const struct dentry *old_dentry, |
| const struct inode *new_dir, |
| const struct dentry *new_dentry, |
| const struct inode *whiteout, int sync) |
| { |
| void *p; |
| union ubifs_key key; |
| struct ubifs_dent_node *dent, *dent2; |
| int err, dlen1, dlen2, ilen, lnum, offs, len; |
| const struct inode *old_inode = d_inode(old_dentry); |
| const struct inode *new_inode = d_inode(new_dentry); |
| int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; |
| int last_reference = !!(new_inode && new_inode->i_nlink == 0); |
| int move = (old_dir != new_dir); |
| struct ubifs_inode *uninitialized_var(new_ui); |
| |
| dbg_jnl("dent '%pd' in dir ino %lu to dent '%pd' in dir ino %lu", |
| old_dentry, old_dir->i_ino, new_dentry, new_dir->i_ino); |
| ubifs_assert(ubifs_inode(old_dir)->data_len == 0); |
| ubifs_assert(ubifs_inode(new_dir)->data_len == 0); |
| ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); |
| ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); |
| |
| dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1; |
| dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1; |
| if (new_inode) { |
| new_ui = ubifs_inode(new_inode); |
| ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); |
| ilen = UBIFS_INO_NODE_SZ; |
| if (!last_reference) |
| ilen += new_ui->data_len; |
| } else |
| ilen = 0; |
| |
| aligned_dlen1 = ALIGN(dlen1, 8); |
| aligned_dlen2 = ALIGN(dlen2, 8); |
| len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); |
| if (move) |
| len += plen; |
| dent = kmalloc(len, GFP_NOFS); |
| if (!dent) |
| return -ENOMEM; |
| |
| /* Make reservation before allocating sequence numbers */ |
| err = make_reservation(c, BASEHD, len); |
| if (err) |
| goto out_free; |
| |
| /* Make new dent */ |
| dent->ch.node_type = UBIFS_DENT_NODE; |
| dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name); |
| dent->inum = cpu_to_le64(old_inode->i_ino); |
| dent->type = get_dent_type(old_inode->i_mode); |
| dent->nlen = cpu_to_le16(new_dentry->d_name.len); |
| memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len); |
| dent->name[new_dentry->d_name.len] = '\0'; |
| zero_dent_node_unused(dent); |
| ubifs_prep_grp_node(c, dent, dlen1, 0); |
| |
| dent2 = (void *)dent + aligned_dlen1; |
| dent2->ch.node_type = UBIFS_DENT_NODE; |
| dent_key_init_flash(c, &dent2->key, old_dir->i_ino, |
| &old_dentry->d_name); |
| |
| if (whiteout) { |
| dent2->inum = cpu_to_le64(whiteout->i_ino); |
| dent2->type = get_dent_type(whiteout->i_mode); |
| } else { |
| /* Make deletion dent */ |
| dent2->inum = 0; |
| dent2->type = DT_UNKNOWN; |
| } |
| dent2->nlen = cpu_to_le16(old_dentry->d_name.len); |
| memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len); |
| dent2->name[old_dentry->d_name.len] = '\0'; |
| zero_dent_node_unused(dent2); |
| ubifs_prep_grp_node(c, dent2, dlen2, 0); |
| |
| p = (void *)dent2 + aligned_dlen2; |
| if (new_inode) { |
| pack_inode(c, p, new_inode, 0); |
| p += ALIGN(ilen, 8); |
| } |
| |
| if (!move) |
| pack_inode(c, p, old_dir, 1); |
| else { |
| pack_inode(c, p, old_dir, 0); |
| p += ALIGN(plen, 8); |
| pack_inode(c, p, new_dir, 1); |
| } |
| |
| if (last_reference) { |
| err = ubifs_add_orphan(c, new_inode->i_ino); |
| if (err) { |
| release_head(c, BASEHD); |
| goto out_finish; |
| } |
| new_ui->del_cmtno = c->cmt_no; |
| } |
| |
| err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); |
| if (err) |
| goto out_release; |
| if (!sync) { |
| struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; |
| |
| ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); |
| ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); |
| if (new_inode) |
| ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, |
| new_inode->i_ino); |
| } |
| release_head(c, BASEHD); |
| |
| dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name); |
| err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name); |
| if (err) |
| goto out_ro; |
| |
| offs += aligned_dlen1; |
| if (whiteout) { |
| dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); |
| err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, &old_dentry->d_name); |
| if (err) |
| goto out_ro; |
| |
| ubifs_delete_orphan(c, whiteout->i_ino); |
| } else { |
| err = ubifs_add_dirt(c, lnum, dlen2); |
| if (err) |
| goto out_ro; |
| |
| dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); |
| err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name); |
| if (err) |
| goto out_ro; |
| } |
| |
| offs += aligned_dlen2; |
| if (new_inode) { |
| ino_key_init(c, &key, new_inode->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs, ilen); |
| if (err) |
| goto out_ro; |
| offs += ALIGN(ilen, 8); |
| } |
| |
| ino_key_init(c, &key, old_dir->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs, plen); |
| if (err) |
| goto out_ro; |
| |
| if (move) { |
| offs += ALIGN(plen, 8); |
| ino_key_init(c, &key, new_dir->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs, plen); |
| if (err) |
| goto out_ro; |
| } |
| |
| finish_reservation(c); |
| if (new_inode) { |
| mark_inode_clean(c, new_ui); |
| spin_lock(&new_ui->ui_lock); |
| new_ui->synced_i_size = new_ui->ui_size; |
| spin_unlock(&new_ui->ui_lock); |
| } |
| mark_inode_clean(c, ubifs_inode(old_dir)); |
| if (move) |
| mark_inode_clean(c, ubifs_inode(new_dir)); |
| kfree(dent); |
| return 0; |
| |
| out_release: |
| release_head(c, BASEHD); |
| out_ro: |
| ubifs_ro_mode(c, err); |
| if (last_reference) |
| ubifs_delete_orphan(c, new_inode->i_ino); |
| out_finish: |
| finish_reservation(c); |
| out_free: |
| kfree(dent); |
| return err; |
| } |
| |
| /** |
| * truncate_data_node - re-compress/encrypt a truncated data node. |
| * @c: UBIFS file-system description object |
| * @inode: inode which referes to the data node |
| * @block: data block number |
| * @dn: data node to re-compress |
| * @new_len: new length |
| * |
| * This function is used when an inode is truncated and the last data node of |
| * the inode has to be re-compressed/encrypted and re-written. |
| */ |
| static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode, |
| unsigned int block, struct ubifs_data_node *dn, |
| int *new_len) |
| { |
| void *buf; |
| int err, dlen, compr_type, out_len, old_dlen; |
| |
| out_len = le32_to_cpu(dn->size); |
| buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); |
| if (!buf) |
| return -ENOMEM; |
| |
| dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; |
| compr_type = le16_to_cpu(dn->compr_type); |
| |
| if (ubifs_crypt_is_encrypted(inode)) { |
| err = ubifs_decrypt(inode, dn, &dlen, block); |
| if (err) |
| goto out; |
| } |
| |
| if (compr_type != UBIFS_COMPR_NONE) { |
| err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type); |
| if (err) |
| goto out; |
| |
| ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type); |
| } |
| |
| if (ubifs_crypt_is_encrypted(inode)) { |
| err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block); |
| if (err) |
| goto out; |
| |
| out_len = old_dlen; |
| } else { |
| dn->compr_size = 0; |
| } |
| |
| ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); |
| dn->compr_type = cpu_to_le16(compr_type); |
| dn->size = cpu_to_le32(*new_len); |
| *new_len = UBIFS_DATA_NODE_SZ + out_len; |
| out: |
| kfree(buf); |
| return err; |
| } |
| |
| /** |
| * ubifs_jnl_truncate - update the journal for a truncation. |
| * @c: UBIFS file-system description object |
| * @inode: inode to truncate |
| * @old_size: old size |
| * @new_size: new size |
| * |
| * When the size of a file decreases due to truncation, a truncation node is |
| * written, the journal tree is updated, and the last data block is re-written |
| * if it has been affected. The inode is also updated in order to synchronize |
| * the new inode size. |
| * |
| * This function marks the inode as clean and returns zero on success. In case |
| * of failure, a negative error code is returned. |
| */ |
| int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, |
| loff_t old_size, loff_t new_size) |
| { |
| union ubifs_key key, to_key; |
| struct ubifs_ino_node *ino; |
| struct ubifs_trun_node *trun; |
| struct ubifs_data_node *uninitialized_var(dn); |
| int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| ino_t inum = inode->i_ino; |
| unsigned int blk; |
| |
| dbg_jnl("ino %lu, size %lld -> %lld", |
| (unsigned long)inum, old_size, new_size); |
| ubifs_assert(!ui->data_len); |
| ubifs_assert(S_ISREG(inode->i_mode)); |
| ubifs_assert(mutex_is_locked(&ui->ui_mutex)); |
| |
| sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + |
| UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; |
| ino = kmalloc(sz, GFP_NOFS); |
| if (!ino) |
| return -ENOMEM; |
| |
| trun = (void *)ino + UBIFS_INO_NODE_SZ; |
| trun->ch.node_type = UBIFS_TRUN_NODE; |
| trun->inum = cpu_to_le32(inum); |
| trun->old_size = cpu_to_le64(old_size); |
| trun->new_size = cpu_to_le64(new_size); |
| zero_trun_node_unused(trun); |
| |
| dlen = new_size & (UBIFS_BLOCK_SIZE - 1); |
| if (dlen) { |
| /* Get last data block so it can be truncated */ |
| dn = (void *)trun + UBIFS_TRUN_NODE_SZ; |
| blk = new_size >> UBIFS_BLOCK_SHIFT; |
| data_key_init(c, &key, inum, blk); |
| dbg_jnlk(&key, "last block key "); |
| err = ubifs_tnc_lookup(c, &key, dn); |
| if (err == -ENOENT) |
| dlen = 0; /* Not found (so it is a hole) */ |
| else if (err) |
| goto out_free; |
| else { |
| if (le32_to_cpu(dn->size) <= dlen) |
| dlen = 0; /* Nothing to do */ |
| else { |
| err = truncate_data_node(c, inode, blk, dn, &dlen); |
| if (err) |
| goto out_free; |
| } |
| } |
| } |
| |
| /* Must make reservation before allocating sequence numbers */ |
| len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; |
| if (dlen) |
| len += dlen; |
| err = make_reservation(c, BASEHD, len); |
| if (err) |
| goto out_free; |
| |
| pack_inode(c, ino, inode, 0); |
| ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); |
| if (dlen) |
| ubifs_prep_grp_node(c, dn, dlen, 1); |
| |
| err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); |
| if (err) |
| goto out_release; |
| if (!sync) |
| ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); |
| release_head(c, BASEHD); |
| |
| if (dlen) { |
| sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; |
| err = ubifs_tnc_add(c, &key, lnum, sz, dlen); |
| if (err) |
| goto out_ro; |
| } |
| |
| ino_key_init(c, &key, inum); |
| err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); |
| if (err) |
| goto out_ro; |
| |
| err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); |
| if (err) |
| goto out_ro; |
| |
| bit = new_size & (UBIFS_BLOCK_SIZE - 1); |
| blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); |
| data_key_init(c, &key, inum, blk); |
| |
| bit = old_size & (UBIFS_BLOCK_SIZE - 1); |
| blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); |
| data_key_init(c, &to_key, inum, blk); |
| |
| err = ubifs_tnc_remove_range(c, &key, &to_key); |
| if (err) |
| goto out_ro; |
| |
| finish_reservation(c); |
| spin_lock(&ui->ui_lock); |
| ui->synced_i_size = ui->ui_size; |
| spin_unlock(&ui->ui_lock); |
| mark_inode_clean(c, ui); |
| kfree(ino); |
| return 0; |
| |
| out_release: |
| release_head(c, BASEHD); |
| out_ro: |
| ubifs_ro_mode(c, err); |
| finish_reservation(c); |
| out_free: |
| kfree(ino); |
| return err; |
| } |
| |
| |
| /** |
| * ubifs_jnl_delete_xattr - delete an extended attribute. |
| * @c: UBIFS file-system description object |
| * @host: host inode |
| * @inode: extended attribute inode |
| * @nm: extended attribute entry name |
| * |
| * This function delete an extended attribute which is very similar to |
| * un-linking regular files - it writes a deletion xentry, a deletion inode and |
| * updates the target inode. Returns zero in case of success and a negative |
| * error code in case of failure. |
| */ |
| int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, |
| const struct inode *inode, const struct qstr *nm) |
| { |
| int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; |
| struct ubifs_dent_node *xent; |
| struct ubifs_ino_node *ino; |
| union ubifs_key xent_key, key1, key2; |
| int sync = IS_DIRSYNC(host); |
| struct ubifs_inode *host_ui = ubifs_inode(host); |
| |
| dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d", |
| host->i_ino, inode->i_ino, nm->name, |
| ubifs_inode(inode)->data_len); |
| ubifs_assert(inode->i_nlink == 0); |
| ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); |
| |
| /* |
| * Since we are deleting the inode, we do not bother to attach any data |
| * to it and assume its length is %UBIFS_INO_NODE_SZ. |
| */ |
| xlen = UBIFS_DENT_NODE_SZ + nm->len + 1; |
| aligned_xlen = ALIGN(xlen, 8); |
| hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; |
| len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); |
| |
| xent = kmalloc(len, GFP_NOFS); |
| if (!xent) |
| return -ENOMEM; |
| |
| /* Make reservation before allocating sequence numbers */ |
| err = make_reservation(c, BASEHD, len); |
| if (err) { |
| kfree(xent); |
| return err; |
| } |
| |
| xent->ch.node_type = UBIFS_XENT_NODE; |
| xent_key_init(c, &xent_key, host->i_ino, nm); |
| key_write(c, &xent_key, xent->key); |
| xent->inum = 0; |
| xent->type = get_dent_type(inode->i_mode); |
| xent->nlen = cpu_to_le16(nm->len); |
| memcpy(xent->name, nm->name, nm->len); |
| xent->name[nm->len] = '\0'; |
| zero_dent_node_unused(xent); |
| ubifs_prep_grp_node(c, xent, xlen, 0); |
| |
| ino = (void *)xent + aligned_xlen; |
| pack_inode(c, ino, inode, 0); |
| ino = (void *)ino + UBIFS_INO_NODE_SZ; |
| pack_inode(c, ino, host, 1); |
| |
| err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); |
| if (!sync && !err) |
| ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); |
| release_head(c, BASEHD); |
| kfree(xent); |
| if (err) |
| goto out_ro; |
| |
| /* Remove the extended attribute entry from TNC */ |
| err = ubifs_tnc_remove_nm(c, &xent_key, nm); |
| if (err) |
| goto out_ro; |
| err = ubifs_add_dirt(c, lnum, xlen); |
| if (err) |
| goto out_ro; |
| |
| /* |
| * Remove all nodes belonging to the extended attribute inode from TNC. |
| * Well, there actually must be only one node - the inode itself. |
| */ |
| lowest_ino_key(c, &key1, inode->i_ino); |
| highest_ino_key(c, &key2, inode->i_ino); |
| err = ubifs_tnc_remove_range(c, &key1, &key2); |
| if (err) |
| goto out_ro; |
| err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); |
| if (err) |
| goto out_ro; |
| |
| /* And update TNC with the new host inode position */ |
| ino_key_init(c, &key1, host->i_ino); |
| err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); |
| if (err) |
| goto out_ro; |
| |
| finish_reservation(c); |
| spin_lock(&host_ui->ui_lock); |
| host_ui->synced_i_size = host_ui->ui_size; |
| spin_unlock(&host_ui->ui_lock); |
| mark_inode_clean(c, host_ui); |
| return 0; |
| |
| out_ro: |
| ubifs_ro_mode(c, err); |
| finish_reservation(c); |
| return err; |
| } |
| |
| /** |
| * ubifs_jnl_change_xattr - change an extended attribute. |
| * @c: UBIFS file-system description object |
| * @inode: extended attribute inode |
| * @host: host inode |
| * |
| * This function writes the updated version of an extended attribute inode and |
| * the host inode to the journal (to the base head). The host inode is written |
| * after the extended attribute inode in order to guarantee that the extended |
| * attribute will be flushed when the inode is synchronized by 'fsync()' and |
| * consequently, the write-buffer is synchronized. This function returns zero |
| * in case of success and a negative error code in case of failure. |
| */ |
| int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, |
| const struct inode *host) |
| { |
| int err, len1, len2, aligned_len, aligned_len1, lnum, offs; |
| struct ubifs_inode *host_ui = ubifs_inode(host); |
| struct ubifs_ino_node *ino; |
| union ubifs_key key; |
| int sync = IS_DIRSYNC(host); |
| |
| dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); |
| ubifs_assert(host->i_nlink > 0); |
| ubifs_assert(inode->i_nlink > 0); |
| ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); |
| |
| len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; |
| len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; |
| aligned_len1 = ALIGN(len1, 8); |
| aligned_len = aligned_len1 + ALIGN(len2, 8); |
| |
| ino = kmalloc(aligned_len, GFP_NOFS); |
| if (!ino) |
| return -ENOMEM; |
| |
| /* Make reservation before allocating sequence numbers */ |
| err = make_reservation(c, BASEHD, aligned_len); |
| if (err) |
| goto out_free; |
| |
| pack_inode(c, ino, host, 0); |
| pack_inode(c, (void *)ino + aligned_len1, inode, 1); |
| |
| err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); |
| if (!sync && !err) { |
| struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; |
| |
| ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); |
| ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); |
| } |
| release_head(c, BASEHD); |
| if (err) |
| goto out_ro; |
| |
| ino_key_init(c, &key, host->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs, len1); |
| if (err) |
| goto out_ro; |
| |
| ino_key_init(c, &key, inode->i_ino); |
| err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); |
| if (err) |
| goto out_ro; |
| |
| finish_reservation(c); |
| spin_lock(&host_ui->ui_lock); |
| host_ui->synced_i_size = host_ui->ui_size; |
| spin_unlock(&host_ui->ui_lock); |
| mark_inode_clean(c, host_ui); |
| kfree(ino); |
| return 0; |
| |
| out_ro: |
| ubifs_ro_mode(c, err); |
| finish_reservation(c); |
| out_free: |
| kfree(ino); |
| return err; |
| } |
| |