| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * This file contains the setup_arch() code, which handles the architecture-dependent |
| * parts of early kernel initialization. |
| */ |
| #include <linux/console.h> |
| #include <linux/crash_dump.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/dmi.h> |
| #include <linux/efi.h> |
| #include <linux/init_ohci1394_dma.h> |
| #include <linux/initrd.h> |
| #include <linux/iscsi_ibft.h> |
| #include <linux/memblock.h> |
| #include <linux/pci.h> |
| #include <linux/root_dev.h> |
| #include <linux/hugetlb.h> |
| #include <linux/tboot.h> |
| #include <linux/usb/xhci-dbgp.h> |
| #include <linux/static_call.h> |
| #include <linux/swiotlb.h> |
| |
| #include <uapi/linux/mount.h> |
| |
| #include <xen/xen.h> |
| |
| #include <asm/apic.h> |
| #include <asm/numa.h> |
| #include <asm/bios_ebda.h> |
| #include <asm/bugs.h> |
| #include <asm/cpu.h> |
| #include <asm/efi.h> |
| #include <asm/gart.h> |
| #include <asm/hypervisor.h> |
| #include <asm/io_apic.h> |
| #include <asm/kasan.h> |
| #include <asm/kaslr.h> |
| #include <asm/mce.h> |
| #include <asm/mtrr.h> |
| #include <asm/realmode.h> |
| #include <asm/olpc_ofw.h> |
| #include <asm/pci-direct.h> |
| #include <asm/prom.h> |
| #include <asm/proto.h> |
| #include <asm/thermal.h> |
| #include <asm/unwind.h> |
| #include <asm/vsyscall.h> |
| #include <linux/vmalloc.h> |
| |
| /* |
| * max_low_pfn_mapped: highest directly mapped pfn < 4 GB |
| * max_pfn_mapped: highest directly mapped pfn > 4 GB |
| * |
| * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are |
| * represented by pfn_mapped[]. |
| */ |
| unsigned long max_low_pfn_mapped; |
| unsigned long max_pfn_mapped; |
| |
| #ifdef CONFIG_DMI |
| RESERVE_BRK(dmi_alloc, 65536); |
| #endif |
| |
| |
| /* |
| * Range of the BSS area. The size of the BSS area is determined |
| * at link time, with RESERVE_BRK() facility reserving additional |
| * chunks. |
| */ |
| unsigned long _brk_start = (unsigned long)__brk_base; |
| unsigned long _brk_end = (unsigned long)__brk_base; |
| |
| struct boot_params boot_params; |
| |
| /* |
| * These are the four main kernel memory regions, we put them into |
| * the resource tree so that kdump tools and other debugging tools |
| * recover it: |
| */ |
| |
| static struct resource rodata_resource = { |
| .name = "Kernel rodata", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| }; |
| |
| static struct resource data_resource = { |
| .name = "Kernel data", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| }; |
| |
| static struct resource code_resource = { |
| .name = "Kernel code", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| }; |
| |
| static struct resource bss_resource = { |
| .name = "Kernel bss", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| }; |
| |
| |
| #ifdef CONFIG_X86_32 |
| /* CPU data as detected by the assembly code in head_32.S */ |
| struct cpuinfo_x86 new_cpu_data; |
| |
| /* Common CPU data for all CPUs */ |
| struct cpuinfo_x86 boot_cpu_data __read_mostly; |
| EXPORT_SYMBOL(boot_cpu_data); |
| |
| unsigned int def_to_bigsmp; |
| |
| struct apm_info apm_info; |
| EXPORT_SYMBOL(apm_info); |
| |
| #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ |
| defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) |
| struct ist_info ist_info; |
| EXPORT_SYMBOL(ist_info); |
| #else |
| struct ist_info ist_info; |
| #endif |
| |
| #else |
| struct cpuinfo_x86 boot_cpu_data __read_mostly; |
| EXPORT_SYMBOL(boot_cpu_data); |
| #endif |
| |
| |
| #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) |
| __visible unsigned long mmu_cr4_features __ro_after_init; |
| #else |
| __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; |
| #endif |
| |
| /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ |
| int bootloader_type, bootloader_version; |
| |
| /* |
| * Setup options |
| */ |
| struct screen_info screen_info; |
| EXPORT_SYMBOL(screen_info); |
| struct edid_info edid_info; |
| EXPORT_SYMBOL_GPL(edid_info); |
| |
| extern int root_mountflags; |
| |
| unsigned long saved_video_mode; |
| |
| #define RAMDISK_IMAGE_START_MASK 0x07FF |
| #define RAMDISK_PROMPT_FLAG 0x8000 |
| #define RAMDISK_LOAD_FLAG 0x4000 |
| |
| static char __initdata command_line[COMMAND_LINE_SIZE]; |
| #ifdef CONFIG_CMDLINE_BOOL |
| static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; |
| #endif |
| |
| #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) |
| struct edd edd; |
| #ifdef CONFIG_EDD_MODULE |
| EXPORT_SYMBOL(edd); |
| #endif |
| /** |
| * copy_edd() - Copy the BIOS EDD information |
| * from boot_params into a safe place. |
| * |
| */ |
| static inline void __init copy_edd(void) |
| { |
| memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, |
| sizeof(edd.mbr_signature)); |
| memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); |
| edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; |
| edd.edd_info_nr = boot_params.eddbuf_entries; |
| } |
| #else |
| static inline void __init copy_edd(void) |
| { |
| } |
| #endif |
| |
| void * __init extend_brk(size_t size, size_t align) |
| { |
| size_t mask = align - 1; |
| void *ret; |
| |
| BUG_ON(_brk_start == 0); |
| BUG_ON(align & mask); |
| |
| _brk_end = (_brk_end + mask) & ~mask; |
| BUG_ON((char *)(_brk_end + size) > __brk_limit); |
| |
| ret = (void *)_brk_end; |
| _brk_end += size; |
| |
| memset(ret, 0, size); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_X86_32 |
| static void __init cleanup_highmap(void) |
| { |
| } |
| #endif |
| |
| static void __init reserve_brk(void) |
| { |
| if (_brk_end > _brk_start) |
| memblock_reserve(__pa_symbol(_brk_start), |
| _brk_end - _brk_start); |
| |
| /* Mark brk area as locked down and no longer taking any |
| new allocations */ |
| _brk_start = 0; |
| } |
| |
| u64 relocated_ramdisk; |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| |
| static u64 __init get_ramdisk_image(void) |
| { |
| u64 ramdisk_image = boot_params.hdr.ramdisk_image; |
| |
| ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; |
| |
| if (ramdisk_image == 0) |
| ramdisk_image = phys_initrd_start; |
| |
| return ramdisk_image; |
| } |
| static u64 __init get_ramdisk_size(void) |
| { |
| u64 ramdisk_size = boot_params.hdr.ramdisk_size; |
| |
| ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; |
| |
| if (ramdisk_size == 0) |
| ramdisk_size = phys_initrd_size; |
| |
| return ramdisk_size; |
| } |
| |
| static void __init relocate_initrd(void) |
| { |
| /* Assume only end is not page aligned */ |
| u64 ramdisk_image = get_ramdisk_image(); |
| u64 ramdisk_size = get_ramdisk_size(); |
| u64 area_size = PAGE_ALIGN(ramdisk_size); |
| |
| /* We need to move the initrd down into directly mapped mem */ |
| relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, |
| PFN_PHYS(max_pfn_mapped)); |
| if (!relocated_ramdisk) |
| panic("Cannot find place for new RAMDISK of size %lld\n", |
| ramdisk_size); |
| |
| initrd_start = relocated_ramdisk + PAGE_OFFSET; |
| initrd_end = initrd_start + ramdisk_size; |
| printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", |
| relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); |
| |
| copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); |
| |
| printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" |
| " [mem %#010llx-%#010llx]\n", |
| ramdisk_image, ramdisk_image + ramdisk_size - 1, |
| relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); |
| } |
| |
| static void __init early_reserve_initrd(void) |
| { |
| /* Assume only end is not page aligned */ |
| u64 ramdisk_image = get_ramdisk_image(); |
| u64 ramdisk_size = get_ramdisk_size(); |
| u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); |
| |
| if (!boot_params.hdr.type_of_loader || |
| !ramdisk_image || !ramdisk_size) |
| return; /* No initrd provided by bootloader */ |
| |
| memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); |
| } |
| |
| static void __init reserve_initrd(void) |
| { |
| /* Assume only end is not page aligned */ |
| u64 ramdisk_image = get_ramdisk_image(); |
| u64 ramdisk_size = get_ramdisk_size(); |
| u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); |
| |
| if (!boot_params.hdr.type_of_loader || |
| !ramdisk_image || !ramdisk_size) |
| return; /* No initrd provided by bootloader */ |
| |
| initrd_start = 0; |
| |
| printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, |
| ramdisk_end - 1); |
| |
| if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), |
| PFN_DOWN(ramdisk_end))) { |
| /* All are mapped, easy case */ |
| initrd_start = ramdisk_image + PAGE_OFFSET; |
| initrd_end = initrd_start + ramdisk_size; |
| return; |
| } |
| |
| relocate_initrd(); |
| |
| memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); |
| } |
| |
| #else |
| static void __init early_reserve_initrd(void) |
| { |
| } |
| static void __init reserve_initrd(void) |
| { |
| } |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| |
| static void __init parse_setup_data(void) |
| { |
| struct setup_data *data; |
| u64 pa_data, pa_next; |
| |
| pa_data = boot_params.hdr.setup_data; |
| while (pa_data) { |
| u32 data_len, data_type; |
| |
| data = early_memremap(pa_data, sizeof(*data)); |
| data_len = data->len + sizeof(struct setup_data); |
| data_type = data->type; |
| pa_next = data->next; |
| early_memunmap(data, sizeof(*data)); |
| |
| switch (data_type) { |
| case SETUP_E820_EXT: |
| e820__memory_setup_extended(pa_data, data_len); |
| break; |
| case SETUP_DTB: |
| add_dtb(pa_data); |
| break; |
| case SETUP_EFI: |
| parse_efi_setup(pa_data, data_len); |
| break; |
| default: |
| break; |
| } |
| pa_data = pa_next; |
| } |
| } |
| |
| static void __init memblock_x86_reserve_range_setup_data(void) |
| { |
| struct setup_data *data; |
| u64 pa_data; |
| |
| pa_data = boot_params.hdr.setup_data; |
| while (pa_data) { |
| data = early_memremap(pa_data, sizeof(*data)); |
| memblock_reserve(pa_data, sizeof(*data) + data->len); |
| |
| if (data->type == SETUP_INDIRECT && |
| ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) |
| memblock_reserve(((struct setup_indirect *)data->data)->addr, |
| ((struct setup_indirect *)data->data)->len); |
| |
| pa_data = data->next; |
| early_memunmap(data, sizeof(*data)); |
| } |
| } |
| |
| /* |
| * --------- Crashkernel reservation ------------------------------ |
| */ |
| |
| #ifdef CONFIG_KEXEC_CORE |
| |
| /* 16M alignment for crash kernel regions */ |
| #define CRASH_ALIGN SZ_16M |
| |
| /* |
| * Keep the crash kernel below this limit. |
| * |
| * Earlier 32-bits kernels would limit the kernel to the low 512 MB range |
| * due to mapping restrictions. |
| * |
| * 64-bit kdump kernels need to be restricted to be under 64 TB, which is |
| * the upper limit of system RAM in 4-level paging mode. Since the kdump |
| * jump could be from 5-level paging to 4-level paging, the jump will fail if |
| * the kernel is put above 64 TB, and during the 1st kernel bootup there's |
| * no good way to detect the paging mode of the target kernel which will be |
| * loaded for dumping. |
| */ |
| #ifdef CONFIG_X86_32 |
| # define CRASH_ADDR_LOW_MAX SZ_512M |
| # define CRASH_ADDR_HIGH_MAX SZ_512M |
| #else |
| # define CRASH_ADDR_LOW_MAX SZ_4G |
| # define CRASH_ADDR_HIGH_MAX SZ_64T |
| #endif |
| |
| static int __init reserve_crashkernel_low(void) |
| { |
| #ifdef CONFIG_X86_64 |
| unsigned long long base, low_base = 0, low_size = 0; |
| unsigned long low_mem_limit; |
| int ret; |
| |
| low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX); |
| |
| /* crashkernel=Y,low */ |
| ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base); |
| if (ret) { |
| /* |
| * two parts from kernel/dma/swiotlb.c: |
| * -swiotlb size: user-specified with swiotlb= or default. |
| * |
| * -swiotlb overflow buffer: now hardcoded to 32k. We round it |
| * to 8M for other buffers that may need to stay low too. Also |
| * make sure we allocate enough extra low memory so that we |
| * don't run out of DMA buffers for 32-bit devices. |
| */ |
| low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); |
| } else { |
| /* passed with crashkernel=0,low ? */ |
| if (!low_size) |
| return 0; |
| } |
| |
| low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); |
| if (!low_base) { |
| pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", |
| (unsigned long)(low_size >> 20)); |
| return -ENOMEM; |
| } |
| |
| pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n", |
| (unsigned long)(low_size >> 20), |
| (unsigned long)(low_base >> 20), |
| (unsigned long)(low_mem_limit >> 20)); |
| |
| crashk_low_res.start = low_base; |
| crashk_low_res.end = low_base + low_size - 1; |
| insert_resource(&iomem_resource, &crashk_low_res); |
| #endif |
| return 0; |
| } |
| |
| static void __init reserve_crashkernel(void) |
| { |
| unsigned long long crash_size, crash_base, total_mem; |
| bool high = false; |
| int ret; |
| |
| total_mem = memblock_phys_mem_size(); |
| |
| /* crashkernel=XM */ |
| ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); |
| if (ret != 0 || crash_size <= 0) { |
| /* crashkernel=X,high */ |
| ret = parse_crashkernel_high(boot_command_line, total_mem, |
| &crash_size, &crash_base); |
| if (ret != 0 || crash_size <= 0) |
| return; |
| high = true; |
| } |
| |
| if (xen_pv_domain()) { |
| pr_info("Ignoring crashkernel for a Xen PV domain\n"); |
| return; |
| } |
| |
| /* 0 means: find the address automatically */ |
| if (!crash_base) { |
| /* |
| * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, |
| * crashkernel=x,high reserves memory over 4G, also allocates |
| * 256M extra low memory for DMA buffers and swiotlb. |
| * But the extra memory is not required for all machines. |
| * So try low memory first and fall back to high memory |
| * unless "crashkernel=size[KMG],high" is specified. |
| */ |
| if (!high) |
| crash_base = memblock_phys_alloc_range(crash_size, |
| CRASH_ALIGN, CRASH_ALIGN, |
| CRASH_ADDR_LOW_MAX); |
| if (!crash_base) |
| crash_base = memblock_phys_alloc_range(crash_size, |
| CRASH_ALIGN, CRASH_ALIGN, |
| CRASH_ADDR_HIGH_MAX); |
| if (!crash_base) { |
| pr_info("crashkernel reservation failed - No suitable area found.\n"); |
| return; |
| } |
| } else { |
| unsigned long long start; |
| |
| start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base, |
| crash_base + crash_size); |
| if (start != crash_base) { |
| pr_info("crashkernel reservation failed - memory is in use.\n"); |
| return; |
| } |
| } |
| |
| if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { |
| memblock_free(crash_base, crash_size); |
| return; |
| } |
| |
| pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", |
| (unsigned long)(crash_size >> 20), |
| (unsigned long)(crash_base >> 20), |
| (unsigned long)(total_mem >> 20)); |
| |
| crashk_res.start = crash_base; |
| crashk_res.end = crash_base + crash_size - 1; |
| insert_resource(&iomem_resource, &crashk_res); |
| } |
| #else |
| static void __init reserve_crashkernel(void) |
| { |
| } |
| #endif |
| |
| static struct resource standard_io_resources[] = { |
| { .name = "dma1", .start = 0x00, .end = 0x1f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "pic1", .start = 0x20, .end = 0x21, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "timer0", .start = 0x40, .end = 0x43, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "timer1", .start = 0x50, .end = 0x53, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "keyboard", .start = 0x60, .end = 0x60, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "keyboard", .start = 0x64, .end = 0x64, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "dma page reg", .start = 0x80, .end = 0x8f, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "pic2", .start = 0xa0, .end = 0xa1, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "dma2", .start = 0xc0, .end = 0xdf, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO }, |
| { .name = "fpu", .start = 0xf0, .end = 0xff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_IO } |
| }; |
| |
| void __init reserve_standard_io_resources(void) |
| { |
| int i; |
| |
| /* request I/O space for devices used on all i[345]86 PCs */ |
| for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) |
| request_resource(&ioport_resource, &standard_io_resources[i]); |
| |
| } |
| |
| static __init void reserve_ibft_region(void) |
| { |
| unsigned long addr, size = 0; |
| |
| addr = find_ibft_region(&size); |
| |
| if (size) |
| memblock_reserve(addr, size); |
| } |
| |
| static bool __init snb_gfx_workaround_needed(void) |
| { |
| #ifdef CONFIG_PCI |
| int i; |
| u16 vendor, devid; |
| static const __initconst u16 snb_ids[] = { |
| 0x0102, |
| 0x0112, |
| 0x0122, |
| 0x0106, |
| 0x0116, |
| 0x0126, |
| 0x010a, |
| }; |
| |
| /* Assume no if something weird is going on with PCI */ |
| if (!early_pci_allowed()) |
| return false; |
| |
| vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); |
| if (vendor != 0x8086) |
| return false; |
| |
| devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); |
| for (i = 0; i < ARRAY_SIZE(snb_ids); i++) |
| if (devid == snb_ids[i]) |
| return true; |
| #endif |
| |
| return false; |
| } |
| |
| /* |
| * Sandy Bridge graphics has trouble with certain ranges, exclude |
| * them from allocation. |
| */ |
| static void __init trim_snb_memory(void) |
| { |
| static const __initconst unsigned long bad_pages[] = { |
| 0x20050000, |
| 0x20110000, |
| 0x20130000, |
| 0x20138000, |
| 0x40004000, |
| }; |
| int i; |
| |
| if (!snb_gfx_workaround_needed()) |
| return; |
| |
| printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); |
| |
| /* |
| * SandyBridge integrated graphics devices have a bug that prevents |
| * them from accessing certain memory ranges, namely anything below |
| * 1M and in the pages listed in bad_pages[] above. |
| * |
| * To avoid these pages being ever accessed by SNB gfx devices reserve |
| * bad_pages that have not already been reserved at boot time. |
| * All memory below the 1 MB mark is anyway reserved later during |
| * setup_arch(), so there is no need to reserve it here. |
| */ |
| |
| for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { |
| if (memblock_reserve(bad_pages[i], PAGE_SIZE)) |
| printk(KERN_WARNING "failed to reserve 0x%08lx\n", |
| bad_pages[i]); |
| } |
| } |
| |
| static void __init trim_bios_range(void) |
| { |
| /* |
| * A special case is the first 4Kb of memory; |
| * This is a BIOS owned area, not kernel ram, but generally |
| * not listed as such in the E820 table. |
| * |
| * This typically reserves additional memory (64KiB by default) |
| * since some BIOSes are known to corrupt low memory. See the |
| * Kconfig help text for X86_RESERVE_LOW. |
| */ |
| e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); |
| |
| /* |
| * special case: Some BIOSes report the PC BIOS |
| * area (640Kb -> 1Mb) as RAM even though it is not. |
| * take them out. |
| */ |
| e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); |
| |
| e820__update_table(e820_table); |
| } |
| |
| /* called before trim_bios_range() to spare extra sanitize */ |
| static void __init e820_add_kernel_range(void) |
| { |
| u64 start = __pa_symbol(_text); |
| u64 size = __pa_symbol(_end) - start; |
| |
| /* |
| * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and |
| * attempt to fix it by adding the range. We may have a confused BIOS, |
| * or the user may have used memmap=exactmap or memmap=xxM$yyM to |
| * exclude kernel range. If we really are running on top non-RAM, |
| * we will crash later anyways. |
| */ |
| if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) |
| return; |
| |
| pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); |
| e820__range_remove(start, size, E820_TYPE_RAM, 0); |
| e820__range_add(start, size, E820_TYPE_RAM); |
| } |
| |
| static void __init early_reserve_memory(void) |
| { |
| /* |
| * Reserve the memory occupied by the kernel between _text and |
| * __end_of_kernel_reserve symbols. Any kernel sections after the |
| * __end_of_kernel_reserve symbol must be explicitly reserved with a |
| * separate memblock_reserve() or they will be discarded. |
| */ |
| memblock_reserve(__pa_symbol(_text), |
| (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); |
| |
| /* |
| * The first 4Kb of memory is a BIOS owned area, but generally it is |
| * not listed as such in the E820 table. |
| * |
| * Reserve the first 64K of memory since some BIOSes are known to |
| * corrupt low memory. After the real mode trampoline is allocated the |
| * rest of the memory below 640k is reserved. |
| * |
| * In addition, make sure page 0 is always reserved because on |
| * systems with L1TF its contents can be leaked to user processes. |
| */ |
| memblock_reserve(0, SZ_64K); |
| |
| early_reserve_initrd(); |
| |
| if (efi_enabled(EFI_BOOT)) |
| efi_memblock_x86_reserve_range(); |
| |
| memblock_x86_reserve_range_setup_data(); |
| |
| reserve_ibft_region(); |
| reserve_bios_regions(); |
| trim_snb_memory(); |
| } |
| |
| /* |
| * Dump out kernel offset information on panic. |
| */ |
| static int |
| dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) |
| { |
| if (kaslr_enabled()) { |
| pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", |
| kaslr_offset(), |
| __START_KERNEL, |
| __START_KERNEL_map, |
| MODULES_VADDR-1); |
| } else { |
| pr_emerg("Kernel Offset: disabled\n"); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Determine if we were loaded by an EFI loader. If so, then we have also been |
| * passed the efi memmap, systab, etc., so we should use these data structures |
| * for initialization. Note, the efi init code path is determined by the |
| * global efi_enabled. This allows the same kernel image to be used on existing |
| * systems (with a traditional BIOS) as well as on EFI systems. |
| */ |
| /* |
| * setup_arch - architecture-specific boot-time initializations |
| * |
| * Note: On x86_64, fixmaps are ready for use even before this is called. |
| */ |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| #ifdef CONFIG_X86_32 |
| memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); |
| |
| /* |
| * copy kernel address range established so far and switch |
| * to the proper swapper page table |
| */ |
| clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, |
| initial_page_table + KERNEL_PGD_BOUNDARY, |
| KERNEL_PGD_PTRS); |
| |
| load_cr3(swapper_pg_dir); |
| /* |
| * Note: Quark X1000 CPUs advertise PGE incorrectly and require |
| * a cr3 based tlb flush, so the following __flush_tlb_all() |
| * will not flush anything because the CPU quirk which clears |
| * X86_FEATURE_PGE has not been invoked yet. Though due to the |
| * load_cr3() above the TLB has been flushed already. The |
| * quirk is invoked before subsequent calls to __flush_tlb_all() |
| * so proper operation is guaranteed. |
| */ |
| __flush_tlb_all(); |
| #else |
| printk(KERN_INFO "Command line: %s\n", boot_command_line); |
| boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; |
| #endif |
| |
| /* |
| * If we have OLPC OFW, we might end up relocating the fixmap due to |
| * reserve_top(), so do this before touching the ioremap area. |
| */ |
| olpc_ofw_detect(); |
| |
| idt_setup_early_traps(); |
| early_cpu_init(); |
| jump_label_init(); |
| static_call_init(); |
| early_ioremap_init(); |
| |
| setup_olpc_ofw_pgd(); |
| |
| ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); |
| screen_info = boot_params.screen_info; |
| edid_info = boot_params.edid_info; |
| #ifdef CONFIG_X86_32 |
| apm_info.bios = boot_params.apm_bios_info; |
| ist_info = boot_params.ist_info; |
| #endif |
| saved_video_mode = boot_params.hdr.vid_mode; |
| bootloader_type = boot_params.hdr.type_of_loader; |
| if ((bootloader_type >> 4) == 0xe) { |
| bootloader_type &= 0xf; |
| bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; |
| } |
| bootloader_version = bootloader_type & 0xf; |
| bootloader_version |= boot_params.hdr.ext_loader_ver << 4; |
| |
| #ifdef CONFIG_BLK_DEV_RAM |
| rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; |
| #endif |
| #ifdef CONFIG_EFI |
| if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, |
| EFI32_LOADER_SIGNATURE, 4)) { |
| set_bit(EFI_BOOT, &efi.flags); |
| } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, |
| EFI64_LOADER_SIGNATURE, 4)) { |
| set_bit(EFI_BOOT, &efi.flags); |
| set_bit(EFI_64BIT, &efi.flags); |
| } |
| #endif |
| |
| x86_init.oem.arch_setup(); |
| |
| iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; |
| e820__memory_setup(); |
| parse_setup_data(); |
| |
| copy_edd(); |
| |
| if (!boot_params.hdr.root_flags) |
| root_mountflags &= ~MS_RDONLY; |
| init_mm.start_code = (unsigned long) _text; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = _brk_end; |
| |
| code_resource.start = __pa_symbol(_text); |
| code_resource.end = __pa_symbol(_etext)-1; |
| rodata_resource.start = __pa_symbol(__start_rodata); |
| rodata_resource.end = __pa_symbol(__end_rodata)-1; |
| data_resource.start = __pa_symbol(_sdata); |
| data_resource.end = __pa_symbol(_edata)-1; |
| bss_resource.start = __pa_symbol(__bss_start); |
| bss_resource.end = __pa_symbol(__bss_stop)-1; |
| |
| #ifdef CONFIG_CMDLINE_BOOL |
| #ifdef CONFIG_CMDLINE_OVERRIDE |
| strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); |
| #else |
| if (builtin_cmdline[0]) { |
| /* append boot loader cmdline to builtin */ |
| strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); |
| strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); |
| strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); |
| } |
| #endif |
| #endif |
| |
| strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); |
| *cmdline_p = command_line; |
| |
| /* |
| * x86_configure_nx() is called before parse_early_param() to detect |
| * whether hardware doesn't support NX (so that the early EHCI debug |
| * console setup can safely call set_fixmap()). It may then be called |
| * again from within noexec_setup() during parsing early parameters |
| * to honor the respective command line option. |
| */ |
| x86_configure_nx(); |
| |
| parse_early_param(); |
| |
| /* |
| * Do some memory reservations *before* memory is added to |
| * memblock, so memblock allocations won't overwrite it. |
| * Do it after early param, so we could get (unlikely) panic from |
| * serial. |
| * |
| * After this point everything still needed from the boot loader or |
| * firmware or kernel text should be early reserved or marked not |
| * RAM in e820. All other memory is free game. |
| */ |
| early_reserve_memory(); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Memory used by the kernel cannot be hot-removed because Linux |
| * cannot migrate the kernel pages. When memory hotplug is |
| * enabled, we should prevent memblock from allocating memory |
| * for the kernel. |
| * |
| * ACPI SRAT records all hotpluggable memory ranges. But before |
| * SRAT is parsed, we don't know about it. |
| * |
| * The kernel image is loaded into memory at very early time. We |
| * cannot prevent this anyway. So on NUMA system, we set any |
| * node the kernel resides in as un-hotpluggable. |
| * |
| * Since on modern servers, one node could have double-digit |
| * gigabytes memory, we can assume the memory around the kernel |
| * image is also un-hotpluggable. So before SRAT is parsed, just |
| * allocate memory near the kernel image to try the best to keep |
| * the kernel away from hotpluggable memory. |
| */ |
| if (movable_node_is_enabled()) |
| memblock_set_bottom_up(true); |
| #endif |
| |
| x86_report_nx(); |
| |
| if (acpi_mps_check()) { |
| #ifdef CONFIG_X86_LOCAL_APIC |
| disable_apic = 1; |
| #endif |
| setup_clear_cpu_cap(X86_FEATURE_APIC); |
| } |
| |
| e820__reserve_setup_data(); |
| e820__finish_early_params(); |
| |
| if (efi_enabled(EFI_BOOT)) |
| efi_init(); |
| |
| dmi_setup(); |
| |
| /* |
| * VMware detection requires dmi to be available, so this |
| * needs to be done after dmi_setup(), for the boot CPU. |
| */ |
| init_hypervisor_platform(); |
| |
| tsc_early_init(); |
| x86_init.resources.probe_roms(); |
| |
| /* after parse_early_param, so could debug it */ |
| insert_resource(&iomem_resource, &code_resource); |
| insert_resource(&iomem_resource, &rodata_resource); |
| insert_resource(&iomem_resource, &data_resource); |
| insert_resource(&iomem_resource, &bss_resource); |
| |
| e820_add_kernel_range(); |
| trim_bios_range(); |
| #ifdef CONFIG_X86_32 |
| if (ppro_with_ram_bug()) { |
| e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, |
| E820_TYPE_RESERVED); |
| e820__update_table(e820_table); |
| printk(KERN_INFO "fixed physical RAM map:\n"); |
| e820__print_table("bad_ppro"); |
| } |
| #else |
| early_gart_iommu_check(); |
| #endif |
| |
| /* |
| * partially used pages are not usable - thus |
| * we are rounding upwards: |
| */ |
| max_pfn = e820__end_of_ram_pfn(); |
| |
| /* update e820 for memory not covered by WB MTRRs */ |
| mtrr_bp_init(); |
| if (mtrr_trim_uncached_memory(max_pfn)) |
| max_pfn = e820__end_of_ram_pfn(); |
| |
| max_possible_pfn = max_pfn; |
| |
| /* |
| * This call is required when the CPU does not support PAT. If |
| * mtrr_bp_init() invoked it already via pat_init() the call has no |
| * effect. |
| */ |
| init_cache_modes(); |
| |
| /* |
| * Define random base addresses for memory sections after max_pfn is |
| * defined and before each memory section base is used. |
| */ |
| kernel_randomize_memory(); |
| |
| #ifdef CONFIG_X86_32 |
| /* max_low_pfn get updated here */ |
| find_low_pfn_range(); |
| #else |
| check_x2apic(); |
| |
| /* How many end-of-memory variables you have, grandma! */ |
| /* need this before calling reserve_initrd */ |
| if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) |
| max_low_pfn = e820__end_of_low_ram_pfn(); |
| else |
| max_low_pfn = max_pfn; |
| |
| high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; |
| #endif |
| |
| /* |
| * Find and reserve possible boot-time SMP configuration: |
| */ |
| find_smp_config(); |
| |
| early_alloc_pgt_buf(); |
| |
| /* |
| * Need to conclude brk, before e820__memblock_setup() |
| * it could use memblock_find_in_range, could overlap with |
| * brk area. |
| */ |
| reserve_brk(); |
| |
| cleanup_highmap(); |
| |
| memblock_set_current_limit(ISA_END_ADDRESS); |
| e820__memblock_setup(); |
| |
| /* |
| * Needs to run after memblock setup because it needs the physical |
| * memory size. |
| */ |
| sev_setup_arch(); |
| |
| efi_fake_memmap(); |
| efi_find_mirror(); |
| efi_esrt_init(); |
| efi_mokvar_table_init(); |
| |
| /* |
| * The EFI specification says that boot service code won't be |
| * called after ExitBootServices(). This is, in fact, a lie. |
| */ |
| efi_reserve_boot_services(); |
| |
| /* preallocate 4k for mptable mpc */ |
| e820__memblock_alloc_reserved_mpc_new(); |
| |
| #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION |
| setup_bios_corruption_check(); |
| #endif |
| |
| #ifdef CONFIG_X86_32 |
| printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", |
| (max_pfn_mapped<<PAGE_SHIFT) - 1); |
| #endif |
| |
| /* |
| * Find free memory for the real mode trampoline and place it there. If |
| * there is not enough free memory under 1M, on EFI-enabled systems |
| * there will be additional attempt to reclaim the memory for the real |
| * mode trampoline at efi_free_boot_services(). |
| * |
| * Unconditionally reserve the entire first 1M of RAM because BIOSes |
| * are known to corrupt low memory and several hundred kilobytes are not |
| * worth complex detection what memory gets clobbered. Windows does the |
| * same thing for very similar reasons. |
| * |
| * Moreover, on machines with SandyBridge graphics or in setups that use |
| * crashkernel the entire 1M is reserved anyway. |
| */ |
| reserve_real_mode(); |
| |
| init_mem_mapping(); |
| |
| idt_setup_early_pf(); |
| |
| /* |
| * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) |
| * with the current CR4 value. This may not be necessary, but |
| * auditing all the early-boot CR4 manipulation would be needed to |
| * rule it out. |
| * |
| * Mask off features that don't work outside long mode (just |
| * PCIDE for now). |
| */ |
| mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; |
| |
| memblock_set_current_limit(get_max_mapped()); |
| |
| /* |
| * NOTE: On x86-32, only from this point on, fixmaps are ready for use. |
| */ |
| |
| #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT |
| if (init_ohci1394_dma_early) |
| init_ohci1394_dma_on_all_controllers(); |
| #endif |
| /* Allocate bigger log buffer */ |
| setup_log_buf(1); |
| |
| if (efi_enabled(EFI_BOOT)) { |
| switch (boot_params.secure_boot) { |
| case efi_secureboot_mode_disabled: |
| pr_info("Secure boot disabled\n"); |
| break; |
| case efi_secureboot_mode_enabled: |
| pr_info("Secure boot enabled\n"); |
| break; |
| default: |
| pr_info("Secure boot could not be determined\n"); |
| break; |
| } |
| } |
| |
| reserve_initrd(); |
| |
| acpi_table_upgrade(); |
| /* Look for ACPI tables and reserve memory occupied by them. */ |
| acpi_boot_table_init(); |
| |
| vsmp_init(); |
| |
| io_delay_init(); |
| |
| early_platform_quirks(); |
| |
| early_acpi_boot_init(); |
| |
| initmem_init(); |
| dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); |
| |
| if (boot_cpu_has(X86_FEATURE_GBPAGES)) |
| hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); |
| |
| /* |
| * Reserve memory for crash kernel after SRAT is parsed so that it |
| * won't consume hotpluggable memory. |
| */ |
| reserve_crashkernel(); |
| |
| memblock_find_dma_reserve(); |
| |
| if (!early_xdbc_setup_hardware()) |
| early_xdbc_register_console(); |
| |
| x86_init.paging.pagetable_init(); |
| |
| kasan_init(); |
| |
| /* |
| * Sync back kernel address range. |
| * |
| * FIXME: Can the later sync in setup_cpu_entry_areas() replace |
| * this call? |
| */ |
| sync_initial_page_table(); |
| |
| tboot_probe(); |
| |
| map_vsyscall(); |
| |
| generic_apic_probe(); |
| |
| early_quirks(); |
| |
| /* |
| * Read APIC and some other early information from ACPI tables. |
| */ |
| acpi_boot_init(); |
| x86_dtb_init(); |
| |
| /* |
| * get boot-time SMP configuration: |
| */ |
| get_smp_config(); |
| |
| /* |
| * Systems w/o ACPI and mptables might not have it mapped the local |
| * APIC yet, but prefill_possible_map() might need to access it. |
| */ |
| init_apic_mappings(); |
| |
| prefill_possible_map(); |
| |
| init_cpu_to_node(); |
| init_gi_nodes(); |
| |
| io_apic_init_mappings(); |
| |
| x86_init.hyper.guest_late_init(); |
| |
| e820__reserve_resources(); |
| e820__register_nosave_regions(max_pfn); |
| |
| x86_init.resources.reserve_resources(); |
| |
| e820__setup_pci_gap(); |
| |
| #ifdef CONFIG_VT |
| #if defined(CONFIG_VGA_CONSOLE) |
| if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) |
| conswitchp = &vga_con; |
| #endif |
| #endif |
| x86_init.oem.banner(); |
| |
| x86_init.timers.wallclock_init(); |
| |
| /* |
| * This needs to run before setup_local_APIC() which soft-disables the |
| * local APIC temporarily and that masks the thermal LVT interrupt, |
| * leading to softlockups on machines which have configured SMI |
| * interrupt delivery. |
| */ |
| therm_lvt_init(); |
| |
| mcheck_init(); |
| |
| register_refined_jiffies(CLOCK_TICK_RATE); |
| |
| #ifdef CONFIG_EFI |
| if (efi_enabled(EFI_BOOT)) |
| efi_apply_memmap_quirks(); |
| #endif |
| |
| unwind_init(); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| |
| static struct resource video_ram_resource = { |
| .name = "Video RAM area", |
| .start = 0xa0000, |
| .end = 0xbffff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| }; |
| |
| void __init i386_reserve_resources(void) |
| { |
| request_resource(&iomem_resource, &video_ram_resource); |
| reserve_standard_io_resources(); |
| } |
| |
| #endif /* CONFIG_X86_32 */ |
| |
| static struct notifier_block kernel_offset_notifier = { |
| .notifier_call = dump_kernel_offset |
| }; |
| |
| static int __init register_kernel_offset_dumper(void) |
| { |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &kernel_offset_notifier); |
| return 0; |
| } |
| __initcall(register_kernel_offset_dumper); |