blob: 09f33f6006a3c7a083fc49129a23ac45a5c9fdaf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale GPMI NAND Flash Driver
*
* Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*/
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/sched/task_stack.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "gpmi-nand.h"
#include "bch-regs.h"
/* Resource names for the GPMI NAND driver. */
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
/* add our owner bbt descriptor */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
.options = 0,
.offs = 0,
.len = 1,
.pattern = scan_ff_pattern
};
/*
* We may change the layout if we can get the ECC info from the datasheet,
* else we will use all the (page + OOB).
*/
static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = geo->page_size - mtd->writesize;
return 0;
}
static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
if (section)
return -ERANGE;
/* The available oob size we have. */
if (geo->page_size < mtd->writesize + mtd->oobsize) {
oobregion->offset = geo->page_size - mtd->writesize;
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const char * const gpmi_clks_for_mx2x[] = {
"gpmi_io",
};
static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
.ecc = gpmi_ooblayout_ecc,
.free = gpmi_ooblayout_free,
};
static const struct gpmi_devdata gpmi_devdata_imx23 = {
.type = IS_MX23,
.bch_max_ecc_strength = 20,
.max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
static const struct gpmi_devdata gpmi_devdata_imx28 = {
.type = IS_MX28,
.bch_max_ecc_strength = 20,
.max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
static const char * const gpmi_clks_for_mx6[] = {
"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
};
static const struct gpmi_devdata gpmi_devdata_imx6q = {
.type = IS_MX6Q,
.bch_max_ecc_strength = 40,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
.type = IS_MX6SX,
.bch_max_ecc_strength = 62,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
static const char * const gpmi_clks_for_mx7d[] = {
"gpmi_io", "gpmi_bch_apb",
};
static const struct gpmi_devdata gpmi_devdata_imx7d = {
.type = IS_MX7D,
.bch_max_ecc_strength = 62,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx7d,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
};
static irqreturn_t bch_irq(int irq, void *cookie)
{
struct gpmi_nand_data *this = cookie;
gpmi_clear_bch(this);
complete(&this->bch_done);
return IRQ_HANDLED;
}
/*
* Calculate the ECC strength by hand:
* E : The ECC strength.
* G : the length of Galois Field.
* N : The chunk count of per page.
* O : the oobsize of the NAND chip.
* M : the metasize of per page.
*
* The formula is :
* E * G * N
* ------------ <= (O - M)
* 8
*
* So, we get E by:
* (O - M) * 8
* E <= -------------
* G * N
*/
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
int ecc_strength;
ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
/ (geo->gf_len * geo->ecc_chunk_count);
/* We need the minor even number. */
return round_down(ecc_strength, 2);
}
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
/* Do the sanity check. */
if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
/* The mx23/mx28 only support the GF13. */
if (geo->gf_len == 14)
return false;
}
return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
}
/*
* If we can get the ECC information from the nand chip, we do not
* need to calculate them ourselves.
*
* We may have available oob space in this case.
*/
static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
unsigned int ecc_strength,
unsigned int ecc_step)
{
struct bch_geometry *geo = &this->bch_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_mark_bit_offset;
switch (ecc_step) {
case SZ_512:
geo->gf_len = 13;
break;
case SZ_1K:
geo->gf_len = 14;
break;
default:
dev_err(this->dev,
"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
chip->ecc_strength_ds, chip->ecc_step_ds);
return -EINVAL;
}
geo->ecc_chunk_size = ecc_step;
geo->ecc_strength = round_up(ecc_strength, 2);
if (!gpmi_check_ecc(this))
return -EINVAL;
/* Keep the C >= O */
if (geo->ecc_chunk_size < mtd->oobsize) {
dev_err(this->dev,
"unsupported nand chip. ecc size: %d, oob size : %d\n",
ecc_step, mtd->oobsize);
return -EINVAL;
}
/* The default value, see comment in the legacy_set_geometry(). */
geo->metadata_size = 10;
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
/*
* Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
*
* | P |
* |<----------------------------------------------------->|
* | |
* | (Block Mark) |
* | P' | | | |
* |<-------------------------------------------->| D | | O' |
* | |<---->| |<--->|
* V V V V V
* +---+----------+-+----------+-+----------+-+----------+-+-----+
* | M | data |E| data |E| data |E| data |E| |
* +---+----------+-+----------+-+----------+-+----------+-+-----+
* ^ ^
* | O |
* |<------------>|
* | |
*
* P : the page size for BCH module.
* E : The ECC strength.
* G : the length of Galois Field.
* N : The chunk count of per page.
* M : the metasize of per page.
* C : the ecc chunk size, aka the "data" above.
* P': the nand chip's page size.
* O : the nand chip's oob size.
* O': the free oob.
*
* The formula for P is :
*
* E * G * N
* P = ------------ + P' + M
* 8
*
* The position of block mark moves forward in the ECC-based view
* of page, and the delta is:
*
* E * G * (N - 1)
* D = (---------------- + M)
* 8
*
* Please see the comment in legacy_set_geometry().
* With the condition C >= O , we still can get same result.
* So the bit position of the physical block mark within the ECC-based
* view of the page is :
* (P' - D) * 8
*/
geo->page_size = mtd->writesize + geo->metadata_size +
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
geo->payload_size = mtd->writesize;
geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
+ ALIGN(geo->ecc_chunk_count, 4);
if (!this->swap_block_mark)
return 0;
/* For bit swap. */
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ geo->metadata_size * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
}
static int legacy_set_geometry(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
unsigned int metadata_size;
unsigned int status_size;
unsigned int block_mark_bit_offset;
/*
* The size of the metadata can be changed, though we set it to 10
* bytes now. But it can't be too large, because we have to save
* enough space for BCH.
*/
geo->metadata_size = 10;
/* The default for the length of Galois Field. */
geo->gf_len = 13;
/* The default for chunk size. */
geo->ecc_chunk_size = 512;
while (geo->ecc_chunk_size < mtd->oobsize) {
geo->ecc_chunk_size *= 2; /* keep C >= O */
geo->gf_len = 14;
}
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
/* We use the same ECC strength for all chunks. */
geo->ecc_strength = get_ecc_strength(this);
if (!gpmi_check_ecc(this)) {
dev_err(this->dev,
"ecc strength: %d cannot be supported by the controller (%d)\n"
"try to use minimum ecc strength that NAND chip required\n",
geo->ecc_strength,
this->devdata->bch_max_ecc_strength);
return -EINVAL;
}
geo->page_size = mtd->writesize + geo->metadata_size +
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
geo->payload_size = mtd->writesize;
/*
* The auxiliary buffer contains the metadata and the ECC status. The
* metadata is padded to the nearest 32-bit boundary. The ECC status
* contains one byte for every ECC chunk, and is also padded to the
* nearest 32-bit boundary.
*/
metadata_size = ALIGN(geo->metadata_size, 4);
status_size = ALIGN(geo->ecc_chunk_count, 4);
geo->auxiliary_size = metadata_size + status_size;
geo->auxiliary_status_offset = metadata_size;
if (!this->swap_block_mark)
return 0;
/*
* We need to compute the byte and bit offsets of
* the physical block mark within the ECC-based view of the page.
*
* NAND chip with 2K page shows below:
* (Block Mark)
* | |
* | D |
* |<---->|
* V V
* +---+----------+-+----------+-+----------+-+----------+-+
* | M | data |E| data |E| data |E| data |E|
* +---+----------+-+----------+-+----------+-+----------+-+
*
* The position of block mark moves forward in the ECC-based view
* of page, and the delta is:
*
* E * G * (N - 1)
* D = (---------------- + M)
* 8
*
* With the formula to compute the ECC strength, and the condition
* : C >= O (C is the ecc chunk size)
*
* It's easy to deduce to the following result:
*
* E * G (O - M) C - M C - M
* ----------- <= ------- <= -------- < ---------
* 8 N N (N - 1)
*
* So, we get:
*
* E * G * (N - 1)
* D = (---------------- + M) < C
* 8
*
* The above inequality means the position of block mark
* within the ECC-based view of the page is still in the data chunk,
* and it's NOT in the ECC bits of the chunk.
*
* Use the following to compute the bit position of the
* physical block mark within the ECC-based view of the page:
* (page_size - D) * 8
*
* --Huang Shijie
*/
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ geo->metadata_size * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
}
int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
if (chip->ecc.strength > 0 && chip->ecc.size > 0)
return set_geometry_by_ecc_info(this, chip->ecc.strength,
chip->ecc.size);
if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
|| legacy_set_geometry(this)) {
if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
return -EINVAL;
return set_geometry_by_ecc_info(this, chip->ecc_strength_ds,
chip->ecc_step_ds);
}
return 0;
}
struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
/* We use the DMA channel 0 to access all the nand chips. */
return this->dma_chans[0];
}
/* Can we use the upper's buffer directly for DMA? */
bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
enum dma_data_direction dr)
{
struct scatterlist *sgl = &this->data_sgl;
int ret;
/* first try to map the upper buffer directly */
if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
sg_init_one(sgl, buf, len);
ret = dma_map_sg(this->dev, sgl, 1, dr);
if (ret == 0)
goto map_fail;
return true;
}
map_fail:
/* We have to use our own DMA buffer. */
sg_init_one(sgl, this->data_buffer_dma, len);
if (dr == DMA_TO_DEVICE)
memcpy(this->data_buffer_dma, buf, len);
dma_map_sg(this->dev, sgl, 1, dr);
return false;
}
/* This will be called after the DMA operation is finished. */
static void dma_irq_callback(void *param)
{
struct gpmi_nand_data *this = param;
struct completion *dma_c = &this->dma_done;
complete(dma_c);
}
int start_dma_without_bch_irq(struct gpmi_nand_data *this,
struct dma_async_tx_descriptor *desc)
{
struct completion *dma_c = &this->dma_done;
unsigned long timeout;
init_completion(dma_c);
desc->callback = dma_irq_callback;
desc->callback_param = this;
dmaengine_submit(desc);
dma_async_issue_pending(get_dma_chan(this));
/* Wait for the interrupt from the DMA block. */
timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
if (!timeout) {
dev_err(this->dev, "DMA timeout, last DMA\n");
gpmi_dump_info(this);
return -ETIMEDOUT;
}
return 0;
}
/*
* This function is used in BCH reading or BCH writing pages.
* It will wait for the BCH interrupt as long as ONE second.
* Actually, we must wait for two interrupts :
* [1] firstly the DMA interrupt and
* [2] secondly the BCH interrupt.
*/
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
struct dma_async_tx_descriptor *desc)
{
struct completion *bch_c = &this->bch_done;
unsigned long timeout;
/* Prepare to receive an interrupt from the BCH block. */
init_completion(bch_c);
/* start the DMA */
start_dma_without_bch_irq(this, desc);
/* Wait for the interrupt from the BCH block. */
timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
if (!timeout) {
dev_err(this->dev, "BCH timeout\n");
gpmi_dump_info(this);
return -ETIMEDOUT;
}
return 0;
}
static int acquire_register_block(struct gpmi_nand_data *this,
const char *res_name)
{
struct platform_device *pdev = this->pdev;
struct resources *res = &this->resources;
struct resource *r;
void __iomem *p;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
p = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(p))
return PTR_ERR(p);
if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
res->gpmi_regs = p;
else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
res->bch_regs = p;
else
dev_err(this->dev, "unknown resource name : %s\n", res_name);
return 0;
}
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
{
struct platform_device *pdev = this->pdev;
const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
struct resource *r;
int err;
r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
if (!r) {
dev_err(this->dev, "Can't get resource for %s\n", res_name);
return -ENODEV;
}
err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
if (err)
dev_err(this->dev, "error requesting BCH IRQ\n");
return err;
}
static void release_dma_channels(struct gpmi_nand_data *this)
{
unsigned int i;
for (i = 0; i < DMA_CHANS; i++)
if (this->dma_chans[i]) {
dma_release_channel(this->dma_chans[i]);
this->dma_chans[i] = NULL;
}
}
static int acquire_dma_channels(struct gpmi_nand_data *this)
{
struct platform_device *pdev = this->pdev;
struct dma_chan *dma_chan;
/* request dma channel */
dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
if (!dma_chan) {
dev_err(this->dev, "Failed to request DMA channel.\n");
goto acquire_err;
}
this->dma_chans[0] = dma_chan;
return 0;
acquire_err:
release_dma_channels(this);
return -EINVAL;
}
static int gpmi_get_clks(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
struct clk *clk;
int err, i;
for (i = 0; i < this->devdata->clks_count; i++) {
clk = devm_clk_get(this->dev, this->devdata->clks[i]);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
goto err_clock;
}
r->clock[i] = clk;
}
if (GPMI_IS_MX6(this))
/*
* Set the default value for the gpmi clock.
*
* If you want to use the ONFI nand which is in the
* Synchronous Mode, you should change the clock as you need.
*/
clk_set_rate(r->clock[0], 22000000);
return 0;
err_clock:
dev_dbg(this->dev, "failed in finding the clocks.\n");
return err;
}
static int acquire_resources(struct gpmi_nand_data *this)
{
int ret;
ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
if (ret)
goto exit_regs;
ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
if (ret)
goto exit_regs;
ret = acquire_bch_irq(this, bch_irq);
if (ret)
goto exit_regs;
ret = acquire_dma_channels(this);
if (ret)
goto exit_regs;
ret = gpmi_get_clks(this);
if (ret)
goto exit_clock;
return 0;
exit_clock:
release_dma_channels(this);
exit_regs:
return ret;
}
static void release_resources(struct gpmi_nand_data *this)
{
release_dma_channels(this);
}
static int send_page_prepare(struct gpmi_nand_data *this,
const void *source, unsigned length,
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
const void **use_virt, dma_addr_t *use_phys)
{
struct device *dev = this->dev;
if (virt_addr_valid(source)) {
dma_addr_t source_phys;
source_phys = dma_map_single(dev, (void *)source, length,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, source_phys)) {
if (alt_size < length) {
dev_err(dev, "Alternate buffer is too small\n");
return -ENOMEM;
}
goto map_failed;
}
*use_virt = source;
*use_phys = source_phys;
return 0;
}
map_failed:
/*
* Copy the content of the source buffer into the alternate
* buffer and set up the return values accordingly.
*/
memcpy(alt_virt, source, length);
*use_virt = alt_virt;
*use_phys = alt_phys;
return 0;
}
static void send_page_end(struct gpmi_nand_data *this,
const void *source, unsigned length,
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
const void *used_virt, dma_addr_t used_phys)
{
struct device *dev = this->dev;
if (used_virt == source)
dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
}
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
dma_free_coherent(dev, this->page_buffer_size,
this->page_buffer_virt,
this->page_buffer_phys);
kfree(this->cmd_buffer);
kfree(this->data_buffer_dma);
kfree(this->raw_buffer);
this->cmd_buffer = NULL;
this->data_buffer_dma = NULL;
this->raw_buffer = NULL;
this->page_buffer_virt = NULL;
this->page_buffer_size = 0;
}
/* Allocate the DMA buffers */
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct device *dev = this->dev;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
if (this->cmd_buffer == NULL)
goto error_alloc;
/*
* [2] Allocate a read/write data buffer.
* The gpmi_alloc_dma_buffer can be called twice.
* We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
* is called before the NAND identification; and we allocate a
* buffer of the real NAND page size when the gpmi_alloc_dma_buffer
* is called after.
*/
this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
GFP_DMA | GFP_KERNEL);
if (this->data_buffer_dma == NULL)
goto error_alloc;
/*
* [3] Allocate the page buffer.
*
* Both the payload buffer and the auxiliary buffer must appear on
* 32-bit boundaries. We presume the size of the payload buffer is a
* power of two and is much larger than four, which guarantees the
* auxiliary buffer will appear on a 32-bit boundary.
*/
this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
&this->page_buffer_phys, GFP_DMA);
if (!this->page_buffer_virt)
goto error_alloc;
this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
if (!this->raw_buffer)
goto error_alloc;
/* Slice up the page buffer. */
this->payload_virt = this->page_buffer_virt;
this->payload_phys = this->page_buffer_phys;
this->auxiliary_virt = this->payload_virt + geo->payload_size;
this->auxiliary_phys = this->payload_phys + geo->payload_size;
return 0;
error_alloc:
gpmi_free_dma_buffer(this);
return -ENOMEM;
}
static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret;
/*
* Every operation begins with a command byte and a series of zero or
* more address bytes. These are distinguished by either the Address
* Latch Enable (ALE) or Command Latch Enable (CLE) signals being
* asserted. When MTD is ready to execute the command, it will deassert
* both latch enables.
*
* Rather than run a separate DMA operation for every single byte, we
* queue them up and run a single DMA operation for the entire series
* of command and data bytes. NAND_CMD_NONE means the END of the queue.
*/
if ((ctrl & (NAND_ALE | NAND_CLE))) {
if (data != NAND_CMD_NONE)
this->cmd_buffer[this->command_length++] = data;
return;
}
if (!this->command_length)
return;
ret = gpmi_send_command(this);
if (ret)
dev_err(this->dev, "Chip: %u, Error %d\n",
this->current_chip, ret);
this->command_length = 0;
}
static int gpmi_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
return gpmi_is_ready(this, this->current_chip);
}
static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret;
/*
* For power consumption matters, disable/enable the clock each time a
* die is selected/unselected.
*/
if (this->current_chip < 0 && chipnr >= 0) {
ret = gpmi_enable_clk(this);
if (ret)
dev_err(this->dev, "Failed to enable the clock\n");
} else if (this->current_chip >= 0 && chipnr < 0) {
ret = gpmi_disable_clk(this);
if (ret)
dev_err(this->dev, "Failed to disable the clock\n");
}
/*
* This driver currently supports only one NAND chip. Plus, dies share
* the same configuration. So once timings have been applied on the
* controller side, they will not change anymore. When the time will
* come, the check on must_apply_timings will have to be dropped.
*/
if (chipnr >= 0 && this->hw.must_apply_timings) {
this->hw.must_apply_timings = false;
gpmi_nfc_apply_timings(this);
}
this->current_chip = chipnr;
}
static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
dev_dbg(this->dev, "len is %d\n", len);
gpmi_read_data(this, buf, len);
}
static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
dev_dbg(this->dev, "len is %d\n", len);
gpmi_send_data(this, buf, len);
}
static uint8_t gpmi_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
uint8_t *buf = this->data_buffer_dma;
gpmi_read_buf(mtd, buf, 1);
return buf[0];
}
/*
* Handles block mark swapping.
* It can be called in swapping the block mark, or swapping it back,
* because the the operations are the same.
*/
static void block_mark_swapping(struct gpmi_nand_data *this,
void *payload, void *auxiliary)
{
struct bch_geometry *nfc_geo = &this->bch_geometry;
unsigned char *p;
unsigned char *a;
unsigned int bit;
unsigned char mask;
unsigned char from_data;
unsigned char from_oob;
if (!this->swap_block_mark)
return;
/*
* If control arrives here, we're swapping. Make some convenience
* variables.
*/
bit = nfc_geo->block_mark_bit_offset;
p = payload + nfc_geo->block_mark_byte_offset;
a = auxiliary;
/*
* Get the byte from the data area that overlays the block mark. Since
* the ECC engine applies its own view to the bits in the page, the
* physical block mark won't (in general) appear on a byte boundary in
* the data.
*/
from_data = (p[0] >> bit) | (p[1] << (8 - bit));
/* Get the byte from the OOB. */
from_oob = a[0];
/* Swap them. */
a[0] = from_data;
mask = (0x1 << bit) - 1;
p[0] = (p[0] & mask) | (from_oob << bit);
mask = ~0 << bit;
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}
static int gpmi_ecc_read_page_data(struct nand_chip *chip,
uint8_t *buf, int oob_required,
int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(chip);
dma_addr_t payload_phys;
unsigned int i;
unsigned char *status;
unsigned int max_bitflips = 0;
int ret;
bool direct = false;
dev_dbg(this->dev, "page number is : %d\n", page);
payload_phys = this->payload_phys;
if (virt_addr_valid(buf)) {
dma_addr_t dest_phys;
dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
DMA_FROM_DEVICE);
if (!dma_mapping_error(this->dev, dest_phys)) {
payload_phys = dest_phys;
direct = true;
}
}
/* go! */
ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
if (direct)
dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
DMA_FROM_DEVICE);
if (ret) {
dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
return ret;
}
/* Loop over status bytes, accumulating ECC status. */
status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
if (!direct)
memcpy(buf, this->payload_virt, nfc_geo->payload_size);
for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
continue;
if (*status == STATUS_UNCORRECTABLE) {
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *eccbuf = this->raw_buffer;
int offset, bitoffset;
int eccbytes;
int flips;
/* Read ECC bytes into our internal raw_buffer */
offset = nfc_geo->metadata_size * 8;
offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
offset -= eccbits;
bitoffset = offset % 8;
eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
offset /= 8;
eccbytes -= offset;
nand_change_read_column_op(chip, offset, eccbuf,
eccbytes, false);
/*
* ECC data are not byte aligned and we may have
* in-band data in the first and last byte of
* eccbuf. Set non-eccbits to one so that
* nand_check_erased_ecc_chunk() does not count them
* as bitflips.
*/
if (bitoffset)
eccbuf[0] |= GENMASK(bitoffset - 1, 0);
bitoffset = (bitoffset + eccbits) % 8;
if (bitoffset)
eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
/*
* The ECC hardware has an uncorrectable ECC status
* code in case we have bitflips in an erased page. As
* nothing was written into this subpage the ECC is
* obviously wrong and we can not trust it. We assume
* at this point that we are reading an erased page and
* try to correct the bitflips in buffer up to
* ecc_strength bitflips. If this is a page with random
* data, we exceed this number of bitflips and have a
* ECC failure. Otherwise we use the corrected buffer.
*/
if (i == 0) {
/* The first block includes metadata */
flips = nand_check_erased_ecc_chunk(
buf + i * nfc_geo->ecc_chunk_size,
nfc_geo->ecc_chunk_size,
eccbuf, eccbytes,
this->auxiliary_virt,
nfc_geo->metadata_size,
nfc_geo->ecc_strength);
} else {
flips = nand_check_erased_ecc_chunk(
buf + i * nfc_geo->ecc_chunk_size,
nfc_geo->ecc_chunk_size,
eccbuf, eccbytes,
NULL, 0,
nfc_geo->ecc_strength);
}
if (flips > 0) {
max_bitflips = max_t(unsigned int, max_bitflips,
flips);
mtd->ecc_stats.corrected += flips;
continue;
}
mtd->ecc_stats.failed++;
continue;
}
mtd->ecc_stats.corrected += *status;
max_bitflips = max_t(unsigned int, max_bitflips, *status);
}
/* handle the block mark swapping */
block_mark_swapping(this, buf, this->auxiliary_virt);
if (oob_required) {
/*
* It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
* for details about our policy for delivering the OOB.
*
* We fill the caller's buffer with set bits, and then copy the
* block mark to th caller's buffer. Note that, if block mark
* swapping was necessary, it has already been done, so we can
* rely on the first byte of the auxiliary buffer to contain
* the block mark.
*/
memset(chip->oob_poi, ~0, mtd->oobsize);
chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
}
return max_bitflips;
}
static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
nand_read_page_op(chip, page, 0, NULL, 0);
return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
}
/* Fake a virtual small page for the subpage read */
static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
uint32_t len, uint8_t *buf, int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
void __iomem *bch_regs = this->resources.bch_regs;
struct bch_geometry old_geo = this->bch_geometry;
struct bch_geometry *geo = &this->bch_geometry;
int size = chip->ecc.size; /* ECC chunk size */
int meta, n, page_size;
u32 r1_old, r2_old, r1_new, r2_new;
unsigned int max_bitflips;
int first, last, marker_pos;
int ecc_parity_size;
int col = 0;
int old_swap_block_mark = this->swap_block_mark;
/* The size of ECC parity */
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
/* Align it with the chunk size */
first = offs / size;
last = (offs + len - 1) / size;
if (this->swap_block_mark) {
/*
* Find the chunk which contains the Block Marker.
* If this chunk is in the range of [first, last],
* we have to read out the whole page.
* Why? since we had swapped the data at the position of Block
* Marker to the metadata which is bound with the chunk 0.
*/
marker_pos = geo->block_mark_byte_offset / size;
if (last >= marker_pos && first <= marker_pos) {
dev_dbg(this->dev,
"page:%d, first:%d, last:%d, marker at:%d\n",
page, first, last, marker_pos);
return gpmi_ecc_read_page(chip, buf, 0, page);
}
}
meta = geo->metadata_size;
if (first) {
col = meta + (size + ecc_parity_size) * first;
meta = 0;
buf = buf + first * size;
}
nand_read_page_op(chip, page, col, NULL, 0);
/* Save the old environment */
r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
/* change the BCH registers and bch_geometry{} */
n = last - first + 1;
page_size = meta + (size + ecc_parity_size) * n;
r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
BM_BCH_FLASH0LAYOUT0_META_SIZE);
r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
geo->ecc_chunk_count = n;
geo->payload_size = n * size;
geo->page_size = page_size;
geo->auxiliary_status_offset = ALIGN(meta, 4);
dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
page, offs, len, col, first, n, page_size);
/* Read the subpage now */
this->swap_block_mark = false;
max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
/* Restore */
writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
this->bch_geometry = old_geo;
this->swap_block_mark = old_swap_block_mark;
return max_bitflips;
}
static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
const void *payload_virt;
dma_addr_t payload_phys;
const void *auxiliary_virt;
dma_addr_t auxiliary_phys;
int ret;
dev_dbg(this->dev, "ecc write page.\n");
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (this->swap_block_mark) {
/*
* If control arrives here, we're doing block mark swapping.
* Since we can't modify the caller's buffers, we must copy them
* into our own.
*/
memcpy(this->payload_virt, buf, mtd->writesize);
payload_virt = this->payload_virt;
payload_phys = this->payload_phys;
memcpy(this->auxiliary_virt, chip->oob_poi,
nfc_geo->auxiliary_size);
auxiliary_virt = this->auxiliary_virt;
auxiliary_phys = this->auxiliary_phys;
/* Handle block mark swapping. */
block_mark_swapping(this,
(void *)payload_virt, (void *)auxiliary_virt);
} else {
/*
* If control arrives here, we're not doing block mark swapping,
* so we can to try and use the caller's buffers.
*/
ret = send_page_prepare(this,
buf, mtd->writesize,
this->payload_virt, this->payload_phys,
nfc_geo->payload_size,
&payload_virt, &payload_phys);
if (ret) {
dev_err(this->dev, "Inadequate payload DMA buffer\n");
return 0;
}
ret = send_page_prepare(this,
chip->oob_poi, mtd->oobsize,
this->auxiliary_virt, this->auxiliary_phys,
nfc_geo->auxiliary_size,
&auxiliary_virt, &auxiliary_phys);
if (ret) {
dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
goto exit_auxiliary;
}
}
/* Ask the NFC. */
ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
if (ret)
dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
if (!this->swap_block_mark) {
send_page_end(this, chip->oob_poi, mtd->oobsize,
this->auxiliary_virt, this->auxiliary_phys,
nfc_geo->auxiliary_size,
auxiliary_virt, auxiliary_phys);
exit_auxiliary:
send_page_end(this, buf, mtd->writesize,
this->payload_virt, this->payload_phys,
nfc_geo->payload_size,
payload_virt, payload_phys);
}
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
/*
* There are several places in this driver where we have to handle the OOB and
* block marks. This is the function where things are the most complicated, so
* this is where we try to explain it all. All the other places refer back to
* here.
*
* These are the rules, in order of decreasing importance:
*
* 1) Nothing the caller does can be allowed to imperil the block mark.
*
* 2) In read operations, the first byte of the OOB we return must reflect the
* true state of the block mark, no matter where that block mark appears in
* the physical page.
*
* 3) ECC-based read operations return an OOB full of set bits (since we never
* allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
* return).
*
* 4) "Raw" read operations return a direct view of the physical bytes in the
* page, using the conventional definition of which bytes are data and which
* are OOB. This gives the caller a way to see the actual, physical bytes
* in the page, without the distortions applied by our ECC engine.
*
*
* What we do for this specific read operation depends on two questions:
*
* 1) Are we doing a "raw" read, or an ECC-based read?
*
* 2) Are we using block mark swapping or transcription?
*
* There are four cases, illustrated by the following Karnaugh map:
*
* | Raw | ECC-based |
* -------------+-------------------------+-------------------------+
* | Read the conventional | |
* | OOB at the end of the | |
* Swapping | page and return it. It | |
* | contains exactly what | |
* | we want. | Read the block mark and |
* -------------+-------------------------+ return it in a buffer |
* | Read the conventional | full of set bits. |
* | OOB at the end of the | |
* | page and also the block | |
* Transcribing | mark in the metadata. | |
* | Copy the block mark | |
* | into the first byte of | |
* | the OOB. | |
* -------------+-------------------------+-------------------------+
*
* Note that we break rule #4 in the Transcribing/Raw case because we're not
* giving an accurate view of the actual, physical bytes in the page (we're
* overwriting the block mark). That's OK because it's more important to follow
* rule #2.
*
* It turns out that knowing whether we want an "ECC-based" or "raw" read is not
* easy. When reading a page, for example, the NAND Flash MTD code calls our
* ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
* ECC-based or raw view of the page is implicit in which function it calls
* (there is a similar pair of ECC-based/raw functions for writing).
*/
static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
dev_dbg(this->dev, "page number is %d\n", page);
/* clear the OOB buffer */
memset(chip->oob_poi, ~0, mtd->oobsize);
/* Read out the conventional OOB. */
nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
/*
* Now, we want to make sure the block mark is correct. In the
* non-transcribing case (!GPMI_IS_MX23()), we already have it.
* Otherwise, we need to explicitly read it.
*/
if (GPMI_IS_MX23(this)) {
/* Read the block mark into the first byte of the OOB buffer. */
nand_read_page_op(chip, page, 0, NULL, 0);
chip->oob_poi[0] = chip->read_byte(mtd);
}
return 0;
}
static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mtd_oob_region of = { };
/* Do we have available oob area? */
mtd_ooblayout_free(mtd, 0, &of);
if (!of.length)
return -EPERM;
if (!nand_is_slc(chip))
return -EPERM;
return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
chip->oob_poi + of.offset, of.length);
}
/*
* This function reads a NAND page without involving the ECC engine (no HW
* ECC correction).
* The tricky part in the GPMI/BCH controller is that it stores ECC bits
* inline (interleaved with payload DATA), and do not align data chunk on
* byte boundaries.
* We thus need to take care moving the payload data and ECC bits stored in the
* page into the provided buffers, which is why we're using gpmi_copy_bits.
*
* See set_geometry_by_ecc_info inline comments to have a full description
* of the layout used by the GPMI controller.
*/
static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
int eccsize = nfc_geo->ecc_chunk_size;
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *tmp_buf = this->raw_buffer;
size_t src_bit_off;
size_t oob_bit_off;
size_t oob_byte_off;
uint8_t *oob = chip->oob_poi;
int step;
nand_read_page_op(chip, page, 0, tmp_buf,
mtd->writesize + mtd->oobsize);
/*
* If required, swap the bad block marker and the data stored in the
* metadata section, so that we don't wrongly consider a block as bad.
*
* See the layout description for a detailed explanation on why this
* is needed.
*/
if (this->swap_block_mark)
swap(tmp_buf[0], tmp_buf[mtd->writesize]);
/*
* Copy the metadata section into the oob buffer (this section is
* guaranteed to be aligned on a byte boundary).
*/
if (oob_required)
memcpy(oob, tmp_buf, nfc_geo->metadata_size);
oob_bit_off = nfc_geo->metadata_size * 8;
src_bit_off = oob_bit_off;
/* Extract interleaved payload data and ECC bits */
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
if (buf)
gpmi_copy_bits(buf, step * eccsize * 8,
tmp_buf, src_bit_off,
eccsize * 8);
src_bit_off += eccsize * 8;
/* Align last ECC block to align a byte boundary */
if (step == nfc_geo->ecc_chunk_count - 1 &&
(oob_bit_off + eccbits) % 8)
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
if (oob_required)
gpmi_copy_bits(oob, oob_bit_off,
tmp_buf, src_bit_off,
eccbits);
src_bit_off += eccbits;
oob_bit_off += eccbits;
}
if (oob_required) {
oob_byte_off = oob_bit_off / 8;
if (oob_byte_off < mtd->oobsize)
memcpy(oob + oob_byte_off,
tmp_buf + mtd->writesize + oob_byte_off,
mtd->oobsize - oob_byte_off);
}
return 0;
}
/*
* This function writes a NAND page without involving the ECC engine (no HW
* ECC generation).
* The tricky part in the GPMI/BCH controller is that it stores ECC bits
* inline (interleaved with payload DATA), and do not align data chunk on
* byte boundaries.
* We thus need to take care moving the OOB area at the right place in the
* final page, which is why we're using gpmi_copy_bits.
*
* See set_geometry_by_ecc_info inline comments to have a full description
* of the layout used by the GPMI controller.
*/
static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
int eccsize = nfc_geo->ecc_chunk_size;
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *tmp_buf = this->raw_buffer;
uint8_t *oob = chip->oob_poi;
size_t dst_bit_off;
size_t oob_bit_off;
size_t oob_byte_off;
int step;
/*
* Initialize all bits to 1 in case we don't have a buffer for the
* payload or oob data in order to leave unspecified bits of data
* to their initial state.
*/
if (!buf || !oob_required)
memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
/*
* First copy the metadata section (stored in oob buffer) at the
* beginning of the page, as imposed by the GPMI layout.
*/
memcpy(tmp_buf, oob, nfc_geo->metadata_size);
oob_bit_off = nfc_geo->metadata_size * 8;
dst_bit_off = oob_bit_off;
/* Interleave payload data and ECC bits */
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
if (buf)
gpmi_copy_bits(tmp_buf, dst_bit_off,
buf, step * eccsize * 8, eccsize * 8);
dst_bit_off += eccsize * 8;
/* Align last ECC block to align a byte boundary */
if (step == nfc_geo->ecc_chunk_count - 1 &&
(oob_bit_off + eccbits) % 8)
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
if (oob_required)
gpmi_copy_bits(tmp_buf, dst_bit_off,
oob, oob_bit_off, eccbits);
dst_bit_off += eccbits;
oob_bit_off += eccbits;
}
oob_byte_off = oob_bit_off / 8;
if (oob_required && oob_byte_off < mtd->oobsize)
memcpy(tmp_buf + mtd->writesize + oob_byte_off,
oob + oob_byte_off, mtd->oobsize - oob_byte_off);
/*
* If required, swap the bad block marker and the first byte of the
* metadata section, so that we don't modify the bad block marker.
*
* See the layout description for a detailed explanation on why this
* is needed.
*/
if (this->swap_block_mark)
swap(tmp_buf[0], tmp_buf[mtd->writesize]);
return nand_prog_page_op(chip, page, 0, tmp_buf,
mtd->writesize + mtd->oobsize);
}
static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
{
return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
}
static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
{
return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
}
static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret = 0;
uint8_t *block_mark;
int column, page, chipnr;
chipnr = (int)(ofs >> chip->chip_shift);
chip->select_chip(mtd, chipnr);
column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
/* Write the block mark. */
block_mark = this->data_buffer_dma;
block_mark[0] = 0; /* bad block marker */
/* Shift to get page */
page = (int)(ofs >> chip->page_shift);
ret = nand_prog_page_op(chip, page, column, block_mark, 1);
chip->select_chip(mtd, -1);
return ret;
}
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
{
struct boot_rom_geometry *geometry = &this->rom_geometry;
/*
* Set the boot block stride size.
*
* In principle, we should be reading this from the OTP bits, since
* that's where the ROM is going to get it. In fact, we don't have any
* way to read the OTP bits, so we go with the default and hope for the
* best.
*/
geometry->stride_size_in_pages = 64;
/*
* Set the search area stride exponent.
*
* In principle, we should be reading this from the OTP bits, since
* that's where the ROM is going to get it. In fact, we don't have any
* way to read the OTP bits, so we go with the default and hope for the
* best.
*/
geometry->search_area_stride_exponent = 2;
return 0;
}
static const char *fingerprint = "STMP";
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
{
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
struct device *dev = this->dev;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int search_area_size_in_strides;
unsigned int stride;
unsigned int page;
uint8_t *buffer = chip->data_buf;
int saved_chip_number;
int found_an_ncb_fingerprint = false;
/* Compute the number of strides in a search area. */
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
saved_chip_number = this->current_chip;
chip->select_chip(mtd, 0);
/*
* Loop through the first search area, looking for the NCB fingerprint.
*/
dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
for (stride = 0; stride < search_area_size_in_strides; stride++) {
/* Compute the page addresses. */
page = stride * rom_geo->stride_size_in_pages;
dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
/*
* Read the NCB fingerprint. The fingerprint is four bytes long
* and starts in the 12th byte of the page.
*/
nand_read_page_op(chip, page, 12, NULL, 0);
chip->read_buf(mtd, buffer, strlen(fingerprint));
/* Look for the fingerprint. */
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
found_an_ncb_fingerprint = true;
break;
}
}
chip->select_chip(mtd, saved_chip_number);
if (found_an_ncb_fingerprint)
dev_dbg(dev, "\tFound a fingerprint\n");
else
dev_dbg(dev, "\tNo fingerprint found\n");
return found_an_ncb_fingerprint;
}
/* Writes a transcription stamp. */
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_size_in_pages;
unsigned int search_area_size_in_strides;
unsigned int search_area_size_in_pages;
unsigned int search_area_size_in_blocks;
unsigned int block;
unsigned int stride;
unsigned int page;
uint8_t *buffer = chip->data_buf;
int saved_chip_number;
int status;
/* Compute the search area geometry. */
block_size_in_pages = mtd->erasesize / mtd->writesize;
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
search_area_size_in_pages = search_area_size_in_strides *
rom_geo->stride_size_in_pages;
search_area_size_in_blocks =
(search_area_size_in_pages + (block_size_in_pages - 1)) /
block_size_in_pages;
dev_dbg(dev, "Search Area Geometry :\n");
dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
/* Select chip 0. */
saved_chip_number = this->current_chip;
chip->select_chip(mtd, 0);
/* Loop over blocks in the first search area, erasing them. */
dev_dbg(dev, "Erasing the search area...\n");
for (block = 0; block < search_area_size_in_blocks; block++) {
/* Erase this block. */
dev_dbg(dev, "\tErasing block 0x%x\n", block);
status = nand_erase_op(chip, block);
if (status)
dev_err(dev, "[%s] Erase failed.\n", __func__);
}
/* Write the NCB fingerprint into the page buffer. */
memset(buffer, ~0, mtd->writesize);
memcpy(buffer + 12, fingerprint, strlen(fingerprint));
/* Loop through the first search area, writing NCB fingerprints. */
dev_dbg(dev, "Writing NCB fingerprints...\n");
for (stride = 0; stride < search_area_size_in_strides; stride++) {
/* Compute the page addresses. */
page = stride * rom_geo->stride_size_in_pages;
/* Write the first page of the current stride. */
dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
status = chip->ecc.write_page_raw(chip, buffer, 0, page);
if (status)
dev_err(dev, "[%s] Write failed.\n", __func__);
}
/* Deselect chip 0. */
chip->select_chip(mtd, saved_chip_number);
return 0;
}
static int mx23_boot_init(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_count;
unsigned int block;
int chipnr;
int page;
loff_t byte;
uint8_t block_mark;
int ret = 0;
/*
* If control arrives here, we can't use block mark swapping, which
* means we're forced to use transcription. First, scan for the
* transcription stamp. If we find it, then we don't have to do
* anything -- the block marks are already transcribed.
*/
if (mx23_check_transcription_stamp(this))
return 0;
/*
* If control arrives here, we couldn't find a transcription stamp, so
* so we presume the block marks are in the conventional location.
*/
dev_dbg(dev, "Transcribing bad block marks...\n");
/* Compute the number of blocks in the entire medium. */
block_count = chip->chipsize >> chip->phys_erase_shift;
/*
* Loop over all the blocks in the medium, transcribing block marks as
* we go.
*/
for (block = 0; block < block_count; block++) {
/*
* Compute the chip, page and byte addresses for this block's
* conventional mark.
*/
chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
page = block << (chip->phys_erase_shift - chip->page_shift);
byte = block << chip->phys_erase_shift;
/* Send the command to read the conventional block mark. */
chip->select_chip(mtd, chipnr);
nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
block_mark = chip->read_byte(mtd);
chip->select_chip(mtd, -1);
/*
* Check if the block is marked bad. If so, we need to mark it
* again, but this time the result will be a mark in the
* location where we transcribe block marks.
*/
if (block_mark != 0xff) {
dev_dbg(dev, "Transcribing mark in block %u\n", block);
ret = chip->block_markbad(mtd, byte);
if (ret)
dev_err(dev,
"Failed to mark block bad with ret %d\n",
ret);
}
}
/* Write the stamp that indicates we've transcribed the block marks. */
mx23_write_transcription_stamp(this);
return 0;
}
static int nand_boot_init(struct gpmi_nand_data *this)
{
nand_boot_set_geometry(this);
/* This is ROM arch-specific initilization before the BBT scanning. */
if (GPMI_IS_MX23(this))
return mx23_boot_init(this);
return 0;
}
static int gpmi_set_geometry(struct gpmi_nand_data *this)
{
int ret;
/* Free the temporary DMA memory for reading ID. */
gpmi_free_dma_buffer(this);
/* Set up the NFC geometry which is used by BCH. */
ret = bch_set_geometry(this);
if (ret) {
dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
return ret;
}
/* Alloc the new DMA buffers according to the pagesize and oobsize */
return gpmi_alloc_dma_buffer(this);
}
static int gpmi_init_last(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct bch_geometry *bch_geo = &this->bch_geometry;
int ret;
/* Set up the medium geometry */
ret = gpmi_set_geometry(this);
if (ret)
return ret;
/* Init the nand_ecc_ctrl{} */
ecc->read_page = gpmi_ecc_read_page;
ecc->write_page = gpmi_ecc_write_page;
ecc->read_oob = gpmi_ecc_read_oob;
ecc->write_oob = gpmi_ecc_write_oob;
ecc->read_page_raw = gpmi_ecc_read_page_raw;
ecc->write_page_raw = gpmi_ecc_write_page_raw;
ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
ecc->mode = NAND_ECC_HW;
ecc->size = bch_geo->ecc_chunk_size;
ecc->strength = bch_geo->ecc_strength;
mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
/*
* We only enable the subpage read when:
* (1) the chip is imx6, and
* (2) the size of the ECC parity is byte aligned.
*/
if (GPMI_IS_MX6(this) &&
((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
ecc->read_subpage = gpmi_ecc_read_subpage;
chip->options |= NAND_SUBPAGE_READ;
}
return 0;
}
static int gpmi_nand_attach_chip(struct nand_chip *chip)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret;
if (chip->bbt_options & NAND_BBT_USE_FLASH) {
chip->bbt_options |= NAND_BBT_NO_OOB;
if (of_property_read_bool(this->dev->of_node,
"fsl,no-blockmark-swap"))
this->swap_block_mark = false;
}
dev_dbg(this->dev, "Blockmark swapping %sabled\n",
this->swap_block_mark ? "en" : "dis");
ret = gpmi_init_last(this);
if (ret)
return ret;
chip->options |= NAND_SKIP_BBTSCAN;
return 0;
}
static const struct nand_controller_ops gpmi_nand_controller_ops = {
.attach_chip = gpmi_nand_attach_chip,
};
static int gpmi_nand_init(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/* init current chip */
this->current_chip = -1;
/* init the MTD data structures */
mtd->name = "gpmi-nand";
mtd->dev.parent = this->dev;
/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
nand_set_controller_data(chip, this);
nand_set_flash_node(chip, this->pdev->dev.of_node);
chip->select_chip = gpmi_select_chip;
chip->setup_data_interface = gpmi_setup_data_interface;
chip->cmd_ctrl = gpmi_cmd_ctrl;
chip->dev_ready = gpmi_dev_ready;
chip->read_byte = gpmi_read_byte;
chip->read_buf = gpmi_read_buf;
chip->write_buf = gpmi_write_buf;
chip->badblock_pattern = &gpmi_bbt_descr;
chip->block_markbad = gpmi_block_markbad;
chip->options |= NAND_NO_SUBPAGE_WRITE;
/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
this->swap_block_mark = !GPMI_IS_MX23(this);
/*
* Allocate a temporary DMA buffer for reading ID in the
* nand_scan_ident().
*/
this->bch_geometry.payload_size = 1024;
this->bch_geometry.auxiliary_size = 128;
ret = gpmi_alloc_dma_buffer(this);
if (ret)
goto err_out;
chip->dummy_controller.ops = &gpmi_nand_controller_ops;
ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
if (ret)
goto err_out;
ret = nand_boot_init(this);
if (ret)
goto err_nand_cleanup;
ret = nand_create_bbt(chip);
if (ret)
goto err_nand_cleanup;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_nand_cleanup;
return 0;
err_nand_cleanup:
nand_cleanup(chip);
err_out:
gpmi_free_dma_buffer(this);
return ret;
}
static const struct of_device_id gpmi_nand_id_table[] = {
{
.compatible = "fsl,imx23-gpmi-nand",
.data = &gpmi_devdata_imx23,
}, {
.compatible = "fsl,imx28-gpmi-nand",
.data = &gpmi_devdata_imx28,
}, {
.compatible = "fsl,imx6q-gpmi-nand",
.data = &gpmi_devdata_imx6q,
}, {
.compatible = "fsl,imx6sx-gpmi-nand",
.data = &gpmi_devdata_imx6sx,
}, {
.compatible = "fsl,imx7d-gpmi-nand",
.data = &gpmi_devdata_imx7d,
}, {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
static int gpmi_nand_probe(struct platform_device *pdev)
{
struct gpmi_nand_data *this;
const struct of_device_id *of_id;
int ret;
this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
if (!this)
return -ENOMEM;
of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
if (of_id) {
this->devdata = of_id->data;
} else {
dev_err(&pdev->dev, "Failed to find the right device id.\n");
return -ENODEV;
}
platform_set_drvdata(pdev, this);
this->pdev = pdev;
this->dev = &pdev->dev;
ret = acquire_resources(this);
if (ret)
goto exit_acquire_resources;
ret = gpmi_init(this);
if (ret)
goto exit_nfc_init;
ret = gpmi_nand_init(this);
if (ret)
goto exit_nfc_init;
dev_info(this->dev, "driver registered.\n");
return 0;
exit_nfc_init:
release_resources(this);
exit_acquire_resources:
return ret;
}
static int gpmi_nand_remove(struct platform_device *pdev)
{
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
nand_release(&this->nand);
gpmi_free_dma_buffer(this);
release_resources(this);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int gpmi_pm_suspend(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
release_dma_channels(this);
return 0;
}
static int gpmi_pm_resume(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
int ret;
ret = acquire_dma_channels(this);
if (ret < 0)
return ret;
/* re-init the GPMI registers */
ret = gpmi_init(this);
if (ret) {
dev_err(this->dev, "Error setting GPMI : %d\n", ret);
return ret;
}
/* re-init the BCH registers */
ret = bch_set_geometry(this);
if (ret) {
dev_err(this->dev, "Error setting BCH : %d\n", ret);
return ret;
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops gpmi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
};
static struct platform_driver gpmi_nand_driver = {
.driver = {
.name = "gpmi-nand",
.pm = &gpmi_pm_ops,
.of_match_table = gpmi_nand_id_table,
},
.probe = gpmi_nand_probe,
.remove = gpmi_nand_remove,
};
module_platform_driver(gpmi_nand_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL");