| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| #include <linux/module.h> |
| #include <linux/regset.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| |
| #include <asm/sigcontext.h> |
| #include <asm/processor.h> |
| #include <asm/math_emu.h> |
| #include <asm/uaccess.h> |
| #include <asm/ptrace.h> |
| #include <asm/i387.h> |
| #include <asm/fpu-internal.h> |
| #include <asm/user.h> |
| |
| static DEFINE_PER_CPU(bool, in_kernel_fpu); |
| |
| void kernel_fpu_disable(void) |
| { |
| WARN_ON(this_cpu_read(in_kernel_fpu)); |
| this_cpu_write(in_kernel_fpu, true); |
| } |
| |
| void kernel_fpu_enable(void) |
| { |
| this_cpu_write(in_kernel_fpu, false); |
| } |
| |
| /* |
| * Were we in an interrupt that interrupted kernel mode? |
| * |
| * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that |
| * pair does nothing at all: the thread must not have fpu (so |
| * that we don't try to save the FPU state), and TS must |
| * be set (so that the clts/stts pair does nothing that is |
| * visible in the interrupted kernel thread). |
| * |
| * Except for the eagerfpu case when we return 1 unless we've already |
| * been eager and saved the state in kernel_fpu_begin(). |
| */ |
| static inline bool interrupted_kernel_fpu_idle(void) |
| { |
| if (this_cpu_read(in_kernel_fpu)) |
| return false; |
| |
| if (use_eager_fpu()) |
| return __thread_has_fpu(current); |
| |
| return !__thread_has_fpu(current) && |
| (read_cr0() & X86_CR0_TS); |
| } |
| |
| /* |
| * Were we in user mode (or vm86 mode) when we were |
| * interrupted? |
| * |
| * Doing kernel_fpu_begin/end() is ok if we are running |
| * in an interrupt context from user mode - we'll just |
| * save the FPU state as required. |
| */ |
| static inline bool interrupted_user_mode(void) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| return regs && user_mode_vm(regs); |
| } |
| |
| /* |
| * Can we use the FPU in kernel mode with the |
| * whole "kernel_fpu_begin/end()" sequence? |
| * |
| * It's always ok in process context (ie "not interrupt") |
| * but it is sometimes ok even from an irq. |
| */ |
| bool irq_fpu_usable(void) |
| { |
| return !in_interrupt() || |
| interrupted_user_mode() || |
| interrupted_kernel_fpu_idle(); |
| } |
| EXPORT_SYMBOL(irq_fpu_usable); |
| |
| void __kernel_fpu_begin(void) |
| { |
| struct task_struct *me = current; |
| |
| this_cpu_write(in_kernel_fpu, true); |
| |
| if (__thread_has_fpu(me)) { |
| __save_init_fpu(me); |
| } else if (!use_eager_fpu()) { |
| this_cpu_write(fpu_owner_task, NULL); |
| clts(); |
| } |
| } |
| EXPORT_SYMBOL(__kernel_fpu_begin); |
| |
| void __kernel_fpu_end(void) |
| { |
| struct task_struct *me = current; |
| |
| if (__thread_has_fpu(me)) { |
| if (WARN_ON(restore_fpu_checking(me))) |
| drop_init_fpu(me); |
| } else if (!use_eager_fpu()) { |
| stts(); |
| } |
| |
| this_cpu_write(in_kernel_fpu, false); |
| } |
| EXPORT_SYMBOL(__kernel_fpu_end); |
| |
| void unlazy_fpu(struct task_struct *tsk) |
| { |
| preempt_disable(); |
| if (__thread_has_fpu(tsk)) { |
| __save_init_fpu(tsk); |
| __thread_fpu_end(tsk); |
| } else |
| tsk->thread.fpu_counter = 0; |
| preempt_enable(); |
| } |
| EXPORT_SYMBOL(unlazy_fpu); |
| |
| unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu; |
| unsigned int xstate_size; |
| EXPORT_SYMBOL_GPL(xstate_size); |
| static struct i387_fxsave_struct fx_scratch; |
| |
| static void mxcsr_feature_mask_init(void) |
| { |
| unsigned long mask = 0; |
| |
| if (cpu_has_fxsr) { |
| memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct)); |
| asm volatile("fxsave %0" : "+m" (fx_scratch)); |
| mask = fx_scratch.mxcsr_mask; |
| if (mask == 0) |
| mask = 0x0000ffbf; |
| } |
| mxcsr_feature_mask &= mask; |
| } |
| |
| static void init_thread_xstate(void) |
| { |
| /* |
| * Note that xstate_size might be overwriten later during |
| * xsave_init(). |
| */ |
| |
| if (!cpu_has_fpu) { |
| /* |
| * Disable xsave as we do not support it if i387 |
| * emulation is enabled. |
| */ |
| setup_clear_cpu_cap(X86_FEATURE_XSAVE); |
| setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); |
| xstate_size = sizeof(struct i387_soft_struct); |
| return; |
| } |
| |
| if (cpu_has_fxsr) |
| xstate_size = sizeof(struct i387_fxsave_struct); |
| else |
| xstate_size = sizeof(struct i387_fsave_struct); |
| } |
| |
| /* |
| * Called at bootup to set up the initial FPU state that is later cloned |
| * into all processes. |
| */ |
| |
| void fpu_init(void) |
| { |
| unsigned long cr0; |
| unsigned long cr4_mask = 0; |
| |
| #ifndef CONFIG_MATH_EMULATION |
| if (!cpu_has_fpu) { |
| pr_emerg("No FPU found and no math emulation present\n"); |
| pr_emerg("Giving up\n"); |
| for (;;) |
| asm volatile("hlt"); |
| } |
| #endif |
| if (cpu_has_fxsr) |
| cr4_mask |= X86_CR4_OSFXSR; |
| if (cpu_has_xmm) |
| cr4_mask |= X86_CR4_OSXMMEXCPT; |
| if (cr4_mask) |
| set_in_cr4(cr4_mask); |
| |
| cr0 = read_cr0(); |
| cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */ |
| if (!cpu_has_fpu) |
| cr0 |= X86_CR0_EM; |
| write_cr0(cr0); |
| |
| /* |
| * init_thread_xstate is only called once to avoid overriding |
| * xstate_size during boot time or during CPU hotplug. |
| */ |
| if (xstate_size == 0) |
| init_thread_xstate(); |
| |
| mxcsr_feature_mask_init(); |
| xsave_init(); |
| eager_fpu_init(); |
| } |
| |
| void fpu_finit(struct fpu *fpu) |
| { |
| if (!cpu_has_fpu) { |
| finit_soft_fpu(&fpu->state->soft); |
| return; |
| } |
| |
| if (cpu_has_fxsr) { |
| fx_finit(&fpu->state->fxsave); |
| } else { |
| struct i387_fsave_struct *fp = &fpu->state->fsave; |
| memset(fp, 0, xstate_size); |
| fp->cwd = 0xffff037fu; |
| fp->swd = 0xffff0000u; |
| fp->twd = 0xffffffffu; |
| fp->fos = 0xffff0000u; |
| } |
| } |
| EXPORT_SYMBOL_GPL(fpu_finit); |
| |
| /* |
| * The _current_ task is using the FPU for the first time |
| * so initialize it and set the mxcsr to its default |
| * value at reset if we support XMM instructions and then |
| * remember the current task has used the FPU. |
| */ |
| int init_fpu(struct task_struct *tsk) |
| { |
| int ret; |
| |
| if (tsk_used_math(tsk)) { |
| if (cpu_has_fpu && tsk == current) |
| unlazy_fpu(tsk); |
| tsk->thread.fpu.last_cpu = ~0; |
| return 0; |
| } |
| |
| /* |
| * Memory allocation at the first usage of the FPU and other state. |
| */ |
| ret = fpu_alloc(&tsk->thread.fpu); |
| if (ret) |
| return ret; |
| |
| fpu_finit(&tsk->thread.fpu); |
| |
| set_stopped_child_used_math(tsk); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(init_fpu); |
| |
| /* |
| * The xstateregs_active() routine is the same as the fpregs_active() routine, |
| * as the "regset->n" for the xstate regset will be updated based on the feature |
| * capabilites supported by the xsave. |
| */ |
| int fpregs_active(struct task_struct *target, const struct user_regset *regset) |
| { |
| return tsk_used_math(target) ? regset->n : 0; |
| } |
| |
| int xfpregs_active(struct task_struct *target, const struct user_regset *regset) |
| { |
| return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0; |
| } |
| |
| int xfpregs_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_fxsr) |
| return -ENODEV; |
| |
| ret = init_fpu(target); |
| if (ret) |
| return ret; |
| |
| sanitize_i387_state(target); |
| |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fpu.state->fxsave, 0, -1); |
| } |
| |
| int xfpregs_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_fxsr) |
| return -ENODEV; |
| |
| ret = init_fpu(target); |
| if (ret) |
| return ret; |
| |
| sanitize_i387_state(target); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fpu.state->fxsave, 0, -1); |
| |
| /* |
| * mxcsr reserved bits must be masked to zero for security reasons. |
| */ |
| target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask; |
| |
| /* |
| * update the header bits in the xsave header, indicating the |
| * presence of FP and SSE state. |
| */ |
| if (cpu_has_xsave) |
| target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE; |
| |
| return ret; |
| } |
| |
| int xstateregs_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| int ret; |
| |
| if (!cpu_has_xsave) |
| return -ENODEV; |
| |
| ret = init_fpu(target); |
| if (ret) |
| return ret; |
| |
| /* |
| * Copy the 48bytes defined by the software first into the xstate |
| * memory layout in the thread struct, so that we can copy the entire |
| * xstateregs to the user using one user_regset_copyout(). |
| */ |
| memcpy(&target->thread.fpu.state->fxsave.sw_reserved, |
| xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes)); |
| |
| /* |
| * Copy the xstate memory layout. |
| */ |
| ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fpu.state->xsave, 0, -1); |
| return ret; |
| } |
| |
| int xstateregs_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| int ret; |
| struct xsave_hdr_struct *xsave_hdr; |
| |
| if (!cpu_has_xsave) |
| return -ENODEV; |
| |
| ret = init_fpu(target); |
| if (ret) |
| return ret; |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fpu.state->xsave, 0, -1); |
| |
| /* |
| * mxcsr reserved bits must be masked to zero for security reasons. |
| */ |
| target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask; |
| |
| xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr; |
| |
| xsave_hdr->xstate_bv &= pcntxt_mask; |
| /* |
| * These bits must be zero. |
| */ |
| memset(xsave_hdr->reserved, 0, 48); |
| |
| return ret; |
| } |
| |
| #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION |
| |
| /* |
| * FPU tag word conversions. |
| */ |
| |
| static inline unsigned short twd_i387_to_fxsr(unsigned short twd) |
| { |
| unsigned int tmp; /* to avoid 16 bit prefixes in the code */ |
| |
| /* Transform each pair of bits into 01 (valid) or 00 (empty) */ |
| tmp = ~twd; |
| tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */ |
| /* and move the valid bits to the lower byte. */ |
| tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */ |
| tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */ |
| tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */ |
| |
| return tmp; |
| } |
| |
| #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16) |
| #define FP_EXP_TAG_VALID 0 |
| #define FP_EXP_TAG_ZERO 1 |
| #define FP_EXP_TAG_SPECIAL 2 |
| #define FP_EXP_TAG_EMPTY 3 |
| |
| static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave) |
| { |
| struct _fpxreg *st; |
| u32 tos = (fxsave->swd >> 11) & 7; |
| u32 twd = (unsigned long) fxsave->twd; |
| u32 tag; |
| u32 ret = 0xffff0000u; |
| int i; |
| |
| for (i = 0; i < 8; i++, twd >>= 1) { |
| if (twd & 0x1) { |
| st = FPREG_ADDR(fxsave, (i - tos) & 7); |
| |
| switch (st->exponent & 0x7fff) { |
| case 0x7fff: |
| tag = FP_EXP_TAG_SPECIAL; |
| break; |
| case 0x0000: |
| if (!st->significand[0] && |
| !st->significand[1] && |
| !st->significand[2] && |
| !st->significand[3]) |
| tag = FP_EXP_TAG_ZERO; |
| else |
| tag = FP_EXP_TAG_SPECIAL; |
| break; |
| default: |
| if (st->significand[3] & 0x8000) |
| tag = FP_EXP_TAG_VALID; |
| else |
| tag = FP_EXP_TAG_SPECIAL; |
| break; |
| } |
| } else { |
| tag = FP_EXP_TAG_EMPTY; |
| } |
| ret |= tag << (2 * i); |
| } |
| return ret; |
| } |
| |
| /* |
| * FXSR floating point environment conversions. |
| */ |
| |
| void |
| convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk) |
| { |
| struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave; |
| struct _fpreg *to = (struct _fpreg *) &env->st_space[0]; |
| struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0]; |
| int i; |
| |
| env->cwd = fxsave->cwd | 0xffff0000u; |
| env->swd = fxsave->swd | 0xffff0000u; |
| env->twd = twd_fxsr_to_i387(fxsave); |
| |
| #ifdef CONFIG_X86_64 |
| env->fip = fxsave->rip; |
| env->foo = fxsave->rdp; |
| /* |
| * should be actually ds/cs at fpu exception time, but |
| * that information is not available in 64bit mode. |
| */ |
| env->fcs = task_pt_regs(tsk)->cs; |
| if (tsk == current) { |
| savesegment(ds, env->fos); |
| } else { |
| env->fos = tsk->thread.ds; |
| } |
| env->fos |= 0xffff0000; |
| #else |
| env->fip = fxsave->fip; |
| env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16); |
| env->foo = fxsave->foo; |
| env->fos = fxsave->fos; |
| #endif |
| |
| for (i = 0; i < 8; ++i) |
| memcpy(&to[i], &from[i], sizeof(to[0])); |
| } |
| |
| void convert_to_fxsr(struct task_struct *tsk, |
| const struct user_i387_ia32_struct *env) |
| |
| { |
| struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave; |
| struct _fpreg *from = (struct _fpreg *) &env->st_space[0]; |
| struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0]; |
| int i; |
| |
| fxsave->cwd = env->cwd; |
| fxsave->swd = env->swd; |
| fxsave->twd = twd_i387_to_fxsr(env->twd); |
| fxsave->fop = (u16) ((u32) env->fcs >> 16); |
| #ifdef CONFIG_X86_64 |
| fxsave->rip = env->fip; |
| fxsave->rdp = env->foo; |
| /* cs and ds ignored */ |
| #else |
| fxsave->fip = env->fip; |
| fxsave->fcs = (env->fcs & 0xffff); |
| fxsave->foo = env->foo; |
| fxsave->fos = env->fos; |
| #endif |
| |
| for (i = 0; i < 8; ++i) |
| memcpy(&to[i], &from[i], sizeof(from[0])); |
| } |
| |
| int fpregs_get(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| void *kbuf, void __user *ubuf) |
| { |
| struct user_i387_ia32_struct env; |
| int ret; |
| |
| ret = init_fpu(target); |
| if (ret) |
| return ret; |
| |
| if (!static_cpu_has(X86_FEATURE_FPU)) |
| return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf); |
| |
| if (!cpu_has_fxsr) |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fpu.state->fsave, 0, |
| -1); |
| |
| sanitize_i387_state(target); |
| |
| if (kbuf && pos == 0 && count == sizeof(env)) { |
| convert_from_fxsr(kbuf, target); |
| return 0; |
| } |
| |
| convert_from_fxsr(&env, target); |
| |
| return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1); |
| } |
| |
| int fpregs_set(struct task_struct *target, const struct user_regset *regset, |
| unsigned int pos, unsigned int count, |
| const void *kbuf, const void __user *ubuf) |
| { |
| struct user_i387_ia32_struct env; |
| int ret; |
| |
| ret = init_fpu(target); |
| if (ret) |
| return ret; |
| |
| sanitize_i387_state(target); |
| |
| if (!static_cpu_has(X86_FEATURE_FPU)) |
| return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf); |
| |
| if (!cpu_has_fxsr) |
| return user_regset_copyin(&pos, &count, &kbuf, &ubuf, |
| &target->thread.fpu.state->fsave, 0, |
| -1); |
| |
| if (pos > 0 || count < sizeof(env)) |
| convert_from_fxsr(&env, target); |
| |
| ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1); |
| if (!ret) |
| convert_to_fxsr(target, &env); |
| |
| /* |
| * update the header bit in the xsave header, indicating the |
| * presence of FP. |
| */ |
| if (cpu_has_xsave) |
| target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP; |
| return ret; |
| } |
| |
| /* |
| * FPU state for core dumps. |
| * This is only used for a.out dumps now. |
| * It is declared generically using elf_fpregset_t (which is |
| * struct user_i387_struct) but is in fact only used for 32-bit |
| * dumps, so on 64-bit it is really struct user_i387_ia32_struct. |
| */ |
| int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu) |
| { |
| struct task_struct *tsk = current; |
| int fpvalid; |
| |
| fpvalid = !!used_math(); |
| if (fpvalid) |
| fpvalid = !fpregs_get(tsk, NULL, |
| 0, sizeof(struct user_i387_ia32_struct), |
| fpu, NULL); |
| |
| return fpvalid; |
| } |
| EXPORT_SYMBOL(dump_fpu); |
| |
| #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */ |
| |
| static int __init no_387(char *s) |
| { |
| setup_clear_cpu_cap(X86_FEATURE_FPU); |
| return 1; |
| } |
| |
| __setup("no387", no_387); |
| |
| void fpu_detect(struct cpuinfo_x86 *c) |
| { |
| unsigned long cr0; |
| u16 fsw, fcw; |
| |
| fsw = fcw = 0xffff; |
| |
| cr0 = read_cr0(); |
| cr0 &= ~(X86_CR0_TS | X86_CR0_EM); |
| write_cr0(cr0); |
| |
| asm volatile("fninit ; fnstsw %0 ; fnstcw %1" |
| : "+m" (fsw), "+m" (fcw)); |
| |
| if (fsw == 0 && (fcw & 0x103f) == 0x003f) |
| set_cpu_cap(c, X86_FEATURE_FPU); |
| else |
| clear_cpu_cap(c, X86_FEATURE_FPU); |
| |
| /* The final cr0 value is set in fpu_init() */ |
| } |