blob: a3eebd193dfe085f3e880b936f28577b3667f4b4 [file] [log] [blame]
/*
* The file intends to implement the functions needed by EEH, which is
* built on IODA compliant chip. Actually, lots of functions related
* to EEH would be built based on the OPAL APIs.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/bootmem.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/msi.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/msi_bitmap.h>
#include <asm/opal.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
#include <asm/tce.h>
#include "powernv.h"
#include "pci.h"
/* Debugging option */
#ifdef IODA_EEH_DBG_ON
#define IODA_EEH_DBG(args...) pr_info(args)
#else
#define IODA_EEH_DBG(args...)
#endif
static char *hub_diag = NULL;
/**
* ioda_eeh_post_init - Chip dependent post initialization
* @hose: PCI controller
*
* The function will be called after eeh PEs and devices
* have been built. That means the EEH is ready to supply
* service with I/O cache.
*/
static int ioda_eeh_post_init(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
/* FIXME: Enable it for PHB3 later */
if (phb->type == PNV_PHB_IODA1) {
if (!hub_diag) {
hub_diag = (char *)__get_free_page(GFP_KERNEL |
__GFP_ZERO);
if (!hub_diag) {
pr_err("%s: Out of memory !\n",
__func__);
return -ENOMEM;
}
}
phb->eeh_enabled = 1;
}
return 0;
}
/**
* ioda_eeh_set_option - Set EEH operation or I/O setting
* @pe: EEH PE
* @option: options
*
* Enable or disable EEH option for the indicated PE. The
* function also can be used to enable I/O or DMA for the
* PE.
*/
static int ioda_eeh_set_option(struct eeh_pe *pe, int option)
{
s64 ret;
u32 pe_no;
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb = hose->private_data;
/* Check on PE number */
if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
pr_err("%s: PE address %x out of range [0, %x] "
"on PHB#%x\n",
__func__, pe->addr, phb->ioda.total_pe,
hose->global_number);
return -EINVAL;
}
pe_no = pe->addr;
switch (option) {
case EEH_OPT_DISABLE:
ret = -EEXIST;
break;
case EEH_OPT_ENABLE:
ret = 0;
break;
case EEH_OPT_THAW_MMIO:
ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO);
if (ret) {
pr_warning("%s: Failed to enable MMIO for "
"PHB#%x-PE#%x, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return -EIO;
}
break;
case EEH_OPT_THAW_DMA:
ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_DMA);
if (ret) {
pr_warning("%s: Failed to enable DMA for "
"PHB#%x-PE#%x, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return -EIO;
}
break;
default:
pr_warning("%s: Invalid option %d\n", __func__, option);
return -EINVAL;
}
return ret;
}
/**
* ioda_eeh_get_state - Retrieve the state of PE
* @pe: EEH PE
*
* The PE's state should be retrieved from the PEEV, PEST
* IODA tables. Since the OPAL has exported the function
* to do it, it'd better to use that.
*/
static int ioda_eeh_get_state(struct eeh_pe *pe)
{
s64 ret = 0;
u8 fstate;
u16 pcierr;
u32 pe_no;
int result;
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb = hose->private_data;
/*
* Sanity check on PE address. The PHB PE address should
* be zero.
*/
if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) {
pr_err("%s: PE address %x out of range [0, %x] "
"on PHB#%x\n",
__func__, pe->addr, phb->ioda.total_pe,
hose->global_number);
return EEH_STATE_NOT_SUPPORT;
}
/* Retrieve PE status through OPAL */
pe_no = pe->addr;
ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
&fstate, &pcierr, NULL);
if (ret) {
pr_err("%s: Failed to get EEH status on "
"PHB#%x-PE#%x\n, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return EEH_STATE_NOT_SUPPORT;
}
/* Check PHB status */
if (pe->type & EEH_PE_PHB) {
result = 0;
result &= ~EEH_STATE_RESET_ACTIVE;
if (pcierr != OPAL_EEH_PHB_ERROR) {
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
result |= EEH_STATE_DMA_ENABLED;
}
return result;
}
/* Parse result out */
result = 0;
switch (fstate) {
case OPAL_EEH_STOPPED_NOT_FROZEN:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
result |= EEH_STATE_DMA_ENABLED;
break;
case OPAL_EEH_STOPPED_MMIO_FREEZE:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_DMA_ENABLED;
break;
case OPAL_EEH_STOPPED_DMA_FREEZE:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
break;
case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
result &= ~EEH_STATE_RESET_ACTIVE;
break;
case OPAL_EEH_STOPPED_RESET:
result |= EEH_STATE_RESET_ACTIVE;
break;
case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
result |= EEH_STATE_UNAVAILABLE;
break;
case OPAL_EEH_STOPPED_PERM_UNAVAIL:
result |= EEH_STATE_NOT_SUPPORT;
break;
default:
pr_warning("%s: Unexpected EEH status 0x%x "
"on PHB#%x-PE#%x\n",
__func__, fstate, hose->global_number, pe_no);
}
return result;
}
static int ioda_eeh_pe_clear(struct eeh_pe *pe)
{
struct pci_controller *hose;
struct pnv_phb *phb;
u32 pe_no;
u8 fstate;
u16 pcierr;
s64 ret;
pe_no = pe->addr;
hose = pe->phb;
phb = pe->phb->private_data;
/* Clear the EEH error on the PE */
ret = opal_pci_eeh_freeze_clear(phb->opal_id,
pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
if (ret) {
pr_err("%s: Failed to clear EEH error for "
"PHB#%x-PE#%x, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return -EIO;
}
/*
* Read the PE state back and verify that the frozen
* state has been removed.
*/
ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
&fstate, &pcierr, NULL);
if (ret) {
pr_err("%s: Failed to get EEH status on "
"PHB#%x-PE#%x\n, err=%lld\n",
__func__, hose->global_number, pe_no, ret);
return -EIO;
}
if (fstate != OPAL_EEH_STOPPED_NOT_FROZEN) {
pr_err("%s: Frozen state not cleared on "
"PHB#%x-PE#%x, sts=%x\n",
__func__, hose->global_number, pe_no, fstate);
return -EIO;
}
return 0;
}
static s64 ioda_eeh_phb_poll(struct pnv_phb *phb)
{
s64 rc = OPAL_HARDWARE;
while (1) {
rc = opal_pci_poll(phb->opal_id);
if (rc <= 0)
break;
msleep(rc);
}
return rc;
}
static int ioda_eeh_phb_reset(struct pci_controller *hose, int option)
{
struct pnv_phb *phb = hose->private_data;
s64 rc = OPAL_HARDWARE;
pr_debug("%s: Reset PHB#%x, option=%d\n",
__func__, hose->global_number, option);
/* Issue PHB complete reset request */
if (option == EEH_RESET_FUNDAMENTAL ||
option == EEH_RESET_HOT)
rc = opal_pci_reset(phb->opal_id,
OPAL_PHB_COMPLETE,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_DEACTIVATE)
rc = opal_pci_reset(phb->opal_id,
OPAL_PHB_COMPLETE,
OPAL_DEASSERT_RESET);
if (rc < 0)
goto out;
/*
* Poll state of the PHB until the request is done
* successfully.
*/
rc = ioda_eeh_phb_poll(phb);
out:
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
static int ioda_eeh_root_reset(struct pci_controller *hose, int option)
{
struct pnv_phb *phb = hose->private_data;
s64 rc = OPAL_SUCCESS;
pr_debug("%s: Reset PHB#%x, option=%d\n",
__func__, hose->global_number, option);
/*
* During the reset deassert time, we needn't care
* the reset scope because the firmware does nothing
* for fundamental or hot reset during deassert phase.
*/
if (option == EEH_RESET_FUNDAMENTAL)
rc = opal_pci_reset(phb->opal_id,
OPAL_PCI_FUNDAMENTAL_RESET,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_HOT)
rc = opal_pci_reset(phb->opal_id,
OPAL_PCI_HOT_RESET,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_DEACTIVATE)
rc = opal_pci_reset(phb->opal_id,
OPAL_PCI_HOT_RESET,
OPAL_DEASSERT_RESET);
if (rc < 0)
goto out;
/* Poll state of the PHB until the request is done */
rc = ioda_eeh_phb_poll(phb);
out:
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
static int ioda_eeh_bridge_reset(struct pci_controller *hose,
struct pci_dev *dev, int option)
{
u16 ctrl;
pr_debug("%s: Reset device %04x:%02x:%02x.%01x with option %d\n",
__func__, hose->global_number, dev->bus->number,
PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), option);
switch (option) {
case EEH_RESET_FUNDAMENTAL:
case EEH_RESET_HOT:
pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
break;
case EEH_RESET_DEACTIVATE:
pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
break;
}
return 0;
}
/**
* ioda_eeh_reset - Reset the indicated PE
* @pe: EEH PE
* @option: reset option
*
* Do reset on the indicated PE. For PCI bus sensitive PE,
* we need to reset the parent p2p bridge. The PHB has to
* be reinitialized if the p2p bridge is root bridge. For
* PCI device sensitive PE, we will try to reset the device
* through FLR. For now, we don't have OPAL APIs to do HARD
* reset yet, so all reset would be SOFT (HOT) reset.
*/
static int ioda_eeh_reset(struct eeh_pe *pe, int option)
{
struct pci_controller *hose = pe->phb;
struct eeh_dev *edev;
struct pci_dev *dev;
int ret;
/*
* Anyway, we have to clear the problematic state for the
* corresponding PE. However, we needn't do it if the PE
* is PHB associated. That means the PHB is having fatal
* errors and it needs reset. Further more, the AIB interface
* isn't reliable any more.
*/
if (!(pe->type & EEH_PE_PHB) &&
(option == EEH_RESET_HOT ||
option == EEH_RESET_FUNDAMENTAL)) {
ret = ioda_eeh_pe_clear(pe);
if (ret)
return -EIO;
}
/*
* The rules applied to reset, either fundamental or hot reset:
*
* We always reset the direct upstream bridge of the PE. If the
* direct upstream bridge isn't root bridge, we always take hot
* reset no matter what option (fundamental or hot) is. Otherwise,
* we should do the reset according to the required option.
*/
if (pe->type & EEH_PE_PHB) {
ret = ioda_eeh_phb_reset(hose, option);
} else {
if (pe->type & EEH_PE_DEVICE) {
/*
* If it's device PE, we didn't refer to the parent
* PCI bus yet. So we have to figure it out indirectly.
*/
edev = list_first_entry(&pe->edevs,
struct eeh_dev, list);
dev = eeh_dev_to_pci_dev(edev);
dev = dev->bus->self;
} else {
/*
* If it's bus PE, the parent PCI bus is already there
* and just pick it up.
*/
dev = pe->bus->self;
}
/*
* Do reset based on the fact that the direct upstream bridge
* is root bridge (port) or not.
*/
if (dev->bus->number == 0)
ret = ioda_eeh_root_reset(hose, option);
else
ret = ioda_eeh_bridge_reset(hose, dev, option);
}
return ret;
}
/**
* ioda_eeh_get_log - Retrieve error log
* @pe: EEH PE
* @severity: Severity level of the log
* @drv_log: buffer to store the log
* @len: space of the log buffer
*
* The function is used to retrieve error log from P7IOC.
*/
static int ioda_eeh_get_log(struct eeh_pe *pe, int severity,
char *drv_log, unsigned long len)
{
s64 ret;
unsigned long flags;
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb = hose->private_data;
spin_lock_irqsave(&phb->lock, flags);
ret = opal_pci_get_phb_diag_data2(phb->opal_id,
phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
if (ret) {
spin_unlock_irqrestore(&phb->lock, flags);
pr_warning("%s: Failed to get log for PHB#%x-PE#%x\n",
__func__, hose->global_number, pe->addr);
return -EIO;
}
/*
* FIXME: We probably need log the error in somewhere.
* Lets make it up in future.
*/
/* pr_info("%s", phb->diag.blob); */
spin_unlock_irqrestore(&phb->lock, flags);
return 0;
}
/**
* ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE
* @pe: EEH PE
*
* For particular PE, it might have included PCI bridges. In order
* to make the PE work properly, those PCI bridges should be configured
* correctly. However, we need do nothing on P7IOC since the reset
* function will do everything that should be covered by the function.
*/
static int ioda_eeh_configure_bridge(struct eeh_pe *pe)
{
return 0;
}
static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data)
{
/* GEM */
pr_info(" GEM XFIR: %016llx\n", data->gemXfir);
pr_info(" GEM RFIR: %016llx\n", data->gemRfir);
pr_info(" GEM RIRQFIR: %016llx\n", data->gemRirqfir);
pr_info(" GEM Mask: %016llx\n", data->gemMask);
pr_info(" GEM RWOF: %016llx\n", data->gemRwof);
/* LEM */
pr_info(" LEM FIR: %016llx\n", data->lemFir);
pr_info(" LEM Error Mask: %016llx\n", data->lemErrMask);
pr_info(" LEM Action 0: %016llx\n", data->lemAction0);
pr_info(" LEM Action 1: %016llx\n", data->lemAction1);
pr_info(" LEM WOF: %016llx\n", data->lemWof);
}
static void ioda_eeh_hub_diag(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
struct OpalIoP7IOCErrorData *data;
long rc;
data = (struct OpalIoP7IOCErrorData *)ioda_eeh_hub_diag;
rc = opal_pci_get_hub_diag_data(phb->hub_id, data, PAGE_SIZE);
if (rc != OPAL_SUCCESS) {
pr_warning("%s: Failed to get HUB#%llx diag-data (%ld)\n",
__func__, phb->hub_id, rc);
return;
}
switch (data->type) {
case OPAL_P7IOC_DIAG_TYPE_RGC:
pr_info("P7IOC diag-data for RGC\n\n");
ioda_eeh_hub_diag_common(data);
pr_info(" RGC Status: %016llx\n", data->rgc.rgcStatus);
pr_info(" RGC LDCP: %016llx\n", data->rgc.rgcLdcp);
break;
case OPAL_P7IOC_DIAG_TYPE_BI:
pr_info("P7IOC diag-data for BI %s\n\n",
data->bi.biDownbound ? "Downbound" : "Upbound");
ioda_eeh_hub_diag_common(data);
pr_info(" BI LDCP 0: %016llx\n", data->bi.biLdcp0);
pr_info(" BI LDCP 1: %016llx\n", data->bi.biLdcp1);
pr_info(" BI LDCP 2: %016llx\n", data->bi.biLdcp2);
pr_info(" BI Fence Status: %016llx\n", data->bi.biFenceStatus);
break;
case OPAL_P7IOC_DIAG_TYPE_CI:
pr_info("P7IOC diag-data for CI Port %d\\nn",
data->ci.ciPort);
ioda_eeh_hub_diag_common(data);
pr_info(" CI Port Status: %016llx\n", data->ci.ciPortStatus);
pr_info(" CI Port LDCP: %016llx\n", data->ci.ciPortLdcp);
break;
case OPAL_P7IOC_DIAG_TYPE_MISC:
pr_info("P7IOC diag-data for MISC\n\n");
ioda_eeh_hub_diag_common(data);
break;
case OPAL_P7IOC_DIAG_TYPE_I2C:
pr_info("P7IOC diag-data for I2C\n\n");
ioda_eeh_hub_diag_common(data);
break;
default:
pr_warning("%s: Invalid type of HUB#%llx diag-data (%d)\n",
__func__, phb->hub_id, data->type);
}
}
static void ioda_eeh_p7ioc_phb_diag(struct pci_controller *hose,
struct OpalIoPhbErrorCommon *common)
{
struct OpalIoP7IOCPhbErrorData *data;
int i;
data = (struct OpalIoP7IOCPhbErrorData *)common;
pr_info("P7IOC PHB#%x Diag-data (Version: %d)\n\n",
hose->global_number, common->version);
pr_info(" brdgCtl: %08x\n", data->brdgCtl);
pr_info(" portStatusReg: %08x\n", data->portStatusReg);
pr_info(" rootCmplxStatus: %08x\n", data->rootCmplxStatus);
pr_info(" busAgentStatus: %08x\n", data->busAgentStatus);
pr_info(" deviceStatus: %08x\n", data->deviceStatus);
pr_info(" slotStatus: %08x\n", data->slotStatus);
pr_info(" linkStatus: %08x\n", data->linkStatus);
pr_info(" devCmdStatus: %08x\n", data->devCmdStatus);
pr_info(" devSecStatus: %08x\n", data->devSecStatus);
pr_info(" rootErrorStatus: %08x\n", data->rootErrorStatus);
pr_info(" uncorrErrorStatus: %08x\n", data->uncorrErrorStatus);
pr_info(" corrErrorStatus: %08x\n", data->corrErrorStatus);
pr_info(" tlpHdr1: %08x\n", data->tlpHdr1);
pr_info(" tlpHdr2: %08x\n", data->tlpHdr2);
pr_info(" tlpHdr3: %08x\n", data->tlpHdr3);
pr_info(" tlpHdr4: %08x\n", data->tlpHdr4);
pr_info(" sourceId: %08x\n", data->sourceId);
pr_info(" errorClass: %016llx\n", data->errorClass);
pr_info(" correlator: %016llx\n", data->correlator);
pr_info(" p7iocPlssr: %016llx\n", data->p7iocPlssr);
pr_info(" p7iocCsr: %016llx\n", data->p7iocCsr);
pr_info(" lemFir: %016llx\n", data->lemFir);
pr_info(" lemErrorMask: %016llx\n", data->lemErrorMask);
pr_info(" lemWOF: %016llx\n", data->lemWOF);
pr_info(" phbErrorStatus: %016llx\n", data->phbErrorStatus);
pr_info(" phbFirstErrorStatus: %016llx\n", data->phbFirstErrorStatus);
pr_info(" phbErrorLog0: %016llx\n", data->phbErrorLog0);
pr_info(" phbErrorLog1: %016llx\n", data->phbErrorLog1);
pr_info(" mmioErrorStatus: %016llx\n", data->mmioErrorStatus);
pr_info(" mmioFirstErrorStatus: %016llx\n", data->mmioFirstErrorStatus);
pr_info(" mmioErrorLog0: %016llx\n", data->mmioErrorLog0);
pr_info(" mmioErrorLog1: %016llx\n", data->mmioErrorLog1);
pr_info(" dma0ErrorStatus: %016llx\n", data->dma0ErrorStatus);
pr_info(" dma0FirstErrorStatus: %016llx\n", data->dma0FirstErrorStatus);
pr_info(" dma0ErrorLog0: %016llx\n", data->dma0ErrorLog0);
pr_info(" dma0ErrorLog1: %016llx\n", data->dma0ErrorLog1);
pr_info(" dma1ErrorStatus: %016llx\n", data->dma1ErrorStatus);
pr_info(" dma1FirstErrorStatus: %016llx\n", data->dma1FirstErrorStatus);
pr_info(" dma1ErrorLog0: %016llx\n", data->dma1ErrorLog0);
pr_info(" dma1ErrorLog1: %016llx\n", data->dma1ErrorLog1);
for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++) {
if ((data->pestA[i] >> 63) == 0 &&
(data->pestB[i] >> 63) == 0)
continue;
pr_info(" PE[%3d] PESTA: %016llx\n", i, data->pestA[i]);
pr_info(" PESTB: %016llx\n", data->pestB[i]);
}
}
static void ioda_eeh_phb_diag(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
struct OpalIoPhbErrorCommon *common;
long rc;
common = (struct OpalIoPhbErrorCommon *)phb->diag.blob;
rc = opal_pci_get_phb_diag_data2(phb->opal_id, common, PAGE_SIZE);
if (rc != OPAL_SUCCESS) {
pr_warning("%s: Failed to get diag-data for PHB#%x (%ld)\n",
__func__, hose->global_number, rc);
return;
}
switch (common->ioType) {
case OPAL_PHB_ERROR_DATA_TYPE_P7IOC:
ioda_eeh_p7ioc_phb_diag(hose, common);
break;
default:
pr_warning("%s: Unrecognized I/O chip %d\n",
__func__, common->ioType);
}
}
static int ioda_eeh_get_phb_pe(struct pci_controller *hose,
struct eeh_pe **pe)
{
struct eeh_pe *phb_pe;
phb_pe = eeh_phb_pe_get(hose);
if (!phb_pe) {
pr_warning("%s Can't find PE for PHB#%d\n",
__func__, hose->global_number);
return -EEXIST;
}
*pe = phb_pe;
return 0;
}
static int ioda_eeh_get_pe(struct pci_controller *hose,
u16 pe_no, struct eeh_pe **pe)
{
struct eeh_pe *phb_pe, *dev_pe;
struct eeh_dev dev;
/* Find the PHB PE */
if (ioda_eeh_get_phb_pe(hose, &phb_pe))
return -EEXIST;
/* Find the PE according to PE# */
memset(&dev, 0, sizeof(struct eeh_dev));
dev.phb = hose;
dev.pe_config_addr = pe_no;
dev_pe = eeh_pe_get(&dev);
if (!dev_pe) {
pr_warning("%s: Can't find PE for PHB#%x - PE#%x\n",
__func__, hose->global_number, pe_no);
return -EEXIST;
}
*pe = dev_pe;
return 0;
}
/**
* ioda_eeh_next_error - Retrieve next error for EEH core to handle
* @pe: The affected PE
*
* The function is expected to be called by EEH core while it gets
* special EEH event (without binding PE). The function calls to
* OPAL APIs for next error to handle. The informational error is
* handled internally by platform. However, the dead IOC, dead PHB,
* fenced PHB and frozen PE should be handled by EEH core eventually.
*/
static int ioda_eeh_next_error(struct eeh_pe **pe)
{
struct pci_controller *hose, *tmp;
struct pnv_phb *phb;
u64 frozen_pe_no;
u16 err_type, severity;
long rc;
int ret = 1;
/* While running here, it's safe to purge the event queue */
eeh_remove_event(NULL);
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
/*
* If the subordinate PCI buses of the PHB has been
* removed, we needn't take care of it any more.
*/
phb = hose->private_data;
if (phb->removed)
continue;
rc = opal_pci_next_error(phb->opal_id,
&frozen_pe_no, &err_type, &severity);
/* If OPAL API returns error, we needn't proceed */
if (rc != OPAL_SUCCESS) {
IODA_EEH_DBG("%s: Invalid return value on "
"PHB#%x (0x%lx) from opal_pci_next_error",
__func__, hose->global_number, rc);
continue;
}
/* If the PHB doesn't have error, stop processing */
if (err_type == OPAL_EEH_NO_ERROR ||
severity == OPAL_EEH_SEV_NO_ERROR) {
IODA_EEH_DBG("%s: No error found on PHB#%x\n",
__func__, hose->global_number);
continue;
}
/*
* Processing the error. We're expecting the error with
* highest priority reported upon multiple errors on the
* specific PHB.
*/
IODA_EEH_DBG("%s: Error (%d, %d, %d) on PHB#%x\n",
err_type, severity, pe_no, hose->global_number);
switch (err_type) {
case OPAL_EEH_IOC_ERROR:
if (severity == OPAL_EEH_SEV_IOC_DEAD) {
list_for_each_entry_safe(hose, tmp,
&hose_list, list_node) {
phb = hose->private_data;
phb->removed = 1;
}
WARN(1, "EEH: dead IOC detected\n");
ret = 4;
goto out;
} else if (severity == OPAL_EEH_SEV_INF)
ioda_eeh_hub_diag(hose);
break;
case OPAL_EEH_PHB_ERROR:
if (severity == OPAL_EEH_SEV_PHB_DEAD) {
if (ioda_eeh_get_phb_pe(hose, pe))
break;
WARN(1, "EEH: dead PHB#%x detected\n",
hose->global_number);
phb->removed = 1;
ret = 3;
goto out;
} else if (severity == OPAL_EEH_SEV_PHB_FENCED) {
if (ioda_eeh_get_phb_pe(hose, pe))
break;
WARN(1, "EEH: fenced PHB#%x detected\n",
hose->global_number);
ret = 2;
goto out;
} else if (severity == OPAL_EEH_SEV_INF)
ioda_eeh_phb_diag(hose);
break;
case OPAL_EEH_PE_ERROR:
if (ioda_eeh_get_pe(hose, frozen_pe_no, pe))
break;
WARN(1, "EEH: Frozen PE#%x on PHB#%x detected\n",
(*pe)->addr, (*pe)->phb->global_number);
ret = 1;
goto out;
}
}
ret = 0;
out:
return ret;
}
struct pnv_eeh_ops ioda_eeh_ops = {
.post_init = ioda_eeh_post_init,
.set_option = ioda_eeh_set_option,
.get_state = ioda_eeh_get_state,
.reset = ioda_eeh_reset,
.get_log = ioda_eeh_get_log,
.configure_bridge = ioda_eeh_configure_bridge,
.next_error = ioda_eeh_next_error
};