| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * MCE grading rules. |
| * Copyright 2008, 2009 Intel Corporation. |
| * |
| * Author: Andi Kleen |
| */ |
| #include <linux/kernel.h> |
| #include <linux/seq_file.h> |
| #include <linux/init.h> |
| #include <linux/debugfs.h> |
| #include <linux/uaccess.h> |
| |
| #include <asm/mce.h> |
| #include <asm/intel-family.h> |
| #include <asm/traps.h> |
| #include <asm/insn.h> |
| #include <asm/insn-eval.h> |
| |
| #include "internal.h" |
| |
| /* |
| * Grade an mce by severity. In general the most severe ones are processed |
| * first. Since there are quite a lot of combinations test the bits in a |
| * table-driven way. The rules are simply processed in order, first |
| * match wins. |
| * |
| * Note this is only used for machine check exceptions, the corrected |
| * errors use much simpler rules. The exceptions still check for the corrected |
| * errors, but only to leave them alone for the CMCI handler (except for |
| * panic situations) |
| */ |
| |
| enum context { IN_KERNEL = 1, IN_USER = 2, IN_KERNEL_RECOV = 3 }; |
| enum ser { SER_REQUIRED = 1, NO_SER = 2 }; |
| enum exception { EXCP_CONTEXT = 1, NO_EXCP = 2 }; |
| |
| static struct severity { |
| u64 mask; |
| u64 result; |
| unsigned char sev; |
| unsigned char mcgmask; |
| unsigned char mcgres; |
| unsigned char ser; |
| unsigned char context; |
| unsigned char excp; |
| unsigned char covered; |
| unsigned char cpu_model; |
| unsigned char cpu_minstepping; |
| unsigned char bank_lo, bank_hi; |
| char *msg; |
| } severities[] = { |
| #define MCESEV(s, m, c...) { .sev = MCE_ ## s ## _SEVERITY, .msg = m, ## c } |
| #define BANK_RANGE(l, h) .bank_lo = l, .bank_hi = h |
| #define MODEL_STEPPING(m, s) .cpu_model = m, .cpu_minstepping = s |
| #define KERNEL .context = IN_KERNEL |
| #define USER .context = IN_USER |
| #define KERNEL_RECOV .context = IN_KERNEL_RECOV |
| #define SER .ser = SER_REQUIRED |
| #define NOSER .ser = NO_SER |
| #define EXCP .excp = EXCP_CONTEXT |
| #define NOEXCP .excp = NO_EXCP |
| #define BITCLR(x) .mask = x, .result = 0 |
| #define BITSET(x) .mask = x, .result = x |
| #define MCGMASK(x, y) .mcgmask = x, .mcgres = y |
| #define MASK(x, y) .mask = x, .result = y |
| #define MCI_UC_S (MCI_STATUS_UC|MCI_STATUS_S) |
| #define MCI_UC_AR (MCI_STATUS_UC|MCI_STATUS_AR) |
| #define MCI_UC_SAR (MCI_STATUS_UC|MCI_STATUS_S|MCI_STATUS_AR) |
| #define MCI_ADDR (MCI_STATUS_ADDRV|MCI_STATUS_MISCV) |
| |
| MCESEV( |
| NO, "Invalid", |
| BITCLR(MCI_STATUS_VAL) |
| ), |
| MCESEV( |
| NO, "Not enabled", |
| EXCP, BITCLR(MCI_STATUS_EN) |
| ), |
| MCESEV( |
| PANIC, "Processor context corrupt", |
| BITSET(MCI_STATUS_PCC) |
| ), |
| /* When MCIP is not set something is very confused */ |
| MCESEV( |
| PANIC, "MCIP not set in MCA handler", |
| EXCP, MCGMASK(MCG_STATUS_MCIP, 0) |
| ), |
| /* Neither return not error IP -- no chance to recover -> PANIC */ |
| MCESEV( |
| PANIC, "Neither restart nor error IP", |
| EXCP, MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, 0) |
| ), |
| MCESEV( |
| PANIC, "In kernel and no restart IP", |
| EXCP, KERNEL, MCGMASK(MCG_STATUS_RIPV, 0) |
| ), |
| MCESEV( |
| PANIC, "In kernel and no restart IP", |
| EXCP, KERNEL_RECOV, MCGMASK(MCG_STATUS_RIPV, 0) |
| ), |
| MCESEV( |
| KEEP, "Corrected error", |
| NOSER, BITCLR(MCI_STATUS_UC) |
| ), |
| /* |
| * known AO MCACODs reported via MCE or CMC: |
| * |
| * SRAO could be signaled either via a machine check exception or |
| * CMCI with the corresponding bit S 1 or 0. So we don't need to |
| * check bit S for SRAO. |
| */ |
| MCESEV( |
| AO, "Action optional: memory scrubbing error", |
| SER, MASK(MCI_UC_AR|MCACOD_SCRUBMSK, MCI_STATUS_UC|MCACOD_SCRUB) |
| ), |
| MCESEV( |
| AO, "Action optional: last level cache writeback error", |
| SER, MASK(MCI_UC_AR|MCACOD, MCI_STATUS_UC|MCACOD_L3WB) |
| ), |
| /* |
| * Quirk for Skylake/Cascade Lake. Patrol scrubber may be configured |
| * to report uncorrected errors using CMCI with a special signature. |
| * UC=0, MSCOD=0x0010, MCACOD=binary(000X 0000 1100 XXXX) reported |
| * in one of the memory controller banks. |
| * Set severity to "AO" for same action as normal patrol scrub error. |
| */ |
| MCESEV( |
| AO, "Uncorrected Patrol Scrub Error", |
| SER, MASK(MCI_STATUS_UC|MCI_ADDR|0xffffeff0, MCI_ADDR|0x001000c0), |
| MODEL_STEPPING(INTEL_FAM6_SKYLAKE_X, 4), BANK_RANGE(13, 18) |
| ), |
| |
| /* ignore OVER for UCNA */ |
| MCESEV( |
| UCNA, "Uncorrected no action required", |
| SER, MASK(MCI_UC_SAR, MCI_STATUS_UC) |
| ), |
| MCESEV( |
| PANIC, "Illegal combination (UCNA with AR=1)", |
| SER, |
| MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_UC|MCI_STATUS_AR) |
| ), |
| MCESEV( |
| KEEP, "Non signaled machine check", |
| SER, BITCLR(MCI_STATUS_S) |
| ), |
| |
| MCESEV( |
| PANIC, "Action required with lost events", |
| SER, BITSET(MCI_STATUS_OVER|MCI_UC_SAR) |
| ), |
| |
| /* known AR MCACODs: */ |
| #ifdef CONFIG_MEMORY_FAILURE |
| MCESEV( |
| KEEP, "Action required but unaffected thread is continuable", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR, MCI_UC_SAR|MCI_ADDR), |
| MCGMASK(MCG_STATUS_RIPV|MCG_STATUS_EIPV, MCG_STATUS_RIPV) |
| ), |
| MCESEV( |
| AR, "Action required: data load in error recoverable area of kernel", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA), |
| KERNEL_RECOV |
| ), |
| MCESEV( |
| AR, "Action required: data load error in a user process", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA), |
| USER |
| ), |
| MCESEV( |
| AR, "Action required: instruction fetch error in a user process", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR), |
| USER |
| ), |
| MCESEV( |
| PANIC, "Data load in unrecoverable area of kernel", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_DATA), |
| KERNEL |
| ), |
| MCESEV( |
| PANIC, "Instruction fetch error in kernel", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR|MCI_ADDR|MCACOD, MCI_UC_SAR|MCI_ADDR|MCACOD_INSTR), |
| KERNEL |
| ), |
| #endif |
| MCESEV( |
| PANIC, "Action required: unknown MCACOD", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_SAR) |
| ), |
| |
| MCESEV( |
| SOME, "Action optional: unknown MCACOD", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_UC_S) |
| ), |
| MCESEV( |
| SOME, "Action optional with lost events", |
| SER, MASK(MCI_STATUS_OVER|MCI_UC_SAR, MCI_STATUS_OVER|MCI_UC_S) |
| ), |
| |
| MCESEV( |
| PANIC, "Overflowed uncorrected", |
| BITSET(MCI_STATUS_OVER|MCI_STATUS_UC) |
| ), |
| MCESEV( |
| UC, "Uncorrected", |
| BITSET(MCI_STATUS_UC) |
| ), |
| MCESEV( |
| SOME, "No match", |
| BITSET(0) |
| ) /* always matches. keep at end */ |
| }; |
| |
| #define mc_recoverable(mcg) (((mcg) & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) == \ |
| (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) |
| |
| static bool is_copy_from_user(struct pt_regs *regs) |
| { |
| u8 insn_buf[MAX_INSN_SIZE]; |
| unsigned long addr; |
| struct insn insn; |
| int ret; |
| |
| if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) |
| return false; |
| |
| ret = insn_decode_kernel(&insn, insn_buf); |
| if (ret < 0) |
| return false; |
| |
| switch (insn.opcode.value) { |
| /* MOV mem,reg */ |
| case 0x8A: case 0x8B: |
| /* MOVZ mem,reg */ |
| case 0xB60F: case 0xB70F: |
| addr = (unsigned long)insn_get_addr_ref(&insn, regs); |
| break; |
| /* REP MOVS */ |
| case 0xA4: case 0xA5: |
| addr = regs->si; |
| break; |
| default: |
| return false; |
| } |
| |
| if (fault_in_kernel_space(addr)) |
| return false; |
| |
| current->mce_vaddr = (void __user *)addr; |
| |
| return true; |
| } |
| |
| /* |
| * If mcgstatus indicated that ip/cs on the stack were |
| * no good, then "m->cs" will be zero and we will have |
| * to assume the worst case (IN_KERNEL) as we actually |
| * have no idea what we were executing when the machine |
| * check hit. |
| * If we do have a good "m->cs" (or a faked one in the |
| * case we were executing in VM86 mode) we can use it to |
| * distinguish an exception taken in user from from one |
| * taken in the kernel. |
| */ |
| static int error_context(struct mce *m, struct pt_regs *regs) |
| { |
| if ((m->cs & 3) == 3) |
| return IN_USER; |
| if (!mc_recoverable(m->mcgstatus)) |
| return IN_KERNEL; |
| |
| switch (ex_get_fixup_type(m->ip)) { |
| case EX_TYPE_UACCESS: |
| case EX_TYPE_COPY: |
| if (!regs || !is_copy_from_user(regs)) |
| return IN_KERNEL; |
| m->kflags |= MCE_IN_KERNEL_COPYIN; |
| fallthrough; |
| case EX_TYPE_FAULT_MCE_SAFE: |
| case EX_TYPE_DEFAULT_MCE_SAFE: |
| m->kflags |= MCE_IN_KERNEL_RECOV; |
| return IN_KERNEL_RECOV; |
| default: |
| return IN_KERNEL; |
| } |
| } |
| |
| static int mce_severity_amd_smca(struct mce *m, enum context err_ctx) |
| { |
| u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank); |
| u32 low, high; |
| |
| /* |
| * We need to look at the following bits: |
| * - "succor" bit (data poisoning support), and |
| * - TCC bit (Task Context Corrupt) |
| * in MCi_STATUS to determine error severity. |
| */ |
| if (!mce_flags.succor) |
| return MCE_PANIC_SEVERITY; |
| |
| if (rdmsr_safe(addr, &low, &high)) |
| return MCE_PANIC_SEVERITY; |
| |
| /* TCC (Task context corrupt). If set and if IN_KERNEL, panic. */ |
| if ((low & MCI_CONFIG_MCAX) && |
| (m->status & MCI_STATUS_TCC) && |
| (err_ctx == IN_KERNEL)) |
| return MCE_PANIC_SEVERITY; |
| |
| /* ...otherwise invoke hwpoison handler. */ |
| return MCE_AR_SEVERITY; |
| } |
| |
| /* |
| * See AMD Error Scope Hierarchy table in a newer BKDG. For example |
| * 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features" |
| */ |
| static int mce_severity_amd(struct mce *m, struct pt_regs *regs, int tolerant, |
| char **msg, bool is_excp) |
| { |
| enum context ctx = error_context(m, regs); |
| |
| /* Processor Context Corrupt, no need to fumble too much, die! */ |
| if (m->status & MCI_STATUS_PCC) |
| return MCE_PANIC_SEVERITY; |
| |
| if (m->status & MCI_STATUS_UC) { |
| |
| if (ctx == IN_KERNEL) |
| return MCE_PANIC_SEVERITY; |
| |
| /* |
| * On older systems where overflow_recov flag is not present, we |
| * should simply panic if an error overflow occurs. If |
| * overflow_recov flag is present and set, then software can try |
| * to at least kill process to prolong system operation. |
| */ |
| if (mce_flags.overflow_recov) { |
| if (mce_flags.smca) |
| return mce_severity_amd_smca(m, ctx); |
| |
| /* kill current process */ |
| return MCE_AR_SEVERITY; |
| } else { |
| /* at least one error was not logged */ |
| if (m->status & MCI_STATUS_OVER) |
| return MCE_PANIC_SEVERITY; |
| } |
| |
| /* |
| * For any other case, return MCE_UC_SEVERITY so that we log the |
| * error and exit #MC handler. |
| */ |
| return MCE_UC_SEVERITY; |
| } |
| |
| /* |
| * deferred error: poll handler catches these and adds to mce_ring so |
| * memory-failure can take recovery actions. |
| */ |
| if (m->status & MCI_STATUS_DEFERRED) |
| return MCE_DEFERRED_SEVERITY; |
| |
| /* |
| * corrected error: poll handler catches these and passes responsibility |
| * of decoding the error to EDAC |
| */ |
| return MCE_KEEP_SEVERITY; |
| } |
| |
| static int mce_severity_intel(struct mce *m, struct pt_regs *regs, |
| int tolerant, char **msg, bool is_excp) |
| { |
| enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP); |
| enum context ctx = error_context(m, regs); |
| struct severity *s; |
| |
| for (s = severities;; s++) { |
| if ((m->status & s->mask) != s->result) |
| continue; |
| if ((m->mcgstatus & s->mcgmask) != s->mcgres) |
| continue; |
| if (s->ser == SER_REQUIRED && !mca_cfg.ser) |
| continue; |
| if (s->ser == NO_SER && mca_cfg.ser) |
| continue; |
| if (s->context && ctx != s->context) |
| continue; |
| if (s->excp && excp != s->excp) |
| continue; |
| if (s->cpu_model && boot_cpu_data.x86_model != s->cpu_model) |
| continue; |
| if (s->cpu_minstepping && boot_cpu_data.x86_stepping < s->cpu_minstepping) |
| continue; |
| if (s->bank_lo && (m->bank < s->bank_lo || m->bank > s->bank_hi)) |
| continue; |
| if (msg) |
| *msg = s->msg; |
| s->covered = 1; |
| if (s->sev >= MCE_UC_SEVERITY && ctx == IN_KERNEL) { |
| if (tolerant < 1) |
| return MCE_PANIC_SEVERITY; |
| } |
| return s->sev; |
| } |
| } |
| |
| int mce_severity(struct mce *m, struct pt_regs *regs, int tolerant, char **msg, |
| bool is_excp) |
| { |
| if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || |
| boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) |
| return mce_severity_amd(m, regs, tolerant, msg, is_excp); |
| else |
| return mce_severity_intel(m, regs, tolerant, msg, is_excp); |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static void *s_start(struct seq_file *f, loff_t *pos) |
| { |
| if (*pos >= ARRAY_SIZE(severities)) |
| return NULL; |
| return &severities[*pos]; |
| } |
| |
| static void *s_next(struct seq_file *f, void *data, loff_t *pos) |
| { |
| if (++(*pos) >= ARRAY_SIZE(severities)) |
| return NULL; |
| return &severities[*pos]; |
| } |
| |
| static void s_stop(struct seq_file *f, void *data) |
| { |
| } |
| |
| static int s_show(struct seq_file *f, void *data) |
| { |
| struct severity *ser = data; |
| seq_printf(f, "%d\t%s\n", ser->covered, ser->msg); |
| return 0; |
| } |
| |
| static const struct seq_operations severities_seq_ops = { |
| .start = s_start, |
| .next = s_next, |
| .stop = s_stop, |
| .show = s_show, |
| }; |
| |
| static int severities_coverage_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &severities_seq_ops); |
| } |
| |
| static ssize_t severities_coverage_write(struct file *file, |
| const char __user *ubuf, |
| size_t count, loff_t *ppos) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(severities); i++) |
| severities[i].covered = 0; |
| return count; |
| } |
| |
| static const struct file_operations severities_coverage_fops = { |
| .open = severities_coverage_open, |
| .release = seq_release, |
| .read = seq_read, |
| .write = severities_coverage_write, |
| .llseek = seq_lseek, |
| }; |
| |
| static int __init severities_debugfs_init(void) |
| { |
| struct dentry *dmce; |
| |
| dmce = mce_get_debugfs_dir(); |
| |
| debugfs_create_file("severities-coverage", 0444, dmce, NULL, |
| &severities_coverage_fops); |
| return 0; |
| } |
| late_initcall(severities_debugfs_init); |
| #endif /* CONFIG_DEBUG_FS */ |