blob: 47ea93e6b0d816a8b53860825c1a409a06e6a200 [file] [log] [blame]
/*
* KVM paravirt_ops implementation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright IBM Corporation, 2007
* Authors: Anthony Liguori <aliguori@us.ibm.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kvm_para.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/hardirq.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/hash.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/kprobes.h>
#include <asm/timer.h>
#include <asm/cpu.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>
#define MMU_QUEUE_SIZE 1024
static int kvmapf = 1;
static int parse_no_kvmapf(char *arg)
{
kvmapf = 0;
return 0;
}
early_param("no-kvmapf", parse_no_kvmapf);
struct kvm_para_state {
u8 mmu_queue[MMU_QUEUE_SIZE];
int mmu_queue_len;
};
static DEFINE_PER_CPU(struct kvm_para_state, para_state);
static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
static struct kvm_para_state *kvm_para_state(void)
{
return &per_cpu(para_state, raw_smp_processor_id());
}
/*
* No need for any "IO delay" on KVM
*/
static void kvm_io_delay(void)
{
}
#define KVM_TASK_SLEEP_HASHBITS 8
#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
struct kvm_task_sleep_node {
struct hlist_node link;
wait_queue_head_t wq;
u32 token;
int cpu;
bool halted;
struct mm_struct *mm;
};
static struct kvm_task_sleep_head {
spinlock_t lock;
struct hlist_head list;
} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
u32 token)
{
struct hlist_node *p;
hlist_for_each(p, &b->list) {
struct kvm_task_sleep_node *n =
hlist_entry(p, typeof(*n), link);
if (n->token == token)
return n;
}
return NULL;
}
void kvm_async_pf_task_wait(u32 token)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
struct kvm_task_sleep_node n, *e;
DEFINE_WAIT(wait);
int cpu, idle;
cpu = get_cpu();
idle = idle_cpu(cpu);
put_cpu();
spin_lock(&b->lock);
e = _find_apf_task(b, token);
if (e) {
/* dummy entry exist -> wake up was delivered ahead of PF */
hlist_del(&e->link);
kfree(e);
spin_unlock(&b->lock);
return;
}
n.token = token;
n.cpu = smp_processor_id();
n.mm = current->active_mm;
n.halted = idle || preempt_count() > 1;
atomic_inc(&n.mm->mm_count);
init_waitqueue_head(&n.wq);
hlist_add_head(&n.link, &b->list);
spin_unlock(&b->lock);
for (;;) {
if (!n.halted)
prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
if (hlist_unhashed(&n.link))
break;
if (!n.halted) {
local_irq_enable();
schedule();
local_irq_disable();
} else {
/*
* We cannot reschedule. So halt.
*/
native_safe_halt();
local_irq_disable();
}
}
if (!n.halted)
finish_wait(&n.wq, &wait);
return;
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
static void apf_task_wake_one(struct kvm_task_sleep_node *n)
{
hlist_del_init(&n->link);
if (!n->mm)
return;
mmdrop(n->mm);
if (n->halted)
smp_send_reschedule(n->cpu);
else if (waitqueue_active(&n->wq))
wake_up(&n->wq);
}
static void apf_task_wake_all(void)
{
int i;
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
struct hlist_node *p, *next;
struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
spin_lock(&b->lock);
hlist_for_each_safe(p, next, &b->list) {
struct kvm_task_sleep_node *n =
hlist_entry(p, typeof(*n), link);
if (n->cpu == smp_processor_id())
apf_task_wake_one(n);
}
spin_unlock(&b->lock);
}
}
void kvm_async_pf_task_wake(u32 token)
{
u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
struct kvm_task_sleep_node *n;
if (token == ~0) {
apf_task_wake_all();
return;
}
again:
spin_lock(&b->lock);
n = _find_apf_task(b, token);
if (!n) {
/*
* async PF was not yet handled.
* Add dummy entry for the token.
*/
n = kmalloc(sizeof(*n), GFP_ATOMIC);
if (!n) {
/*
* Allocation failed! Busy wait while other cpu
* handles async PF.
*/
spin_unlock(&b->lock);
cpu_relax();
goto again;
}
n->token = token;
n->cpu = smp_processor_id();
n->mm = NULL;
init_waitqueue_head(&n->wq);
hlist_add_head(&n->link, &b->list);
} else
apf_task_wake_one(n);
spin_unlock(&b->lock);
return;
}
EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
u32 kvm_read_and_reset_pf_reason(void)
{
u32 reason = 0;
if (__get_cpu_var(apf_reason).enabled) {
reason = __get_cpu_var(apf_reason).reason;
__get_cpu_var(apf_reason).reason = 0;
}
return reason;
}
EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
dotraplinkage void __kprobes
do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
{
switch (kvm_read_and_reset_pf_reason()) {
default:
do_page_fault(regs, error_code);
break;
case KVM_PV_REASON_PAGE_NOT_PRESENT:
/* page is swapped out by the host. */
kvm_async_pf_task_wait((u32)read_cr2());
break;
case KVM_PV_REASON_PAGE_READY:
kvm_async_pf_task_wake((u32)read_cr2());
break;
}
}
static void kvm_mmu_op(void *buffer, unsigned len)
{
int r;
unsigned long a1, a2;
do {
a1 = __pa(buffer);
a2 = 0; /* on i386 __pa() always returns <4G */
r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
buffer += r;
len -= r;
} while (len);
}
static void mmu_queue_flush(struct kvm_para_state *state)
{
if (state->mmu_queue_len) {
kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
state->mmu_queue_len = 0;
}
}
static void kvm_deferred_mmu_op(void *buffer, int len)
{
struct kvm_para_state *state = kvm_para_state();
if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
kvm_mmu_op(buffer, len);
return;
}
if (state->mmu_queue_len + len > sizeof state->mmu_queue)
mmu_queue_flush(state);
memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
state->mmu_queue_len += len;
}
static void kvm_mmu_write(void *dest, u64 val)
{
__u64 pte_phys;
struct kvm_mmu_op_write_pte wpte;
#ifdef CONFIG_HIGHPTE
struct page *page;
unsigned long dst = (unsigned long) dest;
page = kmap_atomic_to_page(dest);
pte_phys = page_to_pfn(page);
pte_phys <<= PAGE_SHIFT;
pte_phys += (dst & ~(PAGE_MASK));
#else
pte_phys = (unsigned long)__pa(dest);
#endif
wpte.header.op = KVM_MMU_OP_WRITE_PTE;
wpte.pte_val = val;
wpte.pte_phys = pte_phys;
kvm_deferred_mmu_op(&wpte, sizeof wpte);
}
/*
* We only need to hook operations that are MMU writes. We hook these so that
* we can use lazy MMU mode to batch these operations. We could probably
* improve the performance of the host code if we used some of the information
* here to simplify processing of batched writes.
*/
static void kvm_set_pte(pte_t *ptep, pte_t pte)
{
kvm_mmu_write(ptep, pte_val(pte));
}
static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte)
{
kvm_mmu_write(ptep, pte_val(pte));
}
static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
{
kvm_mmu_write(pmdp, pmd_val(pmd));
}
#if PAGETABLE_LEVELS >= 3
#ifdef CONFIG_X86_PAE
static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
{
kvm_mmu_write(ptep, pte_val(pte));
}
static void kvm_pte_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
kvm_mmu_write(ptep, 0);
}
static void kvm_pmd_clear(pmd_t *pmdp)
{
kvm_mmu_write(pmdp, 0);
}
#endif
static void kvm_set_pud(pud_t *pudp, pud_t pud)
{
kvm_mmu_write(pudp, pud_val(pud));
}
#if PAGETABLE_LEVELS == 4
static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
{
kvm_mmu_write(pgdp, pgd_val(pgd));
}
#endif
#endif /* PAGETABLE_LEVELS >= 3 */
static void kvm_flush_tlb(void)
{
struct kvm_mmu_op_flush_tlb ftlb = {
.header.op = KVM_MMU_OP_FLUSH_TLB,
};
kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
}
static void kvm_release_pt(unsigned long pfn)
{
struct kvm_mmu_op_release_pt rpt = {
.header.op = KVM_MMU_OP_RELEASE_PT,
.pt_phys = (u64)pfn << PAGE_SHIFT,
};
kvm_mmu_op(&rpt, sizeof rpt);
}
static void kvm_enter_lazy_mmu(void)
{
paravirt_enter_lazy_mmu();
}
static void kvm_leave_lazy_mmu(void)
{
struct kvm_para_state *state = kvm_para_state();
mmu_queue_flush(state);
paravirt_leave_lazy_mmu();
}
static void __init paravirt_ops_setup(void)
{
pv_info.name = "KVM";
pv_info.paravirt_enabled = 1;
if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
pv_cpu_ops.io_delay = kvm_io_delay;
if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
pv_mmu_ops.set_pte = kvm_set_pte;
pv_mmu_ops.set_pte_at = kvm_set_pte_at;
pv_mmu_ops.set_pmd = kvm_set_pmd;
#if PAGETABLE_LEVELS >= 3
#ifdef CONFIG_X86_PAE
pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
pv_mmu_ops.pte_clear = kvm_pte_clear;
pv_mmu_ops.pmd_clear = kvm_pmd_clear;
#endif
pv_mmu_ops.set_pud = kvm_set_pud;
#if PAGETABLE_LEVELS == 4
pv_mmu_ops.set_pgd = kvm_set_pgd;
#endif
#endif
pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
pv_mmu_ops.release_pte = kvm_release_pt;
pv_mmu_ops.release_pmd = kvm_release_pt;
pv_mmu_ops.release_pud = kvm_release_pt;
pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
}
#ifdef CONFIG_X86_IO_APIC
no_timer_check = 1;
#endif
}
void __cpuinit kvm_guest_cpu_init(void)
{
if (!kvm_para_available())
return;
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
u64 pa = __pa(&__get_cpu_var(apf_reason));
wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
__get_cpu_var(apf_reason).enabled = 1;
printk(KERN_INFO"KVM setup async PF for cpu %d\n",
smp_processor_id());
}
}
static void kvm_pv_disable_apf(void *unused)
{
if (!__get_cpu_var(apf_reason).enabled)
return;
wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
__get_cpu_var(apf_reason).enabled = 0;
printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
smp_processor_id());
}
static int kvm_pv_reboot_notify(struct notifier_block *nb,
unsigned long code, void *unused)
{
if (code == SYS_RESTART)
on_each_cpu(kvm_pv_disable_apf, NULL, 1);
return NOTIFY_DONE;
}
static struct notifier_block kvm_pv_reboot_nb = {
.notifier_call = kvm_pv_reboot_notify,
};
#ifdef CONFIG_SMP
static void __init kvm_smp_prepare_boot_cpu(void)
{
WARN_ON(kvm_register_clock("primary cpu clock"));
kvm_guest_cpu_init();
native_smp_prepare_boot_cpu();
}
static void kvm_guest_cpu_online(void *dummy)
{
kvm_guest_cpu_init();
}
static void kvm_guest_cpu_offline(void *dummy)
{
kvm_pv_disable_apf(NULL);
apf_task_wake_all();
}
static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
switch (action) {
case CPU_ONLINE:
case CPU_DOWN_FAILED:
case CPU_ONLINE_FROZEN:
smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
.notifier_call = kvm_cpu_notify,
};
#endif
static void __init kvm_apf_trap_init(void)
{
set_intr_gate(14, &async_page_fault);
}
void __init kvm_guest_init(void)
{
int i;
if (!kvm_para_available())
return;
paravirt_ops_setup();
register_reboot_notifier(&kvm_pv_reboot_nb);
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
spin_lock_init(&async_pf_sleepers[i].lock);
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
x86_init.irqs.trap_init = kvm_apf_trap_init;
#ifdef CONFIG_SMP
smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
register_cpu_notifier(&kvm_cpu_notifier);
#else
kvm_guest_cpu_init();
#endif
}