blob: 066d5aea16c6242f2b6ebba56df555a717241514 [file] [log] [blame]
/*
* Based on arch/arm/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995-2004 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/perf_event.h>
#include <asm/cpufeature.h>
#include <asm/exception.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
static const char *fault_name(unsigned int esr);
/*
* Dump out the page tables associated with 'addr' in mm 'mm'.
*/
void show_pte(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
if (!mm)
mm = &init_mm;
pr_alert("pgd = %p\n", mm->pgd);
pgd = pgd_offset(mm, addr);
pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
do {
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (pgd_none(*pgd) || pgd_bad(*pgd))
break;
pud = pud_offset(pgd, addr);
printk(", *pud=%016llx", pud_val(*pud));
if (pud_none(*pud) || pud_bad(*pud))
break;
pmd = pmd_offset(pud, addr);
printk(", *pmd=%016llx", pmd_val(*pmd));
if (pmd_none(*pmd) || pmd_bad(*pmd))
break;
pte = pte_offset_map(pmd, addr);
printk(", *pte=%016llx", pte_val(*pte));
pte_unmap(pte);
} while(0);
printk("\n");
}
/*
* The kernel tried to access some page that wasn't present.
*/
static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
unsigned int esr, struct pt_regs *regs)
{
/*
* Are we prepared to handle this kernel fault?
*/
if (fixup_exception(regs))
return;
/*
* No handler, we'll have to terminate things with extreme prejudice.
*/
bust_spinlocks(1);
pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
(addr < PAGE_SIZE) ? "NULL pointer dereference" :
"paging request", addr);
show_pte(mm, addr);
die("Oops", regs, esr);
bust_spinlocks(0);
do_exit(SIGKILL);
}
/*
* Something tried to access memory that isn't in our memory map. User mode
* accesses just cause a SIGSEGV
*/
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
unsigned int esr, unsigned int sig, int code,
struct pt_regs *regs)
{
struct siginfo si;
if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
addr, esr);
show_pte(tsk->mm, addr);
show_regs(regs);
}
tsk->thread.fault_address = addr;
tsk->thread.fault_code = esr;
si.si_signo = sig;
si.si_errno = 0;
si.si_code = code;
si.si_addr = (void __user *)addr;
force_sig_info(sig, &si, tsk);
}
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->active_mm;
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (user_mode(regs))
__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
else
__do_kernel_fault(mm, addr, esr, regs);
}
#define VM_FAULT_BADMAP 0x010000
#define VM_FAULT_BADACCESS 0x020000
#define ESR_LNX_EXEC (1 << 24)
static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
unsigned int mm_flags, unsigned long vm_flags,
struct task_struct *tsk)
{
struct vm_area_struct *vma;
int fault;
vma = find_vma(mm, addr);
fault = VM_FAULT_BADMAP;
if (unlikely(!vma))
goto out;
if (unlikely(vma->vm_start > addr))
goto check_stack;
/*
* Ok, we have a good vm_area for this memory access, so we can handle
* it.
*/
good_area:
/*
* Check that the permissions on the VMA allow for the fault which
* occurred. If we encountered a write or exec fault, we must have
* appropriate permissions, otherwise we allow any permission.
*/
if (!(vma->vm_flags & vm_flags)) {
fault = VM_FAULT_BADACCESS;
goto out;
}
return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
check_stack:
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
goto good_area;
out:
return fault;
}
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
struct task_struct *tsk;
struct mm_struct *mm;
int fault, sig, code;
unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
tsk = current;
mm = tsk->mm;
/* Enable interrupts if they were enabled in the parent context. */
if (interrupts_enabled(regs))
local_irq_enable();
/*
* If we're in an interrupt or have no user context, we must not take
* the fault.
*/
if (faulthandler_disabled() || !mm)
goto no_context;
if (user_mode(regs))
mm_flags |= FAULT_FLAG_USER;
if (esr & ESR_LNX_EXEC) {
vm_flags = VM_EXEC;
} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
vm_flags = VM_WRITE;
mm_flags |= FAULT_FLAG_WRITE;
}
/*
* PAN bit set implies the fault happened in kernel space, but not
* in the arch's user access functions.
*/
if (IS_ENABLED(CONFIG_ARM64_PAN) && (regs->pstate & PSR_PAN_BIT))
goto no_context;
/*
* As per x86, we may deadlock here. However, since the kernel only
* validly references user space from well defined areas of the code,
* we can bug out early if this is from code which shouldn't.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
retry:
down_read(&mm->mmap_sem);
} else {
/*
* The above down_read_trylock() might have succeeded in which
* case, we'll have missed the might_sleep() from down_read().
*/
might_sleep();
#ifdef CONFIG_DEBUG_VM
if (!user_mode(regs) && !search_exception_tables(regs->pc))
goto no_context;
#endif
}
fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
/*
* If we need to retry but a fatal signal is pending, handle the
* signal first. We do not need to release the mmap_sem because it
* would already be released in __lock_page_or_retry in mm/filemap.c.
*/
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
return 0;
/*
* Major/minor page fault accounting is only done on the initial
* attempt. If we go through a retry, it is extremely likely that the
* page will be found in page cache at that point.
*/
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
if (fault & VM_FAULT_MAJOR) {
tsk->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
addr);
} else {
tsk->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
addr);
}
if (fault & VM_FAULT_RETRY) {
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
* starvation.
*/
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
goto retry;
}
}
up_read(&mm->mmap_sem);
/*
* Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
*/
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
VM_FAULT_BADACCESS))))
return 0;
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, call the OOM killer, and return to
* userspace (which will retry the fault, or kill us if we got
* oom-killed).
*/
pagefault_out_of_memory();
return 0;
}
if (fault & VM_FAULT_SIGBUS) {
/*
* We had some memory, but were unable to successfully fix up
* this page fault.
*/
sig = SIGBUS;
code = BUS_ADRERR;
} else {
/*
* Something tried to access memory that isn't in our memory
* map.
*/
sig = SIGSEGV;
code = fault == VM_FAULT_BADACCESS ?
SEGV_ACCERR : SEGV_MAPERR;
}
__do_user_fault(tsk, addr, esr, sig, code, regs);
return 0;
no_context:
__do_kernel_fault(mm, addr, esr, regs);
return 0;
}
/*
* First Level Translation Fault Handler
*
* We enter here because the first level page table doesn't contain a valid
* entry for the address.
*
* If the address is in kernel space (>= TASK_SIZE), then we are probably
* faulting in the vmalloc() area.
*
* If the init_task's first level page tables contains the relevant entry, we
* copy the it to this task. If not, we send the process a signal, fixup the
* exception, or oops the kernel.
*
* NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
* or a critical region, and should only copy the information from the master
* page table, nothing more.
*/
static int __kprobes do_translation_fault(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
if (addr < TASK_SIZE)
return do_page_fault(addr, esr, regs);
do_bad_area(addr, esr, regs);
return 0;
}
/*
* This abort handler always returns "fault".
*/
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
return 1;
}
static struct fault_info {
int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
int sig;
int code;
const char *name;
} fault_info[] = {
{ do_bad, SIGBUS, 0, "ttbr address size fault" },
{ do_bad, SIGBUS, 0, "level 1 address size fault" },
{ do_bad, SIGBUS, 0, "level 2 address size fault" },
{ do_bad, SIGBUS, 0, "level 3 address size fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
{ do_bad, SIGBUS, 0, "reserved access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
{ do_bad, SIGBUS, 0, "reserved permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
{ do_bad, SIGBUS, 0, "synchronous external abort" },
{ do_bad, SIGBUS, 0, "asynchronous external abort" },
{ do_bad, SIGBUS, 0, "unknown 18" },
{ do_bad, SIGBUS, 0, "unknown 19" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" },
{ do_bad, SIGBUS, 0, "synchronous parity error" },
{ do_bad, SIGBUS, 0, "asynchronous parity error" },
{ do_bad, SIGBUS, 0, "unknown 26" },
{ do_bad, SIGBUS, 0, "unknown 27" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
{ do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" },
{ do_bad, SIGBUS, 0, "unknown 32" },
{ do_bad, SIGBUS, BUS_ADRALN, "alignment fault" },
{ do_bad, SIGBUS, 0, "debug event" },
{ do_bad, SIGBUS, 0, "unknown 35" },
{ do_bad, SIGBUS, 0, "unknown 36" },
{ do_bad, SIGBUS, 0, "unknown 37" },
{ do_bad, SIGBUS, 0, "unknown 38" },
{ do_bad, SIGBUS, 0, "unknown 39" },
{ do_bad, SIGBUS, 0, "unknown 40" },
{ do_bad, SIGBUS, 0, "unknown 41" },
{ do_bad, SIGBUS, 0, "unknown 42" },
{ do_bad, SIGBUS, 0, "unknown 43" },
{ do_bad, SIGBUS, 0, "unknown 44" },
{ do_bad, SIGBUS, 0, "unknown 45" },
{ do_bad, SIGBUS, 0, "unknown 46" },
{ do_bad, SIGBUS, 0, "unknown 47" },
{ do_bad, SIGBUS, 0, "unknown 48" },
{ do_bad, SIGBUS, 0, "unknown 49" },
{ do_bad, SIGBUS, 0, "unknown 50" },
{ do_bad, SIGBUS, 0, "unknown 51" },
{ do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
{ do_bad, SIGBUS, 0, "unknown 53" },
{ do_bad, SIGBUS, 0, "unknown 54" },
{ do_bad, SIGBUS, 0, "unknown 55" },
{ do_bad, SIGBUS, 0, "unknown 56" },
{ do_bad, SIGBUS, 0, "unknown 57" },
{ do_bad, SIGBUS, 0, "implementation fault (coprocessor abort)" },
{ do_bad, SIGBUS, 0, "unknown 59" },
{ do_bad, SIGBUS, 0, "unknown 60" },
{ do_bad, SIGBUS, 0, "unknown 61" },
{ do_bad, SIGBUS, 0, "unknown 62" },
{ do_bad, SIGBUS, 0, "unknown 63" },
};
static const char *fault_name(unsigned int esr)
{
const struct fault_info *inf = fault_info + (esr & 63);
return inf->name;
}
/*
* Dispatch a data abort to the relevant handler.
*/
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf = fault_info + (esr & 63);
struct siginfo info;
if (!inf->fn(addr, esr, regs))
return;
pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
inf->name, esr, addr);
info.si_signo = inf->sig;
info.si_errno = 0;
info.si_code = inf->code;
info.si_addr = (void __user *)addr;
arm64_notify_die("", regs, &info, esr);
}
/*
* Handle stack alignment exceptions.
*/
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
struct siginfo info;
struct task_struct *tsk = current;
if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
tsk->comm, task_pid_nr(tsk),
esr_get_class_string(esr), (void *)regs->pc,
(void *)regs->sp);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRALN;
info.si_addr = (void __user *)addr;
arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
}
int __init early_brk64(unsigned long addr, unsigned int esr,
struct pt_regs *regs);
/*
* __refdata because early_brk64 is __init, but the reference to it is
* clobbered at arch_initcall time.
* See traps.c and debug-monitors.c:debug_traps_init().
*/
static struct fault_info __refdata debug_fault_info[] = {
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
{ do_bad, SIGBUS, 0, "unknown 3" },
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
{ do_bad, SIGTRAP, 0, "aarch32 vector catch" },
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
{ do_bad, SIGBUS, 0, "unknown 7" },
};
void __init hook_debug_fault_code(int nr,
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
int sig, int code, const char *name)
{
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
debug_fault_info[nr].fn = fn;
debug_fault_info[nr].sig = sig;
debug_fault_info[nr].code = code;
debug_fault_info[nr].name = name;
}
asmlinkage int __exception do_debug_exception(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
struct siginfo info;
if (!inf->fn(addr, esr, regs))
return 1;
pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
inf->name, esr, addr);
info.si_signo = inf->sig;
info.si_errno = 0;
info.si_code = inf->code;
info.si_addr = (void __user *)addr;
arm64_notify_die("", regs, &info, 0);
return 0;
}
#ifdef CONFIG_ARM64_PAN
void cpu_enable_pan(void *__unused)
{
config_sctlr_el1(SCTLR_EL1_SPAN, 0);
}
#endif /* CONFIG_ARM64_PAN */