| /* |
| * |
| * Bluetooth HCI UART driver for Intel devices |
| * |
| * Copyright (C) 2015 Intel Corporation |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/skbuff.h> |
| #include <linux/firmware.h> |
| #include <linux/module.h> |
| #include <linux/wait.h> |
| #include <linux/tty.h> |
| #include <linux/platform_device.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/acpi.h> |
| #include <linux/interrupt.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <net/bluetooth/bluetooth.h> |
| #include <net/bluetooth/hci_core.h> |
| |
| #include "hci_uart.h" |
| #include "btintel.h" |
| |
| #define STATE_BOOTLOADER 0 |
| #define STATE_DOWNLOADING 1 |
| #define STATE_FIRMWARE_LOADED 2 |
| #define STATE_FIRMWARE_FAILED 3 |
| #define STATE_BOOTING 4 |
| #define STATE_LPM_ENABLED 5 |
| #define STATE_TX_ACTIVE 6 |
| #define STATE_SUSPENDED 7 |
| #define STATE_LPM_TRANSACTION 8 |
| |
| #define HCI_LPM_WAKE_PKT 0xf0 |
| #define HCI_LPM_PKT 0xf1 |
| #define HCI_LPM_MAX_SIZE 10 |
| #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE |
| |
| #define LPM_OP_TX_NOTIFY 0x00 |
| #define LPM_OP_SUSPEND_ACK 0x02 |
| #define LPM_OP_RESUME_ACK 0x03 |
| |
| #define LPM_SUSPEND_DELAY_MS 1000 |
| |
| struct hci_lpm_pkt { |
| __u8 opcode; |
| __u8 dlen; |
| __u8 data[0]; |
| } __packed; |
| |
| struct intel_device { |
| struct list_head list; |
| struct platform_device *pdev; |
| struct gpio_desc *reset; |
| struct hci_uart *hu; |
| struct mutex hu_lock; |
| int irq; |
| }; |
| |
| static LIST_HEAD(intel_device_list); |
| static DEFINE_MUTEX(intel_device_list_lock); |
| |
| struct intel_data { |
| struct sk_buff *rx_skb; |
| struct sk_buff_head txq; |
| struct work_struct busy_work; |
| struct hci_uart *hu; |
| unsigned long flags; |
| }; |
| |
| static u8 intel_convert_speed(unsigned int speed) |
| { |
| switch (speed) { |
| case 9600: |
| return 0x00; |
| case 19200: |
| return 0x01; |
| case 38400: |
| return 0x02; |
| case 57600: |
| return 0x03; |
| case 115200: |
| return 0x04; |
| case 230400: |
| return 0x05; |
| case 460800: |
| return 0x06; |
| case 921600: |
| return 0x07; |
| case 1843200: |
| return 0x08; |
| case 3250000: |
| return 0x09; |
| case 2000000: |
| return 0x0a; |
| case 3000000: |
| return 0x0b; |
| default: |
| return 0xff; |
| } |
| } |
| |
| static int intel_wait_booting(struct hci_uart *hu) |
| { |
| struct intel_data *intel = hu->priv; |
| int err; |
| |
| err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING, |
| TASK_INTERRUPTIBLE, |
| msecs_to_jiffies(1000)); |
| |
| if (err == 1) { |
| bt_dev_err(hu->hdev, "Device boot interrupted"); |
| return -EINTR; |
| } |
| |
| if (err) { |
| bt_dev_err(hu->hdev, "Device boot timeout"); |
| return -ETIMEDOUT; |
| } |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_PM |
| static int intel_wait_lpm_transaction(struct hci_uart *hu) |
| { |
| struct intel_data *intel = hu->priv; |
| int err; |
| |
| err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION, |
| TASK_INTERRUPTIBLE, |
| msecs_to_jiffies(1000)); |
| |
| if (err == 1) { |
| bt_dev_err(hu->hdev, "LPM transaction interrupted"); |
| return -EINTR; |
| } |
| |
| if (err) { |
| bt_dev_err(hu->hdev, "LPM transaction timeout"); |
| return -ETIMEDOUT; |
| } |
| |
| return err; |
| } |
| |
| static int intel_lpm_suspend(struct hci_uart *hu) |
| { |
| static const u8 suspend[] = { 0x01, 0x01, 0x01 }; |
| struct intel_data *intel = hu->priv; |
| struct sk_buff *skb; |
| |
| if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || |
| test_bit(STATE_SUSPENDED, &intel->flags)) |
| return 0; |
| |
| if (test_bit(STATE_TX_ACTIVE, &intel->flags)) |
| return -EAGAIN; |
| |
| bt_dev_dbg(hu->hdev, "Suspending"); |
| |
| skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL); |
| if (!skb) { |
| bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); |
| return -ENOMEM; |
| } |
| |
| memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend)); |
| bt_cb(skb)->pkt_type = HCI_LPM_PKT; |
| |
| set_bit(STATE_LPM_TRANSACTION, &intel->flags); |
| |
| /* LPM flow is a priority, enqueue packet at list head */ |
| skb_queue_head(&intel->txq, skb); |
| hci_uart_tx_wakeup(hu); |
| |
| intel_wait_lpm_transaction(hu); |
| /* Even in case of failure, continue and test the suspended flag */ |
| |
| clear_bit(STATE_LPM_TRANSACTION, &intel->flags); |
| |
| if (!test_bit(STATE_SUSPENDED, &intel->flags)) { |
| bt_dev_err(hu->hdev, "Device suspend error"); |
| return -EINVAL; |
| } |
| |
| bt_dev_dbg(hu->hdev, "Suspended"); |
| |
| hci_uart_set_flow_control(hu, true); |
| |
| return 0; |
| } |
| |
| static int intel_lpm_resume(struct hci_uart *hu) |
| { |
| struct intel_data *intel = hu->priv; |
| struct sk_buff *skb; |
| |
| if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || |
| !test_bit(STATE_SUSPENDED, &intel->flags)) |
| return 0; |
| |
| bt_dev_dbg(hu->hdev, "Resuming"); |
| |
| hci_uart_set_flow_control(hu, false); |
| |
| skb = bt_skb_alloc(0, GFP_KERNEL); |
| if (!skb) { |
| bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); |
| return -ENOMEM; |
| } |
| |
| bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT; |
| |
| set_bit(STATE_LPM_TRANSACTION, &intel->flags); |
| |
| /* LPM flow is a priority, enqueue packet at list head */ |
| skb_queue_head(&intel->txq, skb); |
| hci_uart_tx_wakeup(hu); |
| |
| intel_wait_lpm_transaction(hu); |
| /* Even in case of failure, continue and test the suspended flag */ |
| |
| clear_bit(STATE_LPM_TRANSACTION, &intel->flags); |
| |
| if (test_bit(STATE_SUSPENDED, &intel->flags)) { |
| bt_dev_err(hu->hdev, "Device resume error"); |
| return -EINVAL; |
| } |
| |
| bt_dev_dbg(hu->hdev, "Resumed"); |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM */ |
| |
| static int intel_lpm_host_wake(struct hci_uart *hu) |
| { |
| static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 }; |
| struct intel_data *intel = hu->priv; |
| struct sk_buff *skb; |
| |
| hci_uart_set_flow_control(hu, false); |
| |
| clear_bit(STATE_SUSPENDED, &intel->flags); |
| |
| skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL); |
| if (!skb) { |
| bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); |
| return -ENOMEM; |
| } |
| |
| memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack, |
| sizeof(lpm_resume_ack)); |
| bt_cb(skb)->pkt_type = HCI_LPM_PKT; |
| |
| /* LPM flow is a priority, enqueue packet at list head */ |
| skb_queue_head(&intel->txq, skb); |
| hci_uart_tx_wakeup(hu); |
| |
| bt_dev_dbg(hu->hdev, "Resumed by controller"); |
| |
| return 0; |
| } |
| |
| static irqreturn_t intel_irq(int irq, void *dev_id) |
| { |
| struct intel_device *idev = dev_id; |
| |
| dev_info(&idev->pdev->dev, "hci_intel irq\n"); |
| |
| mutex_lock(&idev->hu_lock); |
| if (idev->hu) |
| intel_lpm_host_wake(idev->hu); |
| mutex_unlock(&idev->hu_lock); |
| |
| /* Host/Controller are now LPM resumed, trigger a new delayed suspend */ |
| pm_runtime_get(&idev->pdev->dev); |
| pm_runtime_mark_last_busy(&idev->pdev->dev); |
| pm_runtime_put_autosuspend(&idev->pdev->dev); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int intel_set_power(struct hci_uart *hu, bool powered) |
| { |
| struct list_head *p; |
| int err = -ENODEV; |
| |
| mutex_lock(&intel_device_list_lock); |
| |
| list_for_each(p, &intel_device_list) { |
| struct intel_device *idev = list_entry(p, struct intel_device, |
| list); |
| |
| /* tty device and pdev device should share the same parent |
| * which is the UART port. |
| */ |
| if (hu->tty->dev->parent != idev->pdev->dev.parent) |
| continue; |
| |
| if (!idev->reset) { |
| err = -ENOTSUPP; |
| break; |
| } |
| |
| BT_INFO("hu %p, Switching compatible pm device (%s) to %u", |
| hu, dev_name(&idev->pdev->dev), powered); |
| |
| gpiod_set_value(idev->reset, powered); |
| |
| /* Provide to idev a hu reference which is used to run LPM |
| * transactions (lpm suspend/resume) from PM callbacks. |
| * hu needs to be protected against concurrent removing during |
| * these PM ops. |
| */ |
| mutex_lock(&idev->hu_lock); |
| idev->hu = powered ? hu : NULL; |
| mutex_unlock(&idev->hu_lock); |
| |
| if (idev->irq < 0) |
| break; |
| |
| if (powered && device_can_wakeup(&idev->pdev->dev)) { |
| err = devm_request_threaded_irq(&idev->pdev->dev, |
| idev->irq, NULL, |
| intel_irq, |
| IRQF_ONESHOT, |
| "bt-host-wake", idev); |
| if (err) { |
| BT_ERR("hu %p, unable to allocate irq-%d", |
| hu, idev->irq); |
| break; |
| } |
| |
| device_wakeup_enable(&idev->pdev->dev); |
| |
| pm_runtime_set_active(&idev->pdev->dev); |
| pm_runtime_use_autosuspend(&idev->pdev->dev); |
| pm_runtime_set_autosuspend_delay(&idev->pdev->dev, |
| LPM_SUSPEND_DELAY_MS); |
| pm_runtime_enable(&idev->pdev->dev); |
| } else if (!powered && device_may_wakeup(&idev->pdev->dev)) { |
| devm_free_irq(&idev->pdev->dev, idev->irq, idev); |
| device_wakeup_disable(&idev->pdev->dev); |
| |
| pm_runtime_disable(&idev->pdev->dev); |
| } |
| } |
| |
| mutex_unlock(&intel_device_list_lock); |
| |
| return err; |
| } |
| |
| static void intel_busy_work(struct work_struct *work) |
| { |
| struct list_head *p; |
| struct intel_data *intel = container_of(work, struct intel_data, |
| busy_work); |
| |
| /* Link is busy, delay the suspend */ |
| mutex_lock(&intel_device_list_lock); |
| list_for_each(p, &intel_device_list) { |
| struct intel_device *idev = list_entry(p, struct intel_device, |
| list); |
| |
| if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) { |
| pm_runtime_get(&idev->pdev->dev); |
| pm_runtime_mark_last_busy(&idev->pdev->dev); |
| pm_runtime_put_autosuspend(&idev->pdev->dev); |
| break; |
| } |
| } |
| mutex_unlock(&intel_device_list_lock); |
| } |
| |
| static int intel_open(struct hci_uart *hu) |
| { |
| struct intel_data *intel; |
| |
| BT_DBG("hu %p", hu); |
| |
| intel = kzalloc(sizeof(*intel), GFP_KERNEL); |
| if (!intel) |
| return -ENOMEM; |
| |
| skb_queue_head_init(&intel->txq); |
| INIT_WORK(&intel->busy_work, intel_busy_work); |
| |
| intel->hu = hu; |
| |
| hu->priv = intel; |
| |
| if (!intel_set_power(hu, true)) |
| set_bit(STATE_BOOTING, &intel->flags); |
| |
| return 0; |
| } |
| |
| static int intel_close(struct hci_uart *hu) |
| { |
| struct intel_data *intel = hu->priv; |
| |
| BT_DBG("hu %p", hu); |
| |
| cancel_work_sync(&intel->busy_work); |
| |
| intel_set_power(hu, false); |
| |
| skb_queue_purge(&intel->txq); |
| kfree_skb(intel->rx_skb); |
| kfree(intel); |
| |
| hu->priv = NULL; |
| return 0; |
| } |
| |
| static int intel_flush(struct hci_uart *hu) |
| { |
| struct intel_data *intel = hu->priv; |
| |
| BT_DBG("hu %p", hu); |
| |
| skb_queue_purge(&intel->txq); |
| |
| return 0; |
| } |
| |
| static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) |
| { |
| struct sk_buff *skb; |
| struct hci_event_hdr *hdr; |
| struct hci_ev_cmd_complete *evt; |
| |
| skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC); |
| if (!skb) |
| return -ENOMEM; |
| |
| hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr)); |
| hdr->evt = HCI_EV_CMD_COMPLETE; |
| hdr->plen = sizeof(*evt) + 1; |
| |
| evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt)); |
| evt->ncmd = 0x01; |
| evt->opcode = cpu_to_le16(opcode); |
| |
| *skb_put(skb, 1) = 0x00; |
| |
| bt_cb(skb)->pkt_type = HCI_EVENT_PKT; |
| |
| return hci_recv_frame(hdev, skb); |
| } |
| |
| static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed) |
| { |
| struct intel_data *intel = hu->priv; |
| struct hci_dev *hdev = hu->hdev; |
| u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 }; |
| struct sk_buff *skb; |
| int err; |
| |
| /* This can be the first command sent to the chip, check |
| * that the controller is ready. |
| */ |
| err = intel_wait_booting(hu); |
| |
| clear_bit(STATE_BOOTING, &intel->flags); |
| |
| /* In case of timeout, try to continue anyway */ |
| if (err && err != ETIMEDOUT) |
| return err; |
| |
| bt_dev_info(hdev, "Change controller speed to %d", speed); |
| |
| speed_cmd[3] = intel_convert_speed(speed); |
| if (speed_cmd[3] == 0xff) { |
| bt_dev_err(hdev, "Unsupported speed"); |
| return -EINVAL; |
| } |
| |
| /* Device will not accept speed change if Intel version has not been |
| * previously requested. |
| */ |
| skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel version information failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| kfree_skb(skb); |
| |
| skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL); |
| if (!skb) { |
| bt_dev_err(hdev, "Failed to alloc memory for baudrate packet"); |
| return -ENOMEM; |
| } |
| |
| memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd)); |
| bt_cb(skb)->pkt_type = HCI_COMMAND_PKT; |
| |
| hci_uart_set_flow_control(hu, true); |
| |
| skb_queue_tail(&intel->txq, skb); |
| hci_uart_tx_wakeup(hu); |
| |
| /* wait 100ms to change baudrate on controller side */ |
| msleep(100); |
| |
| hci_uart_set_baudrate(hu, speed); |
| hci_uart_set_flow_control(hu, false); |
| |
| return 0; |
| } |
| |
| static int intel_setup(struct hci_uart *hu) |
| { |
| static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01, |
| 0x00, 0x08, 0x04, 0x00 }; |
| static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b }; |
| struct intel_data *intel = hu->priv; |
| struct intel_device *idev = NULL; |
| struct hci_dev *hdev = hu->hdev; |
| struct sk_buff *skb; |
| struct intel_version *ver; |
| struct intel_boot_params *params; |
| struct list_head *p; |
| const struct firmware *fw; |
| const u8 *fw_ptr; |
| char fwname[64]; |
| u32 frag_len; |
| ktime_t calltime, delta, rettime; |
| unsigned long long duration; |
| unsigned int init_speed, oper_speed; |
| int speed_change = 0; |
| int err; |
| |
| bt_dev_dbg(hdev, "start intel_setup"); |
| |
| hu->hdev->set_bdaddr = btintel_set_bdaddr; |
| |
| calltime = ktime_get(); |
| |
| if (hu->init_speed) |
| init_speed = hu->init_speed; |
| else |
| init_speed = hu->proto->init_speed; |
| |
| if (hu->oper_speed) |
| oper_speed = hu->oper_speed; |
| else |
| oper_speed = hu->proto->oper_speed; |
| |
| if (oper_speed && init_speed && oper_speed != init_speed) |
| speed_change = 1; |
| |
| /* Check that the controller is ready */ |
| err = intel_wait_booting(hu); |
| |
| clear_bit(STATE_BOOTING, &intel->flags); |
| |
| /* In case of timeout, try to continue anyway */ |
| if (err && err != ETIMEDOUT) |
| return err; |
| |
| set_bit(STATE_BOOTLOADER, &intel->flags); |
| |
| /* Read the Intel version information to determine if the device |
| * is in bootloader mode or if it already has operational firmware |
| * loaded. |
| */ |
| skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel version information failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| if (skb->len != sizeof(*ver)) { |
| bt_dev_err(hdev, "Intel version event size mismatch"); |
| kfree_skb(skb); |
| return -EILSEQ; |
| } |
| |
| ver = (struct intel_version *)skb->data; |
| if (ver->status) { |
| bt_dev_err(hdev, "Intel version command failure (%02x)", |
| ver->status); |
| err = -bt_to_errno(ver->status); |
| kfree_skb(skb); |
| return err; |
| } |
| |
| /* The hardware platform number has a fixed value of 0x37 and |
| * for now only accept this single value. |
| */ |
| if (ver->hw_platform != 0x37) { |
| bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", |
| ver->hw_platform); |
| kfree_skb(skb); |
| return -EINVAL; |
| } |
| |
| /* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is |
| * supported by this firmware loading method. This check has been |
| * put in place to ensure correct forward compatibility options |
| * when newer hardware variants come along. |
| */ |
| if (ver->hw_variant != 0x0b) { |
| bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", |
| ver->hw_variant); |
| kfree_skb(skb); |
| return -EINVAL; |
| } |
| |
| btintel_version_info(hdev, ver); |
| |
| /* The firmware variant determines if the device is in bootloader |
| * mode or is running operational firmware. The value 0x06 identifies |
| * the bootloader and the value 0x23 identifies the operational |
| * firmware. |
| * |
| * When the operational firmware is already present, then only |
| * the check for valid Bluetooth device address is needed. This |
| * determines if the device will be added as configured or |
| * unconfigured controller. |
| * |
| * It is not possible to use the Secure Boot Parameters in this |
| * case since that command is only available in bootloader mode. |
| */ |
| if (ver->fw_variant == 0x23) { |
| kfree_skb(skb); |
| clear_bit(STATE_BOOTLOADER, &intel->flags); |
| btintel_check_bdaddr(hdev); |
| return 0; |
| } |
| |
| /* If the device is not in bootloader mode, then the only possible |
| * choice is to return an error and abort the device initialization. |
| */ |
| if (ver->fw_variant != 0x06) { |
| bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)", |
| ver->fw_variant); |
| kfree_skb(skb); |
| return -ENODEV; |
| } |
| |
| kfree_skb(skb); |
| |
| /* Read the secure boot parameters to identify the operating |
| * details of the bootloader. |
| */ |
| skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", |
| PTR_ERR(skb)); |
| return PTR_ERR(skb); |
| } |
| |
| if (skb->len != sizeof(*params)) { |
| bt_dev_err(hdev, "Intel boot parameters size mismatch"); |
| kfree_skb(skb); |
| return -EILSEQ; |
| } |
| |
| params = (struct intel_boot_params *)skb->data; |
| if (params->status) { |
| bt_dev_err(hdev, "Intel boot parameters command failure (%02x)", |
| params->status); |
| err = -bt_to_errno(params->status); |
| kfree_skb(skb); |
| return err; |
| } |
| |
| bt_dev_info(hdev, "Device revision is %u", |
| le16_to_cpu(params->dev_revid)); |
| |
| bt_dev_info(hdev, "Secure boot is %s", |
| params->secure_boot ? "enabled" : "disabled"); |
| |
| bt_dev_info(hdev, "Minimum firmware build %u week %u %u", |
| params->min_fw_build_nn, params->min_fw_build_cw, |
| 2000 + params->min_fw_build_yy); |
| |
| /* It is required that every single firmware fragment is acknowledged |
| * with a command complete event. If the boot parameters indicate |
| * that this bootloader does not send them, then abort the setup. |
| */ |
| if (params->limited_cce != 0x00) { |
| bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", |
| params->limited_cce); |
| kfree_skb(skb); |
| return -EINVAL; |
| } |
| |
| /* If the OTP has no valid Bluetooth device address, then there will |
| * also be no valid address for the operational firmware. |
| */ |
| if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { |
| bt_dev_info(hdev, "No device address configured"); |
| set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); |
| } |
| |
| /* With this Intel bootloader only the hardware variant and device |
| * revision information are used to select the right firmware. |
| * |
| * Currently this bootloader support is limited to hardware variant |
| * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b). |
| */ |
| snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi", |
| le16_to_cpu(params->dev_revid)); |
| |
| err = request_firmware(&fw, fwname, &hdev->dev); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to load Intel firmware file (%d)", |
| err); |
| kfree_skb(skb); |
| return err; |
| } |
| |
| bt_dev_info(hdev, "Found device firmware: %s", fwname); |
| |
| /* Save the DDC file name for later */ |
| snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc", |
| le16_to_cpu(params->dev_revid)); |
| |
| kfree_skb(skb); |
| |
| if (fw->size < 644) { |
| bt_dev_err(hdev, "Invalid size of firmware file (%zu)", |
| fw->size); |
| err = -EBADF; |
| goto done; |
| } |
| |
| set_bit(STATE_DOWNLOADING, &intel->flags); |
| |
| /* Start the firmware download transaction with the Init fragment |
| * represented by the 128 bytes of CSS header. |
| */ |
| err = btintel_secure_send(hdev, 0x00, 128, fw->data); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware header (%d)", err); |
| goto done; |
| } |
| |
| /* Send the 256 bytes of public key information from the firmware |
| * as the PKey fragment. |
| */ |
| err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware public key (%d)", |
| err); |
| goto done; |
| } |
| |
| /* Send the 256 bytes of signature information from the firmware |
| * as the Sign fragment. |
| */ |
| err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware signature (%d)", |
| err); |
| goto done; |
| } |
| |
| fw_ptr = fw->data + 644; |
| frag_len = 0; |
| |
| while (fw_ptr - fw->data < fw->size) { |
| struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); |
| |
| frag_len += sizeof(*cmd) + cmd->plen; |
| |
| bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data), |
| fw->size); |
| |
| /* The parameter length of the secure send command requires |
| * a 4 byte alignment. It happens so that the firmware file |
| * contains proper Intel_NOP commands to align the fragments |
| * as needed. |
| * |
| * Send set of commands with 4 byte alignment from the |
| * firmware data buffer as a single Data fragement. |
| */ |
| if (frag_len % 4) |
| continue; |
| |
| /* Send each command from the firmware data buffer as |
| * a single Data fragment. |
| */ |
| err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); |
| if (err < 0) { |
| bt_dev_err(hdev, "Failed to send firmware data (%d)", |
| err); |
| goto done; |
| } |
| |
| fw_ptr += frag_len; |
| frag_len = 0; |
| } |
| |
| set_bit(STATE_FIRMWARE_LOADED, &intel->flags); |
| |
| bt_dev_info(hdev, "Waiting for firmware download to complete"); |
| |
| /* Before switching the device into operational mode and with that |
| * booting the loaded firmware, wait for the bootloader notification |
| * that all fragments have been successfully received. |
| * |
| * When the event processing receives the notification, then the |
| * STATE_DOWNLOADING flag will be cleared. |
| * |
| * The firmware loading should not take longer than 5 seconds |
| * and thus just timeout if that happens and fail the setup |
| * of this device. |
| */ |
| err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING, |
| TASK_INTERRUPTIBLE, |
| msecs_to_jiffies(5000)); |
| if (err == 1) { |
| bt_dev_err(hdev, "Firmware loading interrupted"); |
| err = -EINTR; |
| goto done; |
| } |
| |
| if (err) { |
| bt_dev_err(hdev, "Firmware loading timeout"); |
| err = -ETIMEDOUT; |
| goto done; |
| } |
| |
| if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) { |
| bt_dev_err(hdev, "Firmware loading failed"); |
| err = -ENOEXEC; |
| goto done; |
| } |
| |
| rettime = ktime_get(); |
| delta = ktime_sub(rettime, calltime); |
| duration = (unsigned long long) ktime_to_ns(delta) >> 10; |
| |
| bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); |
| |
| done: |
| release_firmware(fw); |
| |
| if (err < 0) |
| return err; |
| |
| /* We need to restore the default speed before Intel reset */ |
| if (speed_change) { |
| err = intel_set_baudrate(hu, init_speed); |
| if (err) |
| return err; |
| } |
| |
| calltime = ktime_get(); |
| |
| set_bit(STATE_BOOTING, &intel->flags); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param, |
| HCI_INIT_TIMEOUT); |
| if (IS_ERR(skb)) |
| return PTR_ERR(skb); |
| |
| kfree_skb(skb); |
| |
| /* The bootloader will not indicate when the device is ready. This |
| * is done by the operational firmware sending bootup notification. |
| * |
| * Booting into operational firmware should not take longer than |
| * 1 second. However if that happens, then just fail the setup |
| * since something went wrong. |
| */ |
| bt_dev_info(hdev, "Waiting for device to boot"); |
| |
| err = intel_wait_booting(hu); |
| if (err) |
| return err; |
| |
| clear_bit(STATE_BOOTING, &intel->flags); |
| |
| rettime = ktime_get(); |
| delta = ktime_sub(rettime, calltime); |
| duration = (unsigned long long) ktime_to_ns(delta) >> 10; |
| |
| bt_dev_info(hdev, "Device booted in %llu usecs", duration); |
| |
| /* Enable LPM if matching pdev with wakeup enabled */ |
| mutex_lock(&intel_device_list_lock); |
| list_for_each(p, &intel_device_list) { |
| struct intel_device *dev = list_entry(p, struct intel_device, |
| list); |
| if (hu->tty->dev->parent == dev->pdev->dev.parent) { |
| if (device_may_wakeup(&dev->pdev->dev)) |
| idev = dev; |
| break; |
| } |
| } |
| mutex_unlock(&intel_device_list_lock); |
| |
| if (!idev) |
| goto no_lpm; |
| |
| bt_dev_info(hdev, "Enabling LPM"); |
| |
| skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param, |
| HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) { |
| bt_dev_err(hdev, "Failed to enable LPM"); |
| goto no_lpm; |
| } |
| kfree_skb(skb); |
| |
| set_bit(STATE_LPM_ENABLED, &intel->flags); |
| |
| no_lpm: |
| /* Ignore errors, device can work without DDC parameters */ |
| btintel_load_ddc_config(hdev, fwname); |
| |
| skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT); |
| if (IS_ERR(skb)) |
| return PTR_ERR(skb); |
| kfree_skb(skb); |
| |
| if (speed_change) { |
| err = intel_set_baudrate(hu, oper_speed); |
| if (err) |
| return err; |
| } |
| |
| bt_dev_info(hdev, "Setup complete"); |
| |
| clear_bit(STATE_BOOTLOADER, &intel->flags); |
| |
| return 0; |
| } |
| |
| static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| struct hci_uart *hu = hci_get_drvdata(hdev); |
| struct intel_data *intel = hu->priv; |
| struct hci_event_hdr *hdr; |
| |
| if (!test_bit(STATE_BOOTLOADER, &intel->flags) && |
| !test_bit(STATE_BOOTING, &intel->flags)) |
| goto recv; |
| |
| hdr = (void *)skb->data; |
| |
| /* When the firmware loading completes the device sends |
| * out a vendor specific event indicating the result of |
| * the firmware loading. |
| */ |
| if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 && |
| skb->data[2] == 0x06) { |
| if (skb->data[3] != 0x00) |
| set_bit(STATE_FIRMWARE_FAILED, &intel->flags); |
| |
| if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) && |
| test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) { |
| smp_mb__after_atomic(); |
| wake_up_bit(&intel->flags, STATE_DOWNLOADING); |
| } |
| |
| /* When switching to the operational firmware the device |
| * sends a vendor specific event indicating that the bootup |
| * completed. |
| */ |
| } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 && |
| skb->data[2] == 0x02) { |
| if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) { |
| smp_mb__after_atomic(); |
| wake_up_bit(&intel->flags, STATE_BOOTING); |
| } |
| } |
| recv: |
| return hci_recv_frame(hdev, skb); |
| } |
| |
| static void intel_recv_lpm_notify(struct hci_dev *hdev, int value) |
| { |
| struct hci_uart *hu = hci_get_drvdata(hdev); |
| struct intel_data *intel = hu->priv; |
| |
| bt_dev_dbg(hdev, "TX idle notification (%d)", value); |
| |
| if (value) { |
| set_bit(STATE_TX_ACTIVE, &intel->flags); |
| schedule_work(&intel->busy_work); |
| } else { |
| clear_bit(STATE_TX_ACTIVE, &intel->flags); |
| } |
| } |
| |
| static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb) |
| { |
| struct hci_lpm_pkt *lpm = (void *)skb->data; |
| struct hci_uart *hu = hci_get_drvdata(hdev); |
| struct intel_data *intel = hu->priv; |
| |
| switch (lpm->opcode) { |
| case LPM_OP_TX_NOTIFY: |
| if (lpm->dlen < 1) { |
| bt_dev_err(hu->hdev, "Invalid LPM notification packet"); |
| break; |
| } |
| intel_recv_lpm_notify(hdev, lpm->data[0]); |
| break; |
| case LPM_OP_SUSPEND_ACK: |
| set_bit(STATE_SUSPENDED, &intel->flags); |
| if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { |
| smp_mb__after_atomic(); |
| wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); |
| } |
| break; |
| case LPM_OP_RESUME_ACK: |
| clear_bit(STATE_SUSPENDED, &intel->flags); |
| if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) { |
| smp_mb__after_atomic(); |
| wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); |
| } |
| break; |
| default: |
| bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode); |
| break; |
| } |
| |
| kfree_skb(skb); |
| |
| return 0; |
| } |
| |
| #define INTEL_RECV_LPM \ |
| .type = HCI_LPM_PKT, \ |
| .hlen = HCI_LPM_HDR_SIZE, \ |
| .loff = 1, \ |
| .lsize = 1, \ |
| .maxlen = HCI_LPM_MAX_SIZE |
| |
| static const struct h4_recv_pkt intel_recv_pkts[] = { |
| { H4_RECV_ACL, .recv = hci_recv_frame }, |
| { H4_RECV_SCO, .recv = hci_recv_frame }, |
| { H4_RECV_EVENT, .recv = intel_recv_event }, |
| { INTEL_RECV_LPM, .recv = intel_recv_lpm }, |
| }; |
| |
| static int intel_recv(struct hci_uart *hu, const void *data, int count) |
| { |
| struct intel_data *intel = hu->priv; |
| |
| if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) |
| return -EUNATCH; |
| |
| intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count, |
| intel_recv_pkts, |
| ARRAY_SIZE(intel_recv_pkts)); |
| if (IS_ERR(intel->rx_skb)) { |
| int err = PTR_ERR(intel->rx_skb); |
| bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); |
| intel->rx_skb = NULL; |
| return err; |
| } |
| |
| return count; |
| } |
| |
| static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb) |
| { |
| struct intel_data *intel = hu->priv; |
| struct list_head *p; |
| |
| BT_DBG("hu %p skb %p", hu, skb); |
| |
| /* Be sure our controller is resumed and potential LPM transaction |
| * completed before enqueuing any packet. |
| */ |
| mutex_lock(&intel_device_list_lock); |
| list_for_each(p, &intel_device_list) { |
| struct intel_device *idev = list_entry(p, struct intel_device, |
| list); |
| |
| if (hu->tty->dev->parent == idev->pdev->dev.parent) { |
| pm_runtime_get_sync(&idev->pdev->dev); |
| pm_runtime_mark_last_busy(&idev->pdev->dev); |
| pm_runtime_put_autosuspend(&idev->pdev->dev); |
| break; |
| } |
| } |
| mutex_unlock(&intel_device_list_lock); |
| |
| skb_queue_tail(&intel->txq, skb); |
| |
| return 0; |
| } |
| |
| static struct sk_buff *intel_dequeue(struct hci_uart *hu) |
| { |
| struct intel_data *intel = hu->priv; |
| struct sk_buff *skb; |
| |
| skb = skb_dequeue(&intel->txq); |
| if (!skb) |
| return skb; |
| |
| if (test_bit(STATE_BOOTLOADER, &intel->flags) && |
| (bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) { |
| struct hci_command_hdr *cmd = (void *)skb->data; |
| __u16 opcode = le16_to_cpu(cmd->opcode); |
| |
| /* When the 0xfc01 command is issued to boot into |
| * the operational firmware, it will actually not |
| * send a command complete event. To keep the flow |
| * control working inject that event here. |
| */ |
| if (opcode == 0xfc01) |
| inject_cmd_complete(hu->hdev, opcode); |
| } |
| |
| /* Prepend skb with frame type */ |
| memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1); |
| |
| return skb; |
| } |
| |
| static const struct hci_uart_proto intel_proto = { |
| .id = HCI_UART_INTEL, |
| .name = "Intel", |
| .init_speed = 115200, |
| .oper_speed = 3000000, |
| .open = intel_open, |
| .close = intel_close, |
| .flush = intel_flush, |
| .setup = intel_setup, |
| .set_baudrate = intel_set_baudrate, |
| .recv = intel_recv, |
| .enqueue = intel_enqueue, |
| .dequeue = intel_dequeue, |
| }; |
| |
| #ifdef CONFIG_ACPI |
| static const struct acpi_device_id intel_acpi_match[] = { |
| { "INT33E1", 0 }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(acpi, intel_acpi_match); |
| #endif |
| |
| #ifdef CONFIG_PM |
| static int intel_suspend_device(struct device *dev) |
| { |
| struct intel_device *idev = dev_get_drvdata(dev); |
| |
| mutex_lock(&idev->hu_lock); |
| if (idev->hu) |
| intel_lpm_suspend(idev->hu); |
| mutex_unlock(&idev->hu_lock); |
| |
| return 0; |
| } |
| |
| static int intel_resume_device(struct device *dev) |
| { |
| struct intel_device *idev = dev_get_drvdata(dev); |
| |
| mutex_lock(&idev->hu_lock); |
| if (idev->hu) |
| intel_lpm_resume(idev->hu); |
| mutex_unlock(&idev->hu_lock); |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int intel_suspend(struct device *dev) |
| { |
| struct intel_device *idev = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| enable_irq_wake(idev->irq); |
| |
| return intel_suspend_device(dev); |
| } |
| |
| static int intel_resume(struct device *dev) |
| { |
| struct intel_device *idev = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| disable_irq_wake(idev->irq); |
| |
| return intel_resume_device(dev); |
| } |
| #endif |
| |
| static const struct dev_pm_ops intel_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) |
| SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL) |
| }; |
| |
| static int intel_probe(struct platform_device *pdev) |
| { |
| struct intel_device *idev; |
| |
| idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); |
| if (!idev) |
| return -ENOMEM; |
| |
| mutex_init(&idev->hu_lock); |
| |
| idev->pdev = pdev; |
| |
| idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset", |
| GPIOD_OUT_LOW); |
| if (IS_ERR(idev->reset)) { |
| dev_err(&pdev->dev, "Unable to retrieve gpio\n"); |
| return PTR_ERR(idev->reset); |
| } |
| |
| idev->irq = platform_get_irq(pdev, 0); |
| if (idev->irq < 0) { |
| struct gpio_desc *host_wake; |
| |
| dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n"); |
| |
| host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake", |
| GPIOD_IN); |
| if (IS_ERR(host_wake)) { |
| dev_err(&pdev->dev, "Unable to retrieve IRQ\n"); |
| goto no_irq; |
| } |
| |
| idev->irq = gpiod_to_irq(host_wake); |
| if (idev->irq < 0) { |
| dev_err(&pdev->dev, "No corresponding irq for gpio\n"); |
| goto no_irq; |
| } |
| } |
| |
| /* Only enable wake-up/irq when controller is powered */ |
| device_set_wakeup_capable(&pdev->dev, true); |
| device_wakeup_disable(&pdev->dev); |
| |
| no_irq: |
| platform_set_drvdata(pdev, idev); |
| |
| /* Place this instance on the device list */ |
| mutex_lock(&intel_device_list_lock); |
| list_add_tail(&idev->list, &intel_device_list); |
| mutex_unlock(&intel_device_list_lock); |
| |
| dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n", |
| desc_to_gpio(idev->reset), idev->irq); |
| |
| return 0; |
| } |
| |
| static int intel_remove(struct platform_device *pdev) |
| { |
| struct intel_device *idev = platform_get_drvdata(pdev); |
| |
| device_wakeup_disable(&pdev->dev); |
| |
| mutex_lock(&intel_device_list_lock); |
| list_del(&idev->list); |
| mutex_unlock(&intel_device_list_lock); |
| |
| dev_info(&pdev->dev, "unregistered.\n"); |
| |
| return 0; |
| } |
| |
| static struct platform_driver intel_driver = { |
| .probe = intel_probe, |
| .remove = intel_remove, |
| .driver = { |
| .name = "hci_intel", |
| .acpi_match_table = ACPI_PTR(intel_acpi_match), |
| .pm = &intel_pm_ops, |
| }, |
| }; |
| |
| int __init intel_init(void) |
| { |
| platform_driver_register(&intel_driver); |
| |
| return hci_uart_register_proto(&intel_proto); |
| } |
| |
| int __exit intel_deinit(void) |
| { |
| platform_driver_unregister(&intel_driver); |
| |
| return hci_uart_unregister_proto(&intel_proto); |
| } |