| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> |
| */ |
| #include "sja1105.h" |
| |
| #define SJA1105_TAS_CLKSRC_DISABLED 0 |
| #define SJA1105_TAS_CLKSRC_STANDALONE 1 |
| #define SJA1105_TAS_CLKSRC_AS6802 2 |
| #define SJA1105_TAS_CLKSRC_PTP 3 |
| #define SJA1105_TAS_MAX_DELTA BIT(19) |
| #define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0) |
| |
| /* This is not a preprocessor macro because the "ns" argument may or may not be |
| * s64 at caller side. This ensures it is properly type-cast before div_s64. |
| */ |
| static s64 ns_to_sja1105_delta(s64 ns) |
| { |
| return div_s64(ns, 200); |
| } |
| |
| /* Lo and behold: the egress scheduler from hell. |
| * |
| * At the hardware level, the Time-Aware Shaper holds a global linear arrray of |
| * all schedule entries for all ports. These are the Gate Control List (GCL) |
| * entries, let's call them "timeslots" for short. This linear array of |
| * timeslots is held in BLK_IDX_SCHEDULE. |
| * |
| * Then there are a maximum of 8 "execution threads" inside the switch, which |
| * iterate cyclically through the "schedule". Each "cycle" has an entry point |
| * and an exit point, both being timeslot indices in the schedule table. The |
| * hardware calls each cycle a "subschedule". |
| * |
| * Subschedule (cycle) i starts when |
| * ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta. |
| * |
| * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from |
| * k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to |
| * k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i] |
| * |
| * For each schedule entry (timeslot) k, the engine executes the gate control |
| * list entry for the duration of BLK_IDX_SCHEDULE[k].delta. |
| * |
| * +---------+ |
| * | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS |
| * +---------+ |
| * | |
| * +-----------------+ |
| * | .actsubsch |
| * BLK_IDX_SCHEDULE_ENTRY_POINTS v |
| * +-------+-------+ |
| * |cycle 0|cycle 1| |
| * +-------+-------+ |
| * | | | | |
| * +----------------+ | | +-------------------------------------+ |
| * | .subschindx | | .subschindx | |
| * | | +---------------+ | |
| * | .address | .address | | |
| * | | | | |
| * | | | | |
| * | BLK_IDX_SCHEDULE v v | |
| * | +-------+-------+-------+-------+-------+------+ | |
| * | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| | |
| * | +-------+-------+-------+-------+-------+------+ | |
| * | ^ ^ ^ ^ | |
| * | | | | | | |
| * | +-------------------------+ | | | | |
| * | | +-------------------------------+ | | | |
| * | | | +-------------------+ | | |
| * | | | | | | |
| * | +---------------------------------------------------------------+ | |
| * | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| | |
| * | +---------------------------------------------------------------+ | |
| * | ^ ^ BLK_IDX_SCHEDULE_PARAMS | |
| * | | | | |
| * +--------+ +-------------------------------------------+ |
| * |
| * In the above picture there are two subschedules (cycles): |
| * |
| * - cycle 0: iterates the schedule table from 0 to 2 (and back) |
| * - cycle 1: iterates the schedule table from 3 to 5 (and back) |
| * |
| * All other possible execution threads must be marked as unused by making |
| * their "subschedule end index" (subscheind) equal to the last valid |
| * subschedule's end index (in this case 5). |
| */ |
| static int sja1105_init_scheduling(struct sja1105_private *priv) |
| { |
| struct sja1105_schedule_entry_points_entry *schedule_entry_points; |
| struct sja1105_schedule_entry_points_params_entry |
| *schedule_entry_points_params; |
| struct sja1105_schedule_params_entry *schedule_params; |
| struct sja1105_tas_data *tas_data = &priv->tas_data; |
| struct sja1105_schedule_entry *schedule; |
| struct sja1105_table *table; |
| int schedule_start_idx; |
| s64 entry_point_delta; |
| int schedule_end_idx; |
| int num_entries = 0; |
| int num_cycles = 0; |
| int cycle = 0; |
| int i, k = 0; |
| int port; |
| |
| /* Discard previous Schedule Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; |
| if (table->entry_count) { |
| kfree(table->entries); |
| table->entry_count = 0; |
| } |
| |
| /* Discard previous Schedule Entry Points Parameters Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; |
| if (table->entry_count) { |
| kfree(table->entries); |
| table->entry_count = 0; |
| } |
| |
| /* Discard previous Schedule Parameters Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; |
| if (table->entry_count) { |
| kfree(table->entries); |
| table->entry_count = 0; |
| } |
| |
| /* Discard previous Schedule Entry Points Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; |
| if (table->entry_count) { |
| kfree(table->entries); |
| table->entry_count = 0; |
| } |
| |
| /* Figure out the dimensioning of the problem */ |
| for (port = 0; port < SJA1105_NUM_PORTS; port++) { |
| if (tas_data->offload[port]) { |
| num_entries += tas_data->offload[port]->num_entries; |
| num_cycles++; |
| } |
| } |
| |
| /* Nothing to do */ |
| if (!num_cycles) |
| return 0; |
| |
| /* Pre-allocate space in the static config tables */ |
| |
| /* Schedule Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; |
| table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size, |
| GFP_KERNEL); |
| if (!table->entries) |
| return -ENOMEM; |
| table->entry_count = num_entries; |
| schedule = table->entries; |
| |
| /* Schedule Points Parameters Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; |
| table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT, |
| table->ops->unpacked_entry_size, GFP_KERNEL); |
| if (!table->entries) |
| /* Previously allocated memory will be freed automatically in |
| * sja1105_static_config_free. This is true for all early |
| * returns below. |
| */ |
| return -ENOMEM; |
| table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT; |
| schedule_entry_points_params = table->entries; |
| |
| /* Schedule Parameters Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; |
| table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT, |
| table->ops->unpacked_entry_size, GFP_KERNEL); |
| if (!table->entries) |
| return -ENOMEM; |
| table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT; |
| schedule_params = table->entries; |
| |
| /* Schedule Entry Points Table */ |
| table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; |
| table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size, |
| GFP_KERNEL); |
| if (!table->entries) |
| return -ENOMEM; |
| table->entry_count = num_cycles; |
| schedule_entry_points = table->entries; |
| |
| /* Finally start populating the static config tables */ |
| schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_STANDALONE; |
| schedule_entry_points_params->actsubsch = num_cycles - 1; |
| |
| for (port = 0; port < SJA1105_NUM_PORTS; port++) { |
| const struct tc_taprio_qopt_offload *offload; |
| |
| offload = tas_data->offload[port]; |
| if (!offload) |
| continue; |
| |
| schedule_start_idx = k; |
| schedule_end_idx = k + offload->num_entries - 1; |
| /* TODO this is the base time for the port's subschedule, |
| * relative to PTPSCHTM. But as we're using the standalone |
| * clock source and not PTP clock as time reference, there's |
| * little point in even trying to put more logic into this, |
| * like preserving the phases between the subschedules of |
| * different ports. We'll get all of that when switching to the |
| * PTP clock source. |
| */ |
| entry_point_delta = 1; |
| |
| schedule_entry_points[cycle].subschindx = cycle; |
| schedule_entry_points[cycle].delta = entry_point_delta; |
| schedule_entry_points[cycle].address = schedule_start_idx; |
| |
| /* The subschedule end indices need to be |
| * monotonically increasing. |
| */ |
| for (i = cycle; i < 8; i++) |
| schedule_params->subscheind[i] = schedule_end_idx; |
| |
| for (i = 0; i < offload->num_entries; i++, k++) { |
| s64 delta_ns = offload->entries[i].interval; |
| |
| schedule[k].delta = ns_to_sja1105_delta(delta_ns); |
| schedule[k].destports = BIT(port); |
| schedule[k].resmedia_en = true; |
| schedule[k].resmedia = SJA1105_GATE_MASK & |
| ~offload->entries[i].gate_mask; |
| } |
| cycle++; |
| } |
| |
| return 0; |
| } |
| |
| /* Be there 2 port subschedules, each executing an arbitrary number of gate |
| * open/close events cyclically. |
| * None of those gate events must ever occur at the exact same time, otherwise |
| * the switch is known to act in exotically strange ways. |
| * However the hardware doesn't bother performing these integrity checks. |
| * So here we are with the task of validating whether the new @admin offload |
| * has any conflict with the already established TAS configuration in |
| * tas_data->offload. We already know the other ports are in harmony with one |
| * another, otherwise we wouldn't have saved them. |
| * Each gate event executes periodically, with a period of @cycle_time and a |
| * phase given by its cycle's @base_time plus its offset within the cycle |
| * (which in turn is given by the length of the events prior to it). |
| * There are two aspects to possible collisions: |
| * - Collisions within one cycle's (actually the longest cycle's) time frame. |
| * For that, we need to compare the cartesian product of each possible |
| * occurrence of each event within one cycle time. |
| * - Collisions in the future. Events may not collide within one cycle time, |
| * but if two port schedules don't have the same periodicity (aka the cycle |
| * times aren't multiples of one another), they surely will some time in the |
| * future (actually they will collide an infinite amount of times). |
| */ |
| static bool |
| sja1105_tas_check_conflicts(struct sja1105_private *priv, int port, |
| const struct tc_taprio_qopt_offload *admin) |
| { |
| struct sja1105_tas_data *tas_data = &priv->tas_data; |
| const struct tc_taprio_qopt_offload *offload; |
| s64 max_cycle_time, min_cycle_time; |
| s64 delta1, delta2; |
| s64 rbt1, rbt2; |
| s64 stop_time; |
| s64 t1, t2; |
| int i, j; |
| s32 rem; |
| |
| offload = tas_data->offload[port]; |
| if (!offload) |
| return false; |
| |
| /* Check if the two cycle times are multiples of one another. |
| * If they aren't, then they will surely collide. |
| */ |
| max_cycle_time = max(offload->cycle_time, admin->cycle_time); |
| min_cycle_time = min(offload->cycle_time, admin->cycle_time); |
| div_s64_rem(max_cycle_time, min_cycle_time, &rem); |
| if (rem) |
| return true; |
| |
| /* Calculate the "reduced" base time of each of the two cycles |
| * (transposed back as close to 0 as possible) by dividing to |
| * the cycle time. |
| */ |
| div_s64_rem(offload->base_time, offload->cycle_time, &rem); |
| rbt1 = rem; |
| |
| div_s64_rem(admin->base_time, admin->cycle_time, &rem); |
| rbt2 = rem; |
| |
| stop_time = max_cycle_time + max(rbt1, rbt2); |
| |
| /* delta1 is the relative base time of each GCL entry within |
| * the established ports' TAS config. |
| */ |
| for (i = 0, delta1 = 0; |
| i < offload->num_entries; |
| delta1 += offload->entries[i].interval, i++) { |
| /* delta2 is the relative base time of each GCL entry |
| * within the newly added TAS config. |
| */ |
| for (j = 0, delta2 = 0; |
| j < admin->num_entries; |
| delta2 += admin->entries[j].interval, j++) { |
| /* t1 follows all possible occurrences of the |
| * established ports' GCL entry i within the |
| * first cycle time. |
| */ |
| for (t1 = rbt1 + delta1; |
| t1 <= stop_time; |
| t1 += offload->cycle_time) { |
| /* t2 follows all possible occurrences |
| * of the newly added GCL entry j |
| * within the first cycle time. |
| */ |
| for (t2 = rbt2 + delta2; |
| t2 <= stop_time; |
| t2 += admin->cycle_time) { |
| if (t1 == t2) { |
| dev_warn(priv->ds->dev, |
| "GCL entry %d collides with entry %d of port %d\n", |
| j, i, port); |
| return true; |
| } |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port, |
| struct tc_taprio_qopt_offload *admin) |
| { |
| struct sja1105_private *priv = ds->priv; |
| struct sja1105_tas_data *tas_data = &priv->tas_data; |
| int other_port, rc, i; |
| |
| /* Can't change an already configured port (must delete qdisc first). |
| * Can't delete the qdisc from an unconfigured port. |
| */ |
| if (!!tas_data->offload[port] == admin->enable) |
| return -EINVAL; |
| |
| if (!admin->enable) { |
| taprio_offload_free(tas_data->offload[port]); |
| tas_data->offload[port] = NULL; |
| |
| rc = sja1105_init_scheduling(priv); |
| if (rc < 0) |
| return rc; |
| |
| return sja1105_static_config_reload(priv); |
| } |
| |
| /* The cycle time extension is the amount of time the last cycle from |
| * the old OPER needs to be extended in order to phase-align with the |
| * base time of the ADMIN when that becomes the new OPER. |
| * But of course our switch needs to be reset to switch-over between |
| * the ADMIN and the OPER configs - so much for a seamless transition. |
| * So don't add insult over injury and just say we don't support cycle |
| * time extension. |
| */ |
| if (admin->cycle_time_extension) |
| return -ENOTSUPP; |
| |
| if (!ns_to_sja1105_delta(admin->base_time)) { |
| dev_err(ds->dev, "A base time of zero is not hardware-allowed\n"); |
| return -ERANGE; |
| } |
| |
| for (i = 0; i < admin->num_entries; i++) { |
| s64 delta_ns = admin->entries[i].interval; |
| s64 delta_cycles = ns_to_sja1105_delta(delta_ns); |
| bool too_long, too_short; |
| |
| too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA); |
| too_short = (delta_cycles == 0); |
| if (too_long || too_short) { |
| dev_err(priv->ds->dev, |
| "Interval %llu too %s for GCL entry %d\n", |
| delta_ns, too_long ? "long" : "short", i); |
| return -ERANGE; |
| } |
| } |
| |
| for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) { |
| if (other_port == port) |
| continue; |
| |
| if (sja1105_tas_check_conflicts(priv, other_port, admin)) |
| return -ERANGE; |
| } |
| |
| tas_data->offload[port] = taprio_offload_get(admin); |
| |
| rc = sja1105_init_scheduling(priv); |
| if (rc < 0) |
| return rc; |
| |
| return sja1105_static_config_reload(priv); |
| } |
| |
| void sja1105_tas_setup(struct dsa_switch *ds) |
| { |
| } |
| |
| void sja1105_tas_teardown(struct dsa_switch *ds) |
| { |
| struct sja1105_private *priv = ds->priv; |
| struct tc_taprio_qopt_offload *offload; |
| int port; |
| |
| for (port = 0; port < SJA1105_NUM_PORTS; port++) { |
| offload = priv->tas_data.offload[port]; |
| if (!offload) |
| continue; |
| |
| taprio_offload_free(offload); |
| } |
| } |