blob: f902922d4ae6b5cf865e005136e2919af778f39d [file] [log] [blame]
/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2007 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "intel_sdvo_regs.h"
#define SDVO_TMDS_MASK (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)
#define SDVO_RGB_MASK (SDVO_OUTPUT_RGB0 | SDVO_OUTPUT_RGB1)
#define SDVO_LVDS_MASK (SDVO_OUTPUT_LVDS0 | SDVO_OUTPUT_LVDS1)
#define SDVO_TV_MASK (SDVO_OUTPUT_CVBS0 | SDVO_OUTPUT_SVID0 | SDVO_OUTPUT_YPRPB0)
#define SDVO_OUTPUT_MASK (SDVO_TMDS_MASK | SDVO_RGB_MASK | SDVO_LVDS_MASK |\
SDVO_TV_MASK)
#define IS_TV(c) (c->output_flag & SDVO_TV_MASK)
#define IS_TMDS(c) (c->output_flag & SDVO_TMDS_MASK)
#define IS_LVDS(c) (c->output_flag & SDVO_LVDS_MASK)
#define IS_TV_OR_LVDS(c) (c->output_flag & (SDVO_TV_MASK | SDVO_LVDS_MASK))
#define IS_DIGITAL(c) (c->output_flag & (SDVO_TMDS_MASK | SDVO_LVDS_MASK))
static const char * const tv_format_names[] = {
"NTSC_M" , "NTSC_J" , "NTSC_443",
"PAL_B" , "PAL_D" , "PAL_G" ,
"PAL_H" , "PAL_I" , "PAL_M" ,
"PAL_N" , "PAL_NC" , "PAL_60" ,
"SECAM_B" , "SECAM_D" , "SECAM_G" ,
"SECAM_K" , "SECAM_K1", "SECAM_L" ,
"SECAM_60"
};
#define TV_FORMAT_NUM ARRAY_SIZE(tv_format_names)
struct intel_sdvo {
struct intel_encoder base;
struct i2c_adapter *i2c;
u8 slave_addr;
struct i2c_adapter ddc;
/* Register for the SDVO device: SDVOB or SDVOC */
i915_reg_t sdvo_reg;
/* Active outputs controlled by this SDVO output */
uint16_t controlled_output;
/*
* Capabilities of the SDVO device returned by
* intel_sdvo_get_capabilities()
*/
struct intel_sdvo_caps caps;
/* Pixel clock limitations reported by the SDVO device, in kHz */
int pixel_clock_min, pixel_clock_max;
/*
* For multiple function SDVO device,
* this is for current attached outputs.
*/
uint16_t attached_output;
/*
* Hotplug activation bits for this device
*/
uint16_t hotplug_active;
/**
* This is set if we're going to treat the device as TV-out.
*
* While we have these nice friendly flags for output types that ought
* to decide this for us, the S-Video output on our HDMI+S-Video card
* shows up as RGB1 (VGA).
*/
bool is_tv;
enum port port;
/**
* This is set if we treat the device as HDMI, instead of DVI.
*/
bool is_hdmi;
bool has_hdmi_monitor;
bool has_hdmi_audio;
bool rgb_quant_range_selectable;
/**
* This is set if we detect output of sdvo device as LVDS and
* have a valid fixed mode to use with the panel.
*/
bool is_lvds;
/**
* This is sdvo fixed pannel mode pointer
*/
struct drm_display_mode *sdvo_lvds_fixed_mode;
/* DDC bus used by this SDVO encoder */
uint8_t ddc_bus;
/*
* the sdvo flag gets lost in round trip: dtd->adjusted_mode->dtd
*/
uint8_t dtd_sdvo_flags;
};
struct intel_sdvo_connector {
struct intel_connector base;
/* Mark the type of connector */
uint16_t output_flag;
/* This contains all current supported TV format */
u8 tv_format_supported[TV_FORMAT_NUM];
int format_supported_num;
struct drm_property *tv_format;
/* add the property for the SDVO-TV */
struct drm_property *left;
struct drm_property *right;
struct drm_property *top;
struct drm_property *bottom;
struct drm_property *hpos;
struct drm_property *vpos;
struct drm_property *contrast;
struct drm_property *saturation;
struct drm_property *hue;
struct drm_property *sharpness;
struct drm_property *flicker_filter;
struct drm_property *flicker_filter_adaptive;
struct drm_property *flicker_filter_2d;
struct drm_property *tv_chroma_filter;
struct drm_property *tv_luma_filter;
struct drm_property *dot_crawl;
/* add the property for the SDVO-TV/LVDS */
struct drm_property *brightness;
/* this is to get the range of margin.*/
u32 max_hscan, max_vscan;
};
struct intel_sdvo_connector_state {
/* base.base: tv.saturation/contrast/hue/brightness */
struct intel_digital_connector_state base;
struct {
unsigned overscan_h, overscan_v, hpos, vpos, sharpness;
unsigned flicker_filter, flicker_filter_2d, flicker_filter_adaptive;
unsigned chroma_filter, luma_filter, dot_crawl;
} tv;
};
static struct intel_sdvo *to_sdvo(struct intel_encoder *encoder)
{
return container_of(encoder, struct intel_sdvo, base);
}
static struct intel_sdvo *intel_attached_sdvo(struct drm_connector *connector)
{
return to_sdvo(intel_attached_encoder(connector));
}
static struct intel_sdvo_connector *
to_intel_sdvo_connector(struct drm_connector *connector)
{
return container_of(connector, struct intel_sdvo_connector, base.base);
}
static struct intel_sdvo_connector_state *
to_intel_sdvo_connector_state(struct drm_connector_state *conn_state)
{
return container_of(conn_state, struct intel_sdvo_connector_state, base.base);
}
static bool
intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, uint16_t flags);
static bool
intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
int type);
static bool
intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector);
/**
* Writes the SDVOB or SDVOC with the given value, but always writes both
* SDVOB and SDVOC to work around apparent hardware issues (according to
* comments in the BIOS).
*/
static void intel_sdvo_write_sdvox(struct intel_sdvo *intel_sdvo, u32 val)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 bval = val, cval = val;
int i;
if (HAS_PCH_SPLIT(dev_priv)) {
I915_WRITE(intel_sdvo->sdvo_reg, val);
POSTING_READ(intel_sdvo->sdvo_reg);
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
if (HAS_PCH_IBX(dev_priv)) {
I915_WRITE(intel_sdvo->sdvo_reg, val);
POSTING_READ(intel_sdvo->sdvo_reg);
}
return;
}
if (intel_sdvo->port == PORT_B)
cval = I915_READ(GEN3_SDVOC);
else
bval = I915_READ(GEN3_SDVOB);
/*
* Write the registers twice for luck. Sometimes,
* writing them only once doesn't appear to 'stick'.
* The BIOS does this too. Yay, magic
*/
for (i = 0; i < 2; i++)
{
I915_WRITE(GEN3_SDVOB, bval);
POSTING_READ(GEN3_SDVOB);
I915_WRITE(GEN3_SDVOC, cval);
POSTING_READ(GEN3_SDVOC);
}
}
static bool intel_sdvo_read_byte(struct intel_sdvo *intel_sdvo, u8 addr, u8 *ch)
{
struct i2c_msg msgs[] = {
{
.addr = intel_sdvo->slave_addr,
.flags = 0,
.len = 1,
.buf = &addr,
},
{
.addr = intel_sdvo->slave_addr,
.flags = I2C_M_RD,
.len = 1,
.buf = ch,
}
};
int ret;
if ((ret = i2c_transfer(intel_sdvo->i2c, msgs, 2)) == 2)
return true;
DRM_DEBUG_KMS("i2c transfer returned %d\n", ret);
return false;
}
#define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd}
/** Mapping of command numbers to names, for debug output */
static const struct _sdvo_cmd_name {
u8 cmd;
const char *name;
} __attribute__ ((packed)) sdvo_cmd_names[] = {
SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS),
/* Add the op code for SDVO enhancements */
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_VPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_VPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_VPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SATURATION),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SATURATION),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SATURATION),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HUE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HUE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HUE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_CONTRAST),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CONTRAST),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTRAST),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_BRIGHTNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_BRIGHTNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_BRIGHTNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_H),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_H),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_H),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_V),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_V),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_V),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_ADAPTIVE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_ADAPTIVE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_ADAPTIVE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_2D),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_2D),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_2D),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SHARPNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SHARPNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SHARPNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DOT_CRAWL),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DOT_CRAWL),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_CHROMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_CHROMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_CHROMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_LUMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_LUMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_LUMA_FILTER),
/* HDMI op code */
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA),
};
#define SDVO_NAME(svdo) ((svdo)->port == PORT_B ? "SDVOB" : "SDVOC")
static void intel_sdvo_debug_write(struct intel_sdvo *intel_sdvo, u8 cmd,
const void *args, int args_len)
{
int i, pos = 0;
#define BUF_LEN 256
char buffer[BUF_LEN];
#define BUF_PRINT(args...) \
pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args)
for (i = 0; i < args_len; i++) {
BUF_PRINT("%02X ", ((u8 *)args)[i]);
}
for (; i < 8; i++) {
BUF_PRINT(" ");
}
for (i = 0; i < ARRAY_SIZE(sdvo_cmd_names); i++) {
if (cmd == sdvo_cmd_names[i].cmd) {
BUF_PRINT("(%s)", sdvo_cmd_names[i].name);
break;
}
}
if (i == ARRAY_SIZE(sdvo_cmd_names)) {
BUF_PRINT("(%02X)", cmd);
}
BUG_ON(pos >= BUF_LEN - 1);
#undef BUF_PRINT
#undef BUF_LEN
DRM_DEBUG_KMS("%s: W: %02X %s\n", SDVO_NAME(intel_sdvo), cmd, buffer);
}
static const char * const cmd_status_names[] = {
"Power on",
"Success",
"Not supported",
"Invalid arg",
"Pending",
"Target not specified",
"Scaling not supported"
};
static bool intel_sdvo_write_cmd(struct intel_sdvo *intel_sdvo, u8 cmd,
const void *args, int args_len)
{
u8 *buf, status;
struct i2c_msg *msgs;
int i, ret = true;
/* Would be simpler to allocate both in one go ? */
buf = kzalloc(args_len * 2 + 2, GFP_KERNEL);
if (!buf)
return false;
msgs = kcalloc(args_len + 3, sizeof(*msgs), GFP_KERNEL);
if (!msgs) {
kfree(buf);
return false;
}
intel_sdvo_debug_write(intel_sdvo, cmd, args, args_len);
for (i = 0; i < args_len; i++) {
msgs[i].addr = intel_sdvo->slave_addr;
msgs[i].flags = 0;
msgs[i].len = 2;
msgs[i].buf = buf + 2 *i;
buf[2*i + 0] = SDVO_I2C_ARG_0 - i;
buf[2*i + 1] = ((u8*)args)[i];
}
msgs[i].addr = intel_sdvo->slave_addr;
msgs[i].flags = 0;
msgs[i].len = 2;
msgs[i].buf = buf + 2*i;
buf[2*i + 0] = SDVO_I2C_OPCODE;
buf[2*i + 1] = cmd;
/* the following two are to read the response */
status = SDVO_I2C_CMD_STATUS;
msgs[i+1].addr = intel_sdvo->slave_addr;
msgs[i+1].flags = 0;
msgs[i+1].len = 1;
msgs[i+1].buf = &status;
msgs[i+2].addr = intel_sdvo->slave_addr;
msgs[i+2].flags = I2C_M_RD;
msgs[i+2].len = 1;
msgs[i+2].buf = &status;
ret = i2c_transfer(intel_sdvo->i2c, msgs, i+3);
if (ret < 0) {
DRM_DEBUG_KMS("I2c transfer returned %d\n", ret);
ret = false;
goto out;
}
if (ret != i+3) {
/* failure in I2C transfer */
DRM_DEBUG_KMS("I2c transfer returned %d/%d\n", ret, i+3);
ret = false;
}
out:
kfree(msgs);
kfree(buf);
return ret;
}
static bool intel_sdvo_read_response(struct intel_sdvo *intel_sdvo,
void *response, int response_len)
{
u8 retry = 15; /* 5 quick checks, followed by 10 long checks */
u8 status;
int i, pos = 0;
#define BUF_LEN 256
char buffer[BUF_LEN];
/*
* The documentation states that all commands will be
* processed within 15µs, and that we need only poll
* the status byte a maximum of 3 times in order for the
* command to be complete.
*
* Check 5 times in case the hardware failed to read the docs.
*
* Also beware that the first response by many devices is to
* reply PENDING and stall for time. TVs are notorious for
* requiring longer than specified to complete their replies.
* Originally (in the DDX long ago), the delay was only ever 15ms
* with an additional delay of 30ms applied for TVs added later after
* many experiments. To accommodate both sets of delays, we do a
* sequence of slow checks if the device is falling behind and fails
* to reply within 5*15µs.
*/
if (!intel_sdvo_read_byte(intel_sdvo,
SDVO_I2C_CMD_STATUS,
&status))
goto log_fail;
while ((status == SDVO_CMD_STATUS_PENDING ||
status == SDVO_CMD_STATUS_TARGET_NOT_SPECIFIED) && --retry) {
if (retry < 10)
msleep(15);
else
udelay(15);
if (!intel_sdvo_read_byte(intel_sdvo,
SDVO_I2C_CMD_STATUS,
&status))
goto log_fail;
}
#define BUF_PRINT(args...) \
pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args)
if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP)
BUF_PRINT("(%s)", cmd_status_names[status]);
else
BUF_PRINT("(??? %d)", status);
if (status != SDVO_CMD_STATUS_SUCCESS)
goto log_fail;
/* Read the command response */
for (i = 0; i < response_len; i++) {
if (!intel_sdvo_read_byte(intel_sdvo,
SDVO_I2C_RETURN_0 + i,
&((u8 *)response)[i]))
goto log_fail;
BUF_PRINT(" %02X", ((u8 *)response)[i]);
}
BUG_ON(pos >= BUF_LEN - 1);
#undef BUF_PRINT
#undef BUF_LEN
DRM_DEBUG_KMS("%s: R: %s\n", SDVO_NAME(intel_sdvo), buffer);
return true;
log_fail:
DRM_DEBUG_KMS("%s: R: ... failed\n", SDVO_NAME(intel_sdvo));
return false;
}
static int intel_sdvo_get_pixel_multiplier(const struct drm_display_mode *adjusted_mode)
{
if (adjusted_mode->crtc_clock >= 100000)
return 1;
else if (adjusted_mode->crtc_clock >= 50000)
return 2;
else
return 4;
}
static bool intel_sdvo_set_control_bus_switch(struct intel_sdvo *intel_sdvo,
u8 ddc_bus)
{
/* This must be the immediately preceding write before the i2c xfer */
return intel_sdvo_write_cmd(intel_sdvo,
SDVO_CMD_SET_CONTROL_BUS_SWITCH,
&ddc_bus, 1);
}
static bool intel_sdvo_set_value(struct intel_sdvo *intel_sdvo, u8 cmd, const void *data, int len)
{
if (!intel_sdvo_write_cmd(intel_sdvo, cmd, data, len))
return false;
return intel_sdvo_read_response(intel_sdvo, NULL, 0);
}
static bool
intel_sdvo_get_value(struct intel_sdvo *intel_sdvo, u8 cmd, void *value, int len)
{
if (!intel_sdvo_write_cmd(intel_sdvo, cmd, NULL, 0))
return false;
return intel_sdvo_read_response(intel_sdvo, value, len);
}
static bool intel_sdvo_set_target_input(struct intel_sdvo *intel_sdvo)
{
struct intel_sdvo_set_target_input_args targets = {0};
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_TARGET_INPUT,
&targets, sizeof(targets));
}
/**
* Return whether each input is trained.
*
* This function is making an assumption about the layout of the response,
* which should be checked against the docs.
*/
static bool intel_sdvo_get_trained_inputs(struct intel_sdvo *intel_sdvo, bool *input_1, bool *input_2)
{
struct intel_sdvo_get_trained_inputs_response response;
BUILD_BUG_ON(sizeof(response) != 1);
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_TRAINED_INPUTS,
&response, sizeof(response)))
return false;
*input_1 = response.input0_trained;
*input_2 = response.input1_trained;
return true;
}
static bool intel_sdvo_set_active_outputs(struct intel_sdvo *intel_sdvo,
u16 outputs)
{
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_ACTIVE_OUTPUTS,
&outputs, sizeof(outputs));
}
static bool intel_sdvo_get_active_outputs(struct intel_sdvo *intel_sdvo,
u16 *outputs)
{
return intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_ACTIVE_OUTPUTS,
outputs, sizeof(*outputs));
}
static bool intel_sdvo_set_encoder_power_state(struct intel_sdvo *intel_sdvo,
int mode)
{
u8 state = SDVO_ENCODER_STATE_ON;
switch (mode) {
case DRM_MODE_DPMS_ON:
state = SDVO_ENCODER_STATE_ON;
break;
case DRM_MODE_DPMS_STANDBY:
state = SDVO_ENCODER_STATE_STANDBY;
break;
case DRM_MODE_DPMS_SUSPEND:
state = SDVO_ENCODER_STATE_SUSPEND;
break;
case DRM_MODE_DPMS_OFF:
state = SDVO_ENCODER_STATE_OFF;
break;
}
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_ENCODER_POWER_STATE, &state, sizeof(state));
}
static bool intel_sdvo_get_input_pixel_clock_range(struct intel_sdvo *intel_sdvo,
int *clock_min,
int *clock_max)
{
struct intel_sdvo_pixel_clock_range clocks;
BUILD_BUG_ON(sizeof(clocks) != 4);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE,
&clocks, sizeof(clocks)))
return false;
/* Convert the values from units of 10 kHz to kHz. */
*clock_min = clocks.min * 10;
*clock_max = clocks.max * 10;
return true;
}
static bool intel_sdvo_set_target_output(struct intel_sdvo *intel_sdvo,
u16 outputs)
{
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_TARGET_OUTPUT,
&outputs, sizeof(outputs));
}
static bool intel_sdvo_set_timing(struct intel_sdvo *intel_sdvo, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) &&
intel_sdvo_set_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2));
}
static bool intel_sdvo_get_timing(struct intel_sdvo *intel_sdvo, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) &&
intel_sdvo_get_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2));
}
static bool intel_sdvo_set_input_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_sdvo,
SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_output_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_sdvo,
SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_get_input_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(intel_sdvo,
SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd);
}
static bool
intel_sdvo_create_preferred_input_timing(struct intel_sdvo *intel_sdvo,
uint16_t clock,
uint16_t width,
uint16_t height)
{
struct intel_sdvo_preferred_input_timing_args args;
memset(&args, 0, sizeof(args));
args.clock = clock;
args.width = width;
args.height = height;
args.interlace = 0;
if (intel_sdvo->is_lvds &&
(intel_sdvo->sdvo_lvds_fixed_mode->hdisplay != width ||
intel_sdvo->sdvo_lvds_fixed_mode->vdisplay != height))
args.scaled = 1;
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING,
&args, sizeof(args));
}
static bool intel_sdvo_get_preferred_input_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
BUILD_BUG_ON(sizeof(dtd->part1) != 8);
BUILD_BUG_ON(sizeof(dtd->part2) != 8);
return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1,
&dtd->part1, sizeof(dtd->part1)) &&
intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2,
&dtd->part2, sizeof(dtd->part2));
}
static bool intel_sdvo_set_clock_rate_mult(struct intel_sdvo *intel_sdvo, u8 val)
{
return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1);
}
static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd,
const struct drm_display_mode *mode)
{
uint16_t width, height;
uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len;
uint16_t h_sync_offset, v_sync_offset;
int mode_clock;
memset(dtd, 0, sizeof(*dtd));
width = mode->hdisplay;
height = mode->vdisplay;
/* do some mode translations */
h_blank_len = mode->htotal - mode->hdisplay;
h_sync_len = mode->hsync_end - mode->hsync_start;
v_blank_len = mode->vtotal - mode->vdisplay;
v_sync_len = mode->vsync_end - mode->vsync_start;
h_sync_offset = mode->hsync_start - mode->hdisplay;
v_sync_offset = mode->vsync_start - mode->vdisplay;
mode_clock = mode->clock;
mode_clock /= 10;
dtd->part1.clock = mode_clock;
dtd->part1.h_active = width & 0xff;
dtd->part1.h_blank = h_blank_len & 0xff;
dtd->part1.h_high = (((width >> 8) & 0xf) << 4) |
((h_blank_len >> 8) & 0xf);
dtd->part1.v_active = height & 0xff;
dtd->part1.v_blank = v_blank_len & 0xff;
dtd->part1.v_high = (((height >> 8) & 0xf) << 4) |
((v_blank_len >> 8) & 0xf);
dtd->part2.h_sync_off = h_sync_offset & 0xff;
dtd->part2.h_sync_width = h_sync_len & 0xff;
dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 |
(v_sync_len & 0xf);
dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) |
((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) |
((v_sync_len & 0x30) >> 4);
dtd->part2.dtd_flags = 0x18;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
dtd->part2.dtd_flags |= DTD_FLAG_INTERLACE;
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
dtd->part2.dtd_flags |= DTD_FLAG_HSYNC_POSITIVE;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
dtd->part2.dtd_flags |= DTD_FLAG_VSYNC_POSITIVE;
dtd->part2.v_sync_off_high = v_sync_offset & 0xc0;
}
static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode *pmode,
const struct intel_sdvo_dtd *dtd)
{
struct drm_display_mode mode = {};
mode.hdisplay = dtd->part1.h_active;
mode.hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8;
mode.hsync_start = mode.hdisplay + dtd->part2.h_sync_off;
mode.hsync_start += (dtd->part2.sync_off_width_high & 0xc0) << 2;
mode.hsync_end = mode.hsync_start + dtd->part2.h_sync_width;
mode.hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4;
mode.htotal = mode.hdisplay + dtd->part1.h_blank;
mode.htotal += (dtd->part1.h_high & 0xf) << 8;
mode.vdisplay = dtd->part1.v_active;
mode.vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8;
mode.vsync_start = mode.vdisplay;
mode.vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf;
mode.vsync_start += (dtd->part2.sync_off_width_high & 0x0c) << 2;
mode.vsync_start += dtd->part2.v_sync_off_high & 0xc0;
mode.vsync_end = mode.vsync_start +
(dtd->part2.v_sync_off_width & 0xf);
mode.vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4;
mode.vtotal = mode.vdisplay + dtd->part1.v_blank;
mode.vtotal += (dtd->part1.v_high & 0xf) << 8;
mode.clock = dtd->part1.clock * 10;
if (dtd->part2.dtd_flags & DTD_FLAG_INTERLACE)
mode.flags |= DRM_MODE_FLAG_INTERLACE;
if (dtd->part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE)
mode.flags |= DRM_MODE_FLAG_PHSYNC;
else
mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (dtd->part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE)
mode.flags |= DRM_MODE_FLAG_PVSYNC;
else
mode.flags |= DRM_MODE_FLAG_NVSYNC;
drm_mode_set_crtcinfo(&mode, 0);
drm_mode_copy(pmode, &mode);
}
static bool intel_sdvo_check_supp_encode(struct intel_sdvo *intel_sdvo)
{
struct intel_sdvo_encode encode;
BUILD_BUG_ON(sizeof(encode) != 2);
return intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_SUPP_ENCODE,
&encode, sizeof(encode));
}
static bool intel_sdvo_set_encode(struct intel_sdvo *intel_sdvo,
uint8_t mode)
{
return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ENCODE, &mode, 1);
}
static bool intel_sdvo_set_colorimetry(struct intel_sdvo *intel_sdvo,
uint8_t mode)
{
return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_COLORIMETRY, &mode, 1);
}
#if 0
static void intel_sdvo_dump_hdmi_buf(struct intel_sdvo *intel_sdvo)
{
int i, j;
uint8_t set_buf_index[2];
uint8_t av_split;
uint8_t buf_size;
uint8_t buf[48];
uint8_t *pos;
intel_sdvo_get_value(encoder, SDVO_CMD_GET_HBUF_AV_SPLIT, &av_split, 1);
for (i = 0; i <= av_split; i++) {
set_buf_index[0] = i; set_buf_index[1] = 0;
intel_sdvo_write_cmd(encoder, SDVO_CMD_SET_HBUF_INDEX,
set_buf_index, 2);
intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_INFO, NULL, 0);
intel_sdvo_read_response(encoder, &buf_size, 1);
pos = buf;
for (j = 0; j <= buf_size; j += 8) {
intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_DATA,
NULL, 0);
intel_sdvo_read_response(encoder, pos, 8);
pos += 8;
}
}
}
#endif
static bool intel_sdvo_write_infoframe(struct intel_sdvo *intel_sdvo,
unsigned if_index, uint8_t tx_rate,
const uint8_t *data, unsigned length)
{
uint8_t set_buf_index[2] = { if_index, 0 };
uint8_t hbuf_size, tmp[8];
int i;
if (!intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_HBUF_INDEX,
set_buf_index, 2))
return false;
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HBUF_INFO,
&hbuf_size, 1))
return false;
/* Buffer size is 0 based, hooray! */
hbuf_size++;
DRM_DEBUG_KMS("writing sdvo hbuf: %i, hbuf_size %i, hbuf_size: %i\n",
if_index, length, hbuf_size);
for (i = 0; i < hbuf_size; i += 8) {
memset(tmp, 0, 8);
if (i < length)
memcpy(tmp, data + i, min_t(unsigned, 8, length - i));
if (!intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_HBUF_DATA,
tmp, 8))
return false;
}
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_HBUF_TXRATE,
&tx_rate, 1);
}
static bool intel_sdvo_set_avi_infoframe(struct intel_sdvo *intel_sdvo,
struct intel_crtc_state *pipe_config)
{
uint8_t sdvo_data[HDMI_INFOFRAME_SIZE(AVI)];
union hdmi_infoframe frame;
int ret;
ssize_t len;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
&pipe_config->base.adjusted_mode);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
return false;
}
if (intel_sdvo->rgb_quant_range_selectable) {
if (pipe_config->limited_color_range)
frame.avi.quantization_range =
HDMI_QUANTIZATION_RANGE_LIMITED;
else
frame.avi.quantization_range =
HDMI_QUANTIZATION_RANGE_FULL;
}
len = hdmi_infoframe_pack(&frame, sdvo_data, sizeof(sdvo_data));
if (len < 0)
return false;
return intel_sdvo_write_infoframe(intel_sdvo, SDVO_HBUF_INDEX_AVI_IF,
SDVO_HBUF_TX_VSYNC,
sdvo_data, sizeof(sdvo_data));
}
static bool intel_sdvo_set_tv_format(struct intel_sdvo *intel_sdvo,
struct drm_connector_state *conn_state)
{
struct intel_sdvo_tv_format format;
uint32_t format_map;
format_map = 1 << conn_state->tv.mode;
memset(&format, 0, sizeof(format));
memcpy(&format, &format_map, min(sizeof(format), sizeof(format_map)));
BUILD_BUG_ON(sizeof(format) != 6);
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_TV_FORMAT,
&format, sizeof(format));
}
static bool
intel_sdvo_set_output_timings_from_mode(struct intel_sdvo *intel_sdvo,
const struct drm_display_mode *mode)
{
struct intel_sdvo_dtd output_dtd;
if (!intel_sdvo_set_target_output(intel_sdvo,
intel_sdvo->attached_output))
return false;
intel_sdvo_get_dtd_from_mode(&output_dtd, mode);
if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd))
return false;
return true;
}
/* Asks the sdvo controller for the preferred input mode given the output mode.
* Unfortunately we have to set up the full output mode to do that. */
static bool
intel_sdvo_get_preferred_input_mode(struct intel_sdvo *intel_sdvo,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct intel_sdvo_dtd input_dtd;
/* Reset the input timing to the screen. Assume always input 0. */
if (!intel_sdvo_set_target_input(intel_sdvo))
return false;
if (!intel_sdvo_create_preferred_input_timing(intel_sdvo,
mode->clock / 10,
mode->hdisplay,
mode->vdisplay))
return false;
if (!intel_sdvo_get_preferred_input_timing(intel_sdvo,
&input_dtd))
return false;
intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd);
intel_sdvo->dtd_sdvo_flags = input_dtd.part2.sdvo_flags;
return true;
}
static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc_state *pipe_config)
{
unsigned dotclock = pipe_config->port_clock;
struct dpll *clock = &pipe_config->dpll;
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (dotclock >= 100000 && dotclock < 140500) {
clock->p1 = 2;
clock->p2 = 10;
clock->n = 3;
clock->m1 = 16;
clock->m2 = 8;
} else if (dotclock >= 140500 && dotclock <= 200000) {
clock->p1 = 1;
clock->p2 = 10;
clock->n = 6;
clock->m1 = 12;
clock->m2 = 8;
} else {
WARN(1, "SDVO TV clock out of range: %i\n", dotclock);
}
pipe_config->clock_set = true;
}
static bool intel_sdvo_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_sdvo_connector_state *intel_sdvo_state =
to_intel_sdvo_connector_state(conn_state);
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct drm_display_mode *mode = &pipe_config->base.mode;
DRM_DEBUG_KMS("forcing bpc to 8 for SDVO\n");
pipe_config->pipe_bpp = 8*3;
if (HAS_PCH_SPLIT(to_i915(encoder->base.dev)))
pipe_config->has_pch_encoder = true;
/* We need to construct preferred input timings based on our
* output timings. To do that, we have to set the output
* timings, even though this isn't really the right place in
* the sequence to do it. Oh well.
*/
if (intel_sdvo->is_tv) {
if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo, mode))
return false;
(void) intel_sdvo_get_preferred_input_mode(intel_sdvo,
mode,
adjusted_mode);
pipe_config->sdvo_tv_clock = true;
} else if (intel_sdvo->is_lvds) {
if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo,
intel_sdvo->sdvo_lvds_fixed_mode))
return false;
(void) intel_sdvo_get_preferred_input_mode(intel_sdvo,
mode,
adjusted_mode);
}
/* Make the CRTC code factor in the SDVO pixel multiplier. The
* SDVO device will factor out the multiplier during mode_set.
*/
pipe_config->pixel_multiplier =
intel_sdvo_get_pixel_multiplier(adjusted_mode);
if (intel_sdvo_state->base.force_audio != HDMI_AUDIO_OFF_DVI)
pipe_config->has_hdmi_sink = intel_sdvo->has_hdmi_monitor;
if (intel_sdvo_state->base.force_audio == HDMI_AUDIO_ON ||
(intel_sdvo_state->base.force_audio == HDMI_AUDIO_AUTO && intel_sdvo->has_hdmi_audio))
pipe_config->has_audio = true;
if (intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/* See CEA-861-E - 5.1 Default Encoding Parameters */
/* FIXME: This bit is only valid when using TMDS encoding and 8
* bit per color mode. */
if (pipe_config->has_hdmi_sink &&
drm_match_cea_mode(adjusted_mode) > 1)
pipe_config->limited_color_range = true;
} else {
if (pipe_config->has_hdmi_sink &&
intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED)
pipe_config->limited_color_range = true;
}
/* Clock computation needs to happen after pixel multiplier. */
if (intel_sdvo->is_tv)
i9xx_adjust_sdvo_tv_clock(pipe_config);
/* Set user selected PAR to incoming mode's member */
if (intel_sdvo->is_hdmi)
adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio;
return true;
}
#define UPDATE_PROPERTY(input, NAME) \
do { \
val = input; \
intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_##NAME, &val, sizeof(val)); \
} while (0)
static void intel_sdvo_update_props(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector_state *sdvo_state)
{
struct drm_connector_state *conn_state = &sdvo_state->base.base;
struct intel_sdvo_connector *intel_sdvo_conn =
to_intel_sdvo_connector(conn_state->connector);
uint16_t val;
if (intel_sdvo_conn->left)
UPDATE_PROPERTY(sdvo_state->tv.overscan_h, OVERSCAN_H);
if (intel_sdvo_conn->top)
UPDATE_PROPERTY(sdvo_state->tv.overscan_v, OVERSCAN_V);
if (intel_sdvo_conn->hpos)
UPDATE_PROPERTY(sdvo_state->tv.hpos, HPOS);
if (intel_sdvo_conn->vpos)
UPDATE_PROPERTY(sdvo_state->tv.vpos, VPOS);
if (intel_sdvo_conn->saturation)
UPDATE_PROPERTY(conn_state->tv.saturation, SATURATION);
if (intel_sdvo_conn->contrast)
UPDATE_PROPERTY(conn_state->tv.contrast, CONTRAST);
if (intel_sdvo_conn->hue)
UPDATE_PROPERTY(conn_state->tv.hue, HUE);
if (intel_sdvo_conn->brightness)
UPDATE_PROPERTY(conn_state->tv.brightness, BRIGHTNESS);
if (intel_sdvo_conn->sharpness)
UPDATE_PROPERTY(sdvo_state->tv.sharpness, SHARPNESS);
if (intel_sdvo_conn->flicker_filter)
UPDATE_PROPERTY(sdvo_state->tv.flicker_filter, FLICKER_FILTER);
if (intel_sdvo_conn->flicker_filter_2d)
UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_2d, FLICKER_FILTER_2D);
if (intel_sdvo_conn->flicker_filter_adaptive)
UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE);
if (intel_sdvo_conn->tv_chroma_filter)
UPDATE_PROPERTY(sdvo_state->tv.chroma_filter, TV_CHROMA_FILTER);
if (intel_sdvo_conn->tv_luma_filter)
UPDATE_PROPERTY(sdvo_state->tv.luma_filter, TV_LUMA_FILTER);
if (intel_sdvo_conn->dot_crawl)
UPDATE_PROPERTY(sdvo_state->tv.dot_crawl, DOT_CRAWL);
#undef UPDATE_PROPERTY
}
static void intel_sdvo_pre_enable(struct intel_encoder *intel_encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(conn_state);
struct drm_display_mode *mode = &crtc_state->base.mode;
struct intel_sdvo *intel_sdvo = to_sdvo(intel_encoder);
u32 sdvox;
struct intel_sdvo_in_out_map in_out;
struct intel_sdvo_dtd input_dtd, output_dtd;
int rate;
intel_sdvo_update_props(intel_sdvo, sdvo_state);
/* First, set the input mapping for the first input to our controlled
* output. This is only correct if we're a single-input device, in
* which case the first input is the output from the appropriate SDVO
* channel on the motherboard. In a two-input device, the first input
* will be SDVOB and the second SDVOC.
*/
in_out.in0 = intel_sdvo->attached_output;
in_out.in1 = 0;
intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_IN_OUT_MAP,
&in_out, sizeof(in_out));
/* Set the output timings to the screen */
if (!intel_sdvo_set_target_output(intel_sdvo,
intel_sdvo->attached_output))
return;
/* lvds has a special fixed output timing. */
if (intel_sdvo->is_lvds)
intel_sdvo_get_dtd_from_mode(&output_dtd,
intel_sdvo->sdvo_lvds_fixed_mode);
else
intel_sdvo_get_dtd_from_mode(&output_dtd, mode);
if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd))
DRM_INFO("Setting output timings on %s failed\n",
SDVO_NAME(intel_sdvo));
/* Set the input timing to the screen. Assume always input 0. */
if (!intel_sdvo_set_target_input(intel_sdvo))
return;
if (crtc_state->has_hdmi_sink) {
intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_HDMI);
intel_sdvo_set_colorimetry(intel_sdvo,
SDVO_COLORIMETRY_RGB256);
intel_sdvo_set_avi_infoframe(intel_sdvo, crtc_state);
} else
intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_DVI);
if (intel_sdvo->is_tv &&
!intel_sdvo_set_tv_format(intel_sdvo, conn_state))
return;
intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode);
if (intel_sdvo->is_tv || intel_sdvo->is_lvds)
input_dtd.part2.sdvo_flags = intel_sdvo->dtd_sdvo_flags;
if (!intel_sdvo_set_input_timing(intel_sdvo, &input_dtd))
DRM_INFO("Setting input timings on %s failed\n",
SDVO_NAME(intel_sdvo));
switch (crtc_state->pixel_multiplier) {
default:
WARN(1, "unknown pixel multiplier specified\n");
case 1: rate = SDVO_CLOCK_RATE_MULT_1X; break;
case 2: rate = SDVO_CLOCK_RATE_MULT_2X; break;
case 4: rate = SDVO_CLOCK_RATE_MULT_4X; break;
}
if (!intel_sdvo_set_clock_rate_mult(intel_sdvo, rate))
return;
/* Set the SDVO control regs. */
if (INTEL_GEN(dev_priv) >= 4) {
/* The real mode polarity is set by the SDVO commands, using
* struct intel_sdvo_dtd. */
sdvox = SDVO_VSYNC_ACTIVE_HIGH | SDVO_HSYNC_ACTIVE_HIGH;
if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range)
sdvox |= HDMI_COLOR_RANGE_16_235;
if (INTEL_GEN(dev_priv) < 5)
sdvox |= SDVO_BORDER_ENABLE;
} else {
sdvox = I915_READ(intel_sdvo->sdvo_reg);
if (intel_sdvo->port == PORT_B)
sdvox &= SDVOB_PRESERVE_MASK;
else
sdvox &= SDVOC_PRESERVE_MASK;
sdvox |= (9 << 19) | SDVO_BORDER_ENABLE;
}
if (HAS_PCH_CPT(dev_priv))
sdvox |= SDVO_PIPE_SEL_CPT(crtc->pipe);
else
sdvox |= SDVO_PIPE_SEL(crtc->pipe);
if (crtc_state->has_audio)
sdvox |= SDVO_AUDIO_ENABLE;
if (INTEL_GEN(dev_priv) >= 4) {
/* done in crtc_mode_set as the dpll_md reg must be written early */
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
/* done in crtc_mode_set as it lives inside the dpll register */
} else {
sdvox |= (crtc_state->pixel_multiplier - 1)
<< SDVO_PORT_MULTIPLY_SHIFT;
}
if (input_dtd.part2.sdvo_flags & SDVO_NEED_TO_STALL &&
INTEL_GEN(dev_priv) < 5)
sdvox |= SDVO_STALL_SELECT;
intel_sdvo_write_sdvox(intel_sdvo, sdvox);
}
static bool intel_sdvo_connector_get_hw_state(struct intel_connector *connector)
{
struct intel_sdvo_connector *intel_sdvo_connector =
to_intel_sdvo_connector(&connector->base);
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(&connector->base);
u16 active_outputs = 0;
intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs);
if (active_outputs & intel_sdvo_connector->output_flag)
return true;
else
return false;
}
static bool intel_sdvo_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
u16 active_outputs = 0;
u32 tmp;
tmp = I915_READ(intel_sdvo->sdvo_reg);
intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs);
if (!(tmp & SDVO_ENABLE) && (active_outputs == 0))
return false;
if (HAS_PCH_CPT(dev_priv))
*pipe = PORT_TO_PIPE_CPT(tmp);
else
*pipe = PORT_TO_PIPE(tmp);
return true;
}
static void intel_sdvo_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_sdvo_dtd dtd;
int encoder_pixel_multiplier = 0;
int dotclock;
u32 flags = 0, sdvox;
u8 val;
bool ret;
sdvox = I915_READ(intel_sdvo->sdvo_reg);
ret = intel_sdvo_get_input_timing(intel_sdvo, &dtd);
if (!ret) {
/* Some sdvo encoders are not spec compliant and don't
* implement the mandatory get_timings function. */
DRM_DEBUG_DRIVER("failed to retrieve SDVO DTD\n");
pipe_config->quirks |= PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS;
} else {
if (dtd.part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (dtd.part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
}
pipe_config->base.adjusted_mode.flags |= flags;
/*
* pixel multiplier readout is tricky: Only on i915g/gm it is stored in
* the sdvo port register, on all other platforms it is part of the dpll
* state. Since the general pipe state readout happens before the
* encoder->get_config we so already have a valid pixel multplier on all
* other platfroms.
*/
if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
pipe_config->pixel_multiplier =
((sdvox & SDVO_PORT_MULTIPLY_MASK)
>> SDVO_PORT_MULTIPLY_SHIFT) + 1;
}
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
/* Cross check the port pixel multiplier with the sdvo encoder state. */
if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_CLOCK_RATE_MULT,
&val, 1)) {
switch (val) {
case SDVO_CLOCK_RATE_MULT_1X:
encoder_pixel_multiplier = 1;
break;
case SDVO_CLOCK_RATE_MULT_2X:
encoder_pixel_multiplier = 2;
break;
case SDVO_CLOCK_RATE_MULT_4X:
encoder_pixel_multiplier = 4;
break;
}
}
if (sdvox & HDMI_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ENCODE,
&val, 1)) {
if (val == SDVO_ENCODE_HDMI)
pipe_config->has_hdmi_sink = true;
}
WARN(encoder_pixel_multiplier != pipe_config->pixel_multiplier,
"SDVO pixel multiplier mismatch, port: %i, encoder: %i\n",
pipe_config->pixel_multiplier, encoder_pixel_multiplier);
}
static void intel_disable_sdvo(struct intel_encoder *encoder,
struct intel_crtc_state *old_crtc_state,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
u32 temp;
intel_sdvo_set_active_outputs(intel_sdvo, 0);
if (0)
intel_sdvo_set_encoder_power_state(intel_sdvo,
DRM_MODE_DPMS_OFF);
temp = I915_READ(intel_sdvo->sdvo_reg);
temp &= ~SDVO_ENABLE;
intel_sdvo_write_sdvox(intel_sdvo, temp);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching DP port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) {
/*
* We get CPU/PCH FIFO underruns on the other pipe when
* doing the workaround. Sweep them under the rug.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
temp &= ~SDVO_PIPE_B_SELECT;
temp |= SDVO_ENABLE;
intel_sdvo_write_sdvox(intel_sdvo, temp);
temp &= ~SDVO_ENABLE;
intel_sdvo_write_sdvox(intel_sdvo, temp);
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
}
}
static void pch_disable_sdvo(struct intel_encoder *encoder,
struct intel_crtc_state *old_crtc_state,
struct drm_connector_state *old_conn_state)
{
}
static void pch_post_disable_sdvo(struct intel_encoder *encoder,
struct intel_crtc_state *old_crtc_state,
struct drm_connector_state *old_conn_state)
{
intel_disable_sdvo(encoder, old_crtc_state, old_conn_state);
}
static void intel_enable_sdvo(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
u32 temp;
bool input1, input2;
int i;
bool success;
temp = I915_READ(intel_sdvo->sdvo_reg);
temp |= SDVO_ENABLE;
intel_sdvo_write_sdvox(intel_sdvo, temp);
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
success = intel_sdvo_get_trained_inputs(intel_sdvo, &input1, &input2);
/* Warn if the device reported failure to sync.
* A lot of SDVO devices fail to notify of sync, but it's
* a given it the status is a success, we succeeded.
*/
if (success && !input1) {
DRM_DEBUG_KMS("First %s output reported failure to "
"sync\n", SDVO_NAME(intel_sdvo));
}
if (0)
intel_sdvo_set_encoder_power_state(intel_sdvo,
DRM_MODE_DPMS_ON);
intel_sdvo_set_active_outputs(intel_sdvo, intel_sdvo->attached_output);
}
static enum drm_mode_status
intel_sdvo_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
if (intel_sdvo->pixel_clock_min > mode->clock)
return MODE_CLOCK_LOW;
if (intel_sdvo->pixel_clock_max < mode->clock)
return MODE_CLOCK_HIGH;
if (mode->clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (intel_sdvo->is_lvds) {
if (mode->hdisplay > intel_sdvo->sdvo_lvds_fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > intel_sdvo->sdvo_lvds_fixed_mode->vdisplay)
return MODE_PANEL;
}
return MODE_OK;
}
static bool intel_sdvo_get_capabilities(struct intel_sdvo *intel_sdvo, struct intel_sdvo_caps *caps)
{
BUILD_BUG_ON(sizeof(*caps) != 8);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_DEVICE_CAPS,
caps, sizeof(*caps)))
return false;
DRM_DEBUG_KMS("SDVO capabilities:\n"
" vendor_id: %d\n"
" device_id: %d\n"
" device_rev_id: %d\n"
" sdvo_version_major: %d\n"
" sdvo_version_minor: %d\n"
" sdvo_inputs_mask: %d\n"
" smooth_scaling: %d\n"
" sharp_scaling: %d\n"
" up_scaling: %d\n"
" down_scaling: %d\n"
" stall_support: %d\n"
" output_flags: %d\n",
caps->vendor_id,
caps->device_id,
caps->device_rev_id,
caps->sdvo_version_major,
caps->sdvo_version_minor,
caps->sdvo_inputs_mask,
caps->smooth_scaling,
caps->sharp_scaling,
caps->up_scaling,
caps->down_scaling,
caps->stall_support,
caps->output_flags);
return true;
}
static uint16_t intel_sdvo_get_hotplug_support(struct intel_sdvo *intel_sdvo)
{
struct drm_i915_private *dev_priv = to_i915(intel_sdvo->base.base.dev);
uint16_t hotplug;
if (!I915_HAS_HOTPLUG(dev_priv))
return 0;
/* HW Erratum: SDVO Hotplug is broken on all i945G chips, there's noise
* on the line. */
if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
return 0;
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HOT_PLUG_SUPPORT,
&hotplug, sizeof(hotplug)))
return 0;
return hotplug;
}
static void intel_sdvo_enable_hotplug(struct intel_encoder *encoder)
{
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_SET_ACTIVE_HOT_PLUG,
&intel_sdvo->hotplug_active, 2);
}
static bool
intel_sdvo_multifunc_encoder(struct intel_sdvo *intel_sdvo)
{
/* Is there more than one type of output? */
return hweight16(intel_sdvo->caps.output_flags) > 1;
}
static struct edid *
intel_sdvo_get_edid(struct drm_connector *connector)
{
struct intel_sdvo *sdvo = intel_attached_sdvo(connector);
return drm_get_edid(connector, &sdvo->ddc);
}
/* Mac mini hack -- use the same DDC as the analog connector */
static struct edid *
intel_sdvo_get_analog_edid(struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
return drm_get_edid(connector,
intel_gmbus_get_adapter(dev_priv,
dev_priv->vbt.crt_ddc_pin));
}
static enum drm_connector_status
intel_sdvo_tmds_sink_detect(struct drm_connector *connector)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
enum drm_connector_status status;
struct edid *edid;
edid = intel_sdvo_get_edid(connector);
if (edid == NULL && intel_sdvo_multifunc_encoder(intel_sdvo)) {
u8 ddc, saved_ddc = intel_sdvo->ddc_bus;
/*
* Don't use the 1 as the argument of DDC bus switch to get
* the EDID. It is used for SDVO SPD ROM.
*/
for (ddc = intel_sdvo->ddc_bus >> 1; ddc > 1; ddc >>= 1) {
intel_sdvo->ddc_bus = ddc;
edid = intel_sdvo_get_edid(connector);
if (edid)
break;
}
/*
* If we found the EDID on the other bus,
* assume that is the correct DDC bus.
*/
if (edid == NULL)
intel_sdvo->ddc_bus = saved_ddc;
}
/*
* When there is no edid and no monitor is connected with VGA
* port, try to use the CRT ddc to read the EDID for DVI-connector.
*/
if (edid == NULL)
edid = intel_sdvo_get_analog_edid(connector);
status = connector_status_unknown;
if (edid != NULL) {
/* DDC bus is shared, match EDID to connector type */
if (edid->input & DRM_EDID_INPUT_DIGITAL) {
status = connector_status_connected;
if (intel_sdvo->is_hdmi) {
intel_sdvo->has_hdmi_monitor = drm_detect_hdmi_monitor(edid);
intel_sdvo->has_hdmi_audio = drm_detect_monitor_audio(edid);
intel_sdvo->rgb_quant_range_selectable =
drm_rgb_quant_range_selectable(edid);
}
} else
status = connector_status_disconnected;
kfree(edid);
}
return status;
}
static bool
intel_sdvo_connector_matches_edid(struct intel_sdvo_connector *sdvo,
struct edid *edid)
{
bool monitor_is_digital = !!(edid->input & DRM_EDID_INPUT_DIGITAL);
bool connector_is_digital = !!IS_DIGITAL(sdvo);
DRM_DEBUG_KMS("connector_is_digital? %d, monitor_is_digital? %d\n",
connector_is_digital, monitor_is_digital);
return connector_is_digital == monitor_is_digital;
}
static enum drm_connector_status
intel_sdvo_detect(struct drm_connector *connector, bool force)
{
uint16_t response;
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
enum drm_connector_status ret;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_ATTACHED_DISPLAYS,
&response, 2))
return connector_status_unknown;
DRM_DEBUG_KMS("SDVO response %d %d [%x]\n",
response & 0xff, response >> 8,
intel_sdvo_connector->output_flag);
if (response == 0)
return connector_status_disconnected;
intel_sdvo->attached_output = response;
intel_sdvo->has_hdmi_monitor = false;
intel_sdvo->has_hdmi_audio = false;
intel_sdvo->rgb_quant_range_selectable = false;
if ((intel_sdvo_connector->output_flag & response) == 0)
ret = connector_status_disconnected;
else if (IS_TMDS(intel_sdvo_connector))
ret = intel_sdvo_tmds_sink_detect(connector);
else {
struct edid *edid;
/* if we have an edid check it matches the connection */
edid = intel_sdvo_get_edid(connector);
if (edid == NULL)
edid = intel_sdvo_get_analog_edid(connector);
if (edid != NULL) {
if (intel_sdvo_connector_matches_edid(intel_sdvo_connector,
edid))
ret = connector_status_connected;
else
ret = connector_status_disconnected;
kfree(edid);
} else
ret = connector_status_connected;
}
/* May update encoder flag for like clock for SDVO TV, etc.*/
if (ret == connector_status_connected) {
intel_sdvo->is_tv = false;
intel_sdvo->is_lvds = false;
if (response & SDVO_TV_MASK)
intel_sdvo->is_tv = true;
if (response & SDVO_LVDS_MASK)
intel_sdvo->is_lvds = intel_sdvo->sdvo_lvds_fixed_mode != NULL;
}
return ret;
}
static void intel_sdvo_get_ddc_modes(struct drm_connector *connector)
{
struct edid *edid;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
/* set the bus switch and get the modes */
edid = intel_sdvo_get_edid(connector);
/*
* Mac mini hack. On this device, the DVI-I connector shares one DDC
* link between analog and digital outputs. So, if the regular SDVO
* DDC fails, check to see if the analog output is disconnected, in
* which case we'll look there for the digital DDC data.
*/
if (edid == NULL)
edid = intel_sdvo_get_analog_edid(connector);
if (edid != NULL) {
if (intel_sdvo_connector_matches_edid(to_intel_sdvo_connector(connector),
edid)) {
drm_mode_connector_update_edid_property(connector, edid);
drm_add_edid_modes(connector, edid);
}
kfree(edid);
}
}
/*
* Set of SDVO TV modes.
* Note! This is in reply order (see loop in get_tv_modes).
* XXX: all 60Hz refresh?
*/
static const struct drm_display_mode sdvo_tv_modes[] = {
{ DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815, 320, 321, 384,
416, 0, 200, 201, 232, 233, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814, 320, 321, 384,
416, 0, 240, 241, 272, 273, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910, 400, 401, 464,
496, 0, 300, 301, 332, 333, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913, 640, 641, 704,
736, 0, 350, 351, 382, 383, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121, 640, 641, 704,
736, 0, 400, 401, 432, 433, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 22654, 640, 641, 704,
736, 0, 480, 481, 512, 513, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624, 704, 705, 768,
800, 0, 480, 481, 512, 513, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232, 704, 705, 768,
800, 0, 576, 577, 608, 609, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751, 720, 721, 784,
816, 0, 350, 351, 382, 383, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199, 720, 721, 784,
816, 0, 400, 401, 432, 433, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116, 720, 721, 784,
816, 0, 480, 481, 512, 513, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054, 720, 721, 784,
816, 0, 540, 541, 572, 573, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816, 720, 721, 784,
816, 0, 576, 577, 608, 609, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570, 768, 769, 832,
864, 0, 576, 577, 608, 609, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030, 800, 801, 864,
896, 0, 600, 601, 632, 633, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581, 832, 833, 896,
928, 0, 624, 625, 656, 657, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707, 920, 921, 984,
1016, 0, 766, 767, 798, 799, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827, 1024, 1025, 1088,
1120, 0, 768, 769, 800, 801, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265, 1280, 1281, 1344,
1376, 0, 1024, 1025, 1056, 1057, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
};
static void intel_sdvo_get_tv_modes(struct drm_connector *connector)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
const struct drm_connector_state *conn_state = connector->state;
struct intel_sdvo_sdtv_resolution_request tv_res;
uint32_t reply = 0, format_map = 0;
int i;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
/* Read the list of supported input resolutions for the selected TV
* format.
*/
format_map = 1 << conn_state->tv.mode;
memcpy(&tv_res, &format_map,
min(sizeof(format_map), sizeof(struct intel_sdvo_sdtv_resolution_request)));
if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output))
return;
BUILD_BUG_ON(sizeof(tv_res) != 3);
if (!intel_sdvo_write_cmd(intel_sdvo,
SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT,
&tv_res, sizeof(tv_res)))
return;
if (!intel_sdvo_read_response(intel_sdvo, &reply, 3))
return;
for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++)
if (reply & (1 << i)) {
struct drm_display_mode *nmode;
nmode = drm_mode_duplicate(connector->dev,
&sdvo_tv_modes[i]);
if (nmode)
drm_mode_probed_add(connector, nmode);
}
}
static void intel_sdvo_get_lvds_modes(struct drm_connector *connector)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct drm_display_mode *newmode;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
/*
* Fetch modes from VBT. For SDVO prefer the VBT mode since some
* SDVO->LVDS transcoders can't cope with the EDID mode.
*/
if (dev_priv->vbt.sdvo_lvds_vbt_mode != NULL) {
newmode = drm_mode_duplicate(connector->dev,
dev_priv->vbt.sdvo_lvds_vbt_mode);
if (newmode != NULL) {
/* Guarantee the mode is preferred */
newmode->type = (DRM_MODE_TYPE_PREFERRED |
DRM_MODE_TYPE_DRIVER);
drm_mode_probed_add(connector, newmode);
}
}
/*
* Attempt to get the mode list from DDC.
* Assume that the preferred modes are
* arranged in priority order.
*/
intel_ddc_get_modes(connector, &intel_sdvo->ddc);
list_for_each_entry(newmode, &connector->probed_modes, head) {
if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
intel_sdvo->sdvo_lvds_fixed_mode =
drm_mode_duplicate(connector->dev, newmode);
intel_sdvo->is_lvds = true;
break;
}
}
}
static int intel_sdvo_get_modes(struct drm_connector *connector)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
if (IS_TV(intel_sdvo_connector))
intel_sdvo_get_tv_modes(connector);
else if (IS_LVDS(intel_sdvo_connector))
intel_sdvo_get_lvds_modes(connector);
else
intel_sdvo_get_ddc_modes(connector);
return !list_empty(&connector->probed_modes);
}
static void intel_sdvo_destroy(struct drm_connector *connector)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
drm_connector_cleanup(connector);
kfree(intel_sdvo_connector);
}
static int
intel_sdvo_connector_atomic_get_property(struct drm_connector *connector,
const struct drm_connector_state *state,
struct drm_property *property,
uint64_t *val)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
const struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state((void *)state);
if (property == intel_sdvo_connector->tv_format) {
int i;
for (i = 0; i < intel_sdvo_connector->format_supported_num; i++)
if (state->tv.mode == intel_sdvo_connector->tv_format_supported[i]) {
*val = i;
return 0;
}
WARN_ON(1);
*val = 0;
} else if (property == intel_sdvo_connector->top ||
property == intel_sdvo_connector->bottom)
*val = intel_sdvo_connector->max_vscan - sdvo_state->tv.overscan_v;
else if (property == intel_sdvo_connector->left ||
property == intel_sdvo_connector->right)
*val = intel_sdvo_connector->max_hscan - sdvo_state->tv.overscan_h;
else if (property == intel_sdvo_connector->hpos)
*val = sdvo_state->tv.hpos;
else if (property == intel_sdvo_connector->vpos)
*val = sdvo_state->tv.vpos;
else if (property == intel_sdvo_connector->saturation)
*val = state->tv.saturation;
else if (property == intel_sdvo_connector->contrast)
*val = state->tv.contrast;
else if (property == intel_sdvo_connector->hue)
*val = state->tv.hue;
else if (property == intel_sdvo_connector->brightness)
*val = state->tv.brightness;
else if (property == intel_sdvo_connector->sharpness)
*val = sdvo_state->tv.sharpness;
else if (property == intel_sdvo_connector->flicker_filter)
*val = sdvo_state->tv.flicker_filter;
else if (property == intel_sdvo_connector->flicker_filter_2d)
*val = sdvo_state->tv.flicker_filter_2d;
else if (property == intel_sdvo_connector->flicker_filter_adaptive)
*val = sdvo_state->tv.flicker_filter_adaptive;
else if (property == intel_sdvo_connector->tv_chroma_filter)
*val = sdvo_state->tv.chroma_filter;
else if (property == intel_sdvo_connector->tv_luma_filter)
*val = sdvo_state->tv.luma_filter;
else if (property == intel_sdvo_connector->dot_crawl)
*val = sdvo_state->tv.dot_crawl;
else
return intel_digital_connector_atomic_get_property(connector, state, property, val);
return 0;
}
static int
intel_sdvo_connector_atomic_set_property(struct drm_connector *connector,
struct drm_connector_state *state,
struct drm_property *property,
uint64_t val)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(state);
if (property == intel_sdvo_connector->tv_format) {
state->tv.mode = intel_sdvo_connector->tv_format_supported[val];
if (state->crtc) {
struct drm_crtc_state *crtc_state =
drm_atomic_get_new_crtc_state(state->state, state->crtc);
crtc_state->connectors_changed = true;
}
} else if (property == intel_sdvo_connector->top ||
property == intel_sdvo_connector->bottom)
/* Cannot set these independent from each other */
sdvo_state->tv.overscan_v = intel_sdvo_connector->max_vscan - val;
else if (property == intel_sdvo_connector->left ||
property == intel_sdvo_connector->right)
/* Cannot set these independent from each other */
sdvo_state->tv.overscan_h = intel_sdvo_connector->max_hscan - val;
else if (property == intel_sdvo_connector->hpos)
sdvo_state->tv.hpos = val;
else if (property == intel_sdvo_connector->vpos)
sdvo_state->tv.vpos = val;
else if (property == intel_sdvo_connector->saturation)
state->tv.saturation = val;
else if (property == intel_sdvo_connector->contrast)
state->tv.contrast = val;
else if (property == intel_sdvo_connector->hue)
state->tv.hue = val;
else if (property == intel_sdvo_connector->brightness)
state->tv.brightness = val;
else if (property == intel_sdvo_connector->sharpness)
sdvo_state->tv.sharpness = val;
else if (property == intel_sdvo_connector->flicker_filter)
sdvo_state->tv.flicker_filter = val;
else if (property == intel_sdvo_connector->flicker_filter_2d)
sdvo_state->tv.flicker_filter_2d = val;
else if (property == intel_sdvo_connector->flicker_filter_adaptive)
sdvo_state->tv.flicker_filter_adaptive = val;
else if (property == intel_sdvo_connector->tv_chroma_filter)
sdvo_state->tv.chroma_filter = val;
else if (property == intel_sdvo_connector->tv_luma_filter)
sdvo_state->tv.luma_filter = val;
else if (property == intel_sdvo_connector->dot_crawl)
sdvo_state->tv.dot_crawl = val;
else
return intel_digital_connector_atomic_set_property(connector, state, property, val);
return 0;
}
static int
intel_sdvo_connector_register(struct drm_connector *connector)
{
struct intel_sdvo *sdvo = intel_attached_sdvo(connector);
int ret;
ret = intel_connector_register(connector);
if (ret)
return ret;
return sysfs_create_link(&connector->kdev->kobj,
&sdvo->ddc.dev.kobj,
sdvo->ddc.dev.kobj.name);
}
static void
intel_sdvo_connector_unregister(struct drm_connector *connector)
{
struct intel_sdvo *sdvo = intel_attached_sdvo(connector);
sysfs_remove_link(&connector->kdev->kobj,
sdvo->ddc.dev.kobj.name);
intel_connector_unregister(connector);
}
static struct drm_connector_state *
intel_sdvo_connector_duplicate_state(struct drm_connector *connector)
{
struct intel_sdvo_connector_state *state;
state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector, &state->base.base);
return &state->base.base;
}
static const struct drm_connector_funcs intel_sdvo_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_sdvo_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = drm_atomic_helper_connector_set_property,
.atomic_get_property = intel_sdvo_connector_atomic_get_property,
.atomic_set_property = intel_sdvo_connector_atomic_set_property,
.late_register = intel_sdvo_connector_register,
.early_unregister = intel_sdvo_connector_unregister,
.destroy = intel_sdvo_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_sdvo_connector_duplicate_state,
};
static int intel_sdvo_atomic_check(struct drm_connector *conn,
struct drm_connector_state *new_conn_state)
{
struct drm_atomic_state *state = new_conn_state->state;
struct drm_connector_state *old_conn_state =
drm_atomic_get_old_connector_state(state, conn);
struct intel_sdvo_connector_state *old_state =
to_intel_sdvo_connector_state(old_conn_state);
struct intel_sdvo_connector_state *new_state =
to_intel_sdvo_connector_state(new_conn_state);
if (new_conn_state->crtc &&
(memcmp(&old_state->tv, &new_state->tv, sizeof(old_state->tv)) ||
memcmp(&old_conn_state->tv, &new_conn_state->tv, sizeof(old_conn_state->tv)))) {
struct drm_crtc_state *crtc_state =
drm_atomic_get_new_crtc_state(new_conn_state->state,
new_conn_state->crtc);
crtc_state->connectors_changed = true;
}
return intel_digital_connector_atomic_check(conn, new_conn_state);
}
static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = {
.get_modes = intel_sdvo_get_modes,
.mode_valid = intel_sdvo_mode_valid,
.atomic_check = intel_sdvo_atomic_check,
};
static void intel_sdvo_enc_destroy(struct drm_encoder *encoder)
{
struct intel_sdvo *intel_sdvo = to_sdvo(to_intel_encoder(encoder));
if (intel_sdvo->sdvo_lvds_fixed_mode != NULL)
drm_mode_destroy(encoder->dev,
intel_sdvo->sdvo_lvds_fixed_mode);
i2c_del_adapter(&intel_sdvo->ddc);
intel_encoder_destroy(encoder);
}
static const struct drm_encoder_funcs intel_sdvo_enc_funcs = {
.destroy = intel_sdvo_enc_destroy,
};
static void
intel_sdvo_guess_ddc_bus(struct intel_sdvo *sdvo)
{
uint16_t mask = 0;
unsigned int num_bits;
/* Make a mask of outputs less than or equal to our own priority in the
* list.
*/
switch (sdvo->controlled_output) {
case SDVO_OUTPUT_LVDS1:
mask |= SDVO_OUTPUT_LVDS1;
case SDVO_OUTPUT_LVDS0:
mask |= SDVO_OUTPUT_LVDS0;
case SDVO_OUTPUT_TMDS1:
mask |= SDVO_OUTPUT_TMDS1;
case SDVO_OUTPUT_TMDS0:
mask |= SDVO_OUTPUT_TMDS0;
case SDVO_OUTPUT_RGB1:
mask |= SDVO_OUTPUT_RGB1;
case SDVO_OUTPUT_RGB0:
mask |= SDVO_OUTPUT_RGB0;
break;
}
/* Count bits to find what number we are in the priority list. */
mask &= sdvo->caps.output_flags;
num_bits = hweight16(mask);
/* If more than 3 outputs, default to DDC bus 3 for now. */
if (num_bits > 3)
num_bits = 3;
/* Corresponds to SDVO_CONTROL_BUS_DDCx */
sdvo->ddc_bus = 1 << num_bits;
}
/**
* Choose the appropriate DDC bus for control bus switch command for this
* SDVO output based on the controlled output.
*
* DDC bus number assignment is in a priority order of RGB outputs, then TMDS
* outputs, then LVDS outputs.
*/
static void
intel_sdvo_select_ddc_bus(struct drm_i915_private *dev_priv,
struct intel_sdvo *sdvo)
{
struct sdvo_device_mapping *mapping;
if (sdvo->port == PORT_B)
mapping = &dev_priv->vbt.sdvo_mappings[0];
else
mapping = &dev_priv->vbt.sdvo_mappings[1];
if (mapping->initialized)
sdvo->ddc_bus = 1 << ((mapping->ddc_pin & 0xf0) >> 4);
else
intel_sdvo_guess_ddc_bus(sdvo);
}
static void
intel_sdvo_select_i2c_bus(struct drm_i915_private *dev_priv,
struct intel_sdvo *sdvo)
{
struct sdvo_device_mapping *mapping;
u8 pin;
if (sdvo->port == PORT_B)
mapping = &dev_priv->vbt.sdvo_mappings[0];
else
mapping = &dev_priv->vbt.sdvo_mappings[1];
if (mapping->initialized &&
intel_gmbus_is_valid_pin(dev_priv, mapping->i2c_pin))
pin = mapping->i2c_pin;
else
pin = GMBUS_PIN_DPB;
sdvo->i2c = intel_gmbus_get_adapter(dev_priv, pin);
/* With gmbus we should be able to drive sdvo i2c at 2MHz, but somehow
* our code totally fails once we start using gmbus. Hence fall back to
* bit banging for now. */
intel_gmbus_force_bit(sdvo->i2c, true);
}
/* undo any changes intel_sdvo_select_i2c_bus() did to sdvo->i2c */
static void
intel_sdvo_unselect_i2c_bus(struct intel_sdvo *sdvo)
{
intel_gmbus_force_bit(sdvo->i2c, false);
}
static bool
intel_sdvo_is_hdmi_connector(struct intel_sdvo *intel_sdvo, int device)
{
return intel_sdvo_check_supp_encode(intel_sdvo);
}
static u8
intel_sdvo_get_slave_addr(struct drm_i915_private *dev_priv,
struct intel_sdvo *sdvo)
{
struct sdvo_device_mapping *my_mapping, *other_mapping;
if (sdvo->port == PORT_B) {
my_mapping = &dev_priv->vbt.sdvo_mappings[0];
other_mapping = &dev_priv->vbt.sdvo_mappings[1];
} else {
my_mapping = &dev_priv->vbt.sdvo_mappings[1];
other_mapping = &dev_priv->vbt.sdvo_mappings[0];
}
/* If the BIOS described our SDVO device, take advantage of it. */
if (my_mapping->slave_addr)
return my_mapping->slave_addr;
/* If the BIOS only described a different SDVO device, use the
* address that it isn't using.
*/
if (other_mapping->slave_addr) {
if (other_mapping->slave_addr == 0x70)
return 0x72;
else
return 0x70;
}
/* No SDVO device info is found for another DVO port,
* so use mapping assumption we had before BIOS parsing.
*/
if (sdvo->port == PORT_B)
return 0x70;
else
return 0x72;
}
static int
intel_sdvo_connector_init(struct intel_sdvo_connector *connector,
struct intel_sdvo *encoder)
{
struct drm_connector *drm_connector;
int ret;
drm_connector = &connector->base.base;
ret = drm_connector_init(encoder->base.base.dev,
drm_connector,
&intel_sdvo_connector_funcs,
connector->base.base.connector_type);
if (ret < 0)
return ret;
drm_connector_helper_add(drm_connector,
&intel_sdvo_connector_helper_funcs);
connector->base.base.interlace_allowed = 1;
connector->base.base.doublescan_allowed = 0;
connector->base.base.display_info.subpixel_order = SubPixelHorizontalRGB;
connector->base.get_hw_state = intel_sdvo_connector_get_hw_state;
intel_connector_attach_encoder(&connector->base, &encoder->base);
return 0;
}
static void
intel_sdvo_add_hdmi_properties(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.base.dev);
intel_attach_force_audio_property(&connector->base.base);
if (INTEL_GEN(dev_priv) >= 4 && IS_MOBILE(dev_priv)) {
intel_attach_broadcast_rgb_property(&connector->base.base);
}
intel_attach_aspect_ratio_property(&connector->base.base);
connector->base.base.state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
}
static struct intel_sdvo_connector *intel_sdvo_connector_alloc(void)
{
struct intel_sdvo_connector *sdvo_connector;
struct intel_sdvo_connector_state *conn_state;
sdvo_connector = kzalloc(sizeof(*sdvo_connector), GFP_KERNEL);
if (!sdvo_connector)
return NULL;
conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
if (!conn_state) {
kfree(sdvo_connector);
return NULL;
}
__drm_atomic_helper_connector_reset(&sdvo_connector->base.base,
&conn_state->base.base);
return sdvo_connector;
}
static bool
intel_sdvo_dvi_init(struct intel_sdvo *intel_sdvo, int device)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_connector *connector;
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising DVI device %d\n", device);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
if (device == 0) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS0;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS0;
} else if (device == 1) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS1;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS1;
}
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
if (intel_sdvo_get_hotplug_support(intel_sdvo) &
intel_sdvo_connector->output_flag) {
intel_sdvo->hotplug_active |= intel_sdvo_connector->output_flag;
/* Some SDVO devices have one-shot hotplug interrupts.
* Ensure that they get re-enabled when an interrupt happens.
*/
intel_encoder->hot_plug = intel_sdvo_enable_hotplug;
intel_sdvo_enable_hotplug(intel_encoder);
} else {
intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT;
}
encoder->encoder_type = DRM_MODE_ENCODER_TMDS;
connector->connector_type = DRM_MODE_CONNECTOR_DVID;
if (intel_sdvo_is_hdmi_connector(intel_sdvo, device)) {
connector->connector_type = DRM_MODE_CONNECTOR_HDMIA;
intel_sdvo->is_hdmi = true;
}
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
if (intel_sdvo->is_hdmi)
intel_sdvo_add_hdmi_properties(intel_sdvo, intel_sdvo_connector);
return true;
}
static bool
intel_sdvo_tv_init(struct intel_sdvo *intel_sdvo, int type)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_connector *connector;
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising TV type %d\n", type);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
encoder->encoder_type = DRM_MODE_ENCODER_TVDAC;
connector->connector_type = DRM_MODE_CONNECTOR_SVIDEO;
intel_sdvo->controlled_output |= type;
intel_sdvo_connector->output_flag = type;
intel_sdvo->is_tv = true;
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
if (!intel_sdvo_tv_create_property(intel_sdvo, intel_sdvo_connector, type))
goto err;
if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector))
goto err;
return true;
err:
intel_sdvo_destroy(connector);
return false;
}
static bool
intel_sdvo_analog_init(struct intel_sdvo *intel_sdvo, int device)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_connector *connector;
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising analog device %d\n", device);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT;
encoder->encoder_type = DRM_MODE_ENCODER_DAC;
connector->connector_type = DRM_MODE_CONNECTOR_VGA;
if (device == 0) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB0;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB0;
} else if (device == 1) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB1;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB1;
}
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
return true;
}
static bool
intel_sdvo_lvds_init(struct intel_sdvo *intel_sdvo, int device)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_connector *connector;
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising LVDS device %d\n", device);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
encoder->encoder_type = DRM_MODE_ENCODER_LVDS;
connector->connector_type = DRM_MODE_CONNECTOR_LVDS;
if (device == 0) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS0;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS0;
} else if (device == 1) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS1;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS1;
}
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector))
goto err;
return true;
err:
intel_sdvo_destroy(connector);
return false;
}
static bool
intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, uint16_t flags)
{
intel_sdvo->is_tv = false;
intel_sdvo->is_lvds = false;
/* SDVO requires XXX1 function may not exist unless it has XXX0 function.*/
if (flags & SDVO_OUTPUT_TMDS0)
if (!intel_sdvo_dvi_init(intel_sdvo, 0))
return false;
if ((flags & SDVO_TMDS_MASK) == SDVO_TMDS_MASK)
if (!intel_sdvo_dvi_init(intel_sdvo, 1))
return false;
/* TV has no XXX1 function block */
if (flags & SDVO_OUTPUT_SVID0)
if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_SVID0))
return false;
if (flags & SDVO_OUTPUT_CVBS0)
if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_CVBS0))
return false;
if (flags & SDVO_OUTPUT_YPRPB0)
if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_YPRPB0))
return false;
if (flags & SDVO_OUTPUT_RGB0)
if (!intel_sdvo_analog_init(intel_sdvo, 0))
return false;
if ((flags & SDVO_RGB_MASK) == SDVO_RGB_MASK)
if (!intel_sdvo_analog_init(intel_sdvo, 1))
return false;
if (flags & SDVO_OUTPUT_LVDS0)
if (!intel_sdvo_lvds_init(intel_sdvo, 0))
return false;
if ((flags & SDVO_LVDS_MASK) == SDVO_LVDS_MASK)
if (!intel_sdvo_lvds_init(intel_sdvo, 1))
return false;
if ((flags & SDVO_OUTPUT_MASK) == 0) {
unsigned char bytes[2];
intel_sdvo->controlled_output = 0;
memcpy(bytes, &intel_sdvo->caps.output_flags, 2);
DRM_DEBUG_KMS("%s: Unknown SDVO output type (0x%02x%02x)\n",
SDVO_NAME(intel_sdvo),
bytes[0], bytes[1]);
return false;
}
intel_sdvo->base.crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
return true;
}
static void intel_sdvo_output_cleanup(struct intel_sdvo *intel_sdvo)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_connector *connector, *tmp;
list_for_each_entry_safe(connector, tmp,
&dev->mode_config.connector_list, head) {
if (intel_attached_encoder(connector) == &intel_sdvo->base) {
drm_connector_unregister(connector);
intel_sdvo_destroy(connector);
}
}
}
static bool intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
int type)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct intel_sdvo_tv_format format;
uint32_t format_map, i;
if (!intel_sdvo_set_target_output(intel_sdvo, type))
return false;
BUILD_BUG_ON(sizeof(format) != 6);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_SUPPORTED_TV_FORMATS,
&format, sizeof(format)))
return false;
memcpy(&format_map, &format, min(sizeof(format_map), sizeof(format)));
if (format_map == 0)
return false;
intel_sdvo_connector->format_supported_num = 0;
for (i = 0 ; i < TV_FORMAT_NUM; i++)
if (format_map & (1 << i))
intel_sdvo_connector->tv_format_supported[intel_sdvo_connector->format_supported_num++] = i;
intel_sdvo_connector->tv_format =
drm_property_create(dev, DRM_MODE_PROP_ENUM,
"mode", intel_sdvo_connector->format_supported_num);
if (!intel_sdvo_connector->tv_format)
return false;
for (i = 0; i < intel_sdvo_connector->format_supported_num; i++)
drm_property_add_enum(
intel_sdvo_connector->tv_format, i,
i, tv_format_names[intel_sdvo_connector->tv_format_supported[i]]);
intel_sdvo_connector->base.base.state->tv.mode = intel_sdvo_connector->tv_format_supported[0];
drm_object_attach_property(&intel_sdvo_connector->base.base.base,
intel_sdvo_connector->tv_format, 0);
return true;
}
#define _ENHANCEMENT(state_assignment, name, NAME) do { \
if (enhancements.name) { \
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_##NAME, &data_value, 4) || \
!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_##NAME, &response, 2)) \
return false; \
intel_sdvo_connector->name = \
drm_property_create_range(dev, 0, #name, 0, data_value[0]); \
if (!intel_sdvo_connector->name) return false; \
state_assignment = response; \
drm_object_attach_property(&connector->base, \
intel_sdvo_connector->name, 0); \
DRM_DEBUG_KMS(#name ": max %d, default %d, current %d\n", \
data_value[0], data_value[1], response); \
} \
} while (0)
#define ENHANCEMENT(state, name, NAME) _ENHANCEMENT((state)->name, name, NAME)
static bool
intel_sdvo_create_enhance_property_tv(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
struct intel_sdvo_enhancements_reply enhancements)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_connector *connector = &intel_sdvo_connector->base.base;
struct drm_connector_state *conn_state = connector->state;
struct intel_sdvo_connector_state *sdvo_state =
to_intel_sdvo_connector_state(conn_state);
uint16_t response, data_value[2];
/* when horizontal overscan is supported, Add the left/right property */
if (enhancements.overscan_h) {
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_MAX_OVERSCAN_H,
&data_value, 4))
return false;
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_OVERSCAN_H,
&response, 2))
return false;
sdvo_state->tv.overscan_h = response;
intel_sdvo_connector->max_hscan = data_value[0];
intel_sdvo_connector->left =
drm_property_create_range(dev, 0, "left_margin", 0, data_value[0]);
if (!intel_sdvo_connector->left)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->left, 0);
intel_sdvo_connector->right =
drm_property_create_range(dev, 0, "right_margin", 0, data_value[0]);
if (!intel_sdvo_connector->right)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->right, 0);
DRM_DEBUG_KMS("h_overscan: max %d, "
"default %d, current %d\n",
data_value[0], data_value[1], response);
}
if (enhancements.overscan_v) {
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_MAX_OVERSCAN_V,
&data_value, 4))
return false;
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_OVERSCAN_V,
&response, 2))
return false;
sdvo_state->tv.overscan_v = response;
intel_sdvo_connector->max_vscan = data_value[0];
intel_sdvo_connector->top =
drm_property_create_range(dev, 0,
"top_margin", 0, data_value[0]);
if (!intel_sdvo_connector->top)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->top, 0);
intel_sdvo_connector->bottom =
drm_property_create_range(dev, 0,
"bottom_margin", 0, data_value[0]);
if (!intel_sdvo_connector->bottom)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->bottom, 0);
DRM_DEBUG_KMS("v_overscan: max %d, "
"default %d, current %d\n",
data_value[0], data_value[1], response);
}
ENHANCEMENT(&sdvo_state->tv, hpos, HPOS);
ENHANCEMENT(&sdvo_state->tv, vpos, VPOS);
ENHANCEMENT(&conn_state->tv, saturation, SATURATION);
ENHANCEMENT(&conn_state->tv, contrast, CONTRAST);
ENHANCEMENT(&conn_state->tv, hue, HUE);
ENHANCEMENT(&conn_state->tv, brightness, BRIGHTNESS);
ENHANCEMENT(&sdvo_state->tv, sharpness, SHARPNESS);
ENHANCEMENT(&sdvo_state->tv, flicker_filter, FLICKER_FILTER);
ENHANCEMENT(&sdvo_state->tv, flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE);
ENHANCEMENT(&sdvo_state->tv, flicker_filter_2d, FLICKER_FILTER_2D);
_ENHANCEMENT(sdvo_state->tv.chroma_filter, tv_chroma_filter, TV_CHROMA_FILTER);
_ENHANCEMENT(sdvo_state->tv.luma_filter, tv_luma_filter, TV_LUMA_FILTER);
if (enhancements.dot_crawl) {
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_DOT_CRAWL, &response, 2))
return false;
sdvo_state->tv.dot_crawl = response & 0x1;
intel_sdvo_connector->dot_crawl =
drm_property_create_range(dev, 0, "dot_crawl", 0, 1);
if (!intel_sdvo_connector->dot_crawl)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->dot_crawl, 0);
DRM_DEBUG_KMS("dot crawl: current %d\n", response);
}
return true;
}
static bool
intel_sdvo_create_enhance_property_lvds(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
struct intel_sdvo_enhancements_reply enhancements)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_connector *connector = &intel_sdvo_connector->base.base;
uint16_t response, data_value[2];
ENHANCEMENT(&connector->state->tv, brightness, BRIGHTNESS);
return true;
}
#undef ENHANCEMENT
#undef _ENHANCEMENT
static bool intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector)
{
union {
struct intel_sdvo_enhancements_reply reply;
uint16_t response;
} enhancements;
BUILD_BUG_ON(sizeof(enhancements) != 2);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS,
&enhancements, sizeof(enhancements)) ||
enhancements.response == 0) {
DRM_DEBUG_KMS("No enhancement is supported\n");
return true;
}
if (IS_TV(intel_sdvo_connector))
return intel_sdvo_create_enhance_property_tv(intel_sdvo, intel_sdvo_connector, enhancements.reply);
else if (IS_LVDS(intel_sdvo_connector))
return intel_sdvo_create_enhance_property_lvds(intel_sdvo, intel_sdvo_connector, enhancements.reply);
else
return true;
}
static int intel_sdvo_ddc_proxy_xfer(struct i2c_adapter *adapter,
struct i2c_msg *msgs,
int num)
{
struct intel_sdvo *sdvo = adapter->algo_data;
if (!intel_sdvo_set_control_bus_switch(sdvo, sdvo->ddc_bus))
return -EIO;
return sdvo->i2c->algo->master_xfer(sdvo->i2c, msgs, num);
}
static u32 intel_sdvo_ddc_proxy_func(struct i2c_adapter *adapter)
{
struct intel_sdvo *sdvo = adapter->algo_data;
return sdvo->i2c->algo->functionality(sdvo->i2c);
}
static const struct i2c_algorithm intel_sdvo_ddc_proxy = {
.master_xfer = intel_sdvo_ddc_proxy_xfer,
.functionality = intel_sdvo_ddc_proxy_func
};
static bool
intel_sdvo_init_ddc_proxy(struct intel_sdvo *sdvo,
struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
sdvo->ddc.owner = THIS_MODULE;
sdvo->ddc.class = I2C_CLASS_DDC;
snprintf(sdvo->ddc.name, I2C_NAME_SIZE, "SDVO DDC proxy");
sdvo->ddc.dev.parent = &pdev->dev;
sdvo->ddc.algo_data = sdvo;
sdvo->ddc.algo = &intel_sdvo_ddc_proxy;
return i2c_add_adapter(&sdvo->ddc) == 0;
}
static void assert_sdvo_port_valid(const struct drm_i915_private *dev_priv,
enum port port)
{
if (HAS_PCH_SPLIT(dev_priv))
WARN_ON(port != PORT_B);
else
WARN_ON(port != PORT_B && port != PORT_C);
}
bool intel_sdvo_init(struct drm_i915_private *dev_priv,
i915_reg_t sdvo_reg, enum port port)
{
struct intel_encoder *intel_encoder;
struct intel_sdvo *intel_sdvo;
int i;
assert_sdvo_port_valid(dev_priv, port);
intel_sdvo = kzalloc(sizeof(*intel_sdvo), GFP_KERNEL);
if (!intel_sdvo)
return false;
intel_sdvo->sdvo_reg = sdvo_reg;
intel_sdvo->port = port;
intel_sdvo->slave_addr =
intel_sdvo_get_slave_addr(dev_priv, intel_sdvo) >> 1;
intel_sdvo_select_i2c_bus(dev_priv, intel_sdvo);
if (!intel_sdvo_init_ddc_proxy(intel_sdvo, dev_priv))
goto err_i2c_bus;
/* encoder type will be decided later */
intel_encoder = &intel_sdvo->base;
intel_encoder->type = INTEL_OUTPUT_SDVO;
intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER;
intel_encoder->port = port;
drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
&intel_sdvo_enc_funcs, 0,
"SDVO %c", port_name(port));
/* Read the regs to test if we can talk to the device */
for (i = 0; i < 0x40; i++) {
u8 byte;
if (!intel_sdvo_read_byte(intel_sdvo, i, &byte)) {
DRM_DEBUG_KMS("No SDVO device found on %s\n",
SDVO_NAME(intel_sdvo));
goto err;
}
}
intel_encoder->compute_config = intel_sdvo_compute_config;
if (HAS_PCH_SPLIT(dev_priv)) {
intel_encoder->disable = pch_disable_sdvo;
intel_encoder->post_disable = pch_post_disable_sdvo;
} else {
intel_encoder->disable = intel_disable_sdvo;
}
intel_encoder->pre_enable = intel_sdvo_pre_enable;
intel_encoder->enable = intel_enable_sdvo;
intel_encoder->get_hw_state = intel_sdvo_get_hw_state;
intel_encoder->get_config = intel_sdvo_get_config;
/* In default case sdvo lvds is false */
if (!intel_sdvo_get_capabilities(intel_sdvo, &intel_sdvo->caps))
goto err;
if (intel_sdvo_output_setup(intel_sdvo,
intel_sdvo->caps.output_flags) != true) {
DRM_DEBUG_KMS("SDVO output failed to setup on %s\n",
SDVO_NAME(intel_sdvo));
/* Output_setup can leave behind connectors! */
goto err_output;
}
/* Only enable the hotplug irq if we need it, to work around noisy
* hotplug lines.
*/
if (intel_sdvo->hotplug_active) {
if (intel_sdvo->port == PORT_B)
intel_encoder->hpd_pin = HPD_SDVO_B;
else
intel_encoder->hpd_pin = HPD_SDVO_C;
}
/*
* Cloning SDVO with anything is often impossible, since the SDVO
* encoder can request a special input timing mode. And even if that's
* not the case we have evidence that cloning a plain unscaled mode with
* VGA doesn't really work. Furthermore the cloning flags are way too
* simplistic anyway to express such constraints, so just give up on
* cloning for SDVO encoders.
*/
intel_sdvo->base.cloneable = 0;
intel_sdvo_select_ddc_bus(dev_priv, intel_sdvo);
/* Set the input timing to the screen. Assume always input 0. */
if (!intel_sdvo_set_target_input(intel_sdvo))
goto err_output;
if (!intel_sdvo_get_input_pixel_clock_range(intel_sdvo,
&intel_sdvo->pixel_clock_min,
&intel_sdvo->pixel_clock_max))
goto err_output;
DRM_DEBUG_KMS("%s device VID/DID: %02X:%02X.%02X, "
"clock range %dMHz - %dMHz, "
"input 1: %c, input 2: %c, "
"output 1: %c, output 2: %c\n",
SDVO_NAME(intel_sdvo),
intel_sdvo->caps.vendor_id, intel_sdvo->caps.device_id,
intel_sdvo->caps.device_rev_id,
intel_sdvo->pixel_clock_min / 1000,
intel_sdvo->pixel_clock_max / 1000,
(intel_sdvo->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N',
(intel_sdvo->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N',
/* check currently supported outputs */
intel_sdvo->caps.output_flags &
(SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N',
intel_sdvo->caps.output_flags &
(SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N');
return true;
err_output:
intel_sdvo_output_cleanup(intel_sdvo);
err:
drm_encoder_cleanup(&intel_encoder->base);
i2c_del_adapter(&intel_sdvo->ddc);
err_i2c_bus:
intel_sdvo_unselect_i2c_bus(intel_sdvo);
kfree(intel_sdvo);
return false;
}