blob: fc3682f15f5099d94feb5602cfb1bcceae9c9230 [file] [log] [blame]
/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/lockdep.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/fc/fc_fs.h>
#include <linux/aer.h>
#include <linux/crash_dump.h>
#ifdef CONFIG_X86
#include <asm/set_memory.h>
#endif
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_scsi.h"
#include "lpfc_nvme.h"
#include "lpfc_crtn.h"
#include "lpfc_logmsg.h"
#include "lpfc_compat.h"
#include "lpfc_debugfs.h"
#include "lpfc_vport.h"
#include "lpfc_version.h"
/* There are only four IOCB completion types. */
typedef enum _lpfc_iocb_type {
LPFC_UNKNOWN_IOCB,
LPFC_UNSOL_IOCB,
LPFC_SOL_IOCB,
LPFC_ABORT_IOCB
} lpfc_iocb_type;
/* Provide function prototypes local to this module. */
static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
uint32_t);
static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
uint8_t *, uint32_t *);
static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
struct lpfc_iocbq *);
static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
struct hbq_dmabuf *);
static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
struct hbq_dmabuf *dmabuf);
static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
struct lpfc_queue *cq, struct lpfc_cqe *cqe);
static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
int);
static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
struct lpfc_queue *eq,
struct lpfc_eqe *eqe);
static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
struct lpfc_queue *cq,
struct lpfc_cqe *cqe);
union lpfc_wqe128 lpfc_iread_cmd_template;
union lpfc_wqe128 lpfc_iwrite_cmd_template;
union lpfc_wqe128 lpfc_icmnd_cmd_template;
static IOCB_t *
lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
{
return &iocbq->iocb;
}
/* Setup WQE templates for IOs */
void lpfc_wqe_cmd_template(void)
{
union lpfc_wqe128 *wqe;
/* IREAD template */
wqe = &lpfc_iread_cmd_template;
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* Word 0, 1, 2 - BDE is variable */
/* Word 3 - cmd_buff_len, payload_offset_len is zero */
/* Word 4 - total_xfer_len is variable */
/* Word 5 - is zero */
/* Word 6 - ctxt_tag, xri_tag is variable */
/* Word 7 */
bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
/* Word 8 - abort_tag is variable */
/* Word 9 - reqtag is variable */
/* Word 10 - dbde, wqes is variable */
bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
/* Word 11 - pbde is variable */
bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
/* Word 12 - is zero */
/* Word 13, 14, 15 - PBDE is variable */
/* IWRITE template */
wqe = &lpfc_iwrite_cmd_template;
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* Word 0, 1, 2 - BDE is variable */
/* Word 3 - cmd_buff_len, payload_offset_len is zero */
/* Word 4 - total_xfer_len is variable */
/* Word 5 - initial_xfer_len is variable */
/* Word 6 - ctxt_tag, xri_tag is variable */
/* Word 7 */
bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
/* Word 8 - abort_tag is variable */
/* Word 9 - reqtag is variable */
/* Word 10 - dbde, wqes is variable */
bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
/* Word 11 - pbde is variable */
bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
/* Word 12 - is zero */
/* Word 13, 14, 15 - PBDE is variable */
/* ICMND template */
wqe = &lpfc_icmnd_cmd_template;
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* Word 0, 1, 2 - BDE is variable */
/* Word 3 - payload_offset_len is variable */
/* Word 4, 5 - is zero */
/* Word 6 - ctxt_tag, xri_tag is variable */
/* Word 7 */
bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
/* Word 8 - abort_tag is variable */
/* Word 9 - reqtag is variable */
/* Word 10 - dbde, wqes is variable */
bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
/* Word 11 */
bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
/* Word 12, 13, 14, 15 - is zero */
}
#if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
/**
* lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
* @srcp: Source memory pointer.
* @destp: Destination memory pointer.
* @cnt: Number of words required to be copied.
* Must be a multiple of sizeof(uint64_t)
*
* This function is used for copying data between driver memory
* and the SLI WQ. This function also changes the endianness
* of each word if native endianness is different from SLI
* endianness. This function can be called with or without
* lock.
**/
static void
lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
{
uint64_t *src = srcp;
uint64_t *dest = destp;
int i;
for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
*dest++ = *src++;
}
#else
#define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
#endif
/**
* lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
* @q: The Work Queue to operate on.
* @wqe: The work Queue Entry to put on the Work queue.
*
* This routine will copy the contents of @wqe to the next available entry on
* the @q. This function will then ring the Work Queue Doorbell to signal the
* HBA to start processing the Work Queue Entry. This function returns 0 if
* successful. If no entries are available on @q then this function will return
* -ENOMEM.
* The caller is expected to hold the hbalock when calling this routine.
**/
static int
lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
{
union lpfc_wqe *temp_wqe;
struct lpfc_register doorbell;
uint32_t host_index;
uint32_t idx;
uint32_t i = 0;
uint8_t *tmp;
u32 if_type;
/* sanity check on queue memory */
if (unlikely(!q))
return -ENOMEM;
temp_wqe = lpfc_sli4_qe(q, q->host_index);
/* If the host has not yet processed the next entry then we are done */
idx = ((q->host_index + 1) % q->entry_count);
if (idx == q->hba_index) {
q->WQ_overflow++;
return -EBUSY;
}
q->WQ_posted++;
/* set consumption flag every once in a while */
if (!((q->host_index + 1) % q->notify_interval))
bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
else
bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
if (q->dpp_enable && q->phba->cfg_enable_dpp) {
/* write to DPP aperture taking advatage of Combined Writes */
tmp = (uint8_t *)temp_wqe;
#ifdef __raw_writeq
for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
__raw_writeq(*((uint64_t *)(tmp + i)),
q->dpp_regaddr + i);
#else
for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
__raw_writel(*((uint32_t *)(tmp + i)),
q->dpp_regaddr + i);
#endif
}
/* ensure WQE bcopy and DPP flushed before doorbell write */
wmb();
/* Update the host index before invoking device */
host_index = q->host_index;
q->host_index = idx;
/* Ring Doorbell */
doorbell.word0 = 0;
if (q->db_format == LPFC_DB_LIST_FORMAT) {
if (q->dpp_enable && q->phba->cfg_enable_dpp) {
bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
q->dpp_id);
bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
q->queue_id);
} else {
bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
/* Leave bits <23:16> clear for if_type 6 dpp */
if_type = bf_get(lpfc_sli_intf_if_type,
&q->phba->sli4_hba.sli_intf);
if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
bf_set(lpfc_wq_db_list_fm_index, &doorbell,
host_index);
}
} else if (q->db_format == LPFC_DB_RING_FORMAT) {
bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
} else {
return -EINVAL;
}
writel(doorbell.word0, q->db_regaddr);
return 0;
}
/**
* lpfc_sli4_wq_release - Updates internal hba index for WQ
* @q: The Work Queue to operate on.
* @index: The index to advance the hba index to.
*
* This routine will update the HBA index of a queue to reflect consumption of
* Work Queue Entries by the HBA. When the HBA indicates that it has consumed
* an entry the host calls this function to update the queue's internal
* pointers.
**/
static void
lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
{
/* sanity check on queue memory */
if (unlikely(!q))
return;
q->hba_index = index;
}
/**
* lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
* @q: The Mailbox Queue to operate on.
* @mqe: The Mailbox Queue Entry to put on the Work queue.
*
* This routine will copy the contents of @mqe to the next available entry on
* the @q. This function will then ring the Work Queue Doorbell to signal the
* HBA to start processing the Work Queue Entry. This function returns 0 if
* successful. If no entries are available on @q then this function will return
* -ENOMEM.
* The caller is expected to hold the hbalock when calling this routine.
**/
static uint32_t
lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
{
struct lpfc_mqe *temp_mqe;
struct lpfc_register doorbell;
/* sanity check on queue memory */
if (unlikely(!q))
return -ENOMEM;
temp_mqe = lpfc_sli4_qe(q, q->host_index);
/* If the host has not yet processed the next entry then we are done */
if (((q->host_index + 1) % q->entry_count) == q->hba_index)
return -ENOMEM;
lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
/* Save off the mailbox pointer for completion */
q->phba->mbox = (MAILBOX_t *)temp_mqe;
/* Update the host index before invoking device */
q->host_index = ((q->host_index + 1) % q->entry_count);
/* Ring Doorbell */
doorbell.word0 = 0;
bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
return 0;
}
/**
* lpfc_sli4_mq_release - Updates internal hba index for MQ
* @q: The Mailbox Queue to operate on.
*
* This routine will update the HBA index of a queue to reflect consumption of
* a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
* an entry the host calls this function to update the queue's internal
* pointers. This routine returns the number of entries that were consumed by
* the HBA.
**/
static uint32_t
lpfc_sli4_mq_release(struct lpfc_queue *q)
{
/* sanity check on queue memory */
if (unlikely(!q))
return 0;
/* Clear the mailbox pointer for completion */
q->phba->mbox = NULL;
q->hba_index = ((q->hba_index + 1) % q->entry_count);
return 1;
}
/**
* lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
* @q: The Event Queue to get the first valid EQE from
*
* This routine will get the first valid Event Queue Entry from @q, update
* the queue's internal hba index, and return the EQE. If no valid EQEs are in
* the Queue (no more work to do), or the Queue is full of EQEs that have been
* processed, but not popped back to the HBA then this routine will return NULL.
**/
static struct lpfc_eqe *
lpfc_sli4_eq_get(struct lpfc_queue *q)
{
struct lpfc_eqe *eqe;
/* sanity check on queue memory */
if (unlikely(!q))
return NULL;
eqe = lpfc_sli4_qe(q, q->host_index);
/* If the next EQE is not valid then we are done */
if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
return NULL;
/*
* insert barrier for instruction interlock : data from the hardware
* must have the valid bit checked before it can be copied and acted
* upon. Speculative instructions were allowing a bcopy at the start
* of lpfc_sli4_fp_handle_wcqe(), which is called immediately
* after our return, to copy data before the valid bit check above
* was done. As such, some of the copied data was stale. The barrier
* ensures the check is before any data is copied.
*/
mb();
return eqe;
}
/**
* lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
* @q: The Event Queue to disable interrupts
*
**/
void
lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
{
struct lpfc_register doorbell;
doorbell.word0 = 0;
bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
}
/**
* lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
* @q: The Event Queue to disable interrupts
*
**/
void
lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
{
struct lpfc_register doorbell;
doorbell.word0 = 0;
bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
}
/**
* lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
* @phba: adapter with EQ
* @q: The Event Queue that the host has completed processing for.
* @count: Number of elements that have been consumed
* @arm: Indicates whether the host wants to arms this CQ.
*
* This routine will notify the HBA, by ringing the doorbell, that count
* number of EQEs have been processed. The @arm parameter indicates whether
* the queue should be rearmed when ringing the doorbell.
**/
void
lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
uint32_t count, bool arm)
{
struct lpfc_register doorbell;
/* sanity check on queue memory */
if (unlikely(!q || (count == 0 && !arm)))
return;
/* ring doorbell for number popped */
doorbell.word0 = 0;
if (arm) {
bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
}
bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
/* PCI read to flush PCI pipeline on re-arming for INTx mode */
if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
readl(q->phba->sli4_hba.EQDBregaddr);
}
/**
* lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
* @phba: adapter with EQ
* @q: The Event Queue that the host has completed processing for.
* @count: Number of elements that have been consumed
* @arm: Indicates whether the host wants to arms this CQ.
*
* This routine will notify the HBA, by ringing the doorbell, that count
* number of EQEs have been processed. The @arm parameter indicates whether
* the queue should be rearmed when ringing the doorbell.
**/
void
lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
uint32_t count, bool arm)
{
struct lpfc_register doorbell;
/* sanity check on queue memory */
if (unlikely(!q || (count == 0 && !arm)))
return;
/* ring doorbell for number popped */
doorbell.word0 = 0;
if (arm)
bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
/* PCI read to flush PCI pipeline on re-arming for INTx mode */
if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
readl(q->phba->sli4_hba.EQDBregaddr);
}
static void
__lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
struct lpfc_eqe *eqe)
{
if (!phba->sli4_hba.pc_sli4_params.eqav)
bf_set_le32(lpfc_eqe_valid, eqe, 0);
eq->host_index = ((eq->host_index + 1) % eq->entry_count);
/* if the index wrapped around, toggle the valid bit */
if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
eq->qe_valid = (eq->qe_valid) ? 0 : 1;
}
static void
lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
{
struct lpfc_eqe *eqe = NULL;
u32 eq_count = 0, cq_count = 0;
struct lpfc_cqe *cqe = NULL;
struct lpfc_queue *cq = NULL, *childq = NULL;
int cqid = 0;
/* walk all the EQ entries and drop on the floor */
eqe = lpfc_sli4_eq_get(eq);
while (eqe) {
/* Get the reference to the corresponding CQ */
cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
cq = NULL;
list_for_each_entry(childq, &eq->child_list, list) {
if (childq->queue_id == cqid) {
cq = childq;
break;
}
}
/* If CQ is valid, iterate through it and drop all the CQEs */
if (cq) {
cqe = lpfc_sli4_cq_get(cq);
while (cqe) {
__lpfc_sli4_consume_cqe(phba, cq, cqe);
cq_count++;
cqe = lpfc_sli4_cq_get(cq);
}
/* Clear and re-arm the CQ */
phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
LPFC_QUEUE_REARM);
cq_count = 0;
}
__lpfc_sli4_consume_eqe(phba, eq, eqe);
eq_count++;
eqe = lpfc_sli4_eq_get(eq);
}
/* Clear and re-arm the EQ */
phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
}
static int
lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
uint8_t rearm)
{
struct lpfc_eqe *eqe;
int count = 0, consumed = 0;
if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
goto rearm_and_exit;
eqe = lpfc_sli4_eq_get(eq);
while (eqe) {
lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
__lpfc_sli4_consume_eqe(phba, eq, eqe);
consumed++;
if (!(++count % eq->max_proc_limit))
break;
if (!(count % eq->notify_interval)) {
phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
LPFC_QUEUE_NOARM);
consumed = 0;
}
eqe = lpfc_sli4_eq_get(eq);
}
eq->EQ_processed += count;
/* Track the max number of EQEs processed in 1 intr */
if (count > eq->EQ_max_eqe)
eq->EQ_max_eqe = count;
xchg(&eq->queue_claimed, 0);
rearm_and_exit:
/* Always clear the EQ. */
phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
return count;
}
/**
* lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
* @q: The Completion Queue to get the first valid CQE from
*
* This routine will get the first valid Completion Queue Entry from @q, update
* the queue's internal hba index, and return the CQE. If no valid CQEs are in
* the Queue (no more work to do), or the Queue is full of CQEs that have been
* processed, but not popped back to the HBA then this routine will return NULL.
**/
static struct lpfc_cqe *
lpfc_sli4_cq_get(struct lpfc_queue *q)
{
struct lpfc_cqe *cqe;
/* sanity check on queue memory */
if (unlikely(!q))
return NULL;
cqe = lpfc_sli4_qe(q, q->host_index);
/* If the next CQE is not valid then we are done */
if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
return NULL;
/*
* insert barrier for instruction interlock : data from the hardware
* must have the valid bit checked before it can be copied and acted
* upon. Given what was seen in lpfc_sli4_cq_get() of speculative
* instructions allowing action on content before valid bit checked,
* add barrier here as well. May not be needed as "content" is a
* single 32-bit entity here (vs multi word structure for cq's).
*/
mb();
return cqe;
}
static void
__lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_cqe *cqe)
{
if (!phba->sli4_hba.pc_sli4_params.cqav)
bf_set_le32(lpfc_cqe_valid, cqe, 0);
cq->host_index = ((cq->host_index + 1) % cq->entry_count);
/* if the index wrapped around, toggle the valid bit */
if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
cq->qe_valid = (cq->qe_valid) ? 0 : 1;
}
/**
* lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
* @phba: the adapter with the CQ
* @q: The Completion Queue that the host has completed processing for.
* @count: the number of elements that were consumed
* @arm: Indicates whether the host wants to arms this CQ.
*
* This routine will notify the HBA, by ringing the doorbell, that the
* CQEs have been processed. The @arm parameter specifies whether the
* queue should be rearmed when ringing the doorbell.
**/
void
lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
uint32_t count, bool arm)
{
struct lpfc_register doorbell;
/* sanity check on queue memory */
if (unlikely(!q || (count == 0 && !arm)))
return;
/* ring doorbell for number popped */
doorbell.word0 = 0;
if (arm)
bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
}
/**
* lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
* @phba: the adapter with the CQ
* @q: The Completion Queue that the host has completed processing for.
* @count: the number of elements that were consumed
* @arm: Indicates whether the host wants to arms this CQ.
*
* This routine will notify the HBA, by ringing the doorbell, that the
* CQEs have been processed. The @arm parameter specifies whether the
* queue should be rearmed when ringing the doorbell.
**/
void
lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
uint32_t count, bool arm)
{
struct lpfc_register doorbell;
/* sanity check on queue memory */
if (unlikely(!q || (count == 0 && !arm)))
return;
/* ring doorbell for number popped */
doorbell.word0 = 0;
if (arm)
bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
}
/*
* lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
*
* This routine will copy the contents of @wqe to the next available entry on
* the @q. This function will then ring the Receive Queue Doorbell to signal the
* HBA to start processing the Receive Queue Entry. This function returns the
* index that the rqe was copied to if successful. If no entries are available
* on @q then this function will return -ENOMEM.
* The caller is expected to hold the hbalock when calling this routine.
**/
int
lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
{
struct lpfc_rqe *temp_hrqe;
struct lpfc_rqe *temp_drqe;
struct lpfc_register doorbell;
int hq_put_index;
int dq_put_index;
/* sanity check on queue memory */
if (unlikely(!hq) || unlikely(!dq))
return -ENOMEM;
hq_put_index = hq->host_index;
dq_put_index = dq->host_index;
temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
return -EINVAL;
if (hq_put_index != dq_put_index)
return -EINVAL;
/* If the host has not yet processed the next entry then we are done */
if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
return -EBUSY;
lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
/* Update the host index to point to the next slot */
hq->host_index = ((hq_put_index + 1) % hq->entry_count);
dq->host_index = ((dq_put_index + 1) % dq->entry_count);
hq->RQ_buf_posted++;
/* Ring The Header Receive Queue Doorbell */
if (!(hq->host_index % hq->notify_interval)) {
doorbell.word0 = 0;
if (hq->db_format == LPFC_DB_RING_FORMAT) {
bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
hq->notify_interval);
bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
hq->notify_interval);
bf_set(lpfc_rq_db_list_fm_index, &doorbell,
hq->host_index);
bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
} else {
return -EINVAL;
}
writel(doorbell.word0, hq->db_regaddr);
}
return hq_put_index;
}
/*
* lpfc_sli4_rq_release - Updates internal hba index for RQ
*
* This routine will update the HBA index of a queue to reflect consumption of
* one Receive Queue Entry by the HBA. When the HBA indicates that it has
* consumed an entry the host calls this function to update the queue's
* internal pointers. This routine returns the number of entries that were
* consumed by the HBA.
**/
static uint32_t
lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
{
/* sanity check on queue memory */
if (unlikely(!hq) || unlikely(!dq))
return 0;
if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
return 0;
hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
return 1;
}
/**
* lpfc_cmd_iocb - Get next command iocb entry in the ring
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function returns pointer to next command iocb entry
* in the command ring. The caller must hold hbalock to prevent
* other threads consume the next command iocb.
* SLI-2/SLI-3 provide different sized iocbs.
**/
static inline IOCB_t *
lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
}
/**
* lpfc_resp_iocb - Get next response iocb entry in the ring
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function returns pointer to next response iocb entry
* in the response ring. The caller must hold hbalock to make sure
* that no other thread consume the next response iocb.
* SLI-2/SLI-3 provide different sized iocbs.
**/
static inline IOCB_t *
lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
pring->sli.sli3.rspidx * phba->iocb_rsp_size);
}
/**
* __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
* @phba: Pointer to HBA context object.
*
* This function is called with hbalock held. This function
* allocates a new driver iocb object from the iocb pool. If the
* allocation is successful, it returns pointer to the newly
* allocated iocb object else it returns NULL.
**/
struct lpfc_iocbq *
__lpfc_sli_get_iocbq(struct lpfc_hba *phba)
{
struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
struct lpfc_iocbq * iocbq = NULL;
lockdep_assert_held(&phba->hbalock);
list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
if (iocbq)
phba->iocb_cnt++;
if (phba->iocb_cnt > phba->iocb_max)
phba->iocb_max = phba->iocb_cnt;
return iocbq;
}
/**
* __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
* @phba: Pointer to HBA context object.
* @xritag: XRI value.
*
* This function clears the sglq pointer from the array of active
* sglq's. The xritag that is passed in is used to index into the
* array. Before the xritag can be used it needs to be adjusted
* by subtracting the xribase.
*
* Returns sglq ponter = success, NULL = Failure.
**/
struct lpfc_sglq *
__lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
{
struct lpfc_sglq *sglq;
sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
return sglq;
}
/**
* __lpfc_get_active_sglq - Get the active sglq for this XRI.
* @phba: Pointer to HBA context object.
* @xritag: XRI value.
*
* This function returns the sglq pointer from the array of active
* sglq's. The xritag that is passed in is used to index into the
* array. Before the xritag can be used it needs to be adjusted
* by subtracting the xribase.
*
* Returns sglq ponter = success, NULL = Failure.
**/
struct lpfc_sglq *
__lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
{
struct lpfc_sglq *sglq;
sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
return sglq;
}
/**
* lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
* @phba: Pointer to HBA context object.
* @xritag: xri used in this exchange.
* @rrq: The RRQ to be cleared.
*
**/
void
lpfc_clr_rrq_active(struct lpfc_hba *phba,
uint16_t xritag,
struct lpfc_node_rrq *rrq)
{
struct lpfc_nodelist *ndlp = NULL;
/* Lookup did to verify if did is still active on this vport */
if (rrq->vport)
ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
if (!ndlp)
goto out;
if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
rrq->send_rrq = 0;
rrq->xritag = 0;
rrq->rrq_stop_time = 0;
}
out:
mempool_free(rrq, phba->rrq_pool);
}
/**
* lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
* @phba: Pointer to HBA context object.
*
* This function is called with hbalock held. This function
* Checks if stop_time (ratov from setting rrq active) has
* been reached, if it has and the send_rrq flag is set then
* it will call lpfc_send_rrq. If the send_rrq flag is not set
* then it will just call the routine to clear the rrq and
* free the rrq resource.
* The timer is set to the next rrq that is going to expire before
* leaving the routine.
*
**/
void
lpfc_handle_rrq_active(struct lpfc_hba *phba)
{
struct lpfc_node_rrq *rrq;
struct lpfc_node_rrq *nextrrq;
unsigned long next_time;
unsigned long iflags;
LIST_HEAD(send_rrq);
spin_lock_irqsave(&phba->hbalock, iflags);
phba->hba_flag &= ~HBA_RRQ_ACTIVE;
next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
list_for_each_entry_safe(rrq, nextrrq,
&phba->active_rrq_list, list) {
if (time_after(jiffies, rrq->rrq_stop_time))
list_move(&rrq->list, &send_rrq);
else if (time_before(rrq->rrq_stop_time, next_time))
next_time = rrq->rrq_stop_time;
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
if ((!list_empty(&phba->active_rrq_list)) &&
(!(phba->pport->load_flag & FC_UNLOADING)))
mod_timer(&phba->rrq_tmr, next_time);
list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
list_del(&rrq->list);
if (!rrq->send_rrq) {
/* this call will free the rrq */
lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
} else if (lpfc_send_rrq(phba, rrq)) {
/* if we send the rrq then the completion handler
* will clear the bit in the xribitmap.
*/
lpfc_clr_rrq_active(phba, rrq->xritag,
rrq);
}
}
}
/**
* lpfc_get_active_rrq - Get the active RRQ for this exchange.
* @vport: Pointer to vport context object.
* @xri: The xri used in the exchange.
* @did: The targets DID for this exchange.
*
* returns NULL = rrq not found in the phba->active_rrq_list.
* rrq = rrq for this xri and target.
**/
struct lpfc_node_rrq *
lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_node_rrq *rrq;
struct lpfc_node_rrq *nextrrq;
unsigned long iflags;
if (phba->sli_rev != LPFC_SLI_REV4)
return NULL;
spin_lock_irqsave(&phba->hbalock, iflags);
list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
if (rrq->vport == vport && rrq->xritag == xri &&
rrq->nlp_DID == did){
list_del(&rrq->list);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return rrq;
}
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
return NULL;
}
/**
* lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
* @vport: Pointer to vport context object.
* @ndlp: Pointer to the lpfc_node_list structure.
* If ndlp is NULL Remove all active RRQs for this vport from the
* phba->active_rrq_list and clear the rrq.
* If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
**/
void
lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_node_rrq *rrq;
struct lpfc_node_rrq *nextrrq;
unsigned long iflags;
LIST_HEAD(rrq_list);
if (phba->sli_rev != LPFC_SLI_REV4)
return;
if (!ndlp) {
lpfc_sli4_vport_delete_els_xri_aborted(vport);
lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
}
spin_lock_irqsave(&phba->hbalock, iflags);
list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
if (rrq->vport != vport)
continue;
if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
list_move(&rrq->list, &rrq_list);
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
list_del(&rrq->list);
lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
}
}
/**
* lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
* @phba: Pointer to HBA context object.
* @ndlp: Targets nodelist pointer for this exchange.
* @xritag: the xri in the bitmap to test.
*
* This function returns:
* 0 = rrq not active for this xri
* 1 = rrq is valid for this xri.
**/
int
lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
uint16_t xritag)
{
if (!ndlp)
return 0;
if (!ndlp->active_rrqs_xri_bitmap)
return 0;
if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
return 1;
else
return 0;
}
/**
* lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
* @phba: Pointer to HBA context object.
* @ndlp: nodelist pointer for this target.
* @xritag: xri used in this exchange.
* @rxid: Remote Exchange ID.
* @send_rrq: Flag used to determine if we should send rrq els cmd.
*
* This function takes the hbalock.
* The active bit is always set in the active rrq xri_bitmap even
* if there is no slot avaiable for the other rrq information.
*
* returns 0 rrq actived for this xri
* < 0 No memory or invalid ndlp.
**/
int
lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
{
unsigned long iflags;
struct lpfc_node_rrq *rrq;
int empty;
if (!ndlp)
return -EINVAL;
if (!phba->cfg_enable_rrq)
return -EINVAL;
spin_lock_irqsave(&phba->hbalock, iflags);
if (phba->pport->load_flag & FC_UNLOADING) {
phba->hba_flag &= ~HBA_RRQ_ACTIVE;
goto out;
}
if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
goto out;
if (!ndlp->active_rrqs_xri_bitmap)
goto out;
if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
goto out;
spin_unlock_irqrestore(&phba->hbalock, iflags);
rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
if (!rrq) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
" DID:0x%x Send:%d\n",
xritag, rxid, ndlp->nlp_DID, send_rrq);
return -EINVAL;
}
if (phba->cfg_enable_rrq == 1)
rrq->send_rrq = send_rrq;
else
rrq->send_rrq = 0;
rrq->xritag = xritag;
rrq->rrq_stop_time = jiffies +
msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
rrq->nlp_DID = ndlp->nlp_DID;
rrq->vport = ndlp->vport;
rrq->rxid = rxid;
spin_lock_irqsave(&phba->hbalock, iflags);
empty = list_empty(&phba->active_rrq_list);
list_add_tail(&rrq->list, &phba->active_rrq_list);
phba->hba_flag |= HBA_RRQ_ACTIVE;
if (empty)
lpfc_worker_wake_up(phba);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return 0;
out:
spin_unlock_irqrestore(&phba->hbalock, iflags);
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2921 Can't set rrq active xri:0x%x rxid:0x%x"
" DID:0x%x Send:%d\n",
xritag, rxid, ndlp->nlp_DID, send_rrq);
return -EINVAL;
}
/**
* __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
* @phba: Pointer to HBA context object.
* @piocbq: Pointer to the iocbq.
*
* The driver calls this function with either the nvme ls ring lock
* or the fc els ring lock held depending on the iocb usage. This function
* gets a new driver sglq object from the sglq list. If the list is not empty
* then it is successful, it returns pointer to the newly allocated sglq
* object else it returns NULL.
**/
static struct lpfc_sglq *
__lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
{
struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
struct lpfc_sglq *sglq = NULL;
struct lpfc_sglq *start_sglq = NULL;
struct lpfc_io_buf *lpfc_cmd;
struct lpfc_nodelist *ndlp;
struct lpfc_sli_ring *pring = NULL;
int found = 0;
if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
pring = phba->sli4_hba.nvmels_wq->pring;
else
pring = lpfc_phba_elsring(phba);
lockdep_assert_held(&pring->ring_lock);
if (piocbq->iocb_flag & LPFC_IO_FCP) {
lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
ndlp = lpfc_cmd->rdata->pnode;
} else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
ndlp = piocbq->context_un.ndlp;
} else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
ndlp = NULL;
else
ndlp = piocbq->context_un.ndlp;
} else {
ndlp = piocbq->context1;
}
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
start_sglq = sglq;
while (!found) {
if (!sglq)
break;
if (ndlp && ndlp->active_rrqs_xri_bitmap &&
test_bit(sglq->sli4_lxritag,
ndlp->active_rrqs_xri_bitmap)) {
/* This xri has an rrq outstanding for this DID.
* put it back in the list and get another xri.
*/
list_add_tail(&sglq->list, lpfc_els_sgl_list);
sglq = NULL;
list_remove_head(lpfc_els_sgl_list, sglq,
struct lpfc_sglq, list);
if (sglq == start_sglq) {
list_add_tail(&sglq->list, lpfc_els_sgl_list);
sglq = NULL;
break;
} else
continue;
}
sglq->ndlp = ndlp;
found = 1;
phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
sglq->state = SGL_ALLOCATED;
}
spin_unlock(&phba->sli4_hba.sgl_list_lock);
return sglq;
}
/**
* __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
* @phba: Pointer to HBA context object.
* @piocbq: Pointer to the iocbq.
*
* This function is called with the sgl_list lock held. This function
* gets a new driver sglq object from the sglq list. If the
* list is not empty then it is successful, it returns pointer to the newly
* allocated sglq object else it returns NULL.
**/
struct lpfc_sglq *
__lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
{
struct list_head *lpfc_nvmet_sgl_list;
struct lpfc_sglq *sglq = NULL;
lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
if (!sglq)
return NULL;
phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
sglq->state = SGL_ALLOCATED;
return sglq;
}
/**
* lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
* @phba: Pointer to HBA context object.
*
* This function is called with no lock held. This function
* allocates a new driver iocb object from the iocb pool. If the
* allocation is successful, it returns pointer to the newly
* allocated iocb object else it returns NULL.
**/
struct lpfc_iocbq *
lpfc_sli_get_iocbq(struct lpfc_hba *phba)
{
struct lpfc_iocbq * iocbq = NULL;
unsigned long iflags;
spin_lock_irqsave(&phba->hbalock, iflags);
iocbq = __lpfc_sli_get_iocbq(phba);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return iocbq;
}
/**
* __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
* @phba: Pointer to HBA context object.
* @iocbq: Pointer to driver iocb object.
*
* This function is called to release the driver iocb object
* to the iocb pool. The iotag in the iocb object
* does not change for each use of the iocb object. This function
* clears all other fields of the iocb object when it is freed.
* The sqlq structure that holds the xritag and phys and virtual
* mappings for the scatter gather list is retrieved from the
* active array of sglq. The get of the sglq pointer also clears
* the entry in the array. If the status of the IO indiactes that
* this IO was aborted then the sglq entry it put on the
* lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
* IO has good status or fails for any other reason then the sglq
* entry is added to the free list (lpfc_els_sgl_list). The hbalock is
* asserted held in the code path calling this routine.
**/
static void
__lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
{
struct lpfc_sglq *sglq;
size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
unsigned long iflag = 0;
struct lpfc_sli_ring *pring;
if (iocbq->sli4_xritag == NO_XRI)
sglq = NULL;
else
sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
if (sglq) {
if (iocbq->iocb_flag & LPFC_IO_NVMET) {
spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
iflag);
sglq->state = SGL_FREED;
sglq->ndlp = NULL;
list_add_tail(&sglq->list,
&phba->sli4_hba.lpfc_nvmet_sgl_list);
spin_unlock_irqrestore(
&phba->sli4_hba.sgl_list_lock, iflag);
goto out;
}
if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
(sglq->state != SGL_XRI_ABORTED)) {
spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
iflag);
/* Check if we can get a reference on ndlp */
if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
sglq->ndlp = NULL;
list_add(&sglq->list,
&phba->sli4_hba.lpfc_abts_els_sgl_list);
spin_unlock_irqrestore(
&phba->sli4_hba.sgl_list_lock, iflag);
} else {
spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
iflag);
sglq->state = SGL_FREED;
sglq->ndlp = NULL;
list_add_tail(&sglq->list,
&phba->sli4_hba.lpfc_els_sgl_list);
spin_unlock_irqrestore(
&phba->sli4_hba.sgl_list_lock, iflag);
pring = lpfc_phba_elsring(phba);
/* Check if TXQ queue needs to be serviced */
if (pring && (!list_empty(&pring->txq)))
lpfc_worker_wake_up(phba);
}
}
out:
/*
* Clean all volatile data fields, preserve iotag and node struct.
*/
memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
iocbq->sli4_lxritag = NO_XRI;
iocbq->sli4_xritag = NO_XRI;
iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
LPFC_IO_NVME_LS);
list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
}
/**
* __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
* @phba: Pointer to HBA context object.
* @iocbq: Pointer to driver iocb object.
*
* This function is called to release the driver iocb object to the
* iocb pool. The iotag in the iocb object does not change for each
* use of the iocb object. This function clears all other fields of
* the iocb object when it is freed. The hbalock is asserted held in
* the code path calling this routine.
**/
static void
__lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
{
size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
/*
* Clean all volatile data fields, preserve iotag and node struct.
*/
memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
iocbq->sli4_xritag = NO_XRI;
list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
}
/**
* __lpfc_sli_release_iocbq - Release iocb to the iocb pool
* @phba: Pointer to HBA context object.
* @iocbq: Pointer to driver iocb object.
*
* This function is called with hbalock held to release driver
* iocb object to the iocb pool. The iotag in the iocb object
* does not change for each use of the iocb object. This function
* clears all other fields of the iocb object when it is freed.
**/
static void
__lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
{
lockdep_assert_held(&phba->hbalock);
phba->__lpfc_sli_release_iocbq(phba, iocbq);
phba->iocb_cnt--;
}
/**
* lpfc_sli_release_iocbq - Release iocb to the iocb pool
* @phba: Pointer to HBA context object.
* @iocbq: Pointer to driver iocb object.
*
* This function is called with no lock held to release the iocb to
* iocb pool.
**/
void
lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
{
unsigned long iflags;
/*
* Clean all volatile data fields, preserve iotag and node struct.
*/
spin_lock_irqsave(&phba->hbalock, iflags);
__lpfc_sli_release_iocbq(phba, iocbq);
spin_unlock_irqrestore(&phba->hbalock, iflags);
}
/**
* lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
* @phba: Pointer to HBA context object.
* @iocblist: List of IOCBs.
* @ulpstatus: ULP status in IOCB command field.
* @ulpWord4: ULP word-4 in IOCB command field.
*
* This function is called with a list of IOCBs to cancel. It cancels the IOCB
* on the list by invoking the complete callback function associated with the
* IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
* fields.
**/
void
lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
uint32_t ulpstatus, uint32_t ulpWord4)
{
struct lpfc_iocbq *piocb;
while (!list_empty(iocblist)) {
list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
if (piocb->wqe_cmpl) {
if (piocb->iocb_flag & LPFC_IO_NVME)
lpfc_nvme_cancel_iocb(phba, piocb,
ulpstatus, ulpWord4);
else
lpfc_sli_release_iocbq(phba, piocb);
} else if (piocb->iocb_cmpl) {
piocb->iocb.ulpStatus = ulpstatus;
piocb->iocb.un.ulpWord[4] = ulpWord4;
(piocb->iocb_cmpl) (phba, piocb, piocb);
} else {
lpfc_sli_release_iocbq(phba, piocb);
}
}
return;
}
/**
* lpfc_sli_iocb_cmd_type - Get the iocb type
* @iocb_cmnd: iocb command code.
*
* This function is called by ring event handler function to get the iocb type.
* This function translates the iocb command to an iocb command type used to
* decide the final disposition of each completed IOCB.
* The function returns
* LPFC_UNKNOWN_IOCB if it is an unsupported iocb
* LPFC_SOL_IOCB if it is a solicited iocb completion
* LPFC_ABORT_IOCB if it is an abort iocb
* LPFC_UNSOL_IOCB if it is an unsolicited iocb
*
* The caller is not required to hold any lock.
**/
static lpfc_iocb_type
lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
{
lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
if (iocb_cmnd > CMD_MAX_IOCB_CMD)
return 0;
switch (iocb_cmnd) {
case CMD_XMIT_SEQUENCE_CR:
case CMD_XMIT_SEQUENCE_CX:
case CMD_XMIT_BCAST_CN:
case CMD_XMIT_BCAST_CX:
case CMD_ELS_REQUEST_CR:
case CMD_ELS_REQUEST_CX:
case CMD_CREATE_XRI_CR:
case CMD_CREATE_XRI_CX:
case CMD_GET_RPI_CN:
case CMD_XMIT_ELS_RSP_CX:
case CMD_GET_RPI_CR:
case CMD_FCP_IWRITE_CR:
case CMD_FCP_IWRITE_CX:
case CMD_FCP_IREAD_CR:
case CMD_FCP_IREAD_CX:
case CMD_FCP_ICMND_CR:
case CMD_FCP_ICMND_CX:
case CMD_FCP_TSEND_CX:
case CMD_FCP_TRSP_CX:
case CMD_FCP_TRECEIVE_CX:
case CMD_FCP_AUTO_TRSP_CX:
case CMD_ADAPTER_MSG:
case CMD_ADAPTER_DUMP:
case CMD_XMIT_SEQUENCE64_CR:
case CMD_XMIT_SEQUENCE64_CX:
case CMD_XMIT_BCAST64_CN:
case CMD_XMIT_BCAST64_CX:
case CMD_ELS_REQUEST64_CR:
case CMD_ELS_REQUEST64_CX:
case CMD_FCP_IWRITE64_CR:
case CMD_FCP_IWRITE64_CX:
case CMD_FCP_IREAD64_CR:
case CMD_FCP_IREAD64_CX:
case CMD_FCP_ICMND64_CR:
case CMD_FCP_ICMND64_CX:
case CMD_FCP_TSEND64_CX:
case CMD_FCP_TRSP64_CX:
case CMD_FCP_TRECEIVE64_CX:
case CMD_GEN_REQUEST64_CR:
case CMD_GEN_REQUEST64_CX:
case CMD_XMIT_ELS_RSP64_CX:
case DSSCMD_IWRITE64_CR:
case DSSCMD_IWRITE64_CX:
case DSSCMD_IREAD64_CR:
case DSSCMD_IREAD64_CX:
case CMD_SEND_FRAME:
type = LPFC_SOL_IOCB;
break;
case CMD_ABORT_XRI_CN:
case CMD_ABORT_XRI_CX:
case CMD_CLOSE_XRI_CN:
case CMD_CLOSE_XRI_CX:
case CMD_XRI_ABORTED_CX:
case CMD_ABORT_MXRI64_CN:
case CMD_XMIT_BLS_RSP64_CX:
type = LPFC_ABORT_IOCB;
break;
case CMD_RCV_SEQUENCE_CX:
case CMD_RCV_ELS_REQ_CX:
case CMD_RCV_SEQUENCE64_CX:
case CMD_RCV_ELS_REQ64_CX:
case CMD_ASYNC_STATUS:
case CMD_IOCB_RCV_SEQ64_CX:
case CMD_IOCB_RCV_ELS64_CX:
case CMD_IOCB_RCV_CONT64_CX:
case CMD_IOCB_RET_XRI64_CX:
type = LPFC_UNSOL_IOCB;
break;
case CMD_IOCB_XMIT_MSEQ64_CR:
case CMD_IOCB_XMIT_MSEQ64_CX:
case CMD_IOCB_RCV_SEQ_LIST64_CX:
case CMD_IOCB_RCV_ELS_LIST64_CX:
case CMD_IOCB_CLOSE_EXTENDED_CN:
case CMD_IOCB_ABORT_EXTENDED_CN:
case CMD_IOCB_RET_HBQE64_CN:
case CMD_IOCB_FCP_IBIDIR64_CR:
case CMD_IOCB_FCP_IBIDIR64_CX:
case CMD_IOCB_FCP_ITASKMGT64_CX:
case CMD_IOCB_LOGENTRY_CN:
case CMD_IOCB_LOGENTRY_ASYNC_CN:
printk("%s - Unhandled SLI-3 Command x%x\n",
__func__, iocb_cmnd);
type = LPFC_UNKNOWN_IOCB;
break;
default:
type = LPFC_UNKNOWN_IOCB;
break;
}
return type;
}
/**
* lpfc_sli_ring_map - Issue config_ring mbox for all rings
* @phba: Pointer to HBA context object.
*
* This function is called from SLI initialization code
* to configure every ring of the HBA's SLI interface. The
* caller is not required to hold any lock. This function issues
* a config_ring mailbox command for each ring.
* This function returns zero if successful else returns a negative
* error code.
**/
static int
lpfc_sli_ring_map(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *pmbox;
int i, rc, ret = 0;
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb)
return -ENOMEM;
pmbox = &pmb->u.mb;
phba->link_state = LPFC_INIT_MBX_CMDS;
for (i = 0; i < psli->num_rings; i++) {
lpfc_config_ring(phba, i, pmb);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0446 Adapter failed to init (%d), "
"mbxCmd x%x CFG_RING, mbxStatus x%x, "
"ring %d\n",
rc, pmbox->mbxCommand,
pmbox->mbxStatus, i);
phba->link_state = LPFC_HBA_ERROR;
ret = -ENXIO;
break;
}
}
mempool_free(pmb, phba->mbox_mem_pool);
return ret;
}
/**
* lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @piocb: Pointer to the driver iocb object.
*
* The driver calls this function with the hbalock held for SLI3 ports or
* the ring lock held for SLI4 ports. The function adds the
* new iocb to txcmplq of the given ring. This function always returns
* 0. If this function is called for ELS ring, this function checks if
* there is a vport associated with the ELS command. This function also
* starts els_tmofunc timer if this is an ELS command.
**/
static int
lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq *piocb)
{
if (phba->sli_rev == LPFC_SLI_REV4)
lockdep_assert_held(&pring->ring_lock);
else
lockdep_assert_held(&phba->hbalock);
BUG_ON(!piocb);
list_add_tail(&piocb->list, &pring->txcmplq);
piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
pring->txcmplq_cnt++;
if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
(piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
(piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
BUG_ON(!piocb->vport);
if (!(piocb->vport->load_flag & FC_UNLOADING))
mod_timer(&piocb->vport->els_tmofunc,
jiffies +
msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
}
return 0;
}
/**
* lpfc_sli_ringtx_get - Get first element of the txq
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function is called with hbalock held to get next
* iocb in txq of the given ring. If there is any iocb in
* the txq, the function returns first iocb in the list after
* removing the iocb from the list, else it returns NULL.
**/
struct lpfc_iocbq *
lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
struct lpfc_iocbq *cmd_iocb;
lockdep_assert_held(&phba->hbalock);
list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
return cmd_iocb;
}
/**
* lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function is called with hbalock held and the caller must post the
* iocb without releasing the lock. If the caller releases the lock,
* iocb slot returned by the function is not guaranteed to be available.
* The function returns pointer to the next available iocb slot if there
* is available slot in the ring, else it returns NULL.
* If the get index of the ring is ahead of the put index, the function
* will post an error attention event to the worker thread to take the
* HBA to offline state.
**/
static IOCB_t *
lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
uint32_t max_cmd_idx = pring->sli.sli3.numCiocb;
lockdep_assert_held(&phba->hbalock);
if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
(++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
pring->sli.sli3.next_cmdidx = 0;
if (unlikely(pring->sli.sli3.local_getidx ==
pring->sli.sli3.next_cmdidx)) {
pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0315 Ring %d issue: portCmdGet %d "
"is bigger than cmd ring %d\n",
pring->ringno,
pring->sli.sli3.local_getidx,
max_cmd_idx);
phba->link_state = LPFC_HBA_ERROR;
/*
* All error attention handlers are posted to
* worker thread
*/
phba->work_ha |= HA_ERATT;
phba->work_hs = HS_FFER3;
lpfc_worker_wake_up(phba);
return NULL;
}
if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
return NULL;
}
return lpfc_cmd_iocb(phba, pring);
}
/**
* lpfc_sli_next_iotag - Get an iotag for the iocb
* @phba: Pointer to HBA context object.
* @iocbq: Pointer to driver iocb object.
*
* This function gets an iotag for the iocb. If there is no unused iotag and
* the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
* array and assigns a new iotag.
* The function returns the allocated iotag if successful, else returns zero.
* Zero is not a valid iotag.
* The caller is not required to hold any lock.
**/
uint16_t
lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
{
struct lpfc_iocbq **new_arr;
struct lpfc_iocbq **old_arr;
size_t new_len;
struct lpfc_sli *psli = &phba->sli;
uint16_t iotag;
spin_lock_irq(&phba->hbalock);
iotag = psli->last_iotag;
if(++iotag < psli->iocbq_lookup_len) {
psli->last_iotag = iotag;
psli->iocbq_lookup[iotag] = iocbq;
spin_unlock_irq(&phba->hbalock);
iocbq->iotag = iotag;
return iotag;
} else if (psli->iocbq_lookup_len < (0xffff
- LPFC_IOCBQ_LOOKUP_INCREMENT)) {
new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
spin_unlock_irq(&phba->hbalock);
new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
GFP_KERNEL);
if (new_arr) {
spin_lock_irq(&phba->hbalock);
old_arr = psli->iocbq_lookup;
if (new_len <= psli->iocbq_lookup_len) {
/* highly unprobable case */
kfree(new_arr);
iotag = psli->last_iotag;
if(++iotag < psli->iocbq_lookup_len) {
psli->last_iotag = iotag;
psli->iocbq_lookup[iotag] = iocbq;
spin_unlock_irq(&phba->hbalock);
iocbq->iotag = iotag;
return iotag;
}
spin_unlock_irq(&phba->hbalock);
return 0;
}
if (psli->iocbq_lookup)
memcpy(new_arr, old_arr,
((psli->last_iotag + 1) *
sizeof (struct lpfc_iocbq *)));
psli->iocbq_lookup = new_arr;
psli->iocbq_lookup_len = new_len;
psli->last_iotag = iotag;
psli->iocbq_lookup[iotag] = iocbq;
spin_unlock_irq(&phba->hbalock);
iocbq->iotag = iotag;
kfree(old_arr);
return iotag;
}
} else
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
psli->last_iotag);
return 0;
}
/**
* lpfc_sli_submit_iocb - Submit an iocb to the firmware
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @iocb: Pointer to iocb slot in the ring.
* @nextiocb: Pointer to driver iocb object which need to be
* posted to firmware.
*
* This function is called to post a new iocb to the firmware. This
* function copies the new iocb to ring iocb slot and updates the
* ring pointers. It adds the new iocb to txcmplq if there is
* a completion call back for this iocb else the function will free the
* iocb object. The hbalock is asserted held in the code path calling
* this routine.
**/
static void
lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
{
/*
* Set up an iotag
*/
nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
if (pring->ringno == LPFC_ELS_RING) {
lpfc_debugfs_slow_ring_trc(phba,
"IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
*(((uint32_t *) &nextiocb->iocb) + 4),
*(((uint32_t *) &nextiocb->iocb) + 6),
*(((uint32_t *) &nextiocb->iocb) + 7));
}
/*
* Issue iocb command to adapter
*/
lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
wmb();
pring->stats.iocb_cmd++;
/*
* If there is no completion routine to call, we can release the
* IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
* that have no rsp ring completion, iocb_cmpl MUST be NULL.
*/
if (nextiocb->iocb_cmpl)
lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
else
__lpfc_sli_release_iocbq(phba, nextiocb);
/*
* Let the HBA know what IOCB slot will be the next one the
* driver will put a command into.
*/
pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
}
/**
* lpfc_sli_update_full_ring - Update the chip attention register
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* The caller is not required to hold any lock for calling this function.
* This function updates the chip attention bits for the ring to inform firmware
* that there are pending work to be done for this ring and requests an
* interrupt when there is space available in the ring. This function is
* called when the driver is unable to post more iocbs to the ring due
* to unavailability of space in the ring.
**/
static void
lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
int ringno = pring->ringno;
pring->flag |= LPFC_CALL_RING_AVAILABLE;
wmb();
/*
* Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
* The HBA will tell us when an IOCB entry is available.
*/
writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
readl(phba->CAregaddr); /* flush */
pring->stats.iocb_cmd_full++;
}
/**
* lpfc_sli_update_ring - Update chip attention register
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function updates the chip attention register bit for the
* given ring to inform HBA that there is more work to be done
* in this ring. The caller is not required to hold any lock.
**/
static void
lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
int ringno = pring->ringno;
/*
* Tell the HBA that there is work to do in this ring.
*/
if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
wmb();
writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
readl(phba->CAregaddr); /* flush */
}
}
/**
* lpfc_sli_resume_iocb - Process iocbs in the txq
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function is called with hbalock held to post pending iocbs
* in the txq to the firmware. This function is called when driver
* detects space available in the ring.
**/
static void
lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
IOCB_t *iocb;
struct lpfc_iocbq *nextiocb;
lockdep_assert_held(&phba->hbalock);
/*
* Check to see if:
* (a) there is anything on the txq to send
* (b) link is up
* (c) link attention events can be processed (fcp ring only)
* (d) IOCB processing is not blocked by the outstanding mbox command.
*/
if (lpfc_is_link_up(phba) &&
(!list_empty(&pring->txq)) &&
(pring->ringno != LPFC_FCP_RING ||
phba->sli.sli_flag & LPFC_PROCESS_LA)) {
while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
(nextiocb = lpfc_sli_ringtx_get(phba, pring)))
lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
if (iocb)
lpfc_sli_update_ring(phba, pring);
else
lpfc_sli_update_full_ring(phba, pring);
}
return;
}
/**
* lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
* @phba: Pointer to HBA context object.
* @hbqno: HBQ number.
*
* This function is called with hbalock held to get the next
* available slot for the given HBQ. If there is free slot
* available for the HBQ it will return pointer to the next available
* HBQ entry else it will return NULL.
**/
static struct lpfc_hbq_entry *
lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
{
struct hbq_s *hbqp = &phba->hbqs[hbqno];
lockdep_assert_held(&phba->hbalock);
if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
++hbqp->next_hbqPutIdx >= hbqp->entry_count)
hbqp->next_hbqPutIdx = 0;
if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
uint32_t raw_index = phba->hbq_get[hbqno];
uint32_t getidx = le32_to_cpu(raw_index);
hbqp->local_hbqGetIdx = getidx;
if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1802 HBQ %d: local_hbqGetIdx "
"%u is > than hbqp->entry_count %u\n",
hbqno, hbqp->local_hbqGetIdx,
hbqp->entry_count);
phba->link_state = LPFC_HBA_ERROR;
return NULL;
}
if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
return NULL;
}
return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
hbqp->hbqPutIdx;
}
/**
* lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
* @phba: Pointer to HBA context object.
*
* This function is called with no lock held to free all the
* hbq buffers while uninitializing the SLI interface. It also
* frees the HBQ buffers returned by the firmware but not yet
* processed by the upper layers.
**/
void
lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
{
struct lpfc_dmabuf *dmabuf, *next_dmabuf;
struct hbq_dmabuf *hbq_buf;
unsigned long flags;
int i, hbq_count;
hbq_count = lpfc_sli_hbq_count();
/* Return all memory used by all HBQs */
spin_lock_irqsave(&phba->hbalock, flags);
for (i = 0; i < hbq_count; ++i) {
list_for_each_entry_safe(dmabuf, next_dmabuf,
&phba->hbqs[i].hbq_buffer_list, list) {
hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
list_del(&hbq_buf->dbuf.list);
(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
}
phba->hbqs[i].buffer_count = 0;
}
/* Mark the HBQs not in use */
phba->hbq_in_use = 0;
spin_unlock_irqrestore(&phba->hbalock, flags);
}
/**
* lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
* @phba: Pointer to HBA context object.
* @hbqno: HBQ number.
* @hbq_buf: Pointer to HBQ buffer.
*
* This function is called with the hbalock held to post a
* hbq buffer to the firmware. If the function finds an empty
* slot in the HBQ, it will post the buffer. The function will return
* pointer to the hbq entry if it successfully post the buffer
* else it will return NULL.
**/
static int
lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
struct hbq_dmabuf *hbq_buf)
{
lockdep_assert_held(&phba->hbalock);
return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
}
/**
* lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
* @phba: Pointer to HBA context object.
* @hbqno: HBQ number.
* @hbq_buf: Pointer to HBQ buffer.
*
* This function is called with the hbalock held to post a hbq buffer to the
* firmware. If the function finds an empty slot in the HBQ, it will post the
* buffer and place it on the hbq_buffer_list. The function will return zero if
* it successfully post the buffer else it will return an error.
**/
static int
lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
struct hbq_dmabuf *hbq_buf)
{
struct lpfc_hbq_entry *hbqe;
dma_addr_t physaddr = hbq_buf->dbuf.phys;
lockdep_assert_held(&phba->hbalock);
/* Get next HBQ entry slot to use */
hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
if (hbqe) {
struct hbq_s *hbqp = &phba->hbqs[hbqno];
hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
hbqe->bde.tus.f.bdeFlags = 0;
hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
/* Sync SLIM */
hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
/* flush */
readl(phba->hbq_put + hbqno);
list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
return 0;
} else
return -ENOMEM;
}
/**
* lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
* @phba: Pointer to HBA context object.
* @hbqno: HBQ number.
* @hbq_buf: Pointer to HBQ buffer.
*
* This function is called with the hbalock held to post an RQE to the SLI4
* firmware. If able to post the RQE to the RQ it will queue the hbq entry to
* the hbq_buffer_list and return zero, otherwise it will return an error.
**/
static int
lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
struct hbq_dmabuf *hbq_buf)
{
int rc;
struct lpfc_rqe hrqe;
struct lpfc_rqe drqe;
struct lpfc_queue *hrq;
struct lpfc_queue *drq;
if (hbqno != LPFC_ELS_HBQ)
return 1;
hrq = phba->sli4_hba.hdr_rq;
drq = phba->sli4_hba.dat_rq;
lockdep_assert_held(&phba->hbalock);
hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
if (rc < 0)
return rc;
hbq_buf->tag = (rc | (hbqno << 16));
list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
return 0;
}
/* HBQ for ELS and CT traffic. */
static struct lpfc_hbq_init lpfc_els_hbq = {
.rn = 1,
.entry_count = 256,
.mask_count = 0,
.profile = 0,
.ring_mask = (1 << LPFC_ELS_RING),
.buffer_count = 0,
.init_count = 40,
.add_count = 40,
};
/* Array of HBQs */
struct lpfc_hbq_init *lpfc_hbq_defs[] = {
&lpfc_els_hbq,
};
/**
* lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
* @phba: Pointer to HBA context object.
* @hbqno: HBQ number.
* @count: Number of HBQ buffers to be posted.
*
* This function is called with no lock held to post more hbq buffers to the
* given HBQ. The function returns the number of HBQ buffers successfully
* posted.
**/
static int
lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
{
uint32_t i, posted = 0;
unsigned long flags;
struct hbq_dmabuf *hbq_buffer;
LIST_HEAD(hbq_buf_list);
if (!phba->hbqs[hbqno].hbq_alloc_buffer)
return 0;
if ((phba->hbqs[hbqno].buffer_count + count) >
lpfc_hbq_defs[hbqno]->entry_count)
count = lpfc_hbq_defs[hbqno]->entry_count -
phba->hbqs[hbqno].buffer_count;
if (!count)
return 0;
/* Allocate HBQ entries */
for (i = 0; i < count; i++) {
hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
if (!hbq_buffer)
break;
list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
}
/* Check whether HBQ is still in use */
spin_lock_irqsave(&phba->hbalock, flags);
if (!phba->hbq_in_use)
goto err;
while (!list_empty(&hbq_buf_list)) {
list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
dbuf.list);
hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
(hbqno << 16));
if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
phba->hbqs[hbqno].buffer_count++;
posted++;
} else
(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
}
spin_unlock_irqrestore(&phba->hbalock, flags);
return posted;
err:
spin_unlock_irqrestore(&phba->hbalock, flags);
while (!list_empty(&hbq_buf_list)) {
list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
dbuf.list);
(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
}
return 0;
}
/**
* lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
* @phba: Pointer to HBA context object.
* @qno: HBQ number.
*
* This function posts more buffers to the HBQ. This function
* is called with no lock held. The function returns the number of HBQ entries
* successfully allocated.
**/
int
lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
{
if (phba->sli_rev == LPFC_SLI_REV4)
return 0;
else
return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
lpfc_hbq_defs[qno]->add_count);
}
/**
* lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
* @phba: Pointer to HBA context object.
* @qno: HBQ queue number.
*
* This function is called from SLI initialization code path with
* no lock held to post initial HBQ buffers to firmware. The
* function returns the number of HBQ entries successfully allocated.
**/
static int
lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
{
if (phba->sli_rev == LPFC_SLI_REV4)
return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
lpfc_hbq_defs[qno]->entry_count);
else
return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
lpfc_hbq_defs[qno]->init_count);
}
/*
* lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
*
* This function removes the first hbq buffer on an hbq list and returns a
* pointer to that buffer. If it finds no buffers on the list it returns NULL.
**/
static struct hbq_dmabuf *
lpfc_sli_hbqbuf_get(struct list_head *rb_list)
{
struct lpfc_dmabuf *d_buf;
list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
if (!d_buf)
return NULL;
return container_of(d_buf, struct hbq_dmabuf, dbuf);
}
/**
* lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
* @phba: Pointer to HBA context object.
* @hrq: HBQ number.
*
* This function removes the first RQ buffer on an RQ buffer list and returns a
* pointer to that buffer. If it finds no buffers on the list it returns NULL.
**/
static struct rqb_dmabuf *
lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
{
struct lpfc_dmabuf *h_buf;
struct lpfc_rqb *rqbp;
rqbp = hrq->rqbp;
list_remove_head(&rqbp->rqb_buffer_list, h_buf,
struct lpfc_dmabuf, list);
if (!h_buf)
return NULL;
rqbp->buffer_count--;
return container_of(h_buf, struct rqb_dmabuf, hbuf);
}
/**
* lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
* @phba: Pointer to HBA context object.
* @tag: Tag of the hbq buffer.
*
* This function searches for the hbq buffer associated with the given tag in
* the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
* otherwise it returns NULL.
**/
static struct hbq_dmabuf *
lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
{
struct lpfc_dmabuf *d_buf;
struct hbq_dmabuf *hbq_buf;
uint32_t hbqno;
hbqno = tag >> 16;
if (hbqno >= LPFC_MAX_HBQS)
return NULL;
spin_lock_irq(&phba->hbalock);
list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
if (hbq_buf->tag == tag) {
spin_unlock_irq(&phba->hbalock);
return hbq_buf;
}
}
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1803 Bad hbq tag. Data: x%x x%x\n",
tag, phba->hbqs[tag >> 16].buffer_count);
return NULL;
}
/**
* lpfc_sli_free_hbq - Give back the hbq buffer to firmware
* @phba: Pointer to HBA context object.
* @hbq_buffer: Pointer to HBQ buffer.
*
* This function is called with hbalock. This function gives back
* the hbq buffer to firmware. If the HBQ does not have space to
* post the buffer, it will free the buffer.
**/
void
lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
{
uint32_t hbqno;
if (hbq_buffer) {
hbqno = hbq_buffer->tag >> 16;
if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
}
}
/**
* lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
* @mbxCommand: mailbox command code.
*
* This function is called by the mailbox event handler function to verify
* that the completed mailbox command is a legitimate mailbox command. If the
* completed mailbox is not known to the function, it will return MBX_SHUTDOWN
* and the mailbox event handler will take the HBA offline.
**/
static int
lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
{
uint8_t ret;
switch (mbxCommand) {
case MBX_LOAD_SM:
case MBX_READ_NV:
case MBX_WRITE_NV:
case MBX_WRITE_VPARMS:
case MBX_RUN_BIU_DIAG:
case MBX_INIT_LINK:
case MBX_DOWN_LINK:
case MBX_CONFIG_LINK:
case MBX_CONFIG_RING:
case MBX_RESET_RING:
case MBX_READ_CONFIG:
case MBX_READ_RCONFIG:
case MBX_READ_SPARM:
case MBX_READ_STATUS:
case MBX_READ_RPI:
case MBX_READ_XRI:
case MBX_READ_REV:
case MBX_READ_LNK_STAT:
case MBX_REG_LOGIN:
case MBX_UNREG_LOGIN:
case MBX_CLEAR_LA:
case MBX_DUMP_MEMORY:
case MBX_DUMP_CONTEXT:
case MBX_RUN_DIAGS:
case MBX_RESTART:
case MBX_UPDATE_CFG:
case MBX_DOWN_LOAD:
case MBX_DEL_LD_ENTRY:
case MBX_RUN_PROGRAM:
case MBX_SET_MASK:
case MBX_SET_VARIABLE:
case MBX_UNREG_D_ID:
case MBX_KILL_BOARD:
case MBX_CONFIG_FARP:
case MBX_BEACON:
case MBX_LOAD_AREA:
case MBX_RUN_BIU_DIAG64:
case MBX_CONFIG_PORT:
case MBX_READ_SPARM64:
case MBX_READ_RPI64:
case MBX_REG_LOGIN64:
case MBX_READ_TOPOLOGY:
case MBX_WRITE_WWN:
case MBX_SET_DEBUG:
case MBX_LOAD_EXP_ROM:
case MBX_ASYNCEVT_ENABLE:
case MBX_REG_VPI:
case MBX_UNREG_VPI:
case MBX_HEARTBEAT:
case MBX_PORT_CAPABILITIES:
case MBX_PORT_IOV_CONTROL:
case MBX_SLI4_CONFIG:
case MBX_SLI4_REQ_FTRS:
case MBX_REG_FCFI:
case MBX_UNREG_FCFI:
case MBX_REG_VFI:
case MBX_UNREG_VFI:
case MBX_INIT_VPI:
case MBX_INIT_VFI:
case MBX_RESUME_RPI:
case MBX_READ_EVENT_LOG_STATUS:
case MBX_READ_EVENT_LOG:
case MBX_SECURITY_MGMT:
case MBX_AUTH_PORT:
case MBX_ACCESS_VDATA:
ret = mbxCommand;
break;
default:
ret = MBX_SHUTDOWN;
break;
}
return ret;
}
/**
* lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
* @phba: Pointer to HBA context object.
* @pmboxq: Pointer to mailbox command.
*
* This is completion handler function for mailbox commands issued from
* lpfc_sli_issue_mbox_wait function. This function is called by the
* mailbox event handler function with no lock held. This function
* will wake up thread waiting on the wait queue pointed by context1
* of the mailbox.
**/
void
lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
{
unsigned long drvr_flag;
struct completion *pmbox_done;
/*
* If pmbox_done is empty, the driver thread gave up waiting and
* continued running.
*/
pmboxq->mbox_flag |= LPFC_MBX_WAKE;
spin_lock_irqsave(&phba->hbalock, drvr_flag);
pmbox_done = (struct completion *)pmboxq->context3;
if (pmbox_done)
complete(pmbox_done);
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
return;
}
static void
__lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
{
unsigned long iflags;
if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
spin_lock_irqsave(&ndlp->lock, iflags);
ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
spin_unlock_irqrestore(&ndlp->lock, iflags);
}
ndlp->nlp_flag &= ~NLP_UNREG_INP;
}
/**
* lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
* @phba: Pointer to HBA context object.
* @pmb: Pointer to mailbox object.
*
* This function is the default mailbox completion handler. It
* frees the memory resources associated with the completed mailbox
* command. If the completed command is a REG_LOGIN mailbox command,
* this function will issue a UREG_LOGIN to re-claim the RPI.
**/
void
lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
{
struct lpfc_vport *vport = pmb->vport;
struct lpfc_dmabuf *mp;
struct lpfc_nodelist *ndlp;
struct Scsi_Host *shost;
uint16_t rpi, vpi;
int rc;
mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
if (mp) {
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
/*
* If a REG_LOGIN succeeded after node is destroyed or node
* is in re-discovery driver need to cleanup the RPI.
*/
if (!(phba->pport->load_flag & FC_UNLOADING) &&
pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
!pmb->u.mb.mbxStatus) {
rpi = pmb->u.mb.un.varWords[0];
vpi = pmb->u.mb.un.varRegLogin.vpi;
if (phba->sli_rev == LPFC_SLI_REV4)
vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
lpfc_unreg_login(phba, vpi, rpi, pmb);
pmb->vport = vport;
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc != MBX_NOT_FINISHED)
return;
}
if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
!(phba->pport->load_flag & FC_UNLOADING) &&
!pmb->u.mb.mbxStatus) {
shost = lpfc_shost_from_vport(vport);
spin_lock_irq(shost->host_lock);
vport->vpi_state |= LPFC_VPI_REGISTERED;
vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
spin_unlock_irq(shost->host_lock);
}
if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
lpfc_nlp_put(ndlp);
pmb->ctx_buf = NULL;
pmb->ctx_ndlp = NULL;
}
if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
/* Check to see if there are any deferred events to process */
if (ndlp) {
lpfc_printf_vlog(
vport,
KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
"1438 UNREG cmpl deferred mbox x%x "
"on NPort x%x Data: x%x x%x x%px x%x x%x\n",
ndlp->nlp_rpi, ndlp->nlp_DID,
ndlp->nlp_flag, ndlp->nlp_defer_did,
ndlp, vport->load_flag, kref_read(&ndlp->kref));
if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
(ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
ndlp->nlp_flag &= ~NLP_UNREG_INP;
ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
} else {
__lpfc_sli_rpi_release(vport, ndlp);
}
/* The unreg_login mailbox is complete and had a
* reference that has to be released. The PLOGI
* got its own ref.
*/
lpfc_nlp_put(ndlp);
pmb->ctx_ndlp = NULL;
}
}
/* Check security permission status on INIT_LINK mailbox command */
if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
(pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2860 SLI authentication is required "
"for INIT_LINK but has not done yet\n");
if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
lpfc_sli4_mbox_cmd_free(phba, pmb);
else
mempool_free(pmb, phba->mbox_mem_pool);
}
/**
* lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
* @phba: Pointer to HBA context object.
* @pmb: Pointer to mailbox object.
*
* This function is the unreg rpi mailbox completion handler. It
* frees the memory resources associated with the completed mailbox
* command. An additional reference is put on the ndlp to prevent
* lpfc_nlp_release from freeing the rpi bit in the bitmask before
* the unreg mailbox command completes, this routine puts the
* reference back.
*
**/
void
lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
{
struct lpfc_vport *vport = pmb->vport;
struct lpfc_nodelist *ndlp;
ndlp = pmb->ctx_ndlp;
if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
if (phba->sli_rev == LPFC_SLI_REV4 &&
(bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf) >=
LPFC_SLI_INTF_IF_TYPE_2)) {
if (ndlp) {
lpfc_printf_vlog(
vport, KERN_INFO, LOG_MBOX | LOG_SLI,
"0010 UNREG_LOGIN vpi:%x "
"rpi:%x DID:%x defer x%x flg x%x "
"x%px\n",
vport->vpi, ndlp->nlp_rpi,
ndlp->nlp_DID, ndlp->nlp_defer_did,
ndlp->nlp_flag,
ndlp);
ndlp->nlp_flag &= ~NLP_LOGO_ACC;
/* Check to see if there are any deferred
* events to process
*/
if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
(ndlp->nlp_defer_did !=
NLP_EVT_NOTHING_PENDING)) {
lpfc_printf_vlog(
vport, KERN_INFO, LOG_DISCOVERY,
"4111 UNREG cmpl deferred "
"clr x%x on "
"NPort x%x Data: x%x x%px\n",
ndlp->nlp_rpi, ndlp->nlp_DID,
ndlp->nlp_defer_did, ndlp);
ndlp->nlp_flag &= ~NLP_UNREG_INP;
ndlp->nlp_defer_did =
NLP_EVT_NOTHING_PENDING;
lpfc_issue_els_plogi(
vport, ndlp->nlp_DID, 0);
} else {
__lpfc_sli_rpi_release(vport, ndlp);
}
lpfc_nlp_put(ndlp);
}
}
}
mempool_free(pmb, phba->mbox_mem_pool);
}
/**
* lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
* @phba: Pointer to HBA context object.
*
* This function is called with no lock held. This function processes all
* the completed mailbox commands and gives it to upper layers. The interrupt
* service routine processes mailbox completion interrupt and adds completed
* mailbox commands to the mboxq_cmpl queue and signals the worker thread.
* Worker thread call lpfc_sli_handle_mb_event, which will return the
* completed mailbox commands in mboxq_cmpl queue to the upper layers. This
* function returns the mailbox commands to the upper layer by calling the
* completion handler function of each mailbox.
**/
int
lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
{
MAILBOX_t *pmbox;
LPFC_MBOXQ_t *pmb;
int rc;
LIST_HEAD(cmplq);
phba->sli.slistat.mbox_event++;
/* Get all completed mailboxe buffers into the cmplq */
spin_lock_irq(&phba->hbalock);
list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
spin_unlock_irq(&phba->hbalock);
/* Get a Mailbox buffer to setup mailbox commands for callback */
do {
list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
if (pmb == NULL)
break;
pmbox = &pmb->u.mb;
if (pmbox->mbxCommand != MBX_HEARTBEAT) {
if (pmb->vport) {
lpfc_debugfs_disc_trc(pmb->vport,
LPFC_DISC_TRC_MBOX_VPORT,
"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
(uint32_t)pmbox->mbxCommand,
pmbox->un.varWords[0],
pmbox->un.varWords[1]);
}
else {
lpfc_debugfs_disc_trc(phba->pport,
LPFC_DISC_TRC_MBOX,
"MBOX cmpl: cmd:x%x mb:x%x x%x",
(uint32_t)pmbox->mbxCommand,
pmbox->un.varWords[0],
pmbox->un.varWords[1]);
}
}
/*
* It is a fatal error if unknown mbox command completion.
*/
if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
MBX_SHUTDOWN) {
/* Unknown mailbox command compl */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):0323 Unknown Mailbox command "
"x%x (x%x/x%x) Cmpl\n",
pmb->vport ? pmb->vport->vpi :
LPFC_VPORT_UNKNOWN,
pmbox->mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba,
pmb),
lpfc_sli_config_mbox_opcode_get(phba,
pmb));
phba->link_state = LPFC_HBA_ERROR;
phba->work_hs = HS_FFER3;
lpfc_handle_eratt(phba);
continue;
}
if (pmbox->mbxStatus) {
phba->sli.slistat.mbox_stat_err++;
if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
/* Mbox cmd cmpl error - RETRYing */
lpfc_printf_log(phba, KERN_INFO,
LOG_MBOX | LOG_SLI,
"(%d):0305 Mbox cmd cmpl "
"error - RETRYing Data: x%x "
"(x%x/x%x) x%x x%x x%x\n",
pmb->vport ? pmb->vport->vpi :
LPFC_VPORT_UNKNOWN,
pmbox->mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba,
pmb),
lpfc_sli_config_mbox_opcode_get(phba,
pmb),
pmbox->mbxStatus,
pmbox->un.varWords[0],
pmb->vport ? pmb->vport->port_state :
LPFC_VPORT_UNKNOWN);
pmbox->mbxStatus = 0;
pmbox->mbxOwner = OWN_HOST;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc != MBX_NOT_FINISHED)
continue;
}
}
/* Mailbox cmd <cmd> Cmpl <cmpl> */
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
"x%x x%x x%x\n",
pmb->vport ? pmb->vport->vpi : 0,
pmbox->mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba, pmb),
lpfc_sli_config_mbox_opcode_get(phba, pmb),
pmb->mbox_cmpl,
*((uint32_t *) pmbox),
pmbox->un.varWords[0],
pmbox->un.varWords[1],
pmbox->un.varWords[2],
pmbox->un.varWords[3],
pmbox->un.varWords[4],
pmbox->un.varWords[5],
pmbox->un.varWords[6],
pmbox->un.varWords[7],
pmbox->un.varWords[8],
pmbox->un.varWords[9],
pmbox->un.varWords[10]);
if (pmb->mbox_cmpl)
pmb->mbox_cmpl(phba,pmb);
} while (1);
return 0;
}
/**
* lpfc_sli_get_buff - Get the buffer associated with the buffer tag
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @tag: buffer tag.
*
* This function is called with no lock held. When QUE_BUFTAG_BIT bit
* is set in the tag the buffer is posted for a particular exchange,
* the function will return the buffer without replacing the buffer.
* If the buffer is for unsolicited ELS or CT traffic, this function
* returns the buffer and also posts another buffer to the firmware.
**/
static struct lpfc_dmabuf *
lpfc_sli_get_buff(struct lpfc_hba *phba,
struct lpfc_sli_ring *pring,
uint32_t tag)
{
struct hbq_dmabuf *hbq_entry;
if (tag & QUE_BUFTAG_BIT)
return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
if (!hbq_entry)
return NULL;
return &hbq_entry->dbuf;
}
/**
* lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
* containing a NVME LS request.
* @phba: pointer to lpfc hba data structure.
* @piocb: pointer to the iocbq struct representing the sequence starting
* frame.
*
* This routine initially validates the NVME LS, validates there is a login
* with the port that sent the LS, and then calls the appropriate nvme host
* or target LS request handler.
**/
static void
lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
{
struct lpfc_nodelist *ndlp;
struct lpfc_dmabuf *d_buf;
struct hbq_dmabuf *nvmebuf;
struct fc_frame_header *fc_hdr;
struct lpfc_async_xchg_ctx *axchg = NULL;
char *failwhy = NULL;
uint32_t oxid, sid, did, fctl, size;
int ret = 1;
d_buf = piocb->context2;
nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
fc_hdr = nvmebuf->hbuf.virt;
oxid = be16_to_cpu(fc_hdr->fh_ox_id);
sid = sli4_sid_from_fc_hdr(fc_hdr);
did = sli4_did_from_fc_hdr(fc_hdr);
fctl = (fc_hdr->fh_f_ctl[0] << 16 |
fc_hdr->fh_f_ctl[1] << 8 |
fc_hdr->fh_f_ctl[2]);
size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n",
oxid, size, sid);
if (phba->pport->load_flag & FC_UNLOADING) {
failwhy = "Driver Unloading";
} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
failwhy = "NVME FC4 Disabled";
} else if (!phba->nvmet_support && !phba->pport->localport) {
failwhy = "No Localport";
} else if (phba->nvmet_support && !phba->targetport) {
failwhy = "No Targetport";
} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
failwhy = "Bad NVME LS R_CTL";
} else if (unlikely((fctl & 0x00FF0000) !=
(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
failwhy = "Bad NVME LS F_CTL";
} else {
axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
if (!axchg)
failwhy = "No CTX memory";
}
if (unlikely(failwhy)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
sid, oxid, failwhy);
goto out_fail;
}
/* validate the source of the LS is logged in */
ndlp = lpfc_findnode_did(phba->pport, sid);
if (!ndlp ||
((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
(ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
"6216 NVME Unsol rcv: No ndlp: "
"NPort_ID x%x oxid x%x\n",
sid, oxid);
goto out_fail;
}
axchg->phba = phba;
axchg->ndlp = ndlp;
axchg->size = size;
axchg->oxid = oxid;
axchg->sid = sid;
axchg->wqeq = NULL;
axchg->state = LPFC_NVME_STE_LS_RCV;
axchg->entry_cnt = 1;
axchg->rqb_buffer = (void *)nvmebuf;
axchg->hdwq = &phba->sli4_hba.hdwq[0];
axchg->payload = nvmebuf->dbuf.virt;
INIT_LIST_HEAD(&axchg->list);
if (phba->nvmet_support) {
ret = lpfc_nvmet_handle_lsreq(phba, axchg);
spin_lock_irq(&ndlp->lock);
if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
spin_unlock_irq(&ndlp->lock);
/* This reference is a single occurrence to hold the
* node valid until the nvmet transport calls
* host_release.
*/
if (!lpfc_nlp_get(ndlp))
goto out_fail;
lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
"6206 NVMET unsol ls_req ndlp x%px "
"DID x%x xflags x%x refcnt %d\n",
ndlp, ndlp->nlp_DID,
ndlp->fc4_xpt_flags,
kref_read(&ndlp->kref));
} else {
spin_unlock_irq(&ndlp->lock);
}
} else {
ret = lpfc_nvme_handle_lsreq(phba, axchg);
}
/* if zero, LS was successfully handled. If non-zero, LS not handled */
if (!ret)
return;
out_fail:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
"NVMe%s handler failed %d\n",
did, sid, oxid,
(phba->nvmet_support) ? "T" : "I", ret);
/* recycle receive buffer */
lpfc_in_buf_free(phba, &nvmebuf->dbuf);
/* If start of new exchange, abort it */
if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
if (ret)
kfree(axchg);
}
/**
* lpfc_complete_unsol_iocb - Complete an unsolicited sequence
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @saveq: Pointer to the iocbq struct representing the sequence starting frame.
* @fch_r_ctl: the r_ctl for the first frame of the sequence.
* @fch_type: the type for the first frame of the sequence.
*
* This function is called with no lock held. This function uses the r_ctl and
* type of the received sequence to find the correct callback function to call
* to process the sequence.
**/
static int
lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
uint32_t fch_type)
{
int i;
switch (fch_type) {
case FC_TYPE_NVME:
lpfc_nvme_unsol_ls_handler(phba, saveq);
return 1;
default:
break;
}
/* unSolicited Responses */
if (pring->prt[0].profile) {
if (pring->prt[0].lpfc_sli_rcv_unsol_event)
(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
saveq);
return 1;
}
/* We must search, based on rctl / type
for the right routine */
for (i = 0; i < pring->num_mask; i++) {
if ((pring->prt[i].rctl == fch_r_ctl) &&
(pring->prt[i].type == fch_type)) {
if (pring->prt[i].lpfc_sli_rcv_unsol_event)
(pring->prt[i].lpfc_sli_rcv_unsol_event)
(phba, pring, saveq);
return 1;
}
}
return 0;
}
/**
* lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @saveq: Pointer to the unsolicited iocb.
*
* This function is called with no lock held by the ring event handler
* when there is an unsolicited iocb posted to the response ring by the
* firmware. This function gets the buffer associated with the iocbs
* and calls the event handler for the ring. This function handles both
* qring buffers and hbq buffers.
* When the function returns 1 the caller can free the iocb object otherwise
* upper layer functions will free the iocb objects.
**/
static int
lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq *saveq)
{
IOCB_t * irsp;
WORD5 * w5p;
uint32_t Rctl, Type;
struct lpfc_iocbq *iocbq;
struct lpfc_dmabuf *dmzbuf;
irsp = &(saveq->iocb);
if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
if (pring->lpfc_sli_rcv_async_status)
pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
else
lpfc_printf_log(phba,
KERN_WARNING,
LOG_SLI,
"0316 Ring %d handler: unexpected "
"ASYNC_STATUS iocb received evt_code "
"0x%x\n",
pring->ringno,
irsp->un.asyncstat.evt_code);
return 1;
}
if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
if (irsp->ulpBdeCount > 0) {
dmzbuf = lpfc_sli_get_buff(phba, pring,
irsp->un.ulpWord[3]);
lpfc_in_buf_free(phba, dmzbuf);
}
if (irsp->ulpBdeCount > 1) {
dmzbuf = lpfc_sli_get_buff(phba, pring,
irsp->unsli3.sli3Words[3]);
lpfc_in_buf_free(phba, dmzbuf);
}
if (irsp->ulpBdeCount > 2) {
dmzbuf = lpfc_sli_get_buff(phba, pring,
irsp->unsli3.sli3Words[7]);
lpfc_in_buf_free(phba, dmzbuf);
}
return 1;
}
if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
if (irsp->ulpBdeCount != 0) {
saveq->context2 = lpfc_sli_get_buff(phba, pring,
irsp->un.ulpWord[3]);
if (!saveq->context2)
lpfc_printf_log(phba,
KERN_ERR,
LOG_SLI,
"0341 Ring %d Cannot find buffer for "
"an unsolicited iocb. tag 0x%x\n",
pring->ringno,
irsp->un.ulpWord[3]);
}
if (irsp->ulpBdeCount == 2) {
saveq->context3 = lpfc_sli_get_buff(phba, pring,
irsp->unsli3.sli3Words[7]);
if (!saveq->context3)
lpfc_printf_log(phba,
KERN_ERR,
LOG_SLI,
"0342 Ring %d Cannot find buffer for an"
" unsolicited iocb. tag 0x%x\n",
pring->ringno,
irsp->unsli3.sli3Words[7]);
}
list_for_each_entry(iocbq, &saveq->list, list) {
irsp = &(iocbq->iocb);
if (irsp->ulpBdeCount != 0) {
iocbq->context2 = lpfc_sli_get_buff(phba, pring,
irsp->un.ulpWord[3]);
if (!iocbq->context2)
lpfc_printf_log(phba,
KERN_ERR,
LOG_SLI,
"0343 Ring %d Cannot find "
"buffer for an unsolicited iocb"
". tag 0x%x\n", pring->ringno,
irsp->un.ulpWord[3]);
}
if (irsp->ulpBdeCount == 2) {
iocbq->context3 = lpfc_sli_get_buff(phba, pring,
irsp->unsli3.sli3Words[7]);
if (!iocbq->context3)
lpfc_printf_log(phba,
KERN_ERR,
LOG_SLI,
"0344 Ring %d Cannot find "
"buffer for an unsolicited "
"iocb. tag 0x%x\n",
pring->ringno,
irsp->unsli3.sli3Words[7]);
}
}
}
if (irsp->ulpBdeCount != 0 &&
(irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
int found = 0;
/* search continue save q for same XRI */
list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
saveq->iocb.unsli3.rcvsli3.ox_id) {
list_add_tail(&saveq->list, &iocbq->list);
found = 1;
break;
}
}
if (!found)
list_add_tail(&saveq->clist,
&pring->iocb_continue_saveq);
if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
list_del_init(&iocbq->clist);
saveq = iocbq;
irsp = &(saveq->iocb);
} else
return 0;
}
if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
(irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
(irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
Rctl = FC_RCTL_ELS_REQ;
Type = FC_TYPE_ELS;
} else {
w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
Rctl = w5p->hcsw.Rctl;
Type = w5p->hcsw.Type;
/* Firmware Workaround */
if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
Rctl = FC_RCTL_ELS_REQ;
Type = FC_TYPE_ELS;
w5p->hcsw.Rctl = Rctl;
w5p->hcsw.Type = Type;
}
}
if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0313 Ring %d handler: unexpected Rctl x%x "
"Type x%x received\n",
pring->ringno, Rctl, Type);
return 1;
}
/**
* lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @prspiocb: Pointer to response iocb object.
*
* This function looks up the iocb_lookup table to get the command iocb
* corresponding to the given response iocb using the iotag of the
* response iocb. The driver calls this function with the hbalock held
* for SLI3 ports or the ring lock held for SLI4 ports.
* This function returns the command iocb object if it finds the command
* iocb else returns NULL.
**/
static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
struct lpfc_sli_ring *pring,
struct lpfc_iocbq *prspiocb)
{
struct lpfc_iocbq *cmd_iocb = NULL;
uint16_t iotag;
spinlock_t *temp_lock = NULL;
unsigned long iflag = 0;
if (phba->sli_rev == LPFC_SLI_REV4)
temp_lock = &pring->ring_lock;
else
temp_lock = &phba->hbalock;
spin_lock_irqsave(temp_lock, iflag);
iotag = prspiocb->iocb.ulpIoTag;
if (iotag != 0 && iotag <= phba->sli.last_iotag) {
cmd_iocb = phba->sli.iocbq_lookup[iotag];
if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
/* remove from txcmpl queue list */
list_del_init(&cmd_iocb->list);
cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
pring->txcmplq_cnt--;
spin_unlock_irqrestore(temp_lock, iflag);
return cmd_iocb;
}
}
spin_unlock_irqrestore(temp_lock, iflag);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0317 iotag x%x is out of "
"range: max iotag x%x wd0 x%x\n",
iotag, phba->sli.last_iotag,
*(((uint32_t *) &prspiocb->iocb) + 7));
return NULL;
}
/**
* lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @iotag: IOCB tag.
*
* This function looks up the iocb_lookup table to get the command iocb
* corresponding to the given iotag. The driver calls this function with
* the ring lock held because this function is an SLI4 port only helper.
* This function returns the command iocb object if it finds the command
* iocb else returns NULL.
**/
static struct lpfc_iocbq *
lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
struct lpfc_sli_ring *pring, uint16_t iotag)
{
struct lpfc_iocbq *cmd_iocb = NULL;
spinlock_t *temp_lock = NULL;
unsigned long iflag = 0;
if (phba->sli_rev == LPFC_SLI_REV4)
temp_lock = &pring->ring_lock;
else
temp_lock = &phba->hbalock;
spin_lock_irqsave(temp_lock, iflag);
if (iotag != 0 && iotag <= phba->sli.last_iotag) {
cmd_iocb = phba->sli.iocbq_lookup[iotag];
if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
/* remove from txcmpl queue list */
list_del_init(&cmd_iocb->list);
cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
pring->txcmplq_cnt--;
spin_unlock_irqrestore(temp_lock, iflag);
return cmd_iocb;
}
}
spin_unlock_irqrestore(temp_lock, iflag);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0372 iotag x%x lookup error: max iotag (x%x) "
"iocb_flag x%x\n",
iotag, phba->sli.last_iotag,
cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
return NULL;
}
/**
* lpfc_sli_process_sol_iocb - process solicited iocb completion
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @saveq: Pointer to the response iocb to be processed.
*
* This function is called by the ring event handler for non-fcp
* rings when there is a new response iocb in the response ring.
* The caller is not required to hold any locks. This function
* gets the command iocb associated with the response iocb and
* calls the completion handler for the command iocb. If there
* is no completion handler, the function will free the resources
* associated with command iocb. If the response iocb is for
* an already aborted command iocb, the status of the completion
* is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
* This function always returns 1.
**/
static int
lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq *saveq)
{
struct lpfc_iocbq *cmdiocbp;
int rc = 1;
unsigned long iflag;
cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
if (cmdiocbp) {
if (cmdiocbp->iocb_cmpl) {
/*
* If an ELS command failed send an event to mgmt
* application.
*/
if (saveq->iocb.ulpStatus &&
(pring->ringno == LPFC_ELS_RING) &&
(cmdiocbp->iocb.ulpCommand ==
CMD_ELS_REQUEST64_CR))
lpfc_send_els_failure_event(phba,
cmdiocbp, saveq);
/*
* Post all ELS completions to the worker thread.
* All other are passed to the completion callback.
*/
if (pring->ringno == LPFC_ELS_RING) {
if ((phba->sli_rev < LPFC_SLI_REV4) &&
(cmdiocbp->iocb_flag &
LPFC_DRIVER_ABORTED)) {
spin_lock_irqsave(&phba->hbalock,
iflag);
cmdiocbp->iocb_flag &=
~LPFC_DRIVER_ABORTED;
spin_unlock_irqrestore(&phba->hbalock,
iflag);
saveq->iocb.ulpStatus =
IOSTAT_LOCAL_REJECT;
saveq->iocb.un.ulpWord[4] =
IOERR_SLI_ABORTED;
/* Firmware could still be in progress
* of DMAing payload, so don't free data
* buffer till after a hbeat.
*/
spin_lock_irqsave(&phba->hbalock,
iflag);
saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
spin_unlock_irqrestore(&phba->hbalock,
iflag);
}
if (phba->sli_rev == LPFC_SLI_REV4) {
if (saveq->iocb_flag &
LPFC_EXCHANGE_BUSY) {
/* Set cmdiocb flag for the
* exchange busy so sgl (xri)
* will not be released until
* the abort xri is received
* from hba.
*/
spin_lock_irqsave(
&phba->hbalock, iflag);
cmdiocbp->iocb_flag |=
LPFC_EXCHANGE_BUSY;
spin_unlock_irqrestore(
&phba->hbalock, iflag);
}
if (cmdiocbp->iocb_flag &
LPFC_DRIVER_ABORTED) {
/*
* Clear LPFC_DRIVER_ABORTED
* bit in case it was driver
* initiated abort.
*/
spin_lock_irqsave(
&phba->hbalock, iflag);
cmdiocbp->iocb_flag &=
~LPFC_DRIVER_ABORTED;
spin_unlock_irqrestore(
&phba->hbalock, iflag);
cmdiocbp->iocb.ulpStatus =
IOSTAT_LOCAL_REJECT;
cmdiocbp->iocb.un.ulpWord[4] =
IOERR_ABORT_REQUESTED;
/*
* For SLI4, irsiocb contains
* NO_XRI in sli_xritag, it
* shall not affect releasing
* sgl (xri) process.
*/
saveq->iocb.ulpStatus =
IOSTAT_LOCAL_REJECT;
saveq->iocb.un.ulpWord[4] =
IOERR_SLI_ABORTED;
spin_lock_irqsave(
&phba->hbalock, iflag);
saveq->iocb_flag |=
LPFC_DELAY_MEM_FREE;
spin_unlock_irqrestore(
&phba->hbalock, iflag);
}
}
}
(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
} else
lpfc_sli_release_iocbq(phba, cmdiocbp);
} else {
/*
* Unknown initiating command based on the response iotag.
* This could be the case on the ELS ring because of
* lpfc_els_abort().
*/
if (pring->ringno != LPFC_ELS_RING) {
/*
* Ring <ringno> handler: unexpected completion IoTag
* <IoTag>
*/
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0322 Ring %d handler: "
"unexpected completion IoTag x%x "
"Data: x%x x%x x%x x%x\n",
pring->ringno,
saveq->iocb.ulpIoTag,
saveq->iocb.ulpStatus,
saveq->iocb.un.ulpWord[4],
saveq->iocb.ulpCommand,
saveq->iocb.ulpContext);
}
}
return rc;
}
/**
* lpfc_sli_rsp_pointers_error - Response ring pointer error handler
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function is called from the iocb ring event handlers when
* put pointer is ahead of the get pointer for a ring. This function signal
* an error attention condition to the worker thread and the worker
* thread will transition the HBA to offline state.
**/
static void
lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
/*
* Ring <ringno> handler: portRspPut <portRspPut> is bigger than
* rsp ring <portRspMax>
*/
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0312 Ring %d handler: portRspPut %d "
"is bigger than rsp ring %d\n",
pring->ringno, le32_to_cpu(pgp->rspPutInx),
pring->sli.sli3.numRiocb);
phba->link_state = LPFC_HBA_ERROR;
/*
* All error attention handlers are posted to
* worker thread
*/
phba->work_ha |= HA_ERATT;
phba->work_hs = HS_FFER3;
lpfc_worker_wake_up(phba);
return;
}
/**
* lpfc_poll_eratt - Error attention polling timer timeout handler
* @t: Context to fetch pointer to address of HBA context object from.
*
* This function is invoked by the Error Attention polling timer when the
* timer times out. It will check the SLI Error Attention register for
* possible attention events. If so, it will post an Error Attention event
* and wake up worker thread to process it. Otherwise, it will set up the
* Error Attention polling timer for the next poll.
**/
void lpfc_poll_eratt(struct timer_list *t)
{
struct lpfc_hba *phba;
uint32_t eratt = 0;
uint64_t sli_intr, cnt;
phba = from_timer(phba, t, eratt_poll);
/* Here we will also keep track of interrupts per sec of the hba */
sli_intr = phba->sli.slistat.sli_intr;
if (phba->sli.slistat.sli_prev_intr > sli_intr)
cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
sli_intr);
else
cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
/* 64-bit integer division not supported on 32-bit x86 - use do_div */
do_div(cnt, phba->eratt_poll_interval);
phba->sli.slistat.sli_ips = cnt;
phba->sli.slistat.sli_prev_intr = sli_intr;
/* Check chip HA register for error event */
eratt = lpfc_sli_check_eratt(phba);
if (eratt)
/* Tell the worker thread there is work to do */
lpfc_worker_wake_up(phba);
else
/* Restart the timer for next eratt poll */
mod_timer(&phba->eratt_poll,
jiffies +
msecs_to_jiffies(1000 * phba->eratt_poll_interval));
return;
}
/**
* lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @mask: Host attention register mask for this ring.
*
* This function is called from the interrupt context when there is a ring
* event for the fcp ring. The caller does not hold any lock.
* The function processes each response iocb in the response ring until it
* finds an iocb with LE bit set and chains all the iocbs up to the iocb with
* LE bit set. The function will call the completion handler of the command iocb
* if the response iocb indicates a completion for a command iocb or it is
* an abort completion. The function will call lpfc_sli_process_unsol_iocb
* function if this is an unsolicited iocb.
* This routine presumes LPFC_FCP_RING handling and doesn't bother
* to check it explicitly.
*/
int
lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
struct lpfc_sli_ring *pring, uint32_t mask)
{
struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
IOCB_t *irsp = NULL;
IOCB_t *entry = NULL;
struct lpfc_iocbq *cmdiocbq = NULL;
struct lpfc_iocbq rspiocbq;
uint32_t status;
uint32_t portRspPut, portRspMax;
int rc = 1;
lpfc_iocb_type type;
unsigned long iflag;
uint32_t rsp_cmpl = 0;
spin_lock_irqsave(&phba->hbalock, iflag);
pring->stats.iocb_event++;
/*
* The next available response entry should never exceed the maximum
* entries. If it does, treat it as an adapter hardware error.
*/
portRspMax = pring->sli.sli3.numRiocb;
portRspPut = le32_to_cpu(pgp->rspPutInx);
if (unlikely(portRspPut >= portRspMax)) {
lpfc_sli_rsp_pointers_error(phba, pring);
spin_unlock_irqrestore(&phba->hbalock, iflag);
return 1;
}
if (phba->fcp_ring_in_use) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
return 1;
} else
phba->fcp_ring_in_use = 1;
rmb();
while (pring->sli.sli3.rspidx != portRspPut) {
/*
* Fetch an entry off the ring and copy it into a local data
* structure. The copy involves a byte-swap since the
* network byte order and pci byte orders are different.
*/
entry = lpfc_resp_iocb(phba, pring);
phba->last_completion_time = jiffies;
if (++pring->sli.sli3.rspidx >= portRspMax)
pring->sli.sli3.rspidx = 0;
lpfc_sli_pcimem_bcopy((uint32_t *) entry,
(uint32_t *) &rspiocbq.iocb,
phba->iocb_rsp_size);
INIT_LIST_HEAD(&(rspiocbq.list));
irsp = &rspiocbq.iocb;
type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
pring->stats.iocb_rsp++;
rsp_cmpl++;
if (unlikely(irsp->ulpStatus)) {
/*
* If resource errors reported from HBA, reduce
* queuedepths of the SCSI device.
*/
if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
IOERR_NO_RESOURCES)) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
phba->lpfc_rampdown_queue_depth(phba);
spin_lock_irqsave(&phba->hbalock, iflag);
}
/* Rsp ring <ringno> error: IOCB */
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0336 Rsp Ring %d error: IOCB Data: "
"x%x x%x x%x x%x x%x x%x x%x x%x\n",
pring->ringno,
irsp->un.ulpWord[0],
irsp->un.ulpWord[1],
irsp->un.ulpWord[2],
irsp->un.ulpWord[3],
irsp->un.ulpWord[4],
irsp->un.ulpWord[5],
*(uint32_t *)&irsp->un1,
*((uint32_t *)&irsp->un1 + 1));
}
switch (type) {
case LPFC_ABORT_IOCB:
case LPFC_SOL_IOCB:
/*
* Idle exchange closed via ABTS from port. No iocb
* resources need to be recovered.
*/
if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0333 IOCB cmd 0x%x"
" processed. Skipping"
" completion\n",
irsp->ulpCommand);
break;
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
&rspiocbq);
spin_lock_irqsave(&phba->hbalock, iflag);
if (unlikely(!cmdiocbq))
break;
if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
if (cmdiocbq->iocb_cmpl) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
&rspiocbq);
spin_lock_irqsave(&phba->hbalock, iflag);
}
break;
case LPFC_UNSOL_IOCB:
spin_unlock_irqrestore(&phba->hbalock, iflag);
lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
spin_lock_irqsave(&phba->hbalock, iflag);
break;
default:
if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
char adaptermsg[LPFC_MAX_ADPTMSG];
memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
memcpy(&adaptermsg[0], (uint8_t *) irsp,
MAX_MSG_DATA);
dev_warn(&((phba->pcidev)->dev),
"lpfc%d: %s\n",
phba->brd_no, adaptermsg);
} else {
/* Unknown IOCB command */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0334 Unknown IOCB command "
"Data: x%x, x%x x%x x%x x%x\n",
type, irsp->ulpCommand,
irsp->ulpStatus,
irsp->ulpIoTag,
irsp->ulpContext);
}
break;
}
/*
* The response IOCB has been processed. Update the ring
* pointer in SLIM. If the port response put pointer has not
* been updated, sync the pgp->rspPutInx and fetch the new port
* response put pointer.
*/
writel(pring->sli.sli3.rspidx,
&phba->host_gp[pring->ringno].rspGetInx);
if (pring->sli.sli3.rspidx == portRspPut)
portRspPut = le32_to_cpu(pgp->rspPutInx);
}
if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
pring->stats.iocb_rsp_full++;
status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
writel(status, phba->CAregaddr);
readl(phba->CAregaddr);
}
if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
pring->stats.iocb_cmd_empty++;
/* Force update of the local copy of cmdGetInx */
pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
lpfc_sli_resume_iocb(phba, pring);
if ((pring->lpfc_sli_cmd_available))
(pring->lpfc_sli_cmd_available) (phba, pring);
}
phba->fcp_ring_in_use = 0;
spin_unlock_irqrestore(&phba->hbalock, iflag);
return rc;
}
/**
* lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @rspiocbp: Pointer to driver response IOCB object.
*
* This function is called from the worker thread when there is a slow-path
* response IOCB to process. This function chains all the response iocbs until
* seeing the iocb with the LE bit set. The function will call
* lpfc_sli_process_sol_iocb function if the response iocb indicates a
* completion of a command iocb. The function will call the
* lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
* The function frees the resources or calls the completion handler if this
* iocb is an abort completion. The function returns NULL when the response
* iocb has the LE bit set and all the chained iocbs are processed, otherwise
* this function shall chain the iocb on to the iocb_continueq and return the
* response iocb passed in.
**/
static struct lpfc_iocbq *
lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq *rspiocbp)
{
struct lpfc_iocbq *saveq;
struct lpfc_iocbq *cmdiocbp;
struct lpfc_iocbq *next_iocb;
IOCB_t *irsp = NULL;
uint32_t free_saveq;
uint8_t iocb_cmd_type;
lpfc_iocb_type type;
unsigned long iflag;
int rc;
spin_lock_irqsave(&phba->hbalock, iflag);
/* First add the response iocb to the countinueq list */
list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
pring->iocb_continueq_cnt++;
/* Now, determine whether the list is completed for processing */
irsp = &rspiocbp->iocb;
if (irsp->ulpLe) {
/*
* By default, the driver expects to free all resources
* associated with this iocb completion.
*/
free_saveq = 1;
saveq = list_get_first(&pring->iocb_continueq,
struct lpfc_iocbq, list);
irsp = &(saveq->iocb);
list_del_init(&pring->iocb_continueq);
pring->iocb_continueq_cnt = 0;
pring->stats.iocb_rsp++;
/*
* If resource errors reported from HBA, reduce
* queuedepths of the SCSI device.
*/
if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
IOERR_NO_RESOURCES)) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
phba->lpfc_rampdown_queue_depth(phba);
spin_lock_irqsave(&phba->hbalock, iflag);
}
if (irsp->ulpStatus) {
/* Rsp ring <ringno> error: IOCB */
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0328 Rsp Ring %d error: "
"IOCB Data: "
"x%x x%x x%x x%x "
"x%x x%x x%x x%x "
"x%x x%x x%x x%x "
"x%x x%x x%x x%x\n",
pring->ringno,
irsp->un.ulpWord[0],
irsp->un.ulpWord[1],
irsp->un.ulpWord[2],
irsp->un.ulpWord[3],
irsp->un.ulpWord[4],
irsp->un.ulpWord[5],
*(((uint32_t *) irsp) + 6),
*(((uint32_t *) irsp) + 7),
*(((uint32_t *) irsp) + 8),
*(((uint32_t *) irsp) + 9),
*(((uint32_t *) irsp) + 10),
*(((uint32_t *) irsp) + 11),
*(((uint32_t *) irsp) + 12),
*(((uint32_t *) irsp) + 13),
*(((uint32_t *) irsp) + 14),
*(((uint32_t *) irsp) + 15));
}
/*
* Fetch the IOCB command type and call the correct completion
* routine. Solicited and Unsolicited IOCBs on the ELS ring
* get freed back to the lpfc_iocb_list by the discovery
* kernel thread.
*/
iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
switch (type) {
case LPFC_SOL_IOCB:
spin_unlock_irqrestore(&phba->hbalock, iflag);
rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
spin_lock_irqsave(&phba->hbalock, iflag);
break;
case LPFC_UNSOL_IOCB:
spin_unlock_irqrestore(&phba->hbalock, iflag);
rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
spin_lock_irqsave(&phba->hbalock, iflag);
if (!rc)
free_saveq = 0;
break;
case LPFC_ABORT_IOCB:
cmdiocbp = NULL;
if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
saveq);
spin_lock_irqsave(&phba->hbalock, iflag);
}
if (cmdiocbp) {
/* Call the specified completion routine */
if (cmdiocbp->iocb_cmpl) {
spin_unlock_irqrestore(&phba->hbalock,
iflag);
(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
saveq);
spin_lock_irqsave(&phba->hbalock,
iflag);
} else
__lpfc_sli_release_iocbq(phba,
cmdiocbp);
}
break;
case LPFC_UNKNOWN_IOCB:
if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
char adaptermsg[LPFC_MAX_ADPTMSG];
memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
memcpy(&adaptermsg[0], (uint8_t *)irsp,
MAX_MSG_DATA);
dev_warn(&((phba->pcidev)->dev),
"lpfc%d: %s\n",
phba->brd_no, adaptermsg);
} else {
/* Unknown IOCB command */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0335 Unknown IOCB "
"command Data: x%x "
"x%x x%x x%x\n",
irsp->ulpCommand,
irsp->ulpStatus,
irsp->ulpIoTag,
irsp->ulpContext);
}
break;
}
if (free_saveq) {
list_for_each_entry_safe(rspiocbp, next_iocb,
&saveq->list, list) {
list_del_init(&rspiocbp->list);
__lpfc_sli_release_iocbq(phba, rspiocbp);
}
__lpfc_sli_release_iocbq(phba, saveq);
}
rspiocbp = NULL;
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
return rspiocbp;
}
/**
* lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @mask: Host attention register mask for this ring.
*
* This routine wraps the actual slow_ring event process routine from the
* API jump table function pointer from the lpfc_hba struct.
**/
void
lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
struct lpfc_sli_ring *pring, uint32_t mask)
{
phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
}
/**
* lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @mask: Host attention register mask for this ring.
*
* This function is called from the worker thread when there is a ring event
* for non-fcp rings. The caller does not hold any lock. The function will
* remove each response iocb in the response ring and calls the handle
* response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
**/
static void
lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
struct lpfc_sli_ring *pring, uint32_t mask)
{
struct lpfc_pgp *pgp;
IOCB_t *entry;
IOCB_t *irsp = NULL;
struct lpfc_iocbq *rspiocbp = NULL;
uint32_t portRspPut, portRspMax;
unsigned long iflag;
uint32_t status;
pgp = &phba->port_gp[pring->ringno];
spin_lock_irqsave(&phba->hbalock, iflag);
pring->stats.iocb_event++;
/*
* The next available response entry should never exceed the maximum
* entries. If it does, treat it as an adapter hardware error.
*/
portRspMax = pring->sli.sli3.numRiocb;
portRspPut = le32_to_cpu(pgp->rspPutInx);
if (portRspPut >= portRspMax) {
/*
* Ring <ringno> handler: portRspPut <portRspPut> is bigger than
* rsp ring <portRspMax>
*/
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0303 Ring %d handler: portRspPut %d "
"is bigger than rsp ring %d\n",
pring->ringno, portRspPut, portRspMax);
phba->link_state = LPFC_HBA_ERROR;
spin_unlock_irqrestore(&phba->hbalock, iflag);
phba->work_hs = HS_FFER3;
lpfc_handle_eratt(phba);
return;
}
rmb();
while (pring->sli.sli3.rspidx != portRspPut) {
/*
* Build a completion list and call the appropriate handler.
* The process is to get the next available response iocb, get
* a free iocb from the list, copy the response data into the
* free iocb, insert to the continuation list, and update the
* next response index to slim. This process makes response
* iocb's in the ring available to DMA as fast as possible but
* pays a penalty for a copy operation. Since the iocb is
* only 32 bytes, this penalty is considered small relative to
* the PCI reads for register values and a slim write. When
* the ulpLe field is set, the entire Command has been
* received.
*/
entry = lpfc_resp_iocb(phba, pring);
phba->last_completion_time = jiffies;
rspiocbp = __lpfc_sli_get_iocbq(phba);
if (rspiocbp == NULL) {
printk(KERN_ERR "%s: out of buffers! Failing "
"completion.\n", __func__);
break;
}
lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
phba->iocb_rsp_size);
irsp = &rspiocbp->iocb;
if (++pring->sli.sli3.rspidx >= portRspMax)
pring->sli.sli3.rspidx = 0;
if (pring->ringno == LPFC_ELS_RING) {
lpfc_debugfs_slow_ring_trc(phba,
"IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
*(((uint32_t *) irsp) + 4),
*(((uint32_t *) irsp) + 6),
*(((uint32_t *) irsp) + 7));
}
writel(pring->sli.sli3.rspidx,
&phba->host_gp[pring->ringno].rspGetInx);
spin_unlock_irqrestore(&phba->hbalock, iflag);
/* Handle the response IOCB */
rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
spin_lock_irqsave(&phba->hbalock, iflag);
/*
* If the port response put pointer has not been updated, sync
* the pgp->rspPutInx in the MAILBOX_tand fetch the new port
* response put pointer.
*/
if (pring->sli.sli3.rspidx == portRspPut) {
portRspPut = le32_to_cpu(pgp->rspPutInx);
}
} /* while (pring->sli.sli3.rspidx != portRspPut) */
if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
/* At least one response entry has been freed */
pring->stats.iocb_rsp_full++;
/* SET RxRE_RSP in Chip Att register */
status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
writel(status, phba->CAregaddr);
readl(phba->CAregaddr); /* flush */
}
if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
pring->stats.iocb_cmd_empty++;
/* Force update of the local copy of cmdGetInx */
pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
lpfc_sli_resume_iocb(phba, pring);
if ((pring->lpfc_sli_cmd_available))
(pring->lpfc_sli_cmd_available) (phba, pring);
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
return;
}
/**
* lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @mask: Host attention register mask for this ring.
*
* This function is called from the worker thread when there is a pending
* ELS response iocb on the driver internal slow-path response iocb worker
* queue. The caller does not hold any lock. The function will remove each
* response iocb from the response worker queue and calls the handle
* response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
**/
static void
lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
struct lpfc_sli_ring *pring, uint32_t mask)
{
struct lpfc_iocbq *irspiocbq;
struct hbq_dmabuf *dmabuf;
struct lpfc_cq_event *cq_event;
unsigned long iflag;
int count = 0;
spin_lock_irqsave(&phba->hbalock, iflag);
phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
spin_unlock_irqrestore(&phba->hbalock, iflag);
while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
/* Get the response iocb from the head of work queue */
spin_lock_irqsave(&phba->hbalock, iflag);
list_remove_head(&phba->sli4_hba.sp_queue_event,
cq_event, struct lpfc_cq_event, list);
spin_unlock_irqrestore(&phba->hbalock, iflag);
switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
case CQE_CODE_COMPL_WQE:
irspiocbq = container_of(cq_event, struct lpfc_iocbq,
cq_event);
/* Translate ELS WCQE to response IOCBQ */
irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
irspiocbq);
if (irspiocbq)
lpfc_sli_sp_handle_rspiocb(phba, pring,
irspiocbq);
count++;
break;
case CQE_CODE_RECEIVE:
case CQE_CODE_RECEIVE_V1:
dmabuf = container_of(cq_event, struct hbq_dmabuf,
cq_event);
lpfc_sli4_handle_received_buffer(phba, dmabuf);
count++;
break;
default:
break;
}
/* Limit the number of events to 64 to avoid soft lockups */
if (count == 64)
break;
}
}
/**
* lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
*
* This function aborts all iocbs in the given ring and frees all the iocb
* objects in txq. This function issues an abort iocb for all the iocb commands
* in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
* the return of this function. The caller is not required to hold any locks.
**/
void
lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
{
LIST_HEAD(completions);
struct lpfc_iocbq *iocb, *next_iocb;
if (pring->ringno == LPFC_ELS_RING) {
lpfc_fabric_abort_hba(phba);
}
/* Error everything on txq and txcmplq
* First do the txq.
*/
if (phba->sli_rev >= LPFC_SLI_REV4) {
spin_lock_irq(&pring->ring_lock);
list_splice_init(&pring->txq, &completions);
pring->txq_cnt = 0;
spin_unlock_irq(&pring->ring_lock);
spin_lock_irq(&phba->hbalock);
/* Next issue ABTS for everything on the txcmplq */
list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
spin_unlock_irq(&phba->hbalock);
} else {
spin_lock_irq(&phba->hbalock);
list_splice_init(&pring->txq, &completions);
pring->txq_cnt = 0;
/* Next issue ABTS for everything on the txcmplq */
list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
spin_unlock_irq(&phba->hbalock);
}
/* Make sure HBA is alive */
lpfc_issue_hb_tmo(phba);
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
IOERR_SLI_ABORTED);
}
/**
* lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
* @phba: Pointer to HBA context object.
*
* This function aborts all iocbs in FCP rings and frees all the iocb
* objects in txq. This function issues an abort iocb for all the iocb commands
* in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
* the return of this function. The caller is not required to hold any locks.
**/
void
lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
uint32_t i;
/* Look on all the FCP Rings for the iotag */
if (phba->sli_rev >= LPFC_SLI_REV4) {
for (i = 0; i < phba->cfg_hdw_queue; i++) {
pring = phba->sli4_hba.hdwq[i].io_wq->pring;
lpfc_sli_abort_iocb_ring(phba, pring);
}
} else {
pring = &psli->sli3_ring[LPFC_FCP_RING];
lpfc_sli_abort_iocb_ring(phba, pring);
}
}
/**
* lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
* @phba: Pointer to HBA context object.
*
* This function flushes all iocbs in the IO ring and frees all the iocb
* objects in txq and txcmplq. This function will not issue abort iocbs
* for all the iocb commands in txcmplq, they will just be returned with
* IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
* slot has been permanently disabled.
**/
void
lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
{
LIST_HEAD(txq);
LIST_HEAD(txcmplq);
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
uint32_t i;
struct lpfc_iocbq *piocb, *next_iocb;
spin_lock_irq(&phba->hbalock);
if (phba->hba_flag & HBA_IOQ_FLUSH ||
!phba->sli4_hba.hdwq) {
spin_unlock_irq(&phba->hbalock);
return;
}
/* Indicate the I/O queues are flushed */
phba->hba_flag |= HBA_IOQ_FLUSH;
spin_unlock_irq(&phba->hbalock);
/* Look on all the FCP Rings for the iotag */
if (phba->sli_rev >= LPFC_SLI_REV4) {
for (i = 0; i < phba->cfg_hdw_queue; i++) {
pring = phba->sli4_hba.hdwq[i].io_wq->pring;
spin_lock_irq(&pring->ring_lock);
/* Retrieve everything on txq */
list_splice_init(&pring->txq, &txq);
list_for_each_entry_safe(piocb, next_iocb,
&pring->txcmplq, list)
piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
/* Retrieve everything on the txcmplq */
list_splice_init(&pring->txcmplq, &txcmplq);
pring->txq_cnt = 0;
pring->txcmplq_cnt = 0;
spin_unlock_irq(&pring->ring_lock);
/* Flush the txq */
lpfc_sli_cancel_iocbs(phba, &txq,
IOSTAT_LOCAL_REJECT,
IOERR_SLI_DOWN);
/* Flush the txcmpq */
lpfc_sli_cancel_iocbs(phba, &txcmplq,
IOSTAT_LOCAL_REJECT,
IOERR_SLI_DOWN);
}
} else {
pring = &psli->sli3_ring[LPFC_FCP_RING];
spin_lock_irq(&phba->hbalock);
/* Retrieve everything on txq */
list_splice_init(&pring->txq, &txq);
list_for_each_entry_safe(piocb, next_iocb,
&pring->txcmplq, list)
piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
/* Retrieve everything on the txcmplq */
list_splice_init(&pring->txcmplq, &txcmplq);
pring->txq_cnt = 0;
pring->txcmplq_cnt = 0;
spin_unlock_irq(&phba->hbalock);
/* Flush the txq */
lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
IOERR_SLI_DOWN);
/* Flush the txcmpq */
lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
IOERR_SLI_DOWN);
}
}
/**
* lpfc_sli_brdready_s3 - Check for sli3 host ready status
* @phba: Pointer to HBA context object.
* @mask: Bit mask to be checked.
*
* This function reads the host status register and compares
* with the provided bit mask to check if HBA completed
* the restart. This function will wait in a loop for the
* HBA to complete restart. If the HBA does not restart within
* 15 iterations, the function will reset the HBA again. The
* function returns 1 when HBA fail to restart otherwise returns
* zero.
**/
static int
lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
{
uint32_t status;
int i = 0;
int retval = 0;
/* Read the HBA Host Status Register */
if (lpfc_readl(phba->HSregaddr, &status))
return 1;
phba->hba_flag |= HBA_NEEDS_CFG_PORT;
/*
* Check status register every 100ms for 5 retries, then every
* 500ms for 5, then every 2.5 sec for 5, then reset board and
* every 2.5 sec for 4.
* Break our of the loop if errors occurred during init.
*/
while (((status & mask) != mask) &&
!(status & HS_FFERM) &&
i++ < 20) {
if (i <= 5)
msleep(10);
else if (i <= 10)
msleep(500);
else
msleep(2500);
if (i == 15) {
/* Do post */
phba->pport->port_state = LPFC_VPORT_UNKNOWN;
lpfc_sli_brdrestart(phba);
}
/* Read the HBA Host Status Register */
if (lpfc_readl(phba->HSregaddr, &status)) {
retval = 1;
break;
}
}
/* Check to see if any errors occurred during init */
if ((status & HS_FFERM) || (i >= 20)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2751 Adapter failed to restart, "
"status reg x%x, FW Data: A8 x%x AC x%x\n",
status,
readl(phba->MBslimaddr + 0xa8),
readl(phba->MBslimaddr + 0xac));
phba->link_state = LPFC_HBA_ERROR;
retval = 1;
}
return retval;
}
/**
* lpfc_sli_brdready_s4 - Check for sli4 host ready status
* @phba: Pointer to HBA context object.
* @mask: Bit mask to be checked.
*
* This function checks the host status register to check if HBA is
* ready. This function will wait in a loop for the HBA to be ready
* If the HBA is not ready , the function will will reset the HBA PCI
* function again. The function returns 1 when HBA fail to be ready
* otherwise returns zero.
**/
static int
lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
{
uint32_t status;
int retval = 0;
/* Read the HBA Host Status Register */
status = lpfc_sli4_post_status_check(phba);
if (status) {
phba->pport->port_state = LPFC_VPORT_UNKNOWN;
lpfc_sli_brdrestart(phba);
status = lpfc_sli4_post_status_check(phba);
}
/* Check to see if any errors occurred during init */
if (status) {
phba->link_state = LPFC_HBA_ERROR;
retval = 1;
} else
phba->sli4_hba.intr_enable = 0;
return retval;
}
/**
* lpfc_sli_brdready - Wrapper func for checking the hba readyness
* @phba: Pointer to HBA context object.
* @mask: Bit mask to be checked.
*
* This routine wraps the actual SLI3 or SLI4 hba readyness check routine
* from the API jump table function pointer from the lpfc_hba struct.
**/
int
lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
{
return phba->lpfc_sli_brdready(phba, mask);
}
#define BARRIER_TEST_PATTERN (0xdeadbeef)
/**
* lpfc_reset_barrier - Make HBA ready for HBA reset
* @phba: Pointer to HBA context object.
*
* This function is called before resetting an HBA. This function is called
* with hbalock held and requests HBA to quiesce DMAs before a reset.
**/
void lpfc_reset_barrier(struct lpfc_hba *phba)
{
uint32_t __iomem *resp_buf;
uint32_t __iomem *mbox_buf;
volatile uint32_t mbox;
uint32_t hc_copy, ha_copy, resp_data;
int i;
uint8_t hdrtype;
lockdep_assert_held(&phba->hbalock);
pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
if (hdrtype != 0x80 ||
(FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
return;
/*
* Tell the other part of the chip to suspend temporarily all
* its DMA activity.
*/
resp_buf = phba->MBslimaddr;
/* Disable the error attention */
if (lpfc_readl(phba->HCregaddr, &hc_copy))
return;
writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
phba->link_flag |= LS_IGNORE_ERATT;
if (lpfc_readl(phba->HAregaddr, &ha_copy))
return;
if (ha_copy & HA_ERATT) {
/* Clear Chip error bit */
writel(HA_ERATT, phba->HAregaddr);
phba->pport->stopped = 1;
}
mbox = 0;
((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
mbox_buf = phba->MBslimaddr;
writel(mbox, mbox_buf);
for (i = 0; i < 50; i++) {
if (lpfc_readl((resp_buf + 1), &resp_data))
return;
if (resp_data != ~(BARRIER_TEST_PATTERN))
mdelay(1);
else
break;
}
resp_data = 0;
if (lpfc_readl((resp_buf + 1), &resp_data))
return;
if (resp_data != ~(BARRIER_TEST_PATTERN)) {
if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
phba->pport->stopped)
goto restore_hc;
else
goto clear_errat;
}
((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
resp_data = 0;
for (i = 0; i < 500; i++) {
if (lpfc_readl(resp_buf, &resp_data))
return;
if (resp_data != mbox)
mdelay(1);
else
break;
}
clear_errat:
while (++i < 500) {
if (lpfc_readl(phba->HAregaddr, &ha_copy))
return;
if (!(ha_copy & HA_ERATT))
mdelay(1);
else
break;
}
if (readl(phba->HAregaddr) & HA_ERATT) {
writel(HA_ERATT, phba->HAregaddr);
phba->pport->stopped = 1;
}
restore_hc:
phba->link_flag &= ~LS_IGNORE_ERATT;
writel(hc_copy, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
}
/**
* lpfc_sli_brdkill - Issue a kill_board mailbox command
* @phba: Pointer to HBA context object.
*
* This function issues a kill_board mailbox command and waits for
* the error attention interrupt. This function is called for stopping
* the firmware processing. The caller is not required to hold any
* locks. This function calls lpfc_hba_down_post function to free
* any pending commands after the kill. The function will return 1 when it
* fails to kill the board else will return 0.
**/
int
lpfc_sli_brdkill(struct lpfc_hba *phba)
{
struct lpfc_sli *psli;
LPFC_MBOXQ_t *pmb;
uint32_t status;
uint32_t ha_copy;
int retval;
int i = 0;
psli = &phba->sli;
/* Kill HBA */
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0329 Kill HBA Data: x%x x%x\n",
phba->pport->port_state, psli->sli_flag);
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb)
return 1;
/* Disable the error attention */
spin_lock_irq(&phba->hbalock);
if (lpfc_readl(phba->HCregaddr, &status)) {
spin_unlock_irq(&phba->hbalock);
mempool_free(pmb, phba->mbox_mem_pool);
return 1;
}
status &= ~HC_ERINT_ENA;
writel(status, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
phba->link_flag |= LS_IGNORE_ERATT;
spin_unlock_irq(&phba->hbalock);
lpfc_kill_board(phba, pmb);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (retval != MBX_SUCCESS) {
if (retval != MBX_BUSY)
mempool_free(pmb, phba->mbox_mem_pool);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2752 KILL_BOARD command failed retval %d\n",
retval);
spin_lock_irq(&phba->hbalock);
phba->link_flag &= ~LS_IGNORE_ERATT;
spin_unlock_irq(&phba->hbalock);
return 1;
}
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
mempool_free(pmb, phba->mbox_mem_pool);
/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
* attention every 100ms for 3 seconds. If we don't get ERATT after
* 3 seconds we still set HBA_ERROR state because the status of the
* board is now undefined.
*/
if (lpfc_readl(phba->HAregaddr, &ha_copy))
return 1;
while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
mdelay(100);
if (lpfc_readl(phba->HAregaddr, &ha_copy))
return 1;
}
del_timer_sync(&psli->mbox_tmo);
if (ha_copy & HA_ERATT) {
writel(HA_ERATT, phba->HAregaddr);
phba->pport->stopped = 1;
}
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
psli->mbox_active = NULL;
phba->link_flag &= ~LS_IGNORE_ERATT;
spin_unlock_irq(&phba->hbalock);
lpfc_hba_down_post(phba);
phba->link_state = LPFC_HBA_ERROR;
return ha_copy & HA_ERATT ? 0 : 1;
}
/**
* lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
* @phba: Pointer to HBA context object.
*
* This function resets the HBA by writing HC_INITFF to the control
* register. After the HBA resets, this function resets all the iocb ring
* indices. This function disables PCI layer parity checking during
* the reset.
* This function returns 0 always.
* The caller is not required to hold any locks.
**/
int
lpfc_sli_brdreset(struct lpfc_hba *phba)
{
struct lpfc_sli *psli;
struct lpfc_sli_ring *pring;
uint16_t cfg_value;
int i;
psli = &phba->sli;
/* Reset HBA */
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0325 Reset HBA Data: x%x x%x\n",
(phba->pport) ? phba->pport->port_state : 0,
psli->sli_flag);
/* perform board reset */
phba->fc_eventTag = 0;
phba->link_events = 0;
phba->hba_flag |= HBA_NEEDS_CFG_PORT;
if (phba->pport) {
phba->pport->fc_myDID = 0;
phba->pport->fc_prevDID = 0;
}
/* Turn off parity checking and serr during the physical reset */
if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
return -EIO;
pci_write_config_word(phba->pcidev, PCI_COMMAND,
(cfg_value &
~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
/* Now toggle INITFF bit in the Host Control Register */
writel(HC_INITFF, phba->HCregaddr);
mdelay(1);
readl(phba->HCregaddr); /* flush */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Restore PCI cmd register */
pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
/* Initialize relevant SLI info */
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
pring->flag = 0;
pring->sli.sli3.rspidx = 0;
pring->sli.sli3.next_cmdidx = 0;
pring->sli.sli3.local_getidx = 0;
pring->sli.sli3.cmdidx = 0;
pring->missbufcnt = 0;
}
phba->link_state = LPFC_WARM_START;
return 0;
}
/**
* lpfc_sli4_brdreset - Reset a sli-4 HBA
* @phba: Pointer to HBA context object.
*
* This function resets a SLI4 HBA. This function disables PCI layer parity
* checking during resets the device. The caller is not required to hold
* any locks.
*
* This function returns 0 on success else returns negative error code.
**/
int
lpfc_sli4_brdreset(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
uint16_t cfg_value;
int rc = 0;
/* Reset HBA */
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0295 Reset HBA Data: x%x x%x x%x\n",
phba->pport->port_state, psli->sli_flag,
phba->hba_flag);
/* perform board reset */
phba->fc_eventTag = 0;
phba->link_events = 0;
phba->pport->fc_myDID = 0;
phba->pport->fc_prevDID = 0;
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~(LPFC_PROCESS_LA);
phba->fcf.fcf_flag = 0;
spin_unlock_irq(&phba->hbalock);
/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
if (phba->hba_flag & HBA_FW_DUMP_OP) {
phba->hba_flag &= ~HBA_FW_DUMP_OP;
return rc;
}
/* Now physically reset the device */
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0389 Performing PCI function reset!\n");
/* Turn off parity checking and serr during the physical reset */
if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3205 PCI read Config failed\n");
return -EIO;
}
pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
/* Perform FCoE PCI function reset before freeing queue memory */
rc = lpfc_pci_function_reset(phba);
/* Restore PCI cmd register */
pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
return rc;
}
/**
* lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
* @phba: Pointer to HBA context object.
*
* This function is called in the SLI initialization code path to
* restart the HBA. The caller is not required to hold any lock.
* This function writes MBX_RESTART mailbox command to the SLIM and
* resets the HBA. At the end of the function, it calls lpfc_hba_down_post
* function to free any pending commands. The function enables
* POST only during the first initialization. The function returns zero.
* The function does not guarantee completion of MBX_RESTART mailbox
* command before the return of this function.
**/
static int
lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
{
MAILBOX_t *mb;
struct lpfc_sli *psli;
volatile uint32_t word0;
void __iomem *to_slim;
uint32_t hba_aer_enabled;
spin_lock_irq(&phba->hbalock);
/* Take PCIe device Advanced Error Reporting (AER) state */
hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
psli = &phba->sli;
/* Restart HBA */
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0337 Restart HBA Data: x%x x%x\n",
(phba->pport) ? phba->pport->port_state : 0,
psli->sli_flag);
word0 = 0;
mb = (MAILBOX_t *) &word0;
mb->mbxCommand = MBX_RESTART;
mb->mbxHc = 1;
lpfc_reset_barrier(phba);
to_slim = phba->MBslimaddr;
writel(*(uint32_t *) mb, to_slim);
readl(to_slim); /* flush */
/* Only skip post after fc_ffinit is completed */
if (phba->pport && phba->pport->port_state)
word0 = 1; /* This is really setting up word1 */
else
word0 = 0; /* This is really setting up word1 */
to_slim = phba->MBslimaddr + sizeof (uint32_t);
writel(*(uint32_t *) mb, to_slim);
readl(to_slim); /* flush */
lpfc_sli_brdreset(phba);
if (phba->pport)
phba->pport->stopped = 0;
phba->link_state = LPFC_INIT_START;
phba->hba_flag = 0;
spin_unlock_irq(&phba->hbalock);
memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
psli->stats_start = ktime_get_seconds();
/* Give the INITFF and Post time to settle. */
mdelay(100);
/* Reset HBA AER if it was enabled, note hba_flag was reset above */
if (hba_aer_enabled)
pci_disable_pcie_error_reporting(phba->pcidev);
lpfc_hba_down_post(phba);
return 0;
}
/**
* lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
* @phba: Pointer to HBA context object.
*
* This function is called in the SLI initialization code path to restart
* a SLI4 HBA. The caller is not required to hold any lock.
* At the end of the function, it calls lpfc_hba_down_post function to
* free any pending commands.
**/
static int
lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
uint32_t hba_aer_enabled;
int rc;
/* Restart HBA */
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0296 Restart HBA Data: x%x x%x\n",
phba->pport->port_state, psli->sli_flag);
/* Take PCIe device Advanced Error Reporting (AER) state */
hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
rc = lpfc_sli4_brdreset(phba);
if (rc) {
phba->link_state = LPFC_HBA_ERROR;
goto hba_down_queue;
}
spin_lock_irq(&phba->hbalock);
phba->pport->stopped = 0;
phba->link_state = LPFC_INIT_START;
phba->hba_flag = 0;
spin_unlock_irq(&phba->hbalock);
memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
psli->stats_start = ktime_get_seconds();
/* Reset HBA AER if it was enabled, note hba_flag was reset above */
if (hba_aer_enabled)
pci_disable_pcie_error_reporting(phba->pcidev);
hba_down_queue:
lpfc_hba_down_post(phba);
lpfc_sli4_queue_destroy(phba);
return rc;
}
/**
* lpfc_sli_brdrestart - Wrapper func for restarting hba
* @phba: Pointer to HBA context object.
*
* This routine wraps the actual SLI3 or SLI4 hba restart routine from the
* API jump table function pointer from the lpfc_hba struct.
**/
int
lpfc_sli_brdrestart(struct lpfc_hba *phba)
{
return phba->lpfc_sli_brdrestart(phba);
}
/**
* lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
* @phba: Pointer to HBA context object.
*
* This function is called after a HBA restart to wait for successful
* restart of the HBA. Successful restart of the HBA is indicated by
* HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
* iteration, the function will restart the HBA again. The function returns
* zero if HBA successfully restarted else returns negative error code.
**/
int
lpfc_sli_chipset_init(struct lpfc_hba *phba)
{
uint32_t status, i = 0;
/* Read the HBA Host Status Register */
if (lpfc_readl(phba->HSregaddr, &status))
return -EIO;
/* Check status register to see what current state is */
i = 0;
while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
/* Check every 10ms for 10 retries, then every 100ms for 90
* retries, then every 1 sec for 50 retires for a total of
* ~60 seconds before reset the board again and check every
* 1 sec for 50 retries. The up to 60 seconds before the
* board ready is required by the Falcon FIPS zeroization
* complete, and any reset the board in between shall cause
* restart of zeroization, further delay the board ready.
*/
if (i++ >= 200) {
/* Adapter failed to init, timeout, status reg
<status> */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0436 Adapter failed to init, "
"timeout, status reg x%x, "
"FW Data: A8 x%x AC x%x\n", status,
readl(phba->MBslimaddr + 0xa8),
readl(phba->MBslimaddr + 0xac));
phba->link_state = LPFC_HBA_ERROR;
return -ETIMEDOUT;
}
/* Check to see if any errors occurred during init */
if (status & HS_FFERM) {
/* ERROR: During chipset initialization */
/* Adapter failed to init, chipset, status reg
<status> */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0437 Adapter failed to init, "
"chipset, status reg x%x, "
"FW Data: A8 x%x AC x%x\n", status,
readl(phba->MBslimaddr + 0xa8),
readl(phba->MBslimaddr + 0xac));
phba->link_state = LPFC_HBA_ERROR;
return -EIO;
}
if (i <= 10)
msleep(10);
else if (i <= 100)
msleep(100);
else
msleep(1000);
if (i == 150) {
/* Do post */
phba->pport->port_state = LPFC_VPORT_UNKNOWN;
lpfc_sli_brdrestart(phba);
}
/* Read the HBA Host Status Register */
if (lpfc_readl(phba->HSregaddr, &status))
return -EIO;
}
/* Check to see if any errors occurred during init */
if (status & HS_FFERM) {
/* ERROR: During chipset initialization */
/* Adapter failed to init, chipset, status reg <status> */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0438 Adapter failed to init, chipset, "
"status reg x%x, "
"FW Data: A8 x%x AC x%x\n", status,
readl(phba->MBslimaddr + 0xa8),
readl(phba->MBslimaddr + 0xac));
phba->link_state = LPFC_HBA_ERROR;
return -EIO;
}
phba->hba_flag |= HBA_NEEDS_CFG_PORT;
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* setup host attn register */
writel(0xffffffff, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
return 0;
}
/**
* lpfc_sli_hbq_count - Get the number of HBQs to be configured
*
* This function calculates and returns the number of HBQs required to be
* configured.
**/
int
lpfc_sli_hbq_count(void)
{
return ARRAY_SIZE(lpfc_hbq_defs);
}
/**
* lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
*
* This function adds the number of hbq entries in every HBQ to get
* the total number of hbq entries required for the HBA and returns
* the total count.
**/
static int
lpfc_sli_hbq_entry_count(void)
{
int hbq_count = lpfc_sli_hbq_count();
int count = 0;
int i;
for (i = 0; i < hbq_count; ++i)
count += lpfc_hbq_defs[i]->entry_count;
return count;
}
/**
* lpfc_sli_hbq_size - Calculate memory required for all hbq entries
*
* This function calculates amount of memory required for all hbq entries
* to be configured and returns the total memory required.
**/
int
lpfc_sli_hbq_size(void)
{
return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
}
/**
* lpfc_sli_hbq_setup - configure and initialize HBQs
* @phba: Pointer to HBA context object.
*
* This function is called during the SLI initialization to configure
* all the HBQs and post buffers to the HBQ. The caller is not
* required to hold any locks. This function will return zero if successful
* else it will return negative error code.
**/
static int
lpfc_sli_hbq_setup(struct lpfc_hba *phba)
{
int hbq_count = lpfc_sli_hbq_count();
LPFC_MBOXQ_t *pmb;
MAILBOX_t *pmbox;
uint32_t hbqno;
uint32_t hbq_entry_index;
/* Get a Mailbox buffer to setup mailbox
* commands for HBA initialization
*/
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb)
return -ENOMEM;
pmbox = &pmb->u.mb;
/* Initialize the struct lpfc_sli_hbq structure for each hbq */
phba->link_state = LPFC_INIT_MBX_CMDS;
phba->hbq_in_use = 1;
hbq_entry_index = 0;
for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
phba->hbqs[hbqno].next_hbqPutIdx = 0;
phba->hbqs[hbqno].hbqPutIdx = 0;
phba->hbqs[hbqno].local_hbqGetIdx = 0;
phba->hbqs[hbqno].entry_count =
lpfc_hbq_defs[hbqno]->entry_count;
lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
hbq_entry_index, pmb);
hbq_entry_index += phba->hbqs[hbqno].entry_count;
if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
mbxStatus <status>, ring <num> */
lpfc_printf_log(phba, KERN_ERR,
LOG_SLI | LOG_VPORT,
"1805 Adapter failed to init. "
"Data: x%x x%x x%x\n",
pmbox->mbxCommand,
pmbox->mbxStatus, hbqno);
phba->link_state = LPFC_HBA_ERROR;
mempool_free(pmb, phba->mbox_mem_pool);
return -ENXIO;
}
}
phba->hbq_count = hbq_count;
mempool_free(pmb, phba->mbox_mem_pool);
/* Initially populate or replenish the HBQs */
for (hbqno = 0; hbqno < hbq_count; ++hbqno)
lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
return 0;
}
/**
* lpfc_sli4_rb_setup - Initialize and post RBs to HBA
* @phba: Pointer to HBA context object.
*
* This function is called during the SLI initialization to configure
* all the HBQs and post buffers to the HBQ. The caller is not
* required to hold any locks. This function will return zero if successful
* else it will return negative error code.
**/
static int
lpfc_sli4_rb_setup(struct lpfc_hba *phba)
{
phba->hbq_in_use = 1;
/**
* Specific case when the MDS diagnostics is enabled and supported.
* The receive buffer count is truncated to manage the incoming
* traffic.
**/
if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
phba->hbqs[LPFC_ELS_HBQ].entry_count =
lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
else
phba->hbqs[LPFC_ELS_HBQ].entry_count =
lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
phba->hbq_count = 1;
lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
/* Initially populate or replenish the HBQs */
return 0;
}
/**
* lpfc_sli_config_port - Issue config port mailbox command
* @phba: Pointer to HBA context object.
* @sli_mode: sli mode - 2/3
*
* This function is called by the sli initialization code path
* to issue config_port mailbox command. This function restarts the
* HBA firmware and issues a config_port mailbox command to configure
* the SLI interface in the sli mode specified by sli_mode
* variable. The caller is not required to hold any locks.
* The function returns 0 if successful, else returns negative error
* code.
**/
int
lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
{
LPFC_MBOXQ_t *pmb;
uint32_t resetcount = 0, rc = 0, done = 0;
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
phba->sli_rev = sli_mode;
while (resetcount < 2 && !done) {
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
spin_unlock_irq(&phba->hbalock);
phba->pport->port_state = LPFC_VPORT_UNKNOWN;
lpfc_sli_brdrestart(phba);
rc = lpfc_sli_chipset_init(phba);
if (rc)
break;
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
spin_unlock_irq(&phba->hbalock);
resetcount++;
/* Call pre CONFIG_PORT mailbox command initialization. A
* value of 0 means the call was successful. Any other
* nonzero value is a failure, but if ERESTART is returned,
* the driver may reset the HBA and try again.
*/
rc = lpfc_config_port_prep(phba);
if (rc == -ERESTART) {
phba->link_state = LPFC_LINK_UNKNOWN;
continue;
} else if (rc)
break;
phba->link_state = LPFC_INIT_MBX_CMDS;
lpfc_config_port(phba, pmb);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
LPFC_SLI3_HBQ_ENABLED |
LPFC_SLI3_CRP_ENABLED |
LPFC_SLI3_DSS_ENABLED);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0442 Adapter failed to init, mbxCmd x%x "
"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
rc = -ENXIO;
} else {
/* Allow asynchronous mailbox command to go through */
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
spin_unlock_irq(&phba->hbalock);
done = 1;
if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
(pmb->u.mb.un.varCfgPort.gasabt == 0))
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"3110 Port did not grant ASABT\n");
}
}
if (!done) {
rc = -EINVAL;
goto do_prep_failed;
}
if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
if (!pmb->u.mb.un.varCfgPort.cMA) {
rc = -ENXIO;
goto do_prep_failed;
}
if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
phba->max_vports = (phba->max_vpi > phba->max_vports) ?
phba->max_vpi : phba->max_vports;
} else
phba->max_vpi = 0;
if (pmb->u.mb.un.varCfgPort.gerbm)
phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
if (pmb->u.mb.un.varCfgPort.gcrp)
phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
phba->port_gp = phba->mbox->us.s3_pgp.port;
if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
if (pmb->u.mb.un.varCfgPort.gbg == 0) {
phba->cfg_enable_bg = 0;
phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0443 Adapter did not grant "
"BlockGuard\n");
}
}
} else {
phba->hbq_get = NULL;
phba->port_gp = phba->mbox->us.s2.port;
phba->max_vpi = 0;
}
do_prep_failed:
mempool_free(pmb, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_sli_hba_setup - SLI initialization function
* @phba: Pointer to HBA context object.
*
* This function is the main SLI initialization function. This function
* is called by the HBA initialization code, HBA reset code and HBA
* error attention handler code. Caller is not required to hold any
* locks. This function issues config_port mailbox command to configure
* the SLI, setup iocb rings and HBQ rings. In the end the function
* calls the config_port_post function to issue init_link mailbox
* command and to start the discovery. The function will return zero
* if successful, else it will return negative error code.
**/
int
lpfc_sli_hba_setup(struct lpfc_hba *phba)
{
uint32_t rc;
int i;
int longs;
/* Enable ISR already does config_port because of config_msi mbx */
if (phba->hba_flag & HBA_NEEDS_CFG_PORT) {
rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
if (rc)
return -EIO;
phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
}
phba->fcp_embed_io = 0; /* SLI4 FC support only */
/* Enable PCIe device Advanced Error Reporting (AER) if configured */
if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
rc = pci_enable_pcie_error_reporting(phba->pcidev);
if (!rc) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2709 This device supports "
"Advanced Error Reporting (AER)\n");
spin_lock_irq(&phba->hbalock);
phba->hba_flag |= HBA_AER_ENABLED;
spin_unlock_irq(&phba->hbalock);
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2708 This device does not support "
"Advanced Error Reporting (AER): %d\n",
rc);
phba->cfg_aer_support = 0;
}
}
if (phba->sli_rev == 3) {
phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
} else {
phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
phba->sli3_options = 0;
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0444 Firmware in SLI %x mode. Max_vpi %d\n",
phba->sli_rev, phba->max_vpi);
rc = lpfc_sli_ring_map(phba);
if (rc)
goto lpfc_sli_hba_setup_error;
/* Initialize VPIs. */
if (phba->sli_rev == LPFC_SLI_REV3) {
/*
* The VPI bitmask and physical ID array are allocated
* and initialized once only - at driver load. A port
* reset doesn't need to reinitialize this memory.
*/
if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
phba->vpi_bmask = kcalloc(longs,
sizeof(unsigned long),
GFP_KERNEL);
if (!phba->vpi_bmask) {
rc = -ENOMEM;
goto lpfc_sli_hba_setup_error;
}
phba->vpi_ids = kcalloc(phba->max_vpi + 1,
sizeof(uint16_t),
GFP_KERNEL);
if (!phba->vpi_ids) {
kfree(phba->vpi_bmask);
rc = -ENOMEM;
goto lpfc_sli_hba_setup_error;
}
for (i = 0; i < phba->max_vpi; i++)
phba->vpi_ids[i] = i;
}
}
/* Init HBQs */
if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
rc = lpfc_sli_hbq_setup(phba);
if (rc)
goto lpfc_sli_hba_setup_error;
}
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag |= LPFC_PROCESS_LA;
spin_unlock_irq(&phba->hbalock);
rc = lpfc_config_port_post(phba);
if (rc)
goto lpfc_sli_hba_setup_error;
return rc;
lpfc_sli_hba_setup_error:
phba->link_state = LPFC_HBA_ERROR;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0445 Firmware initialization failed\n");
return rc;
}
/**
* lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
* @phba: Pointer to HBA context object.
*
* This function issue a dump mailbox command to read config region
* 23 and parse the records in the region and populate driver
* data structure.
**/
static int
lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
struct lpfc_dmabuf *mp;
struct lpfc_mqe *mqe;
uint32_t data_length;
int rc;
/* Program the default value of vlan_id and fc_map */
phba->valid_vlan = 0;
phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq)
return -ENOMEM;
mqe = &mboxq->u.mqe;
if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
rc = -ENOMEM;
goto out_free_mboxq;
}
mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):2571 Mailbox cmd x%x Status x%x "
"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
"CQ: x%x x%x x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0,
bf_get(lpfc_mqe_command, mqe),
bf_get(lpfc_mqe_status, mqe),
mqe->un.mb_words[0], mqe->un.mb_words[1],
mqe->un.mb_words[2], mqe->un.mb_words[3],
mqe->un.mb_words[4], mqe->un.mb_words[5],
mqe->un.mb_words[6], mqe->un.mb_words[7],
mqe->un.mb_words[8], mqe->un.mb_words[9],
mqe->un.mb_words[10], mqe->un.mb_words[11],
mqe->un.mb_words[12], mqe->un.mb_words[13],
mqe->un.mb_words[14], mqe->un.mb_words[15],
mqe->un.mb_words[16], mqe->un.mb_words[50],
mboxq->mcqe.word0,
mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
mboxq->mcqe.trailer);
if (rc) {
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
rc = -EIO;
goto out_free_mboxq;
}
data_length = mqe->un.mb_words[5];
if (data_length > DMP_RGN23_SIZE) {
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
rc = -EIO;
goto out_free_mboxq;
}
lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
rc = 0;
out_free_mboxq:
mempool_free(mboxq, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
* @phba: pointer to lpfc hba data structure.
* @mboxq: pointer to the LPFC_MBOXQ_t structure.
* @vpd: pointer to the memory to hold resulting port vpd data.
* @vpd_size: On input, the number of bytes allocated to @vpd.
* On output, the number of data bytes in @vpd.
*
* This routine executes a READ_REV SLI4 mailbox command. In
* addition, this routine gets the port vpd data.
*
* Return codes
* 0 - successful
* -ENOMEM - could not allocated memory.
**/
static int
lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
uint8_t *vpd, uint32_t *vpd_size)
{
int rc = 0;
uint32_t dma_size;
struct lpfc_dmabuf *dmabuf;
struct lpfc_mqe *mqe;
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!dmabuf)
return -ENOMEM;
/*
* Get a DMA buffer for the vpd data resulting from the READ_REV
* mailbox command.
*/
dma_size = *vpd_size;
dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
&dmabuf->phys, GFP_KERNEL);
if (!dmabuf->virt) {
kfree(dmabuf);
return -ENOMEM;
}
/*
* The SLI4 implementation of READ_REV conflicts at word1,
* bits 31:16 and SLI4 adds vpd functionality not present
* in SLI3. This code corrects the conflicts.
*/
lpfc_read_rev(phba, mboxq);
mqe = &mboxq->u.mqe;
mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
mqe->un.read_rev.word1 &= 0x0000FFFF;
bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc) {
dma_free_coherent(&phba->pcidev->dev, dma_size,
dmabuf->virt, dmabuf->phys);
kfree(dmabuf);
return -EIO;
}
/*
* The available vpd length cannot be bigger than the
* DMA buffer passed to the port. Catch the less than
* case and update the caller's size.
*/
if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
*vpd_size = mqe->un.read_rev.avail_vpd_len;
memcpy(vpd, dmabuf->virt, *vpd_size);
dma_free_coherent(&phba->pcidev->dev, dma_size,
dmabuf->virt, dmabuf->phys);
kfree(dmabuf);
return 0;
}
/**
* lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
* @phba: pointer to lpfc hba data structure.
*
* This routine retrieves SLI4 device physical port name this PCI function
* is attached to.
*
* Return codes
* 0 - successful
* otherwise - failed to retrieve controller attributes
**/
static int
lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
struct lpfc_controller_attribute *cntl_attr;
void *virtaddr = NULL;
uint32_t alloclen, reqlen;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
int rc;
mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq)
return -ENOMEM;
/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
LPFC_SLI4_MBX_NEMBED);
if (alloclen < reqlen) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3084 Allocated DMA memory size (%d) is "
"less than the requested DMA memory size "
"(%d)\n", alloclen, reqlen);
rc = -ENOMEM;
goto out_free_mboxq;
}
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
virtaddr = mboxq->sge_array->addr[0];
mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
shdr = &mbx_cntl_attr->cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3085 Mailbox x%x (x%x/x%x) failed, "
"rc:x%x, status:x%x, add_status:x%x\n",
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
rc, shdr_status, shdr_add_status);
rc = -ENXIO;
goto out_free_mboxq;
}
cntl_attr = &mbx_cntl_attr->cntl_attr;
phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
phba->sli4_hba.lnk_info.lnk_tp =
bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
phba->sli4_hba.lnk_info.lnk_no =
bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
sizeof(phba->BIOSVersion));
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
phba->sli4_hba.lnk_info.lnk_tp,
phba->sli4_hba.lnk_info.lnk_no,
phba->BIOSVersion);
out_free_mboxq:
if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
lpfc_sli4_mbox_cmd_free(phba, mboxq);
else
mempool_free(mboxq, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
* @phba: pointer to lpfc hba data structure.
*
* This routine retrieves SLI4 device physical port name this PCI function
* is attached to.
*
* Return codes
* 0 - successful
* otherwise - failed to retrieve physical port name
**/
static int
lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mboxq;
struct lpfc_mbx_get_port_name *get_port_name;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
char cport_name = 0;
int rc;
/* We assume nothing at this point */
phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq)
return -ENOMEM;
/* obtain link type and link number via READ_CONFIG */
phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
lpfc_sli4_read_config(phba);
if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
goto retrieve_ppname;
/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
rc = lpfc_sli4_get_ctl_attr(phba);
if (rc)
goto out_free_mboxq;
retrieve_ppname:
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_PORT_NAME,
sizeof(struct lpfc_mbx_get_port_name) -
sizeof(struct lpfc_sli4_cfg_mhdr),
LPFC_SLI4_MBX_EMBED);
get_port_name = &mboxq->u.mqe.un.get_port_name;
shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
phba->sli4_hba.lnk_info.lnk_tp);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3087 Mailbox x%x (x%x/x%x) failed: "
"rc:x%x, status:x%x, add_status:x%x\n",
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
rc, shdr_status, shdr_add_status);
rc = -ENXIO;
goto out_free_mboxq;
}
switch (phba->sli4_hba.lnk_info.lnk_no) {
case LPFC_LINK_NUMBER_0:
cport_name = bf_get(lpfc_mbx_get_port_name_name0,
&get_port_name->u.response);
phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
break;
case LPFC_LINK_NUMBER_1:
cport_name = bf_get(lpfc_mbx_get_port_name_name1,
&get_port_name->u.response);
phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
break;
case LPFC_LINK_NUMBER_2:
cport_name = bf_get(lpfc_mbx_get_port_name_name2,
&get_port_name->u.response);
phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
break;
case LPFC_LINK_NUMBER_3:
cport_name = bf_get(lpfc_mbx_get_port_name_name3,
&get_port_name->u.response);
phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
break;
default:
break;
}
if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
phba->Port[0] = cport_name;
phba->Port[1] = '\0';
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3091 SLI get port name: %s\n", phba->Port);
}
out_free_mboxq:
if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
lpfc_sli4_mbox_cmd_free(phba, mboxq);
else
mempool_free(mboxq, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to explicitly arm the SLI4 device's completion and
* event queues
**/
static void
lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
{
int qidx;
struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_queue *eq;
sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
if (sli4_hba->nvmels_cq)
sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
LPFC_QUEUE_REARM);
if (sli4_hba->hdwq) {
/* Loop thru all Hardware Queues */
for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
qp = &sli4_hba->hdwq[qidx];
/* ARM the corresponding CQ */
sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
LPFC_QUEUE_REARM);
}
/* Loop thru all IRQ vectors */
for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
eq = sli4_hba->hba_eq_hdl[qidx].eq;
/* ARM the corresponding EQ */
sli4_hba->sli4_write_eq_db(phba, eq,
0, LPFC_QUEUE_REARM);
}
}
if (phba->nvmet_support) {
for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
sli4_hba->sli4_write_cq_db(phba,
sli4_hba->nvmet_cqset[qidx], 0,
LPFC_QUEUE_REARM);
}
}
}
/**
* lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
* @phba: Pointer to HBA context object.
* @type: The resource extent type.
* @extnt_count: buffer to hold port available extent count.
* @extnt_size: buffer to hold element count per extent.
*
* This function calls the port and retrievs the number of available
* extents and their size for a particular extent type.
*
* Returns: 0 if successful. Nonzero otherwise.
**/
int
lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
uint16_t *extnt_count, uint16_t *extnt_size)
{
int rc = 0;
uint32_t length;
uint32_t mbox_tmo;
struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
LPFC_MBOXQ_t *mbox;
mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
/* Find out how many extents are available for this resource type */
length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
length, LPFC_SLI4_MBX_EMBED);
/* Send an extents count of 0 - the GET doesn't use it. */
rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
LPFC_SLI4_MBX_EMBED);
if (unlikely(rc)) {
rc = -EIO;
goto err_exit;
}
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
if (unlikely(rc)) {
rc = -EIO;
goto err_exit;
}
rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
if (bf_get(lpfc_mbox_hdr_status,
&rsrc_info->header.cfg_shdr.response)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2930 Failed to get resource extents "
"Status 0x%x Add'l Status 0x%x\n",
bf_get(lpfc_mbox_hdr_status,
&rsrc_info->header.cfg_shdr.response),
bf_get(lpfc_mbox_hdr_add_status,
&rsrc_info->header.cfg_shdr.response));
rc = -EIO;
goto err_exit;
}
*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
&rsrc_info->u.rsp);
*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
&rsrc_info->u.rsp);
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3162 Retrieved extents type-%d from port: count:%d, "
"size:%d\n", type, *extnt_count, *extnt_size);
err_exit:
mempool_free(mbox, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
* @phba: Pointer to HBA context object.
* @type: The extent type to check.
*
* This function reads the current available extents from the port and checks
* if the extent count or extent size has changed since the last access.
* Callers use this routine post port reset to understand if there is a
* extent reprovisioning requirement.
*
* Returns:
* -Error: error indicates problem.
* 1: Extent count or size has changed.
* 0: No changes.
**/
static int
lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
{
uint16_t curr_ext_cnt, rsrc_ext_cnt;
uint16_t size_diff, rsrc_ext_size;
int rc = 0;
struct lpfc_rsrc_blks *rsrc_entry;
struct list_head *rsrc_blk_list = NULL;
size_diff = 0;
curr_ext_cnt = 0;
rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
&rsrc_ext_cnt,
&rsrc_ext_size);
if (unlikely(rc))
return -EIO;
switch (type) {
case LPFC_RSC_TYPE_FCOE_RPI:
rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_VPI:
rsrc_blk_list = &phba->lpfc_vpi_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_XRI:
rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_VFI:
rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
break;
default:
break;
}
list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
curr_ext_cnt++;
if (rsrc_entry->rsrc_size != rsrc_ext_size)
size_diff++;
}
if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
rc = 1;
return rc;
}
/**
* lpfc_sli4_cfg_post_extnts -
* @phba: Pointer to HBA context object.
* @extnt_cnt: number of available extents.
* @type: the extent type (rpi, xri, vfi, vpi).
* @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
* @mbox: pointer to the caller's allocated mailbox structure.
*
* This function executes the extents allocation request. It also
* takes care of the amount of memory needed to allocate or get the
* allocated extents. It is the caller's responsibility to evaluate
* the response.
*
* Returns:
* -Error: Error value describes the condition found.
* 0: if successful
**/
static int
lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
{
int rc = 0;
uint32_t req_len;
uint32_t emb_len;
uint32_t alloc_len, mbox_tmo;
/* Calculate the total requested length of the dma memory */
req_len = extnt_cnt * sizeof(uint16_t);
/*
* Calculate the size of an embedded mailbox. The uint32_t
* accounts for extents-specific word.
*/
emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
sizeof(uint32_t);
/*
* Presume the allocation and response will fit into an embedded
* mailbox. If not true, reconfigure to a non-embedded mailbox.
*/
*emb = LPFC_SLI4_MBX_EMBED;
if (req_len > emb_len) {
req_len = extnt_cnt * sizeof(uint16_t) +
sizeof(union lpfc_sli4_cfg_shdr) +
sizeof(uint32_t);
*emb = LPFC_SLI4_MBX_NEMBED;
}
alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
req_len, *emb);
if (alloc_len < req_len) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2982 Allocated DMA memory size (x%x) is "
"less than the requested DMA memory "
"size (x%x)\n", alloc_len, req_len);
return -ENOMEM;
}
rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
if (unlikely(rc))
return -EIO;
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
if (unlikely(rc))
rc = -EIO;
return rc;
}
/**
* lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
* @phba: Pointer to HBA context object.
* @type: The resource extent type to allocate.
*
* This function allocates the number of elements for the specified
* resource type.
**/
static int
lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
{
bool emb = false;
uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
uint16_t rsrc_id, rsrc_start, j, k;
uint16_t *ids;
int i, rc;
unsigned long longs;
unsigned long *bmask;
struct lpfc_rsrc_blks *rsrc_blks;
LPFC_MBOXQ_t *mbox;
uint32_t length;
struct lpfc_id_range *id_array = NULL;
void *virtaddr = NULL;
struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
struct list_head *ext_blk_list;
rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
&rsrc_cnt,
&rsrc_size);
if (unlikely(rc))
return -EIO;
if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3009 No available Resource Extents "
"for resource type 0x%x: Count: 0x%x, "
"Size 0x%x\n", type, rsrc_cnt,
rsrc_size);
return -ENOMEM;
}
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
"2903 Post resource extents type-0x%x: "
"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
if (unlikely(rc)) {
rc = -EIO;
goto err_exit;
}
/*
* Figure out where the response is located. Then get local pointers
* to the response data. The port does not guarantee to respond to
* all extents counts request so update the local variable with the
* allocated count from the port.
*/
if (emb == LPFC_SLI4_MBX_EMBED) {
rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
id_array = &rsrc_ext->u.rsp.id[0];
rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
} else {
virtaddr = mbox->sge_array->addr[0];
n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
id_array = &n_rsrc->id;
}
longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
rsrc_id_cnt = rsrc_cnt * rsrc_size;
/*
* Based on the resource size and count, correct the base and max
* resource values.
*/
length = sizeof(struct lpfc_rsrc_blks);
switch (type) {
case LPFC_RSC_TYPE_FCOE_RPI:
phba->sli4_hba.rpi_bmask = kcalloc(longs,
sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.rpi_bmask)) {
rc = -ENOMEM;
goto err_exit;
}
phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.rpi_ids)) {
kfree(phba->sli4_hba.rpi_bmask);
rc = -ENOMEM;
goto err_exit;
}
/*
* The next_rpi was initialized with the maximum available
* count but the port may allocate a smaller number. Catch
* that case and update the next_rpi.
*/
phba->sli4_hba.next_rpi = rsrc_id_cnt;
/* Initialize local ptrs for common extent processing later. */
bmask = phba->sli4_hba.rpi_bmask;
ids = phba->sli4_hba.rpi_ids;
ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_VPI:
phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->vpi_bmask)) {
rc = -ENOMEM;
goto err_exit;
}
phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->vpi_ids)) {
kfree(phba->vpi_bmask);
rc = -ENOMEM;
goto err_exit;
}
/* Initialize local ptrs for common extent processing later. */
bmask = phba->vpi_bmask;
ids = phba->vpi_ids;
ext_blk_list = &phba->lpfc_vpi_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_XRI:
phba->sli4_hba.xri_bmask = kcalloc(longs,
sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.xri_bmask)) {
rc = -ENOMEM;
goto err_exit;
}
phba->sli4_hba.max_cfg_param.xri_used = 0;
phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.xri_ids)) {
kfree(phba->sli4_hba.xri_bmask);
rc = -ENOMEM;
goto err_exit;
}
/* Initialize local ptrs for common extent processing later. */
bmask = phba->sli4_hba.xri_bmask;
ids = phba->sli4_hba.xri_ids;
ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_VFI:
phba->sli4_hba.vfi_bmask = kcalloc(longs,
sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.vfi_bmask)) {
rc = -ENOMEM;
goto err_exit;
}
phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.vfi_ids)) {
kfree(phba->sli4_hba.vfi_bmask);
rc = -ENOMEM;
goto err_exit;
}
/* Initialize local ptrs for common extent processing later. */
bmask = phba->sli4_hba.vfi_bmask;
ids = phba->sli4_hba.vfi_ids;
ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
break;
default:
/* Unsupported Opcode. Fail call. */
id_array = NULL;
bmask = NULL;
ids = NULL;
ext_blk_list = NULL;
goto err_exit;
}
/*
* Complete initializing the extent configuration with the
* allocated ids assigned to this function. The bitmask serves
* as an index into the array and manages the available ids. The
* array just stores the ids communicated to the port via the wqes.
*/
for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
if ((i % 2) == 0)
rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
&id_array[k]);
else
rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
&id_array[k]);
rsrc_blks = kzalloc(length, GFP_KERNEL);
if (unlikely(!rsrc_blks)) {
rc = -ENOMEM;
kfree(bmask);
kfree(ids);
goto err_exit;
}
rsrc_blks->rsrc_start = rsrc_id;
rsrc_blks->rsrc_size = rsrc_size;
list_add_tail(&rsrc_blks->list, ext_blk_list);
rsrc_start = rsrc_id;
if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
phba->sli4_hba.io_xri_start = rsrc_start +
lpfc_sli4_get_iocb_cnt(phba);
}
while (rsrc_id < (rsrc_start + rsrc_size)) {
ids[j] = rsrc_id;
rsrc_id++;
j++;
}
/* Entire word processed. Get next word.*/
if ((i % 2) == 1)
k++;
}
err_exit:
lpfc_sli4_mbox_cmd_free(phba, mbox);
return rc;
}
/**
* lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
* @phba: Pointer to HBA context object.
* @type: the extent's type.
*
* This function deallocates all extents of a particular resource type.
* SLI4 does not allow for deallocating a particular extent range. It
* is the caller's responsibility to release all kernel memory resources.
**/
static int
lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
{
int rc;
uint32_t length, mbox_tmo = 0;
LPFC_MBOXQ_t *mbox;
struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
/*
* This function sends an embedded mailbox because it only sends the
* the resource type. All extents of this type are released by the
* port.
*/
length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
length, LPFC_SLI4_MBX_EMBED);
/* Send an extents count of 0 - the dealloc doesn't use it. */
rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
LPFC_SLI4_MBX_EMBED);
if (unlikely(rc)) {
rc = -EIO;
goto out_free_mbox;
}
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
if (unlikely(rc)) {
rc = -EIO;
goto out_free_mbox;
}
dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
if (bf_get(lpfc_mbox_hdr_status,
&dealloc_rsrc->header.cfg_shdr.response)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2919 Failed to release resource extents "
"for type %d - Status 0x%x Add'l Status 0x%x. "
"Resource memory not released.\n",
type,
bf_get(lpfc_mbox_hdr_status,
&dealloc_rsrc->header.cfg_shdr.response),
bf_get(lpfc_mbox_hdr_add_status,
&dealloc_rsrc->header.cfg_shdr.response));
rc = -EIO;
goto out_free_mbox;
}
/* Release kernel memory resources for the specific type. */
switch (type) {
case LPFC_RSC_TYPE_FCOE_VPI:
kfree(phba->vpi_bmask);
kfree(phba->vpi_ids);
bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
&phba->lpfc_vpi_blk_list, list) {
list_del_init(&rsrc_blk->list);
kfree(rsrc_blk);
}
phba->sli4_hba.max_cfg_param.vpi_used = 0;
break;
case LPFC_RSC_TYPE_FCOE_XRI:
kfree(phba->sli4_hba.xri_bmask);
kfree(phba->sli4_hba.xri_ids);
list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
&phba->sli4_hba.lpfc_xri_blk_list, list) {
list_del_init(&rsrc_blk->list);
kfree(rsrc_blk);
}
break;
case LPFC_RSC_TYPE_FCOE_VFI:
kfree(phba->sli4_hba.vfi_bmask);
kfree(phba->sli4_hba.vfi_ids);
bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
&phba->sli4_hba.lpfc_vfi_blk_list, list) {
list_del_init(&rsrc_blk->list);
kfree(rsrc_blk);
}
break;
case LPFC_RSC_TYPE_FCOE_RPI:
/* RPI bitmask and physical id array are cleaned up earlier. */
list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
&phba->sli4_hba.lpfc_rpi_blk_list, list) {
list_del_init(&rsrc_blk->list);
kfree(rsrc_blk);
}
break;
default:
break;
}
bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
out_free_mbox:
mempool_free(mbox, phba->mbox_mem_pool);
return rc;
}
static void
lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
uint32_t feature)
{
uint32_t len;
len = sizeof(struct lpfc_mbx_set_feature) -
sizeof(struct lpfc_sli4_cfg_mhdr);
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_SET_FEATURES, len,
LPFC_SLI4_MBX_EMBED);
switch (feature) {
case LPFC_SET_UE_RECOVERY:
bf_set(lpfc_mbx_set_feature_UER,
&mbox->u.mqe.un.set_feature, 1);
mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
mbox->u.mqe.un.set_feature.param_len = 8;
break;
case LPFC_SET_MDS_DIAGS:
bf_set(lpfc_mbx_set_feature_mds,
&mbox->u.mqe.un.set_feature, 1);
bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
&mbox->u.mqe.un.set_feature, 1);
mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
mbox->u.mqe.un.set_feature.param_len = 8;
break;
case LPFC_SET_DUAL_DUMP:
bf_set(lpfc_mbx_set_feature_dd,
&mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
bf_set(lpfc_mbx_set_feature_ddquery,
&mbox->u.mqe.un.set_feature, 0);
mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
mbox->u.mqe.un.set_feature.param_len = 4;
break;
}
return;
}
/**
* lpfc_ras_stop_fwlog: Disable FW logging by the adapter
* @phba: Pointer to HBA context object.
*
* Disable FW logging into host memory on the adapter. To
* be done before reading logs from the host memory.
**/
void
lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
{
struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
spin_lock_irq(&phba->hbalock);
ras_fwlog->state = INACTIVE;
spin_unlock_irq(&phba->hbalock);
/* Disable FW logging to host memory */
writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
/* Wait 10ms for firmware to stop using DMA buffer */
usleep_range(10 * 1000, 20 * 1000);
}
/**
* lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
* @phba: Pointer to HBA context object.
*
* This function is called to free memory allocated for RAS FW logging
* support in the driver.
**/
void
lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
{
struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
struct lpfc_dmabuf *dmabuf, *next;
if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
list_for_each_entry_safe(dmabuf, next,
&ras_fwlog->fwlog_buff_list,
list) {
list_del(&dmabuf->list);
dma_free_coherent(&phba->pcidev->dev,
LPFC_RAS_MAX_ENTRY_SIZE,
dmabuf->virt, dmabuf->phys);
kfree(dmabuf);
}
}
if (ras_fwlog->lwpd.virt) {
dma_free_coherent(&phba->pcidev->dev,
sizeof(uint32_t) * 2,
ras_fwlog->lwpd.virt,
ras_fwlog->lwpd.phys);
ras_fwlog->lwpd.virt = NULL;
}
spin_lock_irq(&phba->hbalock);
ras_fwlog->state = INACTIVE;
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
* @phba: Pointer to HBA context object.
* @fwlog_buff_count: Count of buffers to be created.
*
* This routine DMA memory for Log Write Position Data[LPWD] and buffer
* to update FW log is posted to the adapter.
* Buffer count is calculated based on module param ras_fwlog_buffsize
* Size of each buffer posted to FW is 64K.
**/
static int
lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
uint32_t fwlog_buff_count)
{
struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
struct lpfc_dmabuf *dmabuf;
int rc = 0, i = 0;
/* Initialize List */
INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
/* Allocate memory for the LWPD */
ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
sizeof(uint32_t) * 2,
&ras_fwlog->lwpd.phys,
GFP_KERNEL);
if (!ras_fwlog->lwpd.virt) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6185 LWPD Memory Alloc Failed\n");
return -ENOMEM;
}
ras_fwlog->fw_buffcount = fwlog_buff_count;
for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
GFP_KERNEL);
if (!dmabuf) {
rc = -ENOMEM;
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"6186 Memory Alloc failed FW logging");
goto free_mem;
}
dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
LPFC_RAS_MAX_ENTRY_SIZE,
&dmabuf->phys, GFP_KERNEL);
if (!dmabuf->virt) {
kfree(dmabuf);
rc = -ENOMEM;
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"6187 DMA Alloc Failed FW logging");
goto free_mem;
}
dmabuf->buffer_tag = i;
list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
}
free_mem:
if (rc)
lpfc_sli4_ras_dma_free(phba);
return rc;
}
/**
* lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
* @phba: pointer to lpfc hba data structure.
* @pmb: pointer to the driver internal queue element for mailbox command.
*
* Completion handler for driver's RAS MBX command to the device.
**/
static void
lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
{
MAILBOX_t *mb;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t shdr_status, shdr_add_status;
struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
mb = &pmb->u.mb;
shdr = (union lpfc_sli4_cfg_shdr *)
&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6188 FW LOG mailbox "
"completed with status x%x add_status x%x,"
" mbx status x%x\n",
shdr_status, shdr_add_status, mb->mbxStatus);
ras_fwlog->ras_hwsupport = false;
goto disable_ras;
}
spin_lock_irq(&phba->hbalock);
ras_fwlog->state = ACTIVE;
spin_unlock_irq(&phba->hbalock);
mempool_free(pmb, phba->mbox_mem_pool);
return;
disable_ras:
/* Free RAS DMA memory */
lpfc_sli4_ras_dma_free(phba);
mempool_free(pmb, phba->mbox_mem_pool);
}
/**
* lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
* @phba: pointer to lpfc hba data structure.
* @fwlog_level: Logging verbosity level.
* @fwlog_enable: Enable/Disable logging.
*
* Initialize memory and post mailbox command to enable FW logging in host
* memory.
**/
int
lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
uint32_t fwlog_level,
uint32_t fwlog_enable)
{
struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
struct lpfc_dmabuf *dmabuf;
LPFC_MBOXQ_t *mbox;
uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
int rc = 0;
spin_lock_irq(&phba->hbalock);
ras_fwlog->state = INACTIVE;
spin_unlock_irq(&phba->hbalock);
fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
phba->cfg_ras_fwlog_buffsize);
fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
/*
* If re-enabling FW logging support use earlier allocated
* DMA buffers while posting MBX command.
**/
if (!ras_fwlog->lwpd.virt) {
rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"6189 FW Log Memory Allocation Failed");
return rc;
}
}
/* Setup Mailbox command */
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6190 RAS MBX Alloc Failed");
rc = -ENOMEM;
goto mem_free;
}
ras_fwlog->fw_loglevel = fwlog_level;
len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
len, LPFC_SLI4_MBX_EMBED);
mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
fwlog_enable);
bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
ras_fwlog->fw_loglevel);
bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
ras_fwlog->fw_buffcount);
bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
/* Update DMA buffer address */
list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
putPaddrLow(dmabuf->phys);
mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
putPaddrHigh(dmabuf->phys);
}
/* Update LPWD address */
mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
spin_lock_irq(&phba->hbalock);
ras_fwlog->state = REG_INPROGRESS;
spin_unlock_irq(&phba->hbalock);
mbox->vport = phba->pport;
mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6191 FW-Log Mailbox failed. "
"status %d mbxStatus : x%x", rc,
bf_get(lpfc_mqe_status, &mbox->u.mqe));
mempool_free(mbox, phba->mbox_mem_pool);
rc = -EIO;
goto mem_free;
} else
rc = 0;
mem_free:
if (rc)
lpfc_sli4_ras_dma_free(phba);
return rc;
}
/**
* lpfc_sli4_ras_setup - Check if RAS supported on the adapter
* @phba: Pointer to HBA context object.
*
* Check if RAS is supported on the adapter and initialize it.
**/
void
lpfc_sli4_ras_setup(struct lpfc_hba *phba)
{
/* Check RAS FW Log needs to be enabled or not */
if (lpfc_check_fwlog_support(phba))
return;
lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
LPFC_RAS_ENABLE_LOGGING);
}
/**
* lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
* @phba: Pointer to HBA context object.
*
* This function allocates all SLI4 resource identifiers.
**/
int
lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
{
int i, rc, error = 0;
uint16_t count, base;
unsigned long longs;
if (!phba->sli4_hba.rpi_hdrs_in_use)
phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
if (phba->sli4_hba.extents_in_use) {
/*
* The port supports resource extents. The XRI, VPI, VFI, RPI
* resource extent count must be read and allocated before
* provisioning the resource id arrays.
*/
if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
LPFC_IDX_RSRC_RDY) {
/*
* Extent-based resources are set - the driver could
* be in a port reset. Figure out if any corrective
* actions need to be taken.
*/
rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
LPFC_RSC_TYPE_FCOE_VFI);
if (rc != 0)
error++;
rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
LPFC_RSC_TYPE_FCOE_VPI);
if (rc != 0)
error++;
rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
LPFC_RSC_TYPE_FCOE_XRI);
if (rc != 0)
error++;
rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
LPFC_RSC_TYPE_FCOE_RPI);
if (rc != 0)
error++;
/*
* It's possible that the number of resources
* provided to this port instance changed between
* resets. Detect this condition and reallocate
* resources. Otherwise, there is no action.
*/
if (error) {
lpfc_printf_log(phba, KERN_INFO,
LOG_MBOX | LOG_INIT,
"2931 Detected extent resource "
"change. Reallocating all "
"extents.\n");
rc = lpfc_sli4_dealloc_extent(phba,
LPFC_RSC_TYPE_FCOE_VFI);
rc = lpfc_sli4_dealloc_extent(phba,
LPFC_RSC_TYPE_FCOE_VPI);
rc = lpfc_sli4_dealloc_extent(phba,
LPFC_RSC_TYPE_FCOE_XRI);
rc = lpfc_sli4_dealloc_extent(phba,
LPFC_RSC_TYPE_FCOE_RPI);
} else
return 0;
}
rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
if (unlikely(rc))
goto err_exit;
rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
if (unlikely(rc))
goto err_exit;
rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
if (unlikely(rc))
goto err_exit;
rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
if (unlikely(rc))
goto err_exit;
bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
LPFC_IDX_RSRC_RDY);
return rc;
} else {
/*
* The port does not support resource extents. The XRI, VPI,
* VFI, RPI resource ids were determined from READ_CONFIG.
* Just allocate the bitmasks and provision the resource id
* arrays. If a port reset is active, the resources don't
* need any action - just exit.
*/
if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
LPFC_IDX_RSRC_RDY) {
lpfc_sli4_dealloc_resource_identifiers(phba);
lpfc_sli4_remove_rpis(phba);
}
/* RPIs. */
count = phba->sli4_hba.max_cfg_param.max_rpi;
if (count <= 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3279 Invalid provisioning of "
"rpi:%d\n", count);
rc = -EINVAL;
goto err_exit;
}
base = phba->sli4_hba.max_cfg_param.rpi_base;
longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
phba->sli4_hba.rpi_bmask = kcalloc(longs,
sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.rpi_bmask)) {
rc = -ENOMEM;
goto err_exit;
}
phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.rpi_ids)) {
rc = -ENOMEM;
goto free_rpi_bmask;
}
for (i = 0; i < count; i++)
phba->sli4_hba.rpi_ids[i] = base + i;
/* VPIs. */
count = phba->sli4_hba.max_cfg_param.max_vpi;
if (count <= 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3280 Invalid provisioning of "
"vpi:%d\n", count);
rc = -EINVAL;
goto free_rpi_ids;
}
base = phba->sli4_hba.max_cfg_param.vpi_base;
longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->vpi_bmask)) {
rc = -ENOMEM;
goto free_rpi_ids;
}
phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->vpi_ids)) {
rc = -ENOMEM;
goto free_vpi_bmask;
}
for (i = 0; i < count; i++)
phba->vpi_ids[i] = base + i;
/* XRIs. */
count = phba->sli4_hba.max_cfg_param.max_xri;
if (count <= 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3281 Invalid provisioning of "
"xri:%d\n", count);
rc = -EINVAL;
goto free_vpi_ids;
}
base = phba->sli4_hba.max_cfg_param.xri_base;
longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
phba->sli4_hba.xri_bmask = kcalloc(longs,
sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.xri_bmask)) {
rc = -ENOMEM;
goto free_vpi_ids;
}
phba->sli4_hba.max_cfg_param.xri_used = 0;
phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.xri_ids)) {
rc = -ENOMEM;
goto free_xri_bmask;
}
for (i = 0; i < count; i++)
phba->sli4_hba.xri_ids[i] = base + i;
/* VFIs. */
count = phba->sli4_hba.max_cfg_param.max_vfi;
if (count <= 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3282 Invalid provisioning of "
"vfi:%d\n", count);
rc = -EINVAL;
goto free_xri_ids;
}
base = phba->sli4_hba.max_cfg_param.vfi_base;
longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
phba->sli4_hba.vfi_bmask = kcalloc(longs,
sizeof(unsigned long),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.vfi_bmask)) {
rc = -ENOMEM;
goto free_xri_ids;
}
phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
GFP_KERNEL);
if (unlikely(!phba->sli4_hba.vfi_ids)) {
rc = -ENOMEM;
goto free_vfi_bmask;
}
for (i = 0; i < count; i++)
phba->sli4_hba.vfi_ids[i] = base + i;
/*
* Mark all resources ready. An HBA reset doesn't need
* to reset the initialization.
*/
bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
LPFC_IDX_RSRC_RDY);
return 0;
}
free_vfi_bmask:
kfree(phba->sli4_hba.vfi_bmask);
phba->sli4_hba.vfi_bmask = NULL;
free_xri_ids:
kfree(phba->sli4_hba.xri_ids);
phba->sli4_hba.xri_ids = NULL;
free_xri_bmask:
kfree(phba->sli4_hba.xri_bmask);
phba->sli4_hba.xri_bmask = NULL;
free_vpi_ids:
kfree(phba->vpi_ids);
phba->vpi_ids = NULL;
free_vpi_bmask:
kfree(phba->vpi_bmask);
phba->vpi_bmask = NULL;
free_rpi_ids:
kfree(phba->sli4_hba.rpi_ids);
phba->sli4_hba.rpi_ids = NULL;
free_rpi_bmask:
kfree(phba->sli4_hba.rpi_bmask);
phba->sli4_hba.rpi_bmask = NULL;
err_exit:
return rc;
}
/**
* lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
* @phba: Pointer to HBA context object.
*
* This function allocates the number of elements for the specified
* resource type.
**/
int
lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
{
if (phba->sli4_hba.extents_in_use) {
lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
} else {
kfree(phba->vpi_bmask);
phba->sli4_hba.max_cfg_param.vpi_used = 0;
kfree(phba->vpi_ids);
bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
kfree(phba->sli4_hba.xri_bmask);
kfree(phba->sli4_hba.xri_ids);
kfree(phba->sli4_hba.vfi_bmask);
kfree(phba->sli4_hba.vfi_ids);
bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
}
return 0;
}
/**
* lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
* @phba: Pointer to HBA context object.
* @type: The resource extent type.
* @extnt_cnt: buffer to hold port extent count response
* @extnt_size: buffer to hold port extent size response.
*
* This function calls the port to read the host allocated extents
* for a particular type.
**/
int
lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
uint16_t *extnt_cnt, uint16_t *extnt_size)
{
bool emb;
int rc = 0;
uint16_t curr_blks = 0;
uint32_t req_len, emb_len;
uint32_t alloc_len, mbox_tmo;
struct list_head *blk_list_head;
struct lpfc_rsrc_blks *rsrc_blk;
LPFC_MBOXQ_t *mbox;
void *virtaddr = NULL;
struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
union lpfc_sli4_cfg_shdr *shdr;
switch (type) {
case LPFC_RSC_TYPE_FCOE_VPI:
blk_list_head = &phba->lpfc_vpi_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_XRI:
blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_VFI:
blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
break;
case LPFC_RSC_TYPE_FCOE_RPI:
blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
break;
default:
return -EIO;
}
/* Count the number of extents currently allocatd for this type. */
list_for_each_entry(rsrc_blk, blk_list_head, list) {
if (curr_blks == 0) {
/*
* The GET_ALLOCATED mailbox does not return the size,
* just the count. The size should be just the size
* stored in the current allocated block and all sizes
* for an extent type are the same so set the return
* value now.
*/
*extnt_size = rsrc_blk->rsrc_size;
}
curr_blks++;
}
/*
* Calculate the size of an embedded mailbox. The uint32_t
* accounts for extents-specific word.
*/
emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
sizeof(uint32_t);
/*
* Presume the allocation and response will fit into an embedded
* mailbox. If not true, reconfigure to a non-embedded mailbox.
*/
emb = LPFC_SLI4_MBX_EMBED;
req_len = emb_len;
if (req_len > emb_len) {
req_len = curr_blks * sizeof(uint16_t) +
sizeof(union lpfc_sli4_cfg_shdr) +
sizeof(uint32_t);
emb = LPFC_SLI4_MBX_NEMBED;
}
mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
req_len, emb);
if (alloc_len < req_len) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2983 Allocated DMA memory size (x%x) is "
"less than the requested DMA memory "
"size (x%x)\n", alloc_len, req_len);
rc = -ENOMEM;
goto err_exit;
}
rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
if (unlikely(rc)) {
rc = -EIO;
goto err_exit;
}
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
if (unlikely(rc)) {
rc = -EIO;
goto err_exit;
}
/*
* Figure out where the response is located. Then get local pointers
* to the response data. The port does not guarantee to respond to
* all extents counts request so update the local variable with the
* allocated count from the port.
*/
if (emb == LPFC_SLI4_MBX_EMBED) {
rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
shdr = &rsrc_ext->header.cfg_shdr;
*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
} else {
virtaddr = mbox->sge_array->addr[0];
n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
shdr = &n_rsrc->cfg_shdr;
*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
}
if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2984 Failed to read allocated resources "
"for type %d - Status 0x%x Add'l Status 0x%x.\n",
type,
bf_get(lpfc_mbox_hdr_status, &shdr->response),
bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
rc = -EIO;
goto err_exit;
}
err_exit:
lpfc_sli4_mbox_cmd_free(phba, mbox);
return rc;
}
/**
* lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
* @phba: pointer to lpfc hba data structure.
* @sgl_list: linked link of sgl buffers to post
* @cnt: number of linked list buffers
*
* This routine walks the list of buffers that have been allocated and
* repost them to the port by using SGL block post. This is needed after a
* pci_function_reset/warm_start or start. It attempts to construct blocks
* of buffer sgls which contains contiguous xris and uses the non-embedded
* SGL block post mailbox commands to post them to the port. For single
* buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
* mailbox command for posting.
*
* Returns: 0 = success, non-zero failure.
**/
static int
lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
struct list_head *sgl_list, int cnt)
{
struct lpfc_sglq *sglq_entry = NULL;
struct lpfc_sglq *sglq_entry_next = NULL;
struct lpfc_sglq *sglq_entry_first = NULL;
int status, total_cnt;
int post_cnt = 0, num_posted = 0, block_cnt = 0;
int last_xritag = NO_XRI;
LIST_HEAD(prep_sgl_list);
LIST_HEAD(blck_sgl_list);
LIST_HEAD(allc_sgl_list);
LIST_HEAD(post_sgl_list);
LIST_HEAD(free_sgl_list);
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(sgl_list, &allc_sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
total_cnt = cnt;
list_for_each_entry_safe(sglq_entry, sglq_entry_next,
&allc_sgl_list, list) {
list_del_init(&sglq_entry->list);
block_cnt++;
if ((last_xritag != NO_XRI) &&
(sglq_entry->sli4_xritag != last_xritag + 1)) {
/* a hole in xri block, form a sgl posting block */
list_splice_init(&prep_sgl_list, &blck_sgl_list);
post_cnt = block_cnt - 1;
/* prepare list for next posting block */
list_add_tail(&sglq_entry->list, &prep_sgl_list);
block_cnt = 1;
} else {
/* prepare list for next posting block */
list_add_tail(&sglq_entry->list, &prep_sgl_list);
/* enough sgls for non-embed sgl mbox command */
if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
list_splice_init(&prep_sgl_list,
&blck_sgl_list);
post_cnt = block_cnt;
block_cnt = 0;
}
}
num_posted++;
/* keep track of last sgl's xritag */
last_xritag = sglq_entry->sli4_xritag;
/* end of repost sgl list condition for buffers */
if (num_posted == total_cnt) {
if (post_cnt == 0) {
list_splice_init(&prep_sgl_list,
&blck_sgl_list);
post_cnt = block_cnt;
} else if (block_cnt == 1) {
status = lpfc_sli4_post_sgl(phba,
sglq_entry->phys, 0,
sglq_entry->sli4_xritag);
if (!status) {
/* successful, put sgl to posted list */
list_add_tail(&sglq_entry->list,
&post_sgl_list);
} else {
/* Failure, put sgl to free list */
lpfc_printf_log(phba, KERN_WARNING,
LOG_SLI,
"3159 Failed to post "
"sgl, xritag:x%x\n",
sglq_entry->sli4_xritag);
list_add_tail(&sglq_entry->list,
&free_sgl_list);
total_cnt--;
}
}
}
/* continue until a nembed page worth of sgls */
if (post_cnt == 0)
continue;
/* post the buffer list sgls as a block */
status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
post_cnt);
if (!status) {
/* success, put sgl list to posted sgl list */
list_splice_init(&blck_sgl_list, &post_sgl_list);
} else {
/* Failure, put sgl list to free sgl list */
sglq_entry_first = list_first_entry(&blck_sgl_list,
struct lpfc_sglq,
list);
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3160 Failed to post sgl-list, "
"xritag:x%x-x%x\n",
sglq_entry_first->sli4_xritag,
(sglq_entry_first->sli4_xritag +
post_cnt - 1));
list_splice_init(&blck_sgl_list, &free_sgl_list);
total_cnt -= post_cnt;
}
/* don't reset xirtag due to hole in xri block */
if (block_cnt == 0)
last_xritag = NO_XRI;
/* reset sgl post count for next round of posting */
post_cnt = 0;
}
/* free the sgls failed to post */
lpfc_free_sgl_list(phba, &free_sgl_list);
/* push sgls posted to the available list */
if (!list_empty(&post_sgl_list)) {
spin_lock_irq(&phba->hbalock);
spin_lock(&phba->sli4_hba.sgl_list_lock);
list_splice_init(&post_sgl_list, sgl_list);
spin_unlock(&phba->sli4_hba.sgl_list_lock);
spin_unlock_irq(&phba->hbalock);
} else {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3161 Failure to post sgl to port.\n");
return -EIO;
}
/* return the number of XRIs actually posted */
return total_cnt;
}
/**
* lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
* @phba: pointer to lpfc hba data structure.
*
* This routine walks the list of nvme buffers that have been allocated and
* repost them to the port by using SGL block post. This is needed after a
* pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
* is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
* to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
*
* Returns: 0 = success, non-zero failure.
**/
static int
lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
{
LIST_HEAD(post_nblist);
int num_posted, rc = 0;
/* get all NVME buffers need to repost to a local list */
lpfc_io_buf_flush(phba, &post_nblist);
/* post the list of nvme buffer sgls to port if available */
if (!list_empty(&post_nblist)) {
num_posted = lpfc_sli4_post_io_sgl_list(
phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
/* failed to post any nvme buffer, return error */
if (num_posted == 0)
rc = -EIO;
}
return rc;
}
static void
lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
{
uint32_t len;
len = sizeof(struct lpfc_mbx_set_host_data) -
sizeof(struct lpfc_sli4_cfg_mhdr);
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
LPFC_SLI4_MBX_EMBED);
mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
mbox->u.mqe.un.set_host_data.param_len =
LPFC_HOST_OS_DRIVER_VERSION_SIZE;
snprintf(mbox->u.mqe.un.set_host_data.data,
LPFC_HOST_OS_DRIVER_VERSION_SIZE,
"Linux %s v"LPFC_DRIVER_VERSION,
(phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
}
int
lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
struct lpfc_queue *drq, int count, int idx)
{
int rc, i;
struct lpfc_rqe hrqe;
struct lpfc_rqe drqe;
struct lpfc_rqb *rqbp;
unsigned long flags;
struct rqb_dmabuf *rqb_buffer;
LIST_HEAD(rqb_buf_list);
rqbp = hrq->rqbp;
for (i = 0; i < count; i++) {
spin_lock_irqsave(&phba->hbalock, flags);
/* IF RQ is already full, don't bother */
if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
spin_unlock_irqrestore(&phba->hbalock, flags);
break;
}
spin_unlock_irqrestore(&phba->hbalock, flags);
rqb_buffer = rqbp->rqb_alloc_buffer(phba);
if (!rqb_buffer)
break;
rqb_buffer->hrq = hrq;
rqb_buffer->drq = drq;
rqb_buffer->idx = idx;
list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
}
spin_lock_irqsave(&phba->hbalock, flags);
while (!list_empty(&rqb_buf_list)) {
list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
hbuf.list);
hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
if (rc < 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6421 Cannot post to HRQ %d: %x %x %x "
"DRQ %x %x\n",
hrq->queue_id,
hrq->host_index,
hrq->hba_index,
hrq->entry_count,
drq->host_index,
drq->hba_index);
rqbp->rqb_free_buffer(phba, rqb_buffer);
} else {
list_add_tail(&rqb_buffer->hbuf.list,
&rqbp->rqb_buffer_list);
rqbp->buffer_count++;
}
}
spin_unlock_irqrestore(&phba->hbalock, flags);
return 1;
}
/**
* lpfc_init_idle_stat_hb - Initialize idle_stat tracking
* @phba: pointer to lpfc hba data structure.
*
* This routine initializes the per-cq idle_stat to dynamically dictate
* polling decisions.
*
* Return codes:
* None
**/
static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
{
int i;
struct lpfc_sli4_hdw_queue *hdwq;
struct lpfc_queue *cq;
struct lpfc_idle_stat *idle_stat;
u64 wall;
for_each_present_cpu(i) {
hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
cq = hdwq->io_cq;
/* Skip if we've already handled this cq's primary CPU */
if (cq->chann != i)
continue;
idle_stat = &phba->sli4_hba.idle_stat[i];
idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
idle_stat->prev_wall = wall;
if (phba->nvmet_support)
cq->poll_mode = LPFC_QUEUE_WORK;
else
cq->poll_mode = LPFC_IRQ_POLL;
}
if (!phba->nvmet_support)
schedule_delayed_work(&phba->idle_stat_delay_work,
msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
}
static void lpfc_sli4_dip(struct lpfc_hba *phba)
{
uint32_t if_type;
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
if_type == LPFC_SLI_INTF_IF_TYPE_6) {
struct lpfc_register reg_data;
if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
&reg_data.word0))
return;
if (bf_get(lpfc_sliport_status_dip, &reg_data))
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"2904 Firmware Dump Image Present"
" on Adapter");
}
}
/**
* lpfc_sli4_hba_setup - SLI4 device initialization PCI function
* @phba: Pointer to HBA context object.
*
* This function is the main SLI4 device initialization PCI function. This
* function is called by the HBA initialization code, HBA reset code and
* HBA error attention handler code. Caller is not required to hold any
* locks.
**/
int
lpfc_sli4_hba_setup(struct lpfc_hba *phba)
{
int rc, i, cnt, len, dd;
LPFC_MBOXQ_t *mboxq;
struct lpfc_mqe *mqe;
uint8_t *vpd;
uint32_t vpd_size;
uint32_t ftr_rsp = 0;
struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
struct lpfc_vport *vport = phba->pport;
struct lpfc_dmabuf *mp;
struct lpfc_rqb *rqbp;
/* Perform a PCI function reset to start from clean */
rc = lpfc_pci_function_reset(phba);
if (unlikely(rc))
return -ENODEV;
/* Check the HBA Host Status Register for readyness */
rc = lpfc_sli4_post_status_check(phba);
if (unlikely(rc))
return -ENODEV;
else {
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
}
lpfc_sli4_dip(phba);
/*
* Allocate a single mailbox container for initializing the
* port.
*/
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq)
return -ENOMEM;
/* Issue READ_REV to collect vpd and FW information. */
vpd_size = SLI4_PAGE_SIZE;
vpd = kzalloc(vpd_size, GFP_KERNEL);
if (!vpd) {
rc = -ENOMEM;
goto out_free_mbox;
}
rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
if (unlikely(rc)) {
kfree(vpd);
goto out_free_mbox;
}
mqe = &mboxq->u.mqe;
phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
phba->hba_flag |= HBA_FCOE_MODE;
phba->fcp_embed_io = 0; /* SLI4 FC support only */
} else {
phba->hba_flag &= ~HBA_FCOE_MODE;
}
if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
LPFC_DCBX_CEE_MODE)
phba->hba_flag |= HBA_FIP_SUPPORT;
else
phba->hba_flag &= ~HBA_FIP_SUPPORT;
phba->hba_flag &= ~HBA_IOQ_FLUSH;
if (phba->sli_rev != LPFC_SLI_REV4) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0376 READ_REV Error. SLI Level %d "
"FCoE enabled %d\n",
phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
rc = -EIO;
kfree(vpd);
goto out_free_mbox;
}
/*
* Continue initialization with default values even if driver failed
* to read FCoE param config regions, only read parameters if the
* board is FCoE
*/
if (phba->hba_flag & HBA_FCOE_MODE &&
lpfc_sli4_read_fcoe_params(phba))
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
"2570 Failed to read FCoE parameters\n");
/*
* Retrieve sli4 device physical port name, failure of doing it
* is considered as non-fatal.
*/
rc = lpfc_sli4_retrieve_pport_name(phba);
if (!rc)
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"3080 Successful retrieving SLI4 device "
"physical port name: %s.\n", phba->Port);
rc = lpfc_sli4_get_ctl_attr(phba);
if (!rc)
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"8351 Successful retrieving SLI4 device "
"CTL ATTR\n");
/*
* Evaluate the read rev and vpd data. Populate the driver
* state with the results. If this routine fails, the failure
* is not fatal as the driver will use generic values.
*/
rc = lpfc_parse_vpd(phba, vpd, vpd_size);
if (unlikely(!rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0377 Error %d parsing vpd. "
"Using defaults.\n", rc);
rc = 0;
}
kfree(vpd);
/* Save information as VPD data */
phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
/*
* This is because first G7 ASIC doesn't support the standard
* 0x5a NVME cmd descriptor type/subtype
*/
if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_IF_TYPE_6) &&
(phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
(phba->vpd.rev.smRev == 0) &&
(phba->cfg_nvme_embed_cmd == 1))
phba->cfg_nvme_embed_cmd = 0;
phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
&mqe->un.read_rev);
phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
&mqe->un.read_rev);
phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
&mqe->un.read_rev);
phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
&mqe->un.read_rev);
phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):0380 READ_REV Status x%x "
"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
mboxq->vport ? mboxq->vport->vpi : 0,
bf_get(lpfc_mqe_status, mqe),
phba->vpd.rev.opFwName,
phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
LPFC_SLI_INTF_IF_TYPE_0) {
lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc == MBX_SUCCESS) {
phba->hba_flag |= HBA_RECOVERABLE_UE;
/* Set 1Sec interval to detect UE */
phba->eratt_poll_interval = 1;
phba->sli4_hba.ue_to_sr = bf_get(
lpfc_mbx_set_feature_UESR,
&mboxq->u.mqe.un.set_feature);
phba->sli4_hba.ue_to_rp = bf_get(
lpfc_mbx_set_feature_UERP,
&mboxq->u.mqe.un.set_feature);
}
}
if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
/* Enable MDS Diagnostics only if the SLI Port supports it */
lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS)
phba->mds_diags_support = 0;
}
/*
* Discover the port's supported feature set and match it against the
* hosts requests.
*/
lpfc_request_features(phba, mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (unlikely(rc)) {
rc = -EIO;
goto out_free_mbox;
}
/*
* The port must support FCP initiator mode as this is the
* only mode running in the host.
*/
if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
"0378 No support for fcpi mode.\n");
ftr_rsp++;
}
/* Performance Hints are ONLY for FCoE */
if (phba->hba_flag & HBA_FCOE_MODE) {
if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
else
phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
}
/*
* If the port cannot support the host's requested features
* then turn off the global config parameters to disable the
* feature in the driver. This is not a fatal error.
*/
if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
phba->cfg_enable_bg = 0;
phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
ftr_rsp++;
}
}
if (phba->max_vpi && phba->cfg_enable_npiv &&
!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
ftr_rsp++;
if (ftr_rsp) {
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
"0379 Feature Mismatch Data: x%08x %08x "
"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
phba->cfg_enable_npiv, phba->max_vpi);
if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
phba->cfg_enable_bg = 0;
if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
phba->cfg_enable_npiv = 0;
}
/* These SLI3 features are assumed in SLI4 */
spin_lock_irq(&phba->hbalock);
phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
spin_unlock_irq(&phba->hbalock);
/* Always try to enable dual dump feature if we can */
lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
"6448 Dual Dump is enabled\n");
else
lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
"rc:x%x dd:x%x\n",
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
lpfc_sli_config_mbox_subsys_get(
phba, mboxq),
lpfc_sli_config_mbox_opcode_get(
phba, mboxq),
rc, dd);
/*
* Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
* calls depends on these resources to complete port setup.
*/
rc = lpfc_sli4_alloc_resource_identifiers(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2920 Failed to alloc Resource IDs "
"rc = x%x\n", rc);
goto out_free_mbox;
}
lpfc_set_host_data(phba, mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
"2134 Failed to set host os driver version %x",
rc);
}
/* Read the port's service parameters. */
rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
if (rc) {
phba->link_state = LPFC_HBA_ERROR;
rc = -ENOMEM;
goto out_free_mbox;
}
mboxq->vport = vport;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
if (rc == MBX_SUCCESS) {
memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
rc = 0;
}
/*
* This memory was allocated by the lpfc_read_sparam routine. Release
* it to the mbuf pool.
*/
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
mboxq->ctx_buf = NULL;
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0382 READ_SPARAM command failed "
"status %d, mbxStatus x%x\n",
rc, bf_get(lpfc_mqe_status, mqe));
phba->link_state = LPFC_HBA_ERROR;
rc = -EIO;
goto out_free_mbox;
}
lpfc_update_vport_wwn(vport);
/* Update the fc_host data structures with new wwn. */
fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
/* Create all the SLI4 queues */
rc = lpfc_sli4_queue_create(phba);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3089 Failed to allocate queues\n");
rc = -ENODEV;
goto out_free_mbox;
}
/* Set up all the queues to the device */
rc = lpfc_sli4_queue_setup(phba);
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0381 Error %d during queue setup.\n ", rc);
goto out_stop_timers;
}
/* Initialize the driver internal SLI layer lists. */
lpfc_sli4_setup(phba);
lpfc_sli4_queue_init(phba);
/* update host els xri-sgl sizes and mappings */
rc = lpfc_sli4_els_sgl_update(phba);
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1400 Failed to update xri-sgl size and "
"mapping: %d\n", rc);
goto out_destroy_queue;
}
/* register the els sgl pool to the port */
rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
phba->sli4_hba.els_xri_cnt);
if (unlikely(rc < 0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0582 Error %d during els sgl post "
"operation\n", rc);
rc = -ENODEV;
goto out_destroy_queue;
}
phba->sli4_hba.els_xri_cnt = rc;
if (phba->nvmet_support) {
/* update host nvmet xri-sgl sizes and mappings */
rc = lpfc_sli4_nvmet_sgl_update(phba);
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6308 Failed to update nvmet-sgl size "
"and mapping: %d\n", rc);
goto out_destroy_queue;
}
/* register the nvmet sgl pool to the port */
rc = lpfc_sli4_repost_sgl_list(
phba,
&phba->sli4_hba.lpfc_nvmet_sgl_list,
phba->sli4_hba.nvmet_xri_cnt);
if (unlikely(rc < 0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3117 Error %d during nvmet "
"sgl post\n", rc);
rc = -ENODEV;
goto out_destroy_queue;
}
phba->sli4_hba.nvmet_xri_cnt = rc;
/* We allocate an iocbq for every receive context SGL.
* The additional allocation is for abort and ls handling.
*/
cnt = phba->sli4_hba.nvmet_xri_cnt +
phba->sli4_hba.max_cfg_param.max_xri;
} else {
/* update host common xri-sgl sizes and mappings */
rc = lpfc_sli4_io_sgl_update(phba);
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6082 Failed to update nvme-sgl size "
"and mapping: %d\n", rc);
goto out_destroy_queue;
}
/* register the allocated common sgl pool to the port */
rc = lpfc_sli4_repost_io_sgl_list(phba);
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6116 Error %d during nvme sgl post "
"operation\n", rc);
/* Some NVME buffers were moved to abort nvme list */
/* A pci function reset will repost them */
rc = -ENODEV;
goto out_destroy_queue;
}
/* Each lpfc_io_buf job structure has an iocbq element.
* This cnt provides for abort, els, ct and ls requests.
*/
cnt = phba->sli4_hba.max_cfg_param.max_xri;
}
if (!phba->sli.iocbq_lookup) {
/* Initialize and populate the iocb list per host */
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2821 initialize iocb list with %d entries\n",
cnt);
rc = lpfc_init_iocb_list(phba, cnt);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1413 Failed to init iocb list.\n");
goto out_destroy_queue;
}
}
if (phba->nvmet_support)
lpfc_nvmet_create_targetport(phba);
if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
/* Post initial buffers to all RQs created */
for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
rqbp->buffer_count = 0;
lpfc_post_rq_buffer(
phba, phba->sli4_hba.nvmet_mrq_hdr[i],
phba->sli4_hba.nvmet_mrq_data[i],
phba->cfg_nvmet_mrq_post, i);
}
}
/* Post the rpi header region to the device. */
rc = lpfc_sli4_post_all_rpi_hdrs(phba);
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0393 Error %d during rpi post operation\n",
rc);
rc = -ENODEV;
goto out_destroy_queue;
}
lpfc_sli4_node_prep(phba);
if (!(phba->hba_flag & HBA_FCOE_MODE)) {
if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
/*
* The FC Port needs to register FCFI (index 0)
*/
lpfc_reg_fcfi(phba, mboxq);
mboxq->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS)
goto out_unset_queue;
rc = 0;
phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
&mboxq->u.mqe.un.reg_fcfi);
} else {
/* We are a NVME Target mode with MRQ > 1 */
/* First register the FCFI */
lpfc_reg_fcfi_mrq(phba, mboxq, 0);
mboxq->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS)
goto out_unset_queue;
rc = 0;
phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
&mboxq->u.mqe.un.reg_fcfi_mrq);
/* Next register the MRQs */
lpfc_reg_fcfi_mrq(phba, mboxq, 1);
mboxq->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS)
goto out_unset_queue;
rc = 0;
}
/* Check if the port is configured to be disabled */
lpfc_sli_read_link_ste(phba);
}
/* Don't post more new bufs if repost already recovered
* the nvme sgls.
*/
if (phba->nvmet_support == 0) {
if (phba->sli4_hba.io_xri_cnt == 0) {
len = lpfc_new_io_buf(
phba, phba->sli4_hba.io_xri_max);
if (len == 0) {
rc = -ENOMEM;
goto out_unset_queue;
}
if (phba->cfg_xri_rebalancing)
lpfc_create_multixri_pools(phba);
}
} else {
phba->cfg_xri_rebalancing = 0;
}
/* Allow asynchronous mailbox command to go through */
spin_lock_irq(&phba->hbalock);
phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
spin_unlock_irq(&phba->hbalock);
/* Post receive buffers to the device */
lpfc_sli4_rb_setup(phba);
/* Reset HBA FCF states after HBA reset */
phba->fcf.fcf_flag = 0;
phba->fcf.current_rec.flag = 0;
/* Start the ELS watchdog timer */
mod_timer(&vport->els_tmofunc,
jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
/* Start heart beat timer */
mod_timer(&phba->hb_tmofunc,
jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
phba->last_completion_time = jiffies;
/* start eq_delay heartbeat */
if (phba->cfg_auto_imax)
queue_delayed_work(phba->wq, &phba->eq_delay_work,
msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
/* start per phba idle_stat_delay heartbeat */
lpfc_init_idle_stat_hb(phba);
/* Start error attention (ERATT) polling timer */
mod_timer(&phba->eratt_poll,
jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
/* Enable PCIe device Advanced Error Reporting (AER) if configured */
if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
rc = pci_enable_pcie_error_reporting(phba->pcidev);
if (!rc) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2829 This device supports "
"Advanced Error Reporting (AER)\n");
spin_lock_irq(&phba->hbalock);
phba->hba_flag |= HBA_AER_ENABLED;
spin_unlock_irq(&phba->hbalock);
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2830 This device does not support "
"Advanced Error Reporting (AER)\n");
phba->cfg_aer_support = 0;
}
rc = 0;
}
/*
* The port is ready, set the host's link state to LINK_DOWN
* in preparation for link interrupts.
*/
spin_lock_irq(&phba->hbalock);
phba->link_state = LPFC_LINK_DOWN;
/* Check if physical ports are trunked */
if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
phba->trunk_link.link0.state = LPFC_LINK_DOWN;
if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
phba->trunk_link.link1.state = LPFC_LINK_DOWN;
if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
phba->trunk_link.link2.state = LPFC_LINK_DOWN;
if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
phba->trunk_link.link3.state = LPFC_LINK_DOWN;
spin_unlock_irq(&phba->hbalock);
/* Arm the CQs and then EQs on device */
lpfc_sli4_arm_cqeq_intr(phba);
/* Indicate device interrupt mode */
phba->sli4_hba.intr_enable = 1;
if (!(phba->hba_flag & HBA_FCOE_MODE) &&
(phba->hba_flag & LINK_DISABLED)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3103 Adapter Link is disabled.\n");
lpfc_down_link(phba, mboxq);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3104 Adapter failed to issue "
"DOWN_LINK mbox cmd, rc:x%x\n", rc);
goto out_io_buff_free;
}
} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
/* don't perform init_link on SLI4 FC port loopback test */
if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
if (rc)
goto out_io_buff_free;
}
}
mempool_free(mboxq, phba->mbox_mem_pool);
return rc;
out_io_buff_free:
/* Free allocated IO Buffers */
lpfc_io_free(phba);
out_unset_queue:
/* Unset all the queues set up in this routine when error out */
lpfc_sli4_queue_unset(phba);
out_destroy_queue:
lpfc_free_iocb_list(phba);
lpfc_sli4_queue_destroy(phba);
out_stop_timers:
lpfc_stop_hba_timers(phba);
out_free_mbox:
mempool_free(mboxq, phba->mbox_mem_pool);
return rc;
}
/**
* lpfc_mbox_timeout - Timeout call back function for mbox timer
* @t: Context to fetch pointer to hba structure from.
*
* This is the callback function for mailbox timer. The mailbox
* timer is armed when a new mailbox command is issued and the timer
* is deleted when the mailbox complete. The function is called by
* the kernel timer code when a mailbox does not complete within
* expected time. This function wakes up the worker thread to
* process the mailbox timeout and returns. All the processing is
* done by the worker thread function lpfc_mbox_timeout_handler.
**/
void
lpfc_mbox_timeout(struct timer_list *t)
{
struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo);
unsigned long iflag;
uint32_t tmo_posted;
spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
if (!tmo_posted)
phba->pport->work_port_events |= WORKER_MBOX_TMO;
spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
if (!tmo_posted)
lpfc_worker_wake_up(phba);
return;
}
/**
* lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
* are pending
* @phba: Pointer to HBA context object.
*
* This function checks if any mailbox completions are present on the mailbox
* completion queue.
**/
static bool
lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
{
uint32_t idx;
struct lpfc_queue *mcq;
struct lpfc_mcqe *mcqe;
bool pending_completions = false;
uint8_t qe_valid;
if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
return false;
/* Check for completions on mailbox completion queue */
mcq = phba->sli4_hba.mbx_cq;
idx = mcq->hba_index;
qe_valid = mcq->qe_valid;
while (bf_get_le32(lpfc_cqe_valid,
(struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
(!bf_get_le32(lpfc_trailer_async, mcqe))) {
pending_completions = true;
break;
}
idx = (idx + 1) % mcq->entry_count;
if (mcq->hba_index == idx)
break;
/* if the index wrapped around, toggle the valid bit */
if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
qe_valid = (qe_valid) ? 0 : 1;
}
return pending_completions;
}
/**
* lpfc_sli4_process_missed_mbox_completions - process mbox completions
* that were missed.
* @phba: Pointer to HBA context object.
*
* For sli4, it is possible to miss an interrupt. As such mbox completions
* maybe missed causing erroneous mailbox timeouts to occur. This function
* checks to see if mbox completions are on the mailbox completion queue
* and will process all the completions associated with the eq for the
* mailbox completion queue.
**/
static bool
lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
{
struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
uint32_t eqidx;
struct lpfc_queue *fpeq = NULL;
struct lpfc_queue *eq;
bool mbox_pending;
if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
return false;
/* Find the EQ associated with the mbox CQ */
if (sli4_hba->hdwq) {
for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
fpeq = eq;
break;
}
}
}
if (!fpeq)
return false;
/* Turn off interrupts from this EQ */
sli4_hba->sli4_eq_clr_intr(fpeq);
/* Check to see if a mbox completion is pending */
mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
/*
* If a mbox completion is pending, process all the events on EQ
* associated with the mbox completion queue (this could include
* mailbox commands, async events, els commands, receive queue data
* and fcp commands)
*/
if (mbox_pending)
/* process and rearm the EQ */
lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
else
/* Always clear and re-arm the EQ */
sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
return mbox_pending;
}
/**
* lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
* @phba: Pointer to HBA context object.
*
* This function is called from worker thread when a mailbox command times out.
* The caller is not required to hold any locks. This function will reset the
* HBA and recover all the pending commands.
**/
void
lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
MAILBOX_t *mb = NULL;
struct lpfc_sli *psli = &phba->sli;
/* If the mailbox completed, process the completion */
lpfc_sli4_process_missed_mbox_completions(phba);
if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
return;
if (pmbox != NULL)
mb = &pmbox->u.mb;
/* Check the pmbox pointer first. There is a race condition
* between the mbox timeout handler getting executed in the
* worklist and the mailbox actually completing. When this
* race condition occurs, the mbox_active will be NULL.
*/
spin_lock_irq(&phba->hbalock);
if (pmbox == NULL) {
lpfc_printf_log(phba, KERN_WARNING,
LOG_MBOX | LOG_SLI,
"0353 Active Mailbox cleared - mailbox timeout "
"exiting\n");
spin_unlock_irq(&phba->hbalock);
return;
}
/* Mbox cmd <mbxCommand> timeout */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
mb->mbxCommand,
phba->pport->port_state,
phba->sli.sli_flag,
phba->sli.mbox_active);
spin_unlock_irq(&phba->hbalock);
/* Setting state unknown so lpfc_sli_abort_iocb_ring
* would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
* it to fail all outstanding SCSI IO.
*/
spin_lock_irq(&phba->pport->work_port_lock);
phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
spin_unlock_irq(&phba->pport->work_port_lock);
spin_lock_irq(&phba->hbalock);
phba->link_state = LPFC_LINK_UNKNOWN;
psli->sli_flag &= ~LPFC_SLI_ACTIVE;
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0345 Resetting board due to mailbox timeout\n");
/* Reset the HBA device */
lpfc_reset_hba(phba);
}
/**
* lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
* @phba: Pointer to HBA context object.
* @pmbox: Pointer to mailbox object.
* @flag: Flag indicating how the mailbox need to be processed.
*
* This function is called by discovery code and HBA management code
* to submit a mailbox command to firmware with SLI-3 interface spec. This
* function gets the hbalock to protect the data structures.
* The mailbox command can be submitted in polling mode, in which case
* this function will wait in a polling loop for the completion of the
* mailbox.
* If the mailbox is submitted in no_wait mode (not polling) the
* function will submit the command and returns immediately without waiting
* for the mailbox completion. The no_wait is supported only when HBA
* is in SLI2/SLI3 mode - interrupts are enabled.
* The SLI interface allows only one mailbox pending at a time. If the
* mailbox is issued in polling mode and there is already a mailbox
* pending, then the function will return an error. If the mailbox is issued
* in NO_WAIT mode and there is a mailbox pending already, the function
* will return MBX_BUSY after queuing the mailbox into mailbox queue.
* The sli layer owns the mailbox object until the completion of mailbox
* command if this function return MBX_BUSY or MBX_SUCCESS. For all other
* return codes the caller owns the mailbox command after the return of
* the function.
**/
static int
lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
uint32_t flag)
{
MAILBOX_t *mbx;
struct lpfc_sli *psli = &phba->sli;
uint32_t status, evtctr;
uint32_t ha_copy, hc_copy;
int i;
unsigned long timeout;
unsigned long drvr_flag = 0;
uint32_t word0, ldata;
void __iomem *to_slim;
int processing_queue = 0;
spin_lock_irqsave(&phba->hbalock, drvr_flag);
if (!pmbox) {
phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
/* processing mbox queue from intr_handler */
if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
return MBX_SUCCESS;
}
processing_queue = 1;
pmbox = lpfc_mbox_get(phba);
if (!pmbox) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
return MBX_SUCCESS;
}
}
if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
if(!pmbox->vport) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
lpfc_printf_log(phba, KERN_ERR,
LOG_MBOX | LOG_VPORT,
"1806 Mbox x%x failed. No vport\n",
pmbox->u.mb.mbxCommand);
dump_stack();
goto out_not_finished;
}
}
/* If the PCI channel is in offline state, do not post mbox. */
if (unlikely(pci_channel_offline(phba->pcidev))) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
goto out_not_finished;
}
/* If HBA has a deferred error attention, fail the iocb. */
if (unlikely(phba->hba_flag & DEFER_ERATT)) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
goto out_not_finished;
}
psli = &phba->sli;
mbx = &pmbox->u.mb;
status = MBX_SUCCESS;
if (phba->link_state == LPFC_HBA_ERROR) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
/* Mbox command <mbxCommand> cannot issue */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):0311 Mailbox command x%x cannot "
"issue Data: x%x x%x\n",
pmbox->vport ? pmbox->vport->vpi : 0,
pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
goto out_not_finished;
}
if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
!(hc_copy & HC_MBINT_ENA)) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2528 Mailbox command x%x cannot "
"issue Data: x%x x%x\n",
pmbox->vport ? pmbox->vport->vpi : 0,
pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
goto out_not_finished;
}
}
if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
/* Polling for a mbox command when another one is already active
* is not allowed in SLI. Also, the driver must have established
* SLI2 mode to queue and process multiple mbox commands.
*/
if (flag & MBX_POLL) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
/* Mbox command <mbxCommand> cannot issue */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2529 Mailbox command x%x "
"cannot issue Data: x%x x%x\n",
pmbox->vport ? pmbox->vport->vpi : 0,
pmbox->u.mb.mbxCommand,
psli->sli_flag, flag);
goto out_not_finished;
}
if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
/* Mbox command <mbxCommand> cannot issue */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2530 Mailbox command x%x "
"cannot issue Data: x%x x%x\n",
pmbox->vport ? pmbox->vport->vpi : 0,
pmbox->u.mb.mbxCommand,
psli->sli_flag, flag);
goto out_not_finished;
}
/* Another mailbox command is still being processed, queue this
* command to be processed later.
*/
lpfc_mbox_put(phba, pmbox);
/* Mbox cmd issue - BUSY */
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):0308 Mbox cmd issue - BUSY Data: "
"x%x x%x x%x x%x\n",
pmbox->vport ? pmbox->vport->vpi : 0xffffff,
mbx->mbxCommand,
phba->pport ? phba->pport->port_state : 0xff,
psli->sli_flag, flag);
psli->slistat.mbox_busy++;
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
if (pmbox->vport) {
lpfc_debugfs_disc_trc(pmbox->vport,
LPFC_DISC_TRC_MBOX_VPORT,
"MBOX Bsy vport: cmd:x%x mb:x%x x%x",
(uint32_t)mbx->mbxCommand,
mbx->un.varWords[0], mbx->un.varWords[1]);
}
else {
lpfc_debugfs_disc_trc(phba->pport,
LPFC_DISC_TRC_MBOX,
"MBOX Bsy: cmd:x%x mb:x%x x%x",
(uint32_t)mbx->mbxCommand,
mbx->un.varWords[0], mbx->un.varWords[1]);
}
return MBX_BUSY;
}
psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
/* If we are not polling, we MUST be in SLI2 mode */
if (flag != MBX_POLL) {
if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
(mbx->mbxCommand != MBX_KILL_BOARD)) {
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
/* Mbox command <mbxCommand> cannot issue */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2531 Mailbox command x%x "
"cannot issue Data: x%x x%x\n",
pmbox->vport ? pmbox->vport->vpi : 0,
pmbox->u.mb.mbxCommand,
psli->sli_flag, flag);
goto out_not_finished;
}
/* timeout active mbox command */
timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
1000);
mod_timer(&psli->mbox_tmo, jiffies + timeout);
}
/* Mailbox cmd <cmd> issue */
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
"x%x\n",
pmbox->vport ? pmbox->vport->vpi : 0,
mbx->mbxCommand,
phba->pport ? phba->pport->port_state : 0xff,
psli->sli_flag, flag);
if (mbx->mbxCommand != MBX_HEARTBEAT) {
if (pmbox->vport) {
lpfc_debugfs_disc_trc(pmbox->vport,
LPFC_DISC_TRC_MBOX_VPORT,
"MBOX Send vport: cmd:x%x mb:x%x x%x",
(uint32_t)mbx->mbxCommand,
mbx->un.varWords[0], mbx->un.varWords[1]);
}
else {
lpfc_debugfs_disc_trc(phba->pport,
LPFC_DISC_TRC_MBOX,
"MBOX Send: cmd:x%x mb:x%x x%x",
(uint32_t)mbx->mbxCommand,
mbx->un.varWords[0], mbx->un.varWords[1]);
}
}
psli->slistat.mbox_cmd++;
evtctr = psli->slistat.mbox_event;
/* next set own bit for the adapter and copy over command word */
mbx->mbxOwner = OWN_CHIP;
if (psli->sli_flag & LPFC_SLI_ACTIVE) {
/* Populate mbox extension offset word. */
if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
= (uint8_t *)phba->mbox_ext
- (uint8_t *)phba->mbox;
}
/* Copy the mailbox extension data */
if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
(uint8_t *)phba->mbox_ext,
pmbox->in_ext_byte_len);
}
/* Copy command data to host SLIM area */
lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
} else {
/* Populate mbox extension offset word. */
if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
= MAILBOX_HBA_EXT_OFFSET;
/* Copy the mailbox extension data */
if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
lpfc_memcpy_to_slim(phba->MBslimaddr +
MAILBOX_HBA_EXT_OFFSET,
pmbox->ctx_buf, pmbox->in_ext_byte_len);
if (mbx->mbxCommand == MBX_CONFIG_PORT)
/* copy command data into host mbox for cmpl */
lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
MAILBOX_CMD_SIZE);
/* First copy mbox command data to HBA SLIM, skip past first
word */
to_slim = phba->MBslimaddr + sizeof (uint32_t);
lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
MAILBOX_CMD_SIZE - sizeof (uint32_t));
/* Next copy over first word, with mbxOwner set */
ldata = *((uint32_t *)mbx);
to_slim = phba->MBslimaddr;
writel(ldata, to_slim);
readl(to_slim); /* flush */
if (mbx->mbxCommand == MBX_CONFIG_PORT)
/* switch over to host mailbox */
psli->sli_flag |= LPFC_SLI_ACTIVE;
}
wmb();
switch (flag) {
case MBX_NOWAIT:
/* Set up reference to mailbox command */
psli->mbox_active = pmbox;
/* Interrupt board to do it */
writel(CA_MBATT, phba->CAregaddr);
readl(phba->CAregaddr); /* flush */
/* Don't wait for it to finish, just return */
break;
case MBX_POLL:
/* Set up null reference to mailbox command */
psli->mbox_active = NULL;
/* Interrupt board to do it */
writel(CA_MBATT, phba->CAregaddr);
readl(phba->CAregaddr); /* flush */
if (psli->sli_flag & LPFC_SLI_ACTIVE) {
/* First read mbox status word */
word0 = *((uint32_t *)phba->mbox);
word0 = le32_to_cpu(word0);
} else {
/* First read mbox status word */
if (lpfc_readl(phba->MBslimaddr, &word0)) {
spin_unlock_irqrestore(&phba->hbalock,
drvr_flag);
goto out_not_finished;
}
}
/* Read the HBA Host Attention Register */
if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
spin_unlock_irqrestore(&phba->hbalock,
drvr_flag);
goto out_not_finished;
}
timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
1000) + jiffies;
i = 0;
/* Wait for command to complete */
while (((word0 & OWN_CHIP) == OWN_CHIP) ||
(!(ha_copy & HA_MBATT) &&
(phba->link_state > LPFC_WARM_START))) {
if (time_after(jiffies, timeout)) {
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
spin_unlock_irqrestore(&phba->hbalock,
drvr_flag);
goto out_not_finished;
}
/* Check if we took a mbox interrupt while we were
polling */
if (((word0 & OWN_CHIP) != OWN_CHIP)
&& (evtctr != psli->slistat.mbox_event))
break;
if (i++ > 10) {
spin_unlock_irqrestore(&phba->hbalock,
drvr_flag);
msleep(1);
spin_lock_irqsave(&phba->hbalock, drvr_flag);
}
if (psli->sli_flag & LPFC_SLI_ACTIVE) {
/* First copy command data */
word0 = *((uint32_t *)phba->mbox);
word0 = le32_to_cpu(word0);
if (mbx->mbxCommand == MBX_CONFIG_PORT) {
MAILBOX_t *slimmb;
uint32_t slimword0;
/* Check real SLIM for any errors */
slimword0 = readl(phba->MBslimaddr);
slimmb = (MAILBOX_t *) & slimword0;
if (((slimword0 & OWN_CHIP) != OWN_CHIP)
&& slimmb->mbxStatus) {
psli->sli_flag &=
~LPFC_SLI_ACTIVE;
word0 = slimword0;
}
}
} else {
/* First copy command data */
word0 = readl(phba->MBslimaddr);
}
/* Read the HBA Host Attention Register */
if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
spin_unlock_irqrestore(&phba->hbalock,
drvr_flag);
goto out_not_finished;
}
}
if (psli->sli_flag & LPFC_SLI_ACTIVE) {
/* copy results back to user */
lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
MAILBOX_CMD_SIZE);
/* Copy the mailbox extension data */
if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
lpfc_sli_pcimem_bcopy(phba->mbox_ext,
pmbox->ctx_buf,
pmbox->out_ext_byte_len);
}
} else {
/* First copy command data */
lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
MAILBOX_CMD_SIZE);
/* Copy the mailbox extension data */
if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
lpfc_memcpy_from_slim(
pmbox->ctx_buf,
phba->MBslimaddr +
MAILBOX_HBA_EXT_OFFSET,
pmbox->out_ext_byte_len);
}
}
writel(HA_MBATT, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
status = mbx->mbxStatus;
}
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
return status;
out_not_finished:
if (processing_queue) {
pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
lpfc_mbox_cmpl_put(phba, pmbox);
}
return MBX_NOT_FINISHED;
}
/**
* lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
* @phba: Pointer to HBA context object.
*
* The function blocks the posting of SLI4 asynchronous mailbox commands from
* the driver internal pending mailbox queue. It will then try to wait out the
* possible outstanding mailbox command before return.
*
* Returns:
* 0 - the outstanding mailbox command completed; otherwise, the wait for
* the outstanding mailbox command timed out.
**/
static int
lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
int rc = 0;
unsigned long timeout = 0;
/* Mark the asynchronous mailbox command posting as blocked */
spin_lock_irq(&phba->hbalock);
psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
/* Determine how long we might wait for the active mailbox
* command to be gracefully completed by firmware.
*/
if (phba->sli.mbox_active)
timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
phba->sli.mbox_active) *
1000) + jiffies;
spin_unlock_irq(&phba->hbalock);
/* Make sure the mailbox is really active */
if (timeout)
lpfc_sli4_process_missed_mbox_completions(phba);
/* Wait for the outstnading mailbox command to complete */
while (phba->sli.mbox_active) {
/* Check active mailbox complete status every 2ms */
msleep(2);
if (time_after(jiffies, timeout)) {
/* Timeout, marked the outstanding cmd not complete */
rc = 1;
break;
}
}
/* Can not cleanly block async mailbox command, fails it */
if (rc) {
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
spin_unlock_irq(&phba->hbalock);
}
return rc;
}
/**
* lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
* @phba: Pointer to HBA context object.
*
* The function unblocks and resume posting of SLI4 asynchronous mailbox
* commands from the driver internal pending mailbox queue. It makes sure
* that there is no outstanding mailbox command before resuming posting
* asynchronous mailbox commands. If, for any reason, there is outstanding
* mailbox command, it will try to wait it out before resuming asynchronous
* mailbox command posting.
**/
static void
lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
spin_lock_irq(&phba->hbalock);
if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
/* Asynchronous mailbox posting is not blocked, do nothing */
spin_unlock_irq(&phba->hbalock);
return;
}
/* Outstanding synchronous mailbox command is guaranteed to be done,
* successful or timeout, after timing-out the outstanding mailbox
* command shall always be removed, so just unblock posting async
* mailbox command and resume
*/
psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
spin_unlock_irq(&phba->hbalock);
/* wake up worker thread to post asynchronous mailbox command */
lpfc_worker_wake_up(phba);
}
/**
* lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
* @phba: Pointer to HBA context object.
* @mboxq: Pointer to mailbox object.
*
* The function waits for the bootstrap mailbox register ready bit from
* port for twice the regular mailbox command timeout value.
*
* 0 - no timeout on waiting for bootstrap mailbox register ready.
* MBXERR_ERROR - wait for bootstrap mailbox register timed out.
**/
static int
lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
uint32_t db_ready;
unsigned long timeout;
struct lpfc_register bmbx_reg;
timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
* 1000) + jiffies;
do {
bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
if (!db_ready)
mdelay(2);
if (time_after(jiffies, timeout))
return MBXERR_ERROR;
} while (!db_ready);
return 0;
}
/**
* lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
* @phba: Pointer to HBA context object.
* @mboxq: Pointer to mailbox object.
*
* The function posts a mailbox to the port. The mailbox is expected
* to be comletely filled in and ready for the port to operate on it.
* This routine executes a synchronous completion operation on the
* mailbox by polling for its completion.
*
* The caller must not be holding any locks when calling this routine.
*
* Returns:
* MBX_SUCCESS - mailbox posted successfully
* Any of the MBX error values.
**/
static int
lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
int rc = MBX_SUCCESS;
unsigned long iflag;
uint32_t mcqe_status;
uint32_t mbx_cmnd;
struct lpfc_sli *psli = &phba->sli;
struct lpfc_mqe *mb = &mboxq->u.mqe;
struct lpfc_bmbx_create *mbox_rgn;
struct dma_address *dma_address;
/*
* Only one mailbox can be active to the bootstrap mailbox region
* at a time and there is no queueing provided.
*/
spin_lock_irqsave(&phba->hbalock, iflag);
if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2532 Mailbox command x%x (x%x/x%x) "
"cannot issue Data: x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0,
mboxq->u.mb.mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
psli->sli_flag, MBX_POLL);
return MBXERR_ERROR;
}
/* The server grabs the token and owns it until release */
psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
phba->sli.mbox_active = mboxq;
spin_unlock_irqrestore(&phba->hbalock, iflag);
/* wait for bootstrap mbox register for readyness */
rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
if (rc)
goto exit;
/*
* Initialize the bootstrap memory region to avoid stale data areas
* in the mailbox post. Then copy the caller's mailbox contents to
* the bmbx mailbox region.
*/
mbx_cmnd = bf_get(lpfc_mqe_command, mb);
memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
sizeof(struct lpfc_mqe));
/* Post the high mailbox dma address to the port and wait for ready. */
dma_address = &phba->sli4_hba.bmbx.dma_address;
writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
/* wait for bootstrap mbox register for hi-address write done */
rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
if (rc)
goto exit;
/* Post the low mailbox dma address to the port. */
writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
/* wait for bootstrap mbox register for low address write done */
rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
if (rc)
goto exit;
/*
* Read the CQ to ensure the mailbox has completed.
* If so, update the mailbox status so that the upper layers
* can complete the request normally.
*/
lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
sizeof(struct lpfc_mqe));
mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
sizeof(struct lpfc_mcqe));
mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
/*
* When the CQE status indicates a failure and the mailbox status
* indicates success then copy the CQE status into the mailbox status
* (and prefix it with x4000).
*/
if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
bf_set(lpfc_mqe_status, mb,
(LPFC_MBX_ERROR_RANGE | mcqe_status));
rc = MBXERR_ERROR;
} else
lpfc_sli4_swap_str(phba, mboxq);
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
" x%x x%x CQ: x%x x%x x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
bf_get(lpfc_mqe_status, mb),
mb->un.mb_words[0], mb->un.mb_words[1],
mb->un.mb_words[2], mb->un.mb_words[3],
mb->un.mb_words[4], mb->un.mb_words[5],
mb->un.mb_words[6], mb->un.mb_words[7],
mb->un.mb_words[8], mb->un.mb_words[9],
mb->un.mb_words[10], mb->un.mb_words[11],
mb->un.mb_words[12], mboxq->mcqe.word0,
mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
mboxq->mcqe.trailer);
exit:
/* We are holding the token, no needed for lock when release */
spin_lock_irqsave(&phba->hbalock, iflag);
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
phba->sli.mbox_active = NULL;
spin_unlock_irqrestore(&phba->hbalock, iflag);
return rc;
}
/**
* lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
* @phba: Pointer to HBA context object.
* @mboxq: Pointer to mailbox object.
* @flag: Flag indicating how the mailbox need to be processed.
*
* This function is called by discovery code and HBA management code to submit
* a mailbox command to firmware with SLI-4 interface spec.
*
* Return codes the caller owns the mailbox command after the return of the
* function.
**/
static int
lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
uint32_t flag)
{
struct lpfc_sli *psli = &phba->sli;
unsigned long iflags;
int rc;
/* dump from issue mailbox command if setup */
lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
rc = lpfc_mbox_dev_check(phba);
if (unlikely(rc)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2544 Mailbox command x%x (x%x/x%x) "
"cannot issue Data: x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0,
mboxq->u.mb.mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
psli->sli_flag, flag);
goto out_not_finished;
}
/* Detect polling mode and jump to a handler */
if (!phba->sli4_hba.intr_enable) {
if (flag == MBX_POLL)
rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
else
rc = -EIO;
if (rc != MBX_SUCCESS)
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
"(%d):2541 Mailbox command x%x "
"(x%x/x%x) failure: "
"mqe_sta: x%x mcqe_sta: x%x/x%x "
"Data: x%x x%x\n,",
mboxq->vport ? mboxq->vport->vpi : 0,
mboxq->u.mb.mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba,
mboxq),
lpfc_sli_config_mbox_opcode_get(phba,
mboxq),
bf_get(lpfc_mqe_status, &mboxq->u.mqe),
bf_get(lpfc_mcqe_status, &mboxq->mcqe),
bf_get(lpfc_mcqe_ext_status,
&mboxq->mcqe),
psli->sli_flag, flag);
return rc;
} else if (flag == MBX_POLL) {
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
"(%d):2542 Try to issue mailbox command "
"x%x (x%x/x%x) synchronously ahead of async "
"mailbox command queue: x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0,
mboxq->u.mb.mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
psli->sli_flag, flag);
/* Try to block the asynchronous mailbox posting */
rc = lpfc_sli4_async_mbox_block(phba);
if (!rc) {
/* Successfully blocked, now issue sync mbox cmd */
rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
if (rc != MBX_SUCCESS)
lpfc_printf_log(phba, KERN_WARNING,
LOG_MBOX | LOG_SLI,
"(%d):2597 Sync Mailbox command "
"x%x (x%x/x%x) failure: "
"mqe_sta: x%x mcqe_sta: x%x/x%x "
"Data: x%x x%x\n,",
mboxq->vport ? mboxq->vport->vpi : 0,
mboxq->u.mb.mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba,
mboxq),
lpfc_sli_config_mbox_opcode_get(phba,
mboxq),
bf_get(lpfc_mqe_status, &mboxq->u.mqe),
bf_get(lpfc_mcqe_status, &mboxq->mcqe),
bf_get(lpfc_mcqe_ext_status,
&mboxq->mcqe),
psli->sli_flag, flag);
/* Unblock the async mailbox posting afterward */
lpfc_sli4_async_mbox_unblock(phba);
}
return rc;
}
/* Now, interrupt mode asynchronous mailbox command */
rc = lpfc_mbox_cmd_check(phba, mboxq);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2543 Mailbox command x%x (x%x/x%x) "
"cannot issue Data: x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0,
mboxq->u.mb.mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
psli->sli_flag, flag);
goto out_not_finished;
}
/* Put the mailbox command to the driver internal FIFO */
psli->slistat.mbox_busy++;
spin_lock_irqsave(&phba->hbalock, iflags);
lpfc_mbox_put(phba, mboxq);
spin_unlock_irqrestore(&phba->hbalock, iflags);
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):0354 Mbox cmd issue - Enqueue Data: "
"x%x (x%x/x%x) x%x x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0xffffff,
bf_get(lpfc_mqe_command, &mboxq->u.mqe),
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
phba->pport->port_state,
psli->sli_flag, MBX_NOWAIT);
/* Wake up worker thread to transport mailbox command from head */
lpfc_worker_wake_up(phba);
return MBX_BUSY;
out_not_finished:
return MBX_NOT_FINISHED;
}
/**
* lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
* @phba: Pointer to HBA context object.
*
* This function is called by worker thread to send a mailbox command to
* SLI4 HBA firmware.
*
**/
int
lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
LPFC_MBOXQ_t *mboxq;
int rc = MBX_SUCCESS;
unsigned long iflags;
struct lpfc_mqe *mqe;
uint32_t mbx_cmnd;
/* Check interrupt mode before post async mailbox command */
if (unlikely(!phba->sli4_hba.intr_enable))
return MBX_NOT_FINISHED;
/* Check for mailbox command service token */
spin_lock_irqsave(&phba->hbalock, iflags);
if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
spin_unlock_irqrestore(&phba->hbalock, iflags);
return MBX_NOT_FINISHED;
}
if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
spin_unlock_irqrestore(&phba->hbalock, iflags);
return MBX_NOT_FINISHED;
}
if (unlikely(phba->sli.mbox_active)) {
spin_unlock_irqrestore(&phba->hbalock, iflags);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0384 There is pending active mailbox cmd\n");
return MBX_NOT_FINISHED;
}
/* Take the mailbox command service token */
psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
/* Get the next mailbox command from head of queue */
mboxq = lpfc_mbox_get(phba);
/* If no more mailbox command waiting for post, we're done */
if (!mboxq) {
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
spin_unlock_irqrestore(&phba->hbalock, iflags);
return MBX_SUCCESS;
}
phba->sli.mbox_active = mboxq;
spin_unlock_irqrestore(&phba->hbalock, iflags);
/* Check device readiness for posting mailbox command */
rc = lpfc_mbox_dev_check(phba);
if (unlikely(rc))
/* Driver clean routine will clean up pending mailbox */
goto out_not_finished;
/* Prepare the mbox command to be posted */
mqe = &mboxq->u.mqe;
mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
/* Start timer for the mbox_tmo and log some mailbox post messages */
mod_timer(&psli->mbox_tmo, (jiffies +
msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
"x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
phba->pport->port_state, psli->sli_flag);
if (mbx_cmnd != MBX_HEARTBEAT) {
if (mboxq->vport) {
lpfc_debugfs_disc_trc(mboxq->vport,
LPFC_DISC_TRC_MBOX_VPORT,
"MBOX Send vport: cmd:x%x mb:x%x x%x",
mbx_cmnd, mqe->un.mb_words[0],
mqe->un.mb_words[1]);
} else {
lpfc_debugfs_disc_trc(phba->pport,
LPFC_DISC_TRC_MBOX,
"MBOX Send: cmd:x%x mb:x%x x%x",
mbx_cmnd, mqe->un.mb_words[0],
mqe->un.mb_words[1]);
}
}
psli->slistat.mbox_cmd++;
/* Post the mailbox command to the port */
rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):2533 Mailbox command x%x (x%x/x%x) "
"cannot issue Data: x%x x%x\n",
mboxq->vport ? mboxq->vport->vpi : 0,
mboxq->u.mb.mbxCommand,
lpfc_sli_config_mbox_subsys_get(phba, mboxq),
lpfc_sli_config_mbox_opcode_get(phba, mboxq),
psli->sli_flag, MBX_NOWAIT);
goto out_not_finished;
}
return rc;
out_not_finished:
spin_lock_irqsave(&phba->hbalock, iflags);
if (phba->sli.mbox_active) {
mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
__lpfc_mbox_cmpl_put(phba, mboxq);
/* Release the token */
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
phba->sli.mbox_active = NULL;
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
return MBX_NOT_FINISHED;
}
/**
* lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
* @phba: Pointer to HBA context object.
* @pmbox: Pointer to mailbox object.
* @flag: Flag indicating how the mailbox need to be processed.
*
* This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
* the API jump table function pointer from the lpfc_hba struct.
*
* Return codes the caller owns the mailbox command after the return of the
* function.
**/
int
lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
{
return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
}
/**
* lpfc_mbox_api_table_setup - Set up mbox api function jump table
* @phba: The hba struct for which this call is being executed.
* @dev_grp: The HBA PCI-Device group number.
*
* This routine sets up the mbox interface API function jump table in @phba
* struct.
* Returns: 0 - success, -ENODEV - failure.
**/
int
lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{
switch (dev_grp) {
case LPFC_PCI_DEV_LP:
phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
phba->lpfc_sli_handle_slow_ring_event =
lpfc_sli_handle_slow_ring_event_s3;
phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
break;
case LPFC_PCI_DEV_OC:
phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
phba->lpfc_sli_handle_slow_ring_event =
lpfc_sli_handle_slow_ring_event_s4;
phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1420 Invalid HBA PCI-device group: 0x%x\n",
dev_grp);
return -ENODEV;
}
return 0;
}
/**
* __lpfc_sli_ringtx_put - Add an iocb to the txq
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @piocb: Pointer to address of newly added command iocb.
*
* This function is called with hbalock held for SLI3 ports or
* the ring lock held for SLI4 ports to add a command
* iocb to the txq when SLI layer cannot submit the command iocb
* to the ring.
**/
void
__lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq *piocb)
{
if (phba->sli_rev == LPFC_SLI_REV4)
lockdep_assert_held(&pring->ring_lock);
else
lockdep_assert_held(&phba->hbalock);
/* Insert the caller's iocb in the txq tail for later processing. */
list_add_tail(&piocb->list, &pring->txq);
}
/**
* lpfc_sli_next_iocb - Get the next iocb in the txq
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @piocb: Pointer to address of newly added command iocb.
*
* This function is called with hbalock held before a new
* iocb is submitted to the firmware. This function checks
* txq to flush the iocbs in txq to Firmware before
* submitting new iocbs to the Firmware.
* If there are iocbs in the txq which need to be submitted
* to firmware, lpfc_sli_next_iocb returns the first element
* of the txq after dequeuing it from txq.
* If there is no iocb in the txq then the function will return
* *piocb and *piocb is set to NULL. Caller needs to check
* *piocb to find if there are more commands in the txq.
**/
static struct lpfc_iocbq *
lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq **piocb)
{
struct lpfc_iocbq * nextiocb;
lockdep_assert_held(&phba->hbalock);
nextiocb = lpfc_sli_ringtx_get(phba, pring);
if (!nextiocb) {
nextiocb = *piocb;
*piocb = NULL;
}
return nextiocb;
}
/**
* __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
* @phba: Pointer to HBA context object.
* @ring_number: SLI ring number to issue iocb on.
* @piocb: Pointer to command iocb.
* @flag: Flag indicating if this command can be put into txq.
*
* __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
* an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
* recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
* flag is turned on, the function returns IOCB_ERROR. When the link is down,
* this function allows only iocbs for posting buffers. This function finds
* next available slot in the command ring and posts the command to the
* available slot and writes the port attention register to request HBA start
* processing new iocb. If there is no slot available in the ring and
* flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
* the function returns IOCB_BUSY.
*
* This function is called with hbalock held. The function will return success
* after it successfully submit the iocb to firmware or after adding to the
* txq.
**/
static int
__lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
struct lpfc_iocbq *piocb, uint32_t flag)
{
struct lpfc_iocbq *nextiocb;
IOCB_t *iocb;
struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
lockdep_assert_held(&phba->hbalock);
if (piocb->iocb_cmpl && (!piocb->vport) &&
(piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
(piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1807 IOCB x%x failed. No vport\n",
piocb->iocb.ulpCommand);
dump_stack();
return IOCB_ERROR;
}
/* If the PCI channel is in offline state, do not post iocbs. */
if (unlikely(pci_channel_offline(phba->pcidev)))
return IOCB_ERROR;
/* If HBA has a deferred error attention, fail the iocb. */
if (unlikely(phba->hba_flag & DEFER_ERATT))
return IOCB_ERROR;
/*
* We should never get an IOCB if we are in a < LINK_DOWN state
*/
if (unlikely(phba->link_state < LPFC_LINK_DOWN))
return IOCB_ERROR;
/*
* Check to see if we are blocking IOCB processing because of a
* outstanding event.
*/
if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
goto iocb_busy;
if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
/*
* Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
* can be issued if the link is not up.
*/
switch (piocb->iocb.ulpCommand) {
case CMD_GEN_REQUEST64_CR:
case CMD_GEN_REQUEST64_CX:
if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
FC_RCTL_DD_UNSOL_CMD) ||
(piocb->iocb.un.genreq64.w5.hcsw.Type !=
MENLO_TRANSPORT_TYPE))
goto iocb_busy;
break;
case CMD_QUE_RING_BUF_CN:
case CMD_QUE_RING_BUF64_CN:
/*
* For IOCBs, like QUE_RING_BUF, that have no rsp ring
* completion, iocb_cmpl MUST be 0.
*/
if (piocb->iocb_cmpl)
piocb->iocb_cmpl = NULL;
fallthrough;
case CMD_CREATE_XRI_CR:
case CMD_CLOSE_XRI_CN:
case CMD_CLOSE_XRI_CX:
break;
default:
goto iocb_busy;
}
/*
* For FCP commands, we must be in a state where we can process link
* attention events.
*/
} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
!(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
goto iocb_busy;
}
while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
(nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
if (iocb)
lpfc_sli_update_ring(phba, pring);
else
lpfc_sli_update_full_ring(phba, pring);
if (!piocb)
return IOCB_SUCCESS;
goto out_busy;
iocb_busy:
pring->stats.iocb_cmd_delay++;
out_busy:
if (!(flag & SLI_IOCB_RET_IOCB)) {
__lpfc_sli_ringtx_put(phba, pring, piocb);
return IOCB_SUCCESS;
}
return IOCB_BUSY;
}
/**
* lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
* @phba: Pointer to HBA context object.
* @piocbq: Pointer to command iocb.
* @sglq: Pointer to the scatter gather queue object.
*
* This routine converts the bpl or bde that is in the IOCB
* to a sgl list for the sli4 hardware. The physical address
* of the bpl/bde is converted back to a virtual address.
* If the IOCB contains a BPL then the list of BDE's is
* converted to sli4_sge's. If the IOCB contains a single
* BDE then it is converted to a single sli_sge.
* The IOCB is still in cpu endianess so the contents of
* the bpl can be used without byte swapping.
*
* Returns valid XRI = Success, NO_XRI = Failure.
**/
static uint16_t
lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
struct lpfc_sglq *sglq)
{
uint16_t xritag = NO_XRI;
struct ulp_bde64 *bpl = NULL;
struct ulp_bde64 bde;
struct sli4_sge *sgl = NULL;
struct lpfc_dmabuf *dmabuf;
IOCB_t *icmd;
int numBdes = 0;
int i = 0;
uint32_t offset = 0; /* accumulated offset in the sg request list */
int inbound = 0; /* number of sg reply entries inbound from firmware */
if (!piocbq || !sglq)
return xritag;
sgl = (struct sli4_sge *)sglq->sgl;
icmd = &piocbq->iocb;
if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
return sglq->sli4_xritag;
if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
numBdes = icmd->un.genreq64.bdl.bdeSize /
sizeof(struct ulp_bde64);
/* The addrHigh and addrLow fields within the IOCB
* have not been byteswapped yet so there is no
* need to swap them back.
*/
if (piocbq->context3)
dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
else
return xritag;
bpl = (struct ulp_bde64 *)dmabuf->virt;
if (!bpl)
return xritag;
for (i = 0; i < numBdes; i++) {
/* Should already be byte swapped. */
sgl->addr_hi = bpl->addrHigh;
sgl->addr_lo = bpl->addrLow;
sgl->word2 = le32_to_cpu(sgl->word2);
if ((i+1) == numBdes)
bf_set(lpfc_sli4_sge_last, sgl, 1);
else
bf_set(lpfc_sli4_sge_last, sgl, 0);
/* swap the size field back to the cpu so we
* can assign it to the sgl.
*/
bde.tus.w = le32_to_cpu(bpl->tus.w);
sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
/* The offsets in the sgl need to be accumulated
* separately for the request and reply lists.
* The request is always first, the reply follows.
*/
if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
/* add up the reply sg entries */
if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
inbound++;
/* first inbound? reset the offset */
if (inbound == 1)
offset = 0;
bf_set(lpfc_sli4_sge_offset, sgl, offset);
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
offset += bde.tus.f.bdeSize;
}
sgl->word2 = cpu_to_le32(sgl->word2);
bpl++;
sgl++;
}
} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
/* The addrHigh and addrLow fields of the BDE have not
* been byteswapped yet so they need to be swapped
* before putting them in the sgl.
*/
sgl->addr_hi =
cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
sgl->addr_lo =
cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 1);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len =
cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
}
return sglq->sli4_xritag;
}
/**
* lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry.
* @phba: Pointer to HBA context object.
* @iocbq: Pointer to command iocb.
* @wqe: Pointer to the work queue entry.
*
* This routine converts the iocb command to its Work Queue Entry
* equivalent. The wqe pointer should not have any fields set when
* this routine is called because it will memcpy over them.
* This routine does not set the CQ_ID or the WQEC bits in the
* wqe.
*
* Returns: 0 = Success, IOCB_ERROR = Failure.
**/
static int
lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
union lpfc_wqe128 *wqe)
{
uint32_t xmit_len = 0, total_len = 0;
uint8_t ct = 0;
uint32_t fip;
uint32_t abort_tag;
uint8_t command_type = ELS_COMMAND_NON_FIP;
uint8_t cmnd;
uint16_t xritag;
uint16_t abrt_iotag;
struct lpfc_iocbq *abrtiocbq;
struct ulp_bde64 *bpl = NULL;
uint32_t els_id = LPFC_ELS_ID_DEFAULT;
int numBdes, i;
struct ulp_bde64 bde;
struct lpfc_nodelist *ndlp;
uint32_t *pcmd;
uint32_t if_type;
fip = phba->hba_flag & HBA_FIP_SUPPORT;
/* The fcp commands will set command type */
if (iocbq->iocb_flag & LPFC_IO_FCP)
command_type = FCP_COMMAND;
else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
command_type = ELS_COMMAND_FIP;
else
command_type = ELS_COMMAND_NON_FIP;
if (phba->fcp_embed_io)
memset(wqe, 0, sizeof(union lpfc_wqe128));
/* Some of the fields are in the right position already */
memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
/* The ct field has moved so reset */
wqe->generic.wqe_com.word7 = 0;
wqe->generic.wqe_com.word10 = 0;
abort_tag = (uint32_t) iocbq->iotag;
xritag = iocbq->sli4_xritag;
/* words0-2 bpl convert bde */
if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
sizeof(struct ulp_bde64);
bpl = (struct ulp_bde64 *)
((struct lpfc_dmabuf *)iocbq->context3)->virt;
if (!bpl)
return IOCB_ERROR;
/* Should already be byte swapped. */
wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
/* swap the size field back to the cpu so we
* can assign it to the sgl.
*/
wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
xmit_len = wqe->generic.bde.tus.f.bdeSize;
total_len = 0;
for (i = 0; i < numBdes; i++) {
bde.tus.w = le32_to_cpu(bpl[i].tus.w);
total_len += bde.tus.f.bdeSize;
}
} else
xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
iocbq->iocb.ulpIoTag = iocbq->iotag;
cmnd = iocbq->iocb.ulpCommand;
switch (iocbq->iocb.ulpCommand) {
case CMD_ELS_REQUEST64_CR:
if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
ndlp = iocbq->context_un.ndlp;
else
ndlp = (struct lpfc_nodelist *)iocbq->context1;
if (!iocbq->iocb.ulpLe) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2007 Only Limited Edition cmd Format"
" supported 0x%x\n",
iocbq->iocb.ulpCommand);
return IOCB_ERROR;
}
wqe->els_req.payload_len = xmit_len;
/* Els_reguest64 has a TMO */
bf_set(wqe_tmo, &wqe->els_req.wqe_com,
iocbq->iocb.ulpTimeout);
/* Need a VF for word 4 set the vf bit*/
bf_set(els_req64_vf, &wqe->els_req, 0);
/* And a VFID for word 12 */
bf_set(els_req64_vfid, &wqe->els_req, 0);
ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
iocbq->iocb.ulpContext);
bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
/* CCP CCPE PV PRI in word10 were set in the memcpy */
if (command_type == ELS_COMMAND_FIP)
els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
>> LPFC_FIP_ELS_ID_SHIFT);
pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
iocbq->context2)->virt);
if_type = bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf);
if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
*pcmd == ELS_CMD_SCR ||
*pcmd == ELS_CMD_RDF ||
*pcmd == ELS_CMD_RSCN_XMT ||
*pcmd == ELS_CMD_FDISC ||
*pcmd == ELS_CMD_LOGO ||
*pcmd == ELS_CMD_PLOGI)) {
bf_set(els_req64_sp, &wqe->els_req, 1);
bf_set(els_req64_sid, &wqe->els_req,
iocbq->vport->fc_myDID);
if ((*pcmd == ELS_CMD_FLOGI) &&
!(phba->fc_topology ==
LPFC_TOPOLOGY_LOOP))
bf_set(els_req64_sid, &wqe->els_req, 0);
bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
phba->vpi_ids[iocbq->vport->vpi]);
} else if (pcmd && iocbq->context1) {
bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
}
}
bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
wqe->els_req.max_response_payload_len = total_len - xmit_len;
break;
case CMD_XMIT_SEQUENCE64_CX:
bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
iocbq->iocb.un.ulpWord[3]);
bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
iocbq->iocb.unsli3.rcvsli3.ox_id);
/* The entire sequence is transmitted for this IOCB */
xmit_len = total_len;
cmnd = CMD_XMIT_SEQUENCE64_CR;
if (phba->link_flag & LS_LOOPBACK_MODE)
bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
fallthrough;
case CMD_XMIT_SEQUENCE64_CR:
/* word3 iocb=io_tag32 wqe=reserved */
wqe->xmit_sequence.rsvd3 = 0;
/* word4 relative_offset memcpy */
/* word5 r_ctl/df_ctl memcpy */
bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
LPFC_WQE_IOD_WRITE);
bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
LPFC_WQE_LENLOC_WORD12);
bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
wqe->xmit_sequence.xmit_len = xmit_len;
command_type = OTHER_COMMAND;
break;
case CMD_XMIT_BCAST64_CN:
/* word3 iocb=iotag32 wqe=seq_payload_len */
wqe->xmit_bcast64.seq_payload_len = xmit_len;
/* word4 iocb=rsvd wqe=rsvd */
/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
LPFC_WQE_LENLOC_WORD3);
bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
break;
case CMD_FCP_IWRITE64_CR:
command_type = FCP_COMMAND_DATA_OUT;
/* word3 iocb=iotag wqe=payload_offset_len */
/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
bf_set(payload_offset_len, &wqe->fcp_iwrite,
xmit_len + sizeof(struct fcp_rsp));
bf_set(cmd_buff_len, &wqe->fcp_iwrite,
0);
/* word4 iocb=parameter wqe=total_xfer_length memcpy */
/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
iocbq->iocb.ulpFCP2Rcvy);
bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
/* Always open the exchange */
bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
LPFC_WQE_LENLOC_WORD4);
bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
if (iocbq->iocb_flag & LPFC_IO_OAS) {
bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
if (iocbq->priority) {
bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
(iocbq->priority << 1));
} else {
bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
(phba->cfg_XLanePriority << 1));
}
}
/* Note, word 10 is already initialized to 0 */
/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
if (phba->cfg_enable_pbde)
bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
else
bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
if (phba->fcp_embed_io) {
struct lpfc_io_buf *lpfc_cmd;
struct sli4_sge *sgl;
struct fcp_cmnd *fcp_cmnd;
uint32_t *ptr;
/* 128 byte wqe support here */
lpfc_cmd = iocbq->context1;
sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
fcp_cmnd = lpfc_cmd->fcp_cmnd;
/* Word 0-2 - FCP_CMND */
wqe->generic.bde.tus.f.bdeFlags =
BUFF_TYPE_BDE_IMMED;
wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
wqe->generic.bde.addrHigh = 0;
wqe->generic.bde.addrLow = 88; /* Word 22 */
bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
/* Word 22-29 FCP CMND Payload */
ptr = &wqe->words[22];
memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
}
break;
case CMD_FCP_IREAD64_CR:
/* word3 iocb=iotag wqe=payload_offset_len */
/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
bf_set(payload_offset_len, &wqe->fcp_iread,
xmit_len + sizeof(struct fcp_rsp));
bf_set(cmd_buff_len, &wqe->fcp_iread,
0);
/* word4 iocb=parameter wqe=total_xfer_length memcpy */
/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
iocbq->iocb.ulpFCP2Rcvy);
bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
/* Always open the exchange */
bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
LPFC_WQE_LENLOC_WORD4);
bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
if (iocbq->iocb_flag & LPFC_IO_OAS) {
bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
if (iocbq->priority) {
bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
(iocbq->priority << 1));
} else {
bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
(phba->cfg_XLanePriority << 1));
}
}
/* Note, word 10 is already initialized to 0 */
/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
if (phba->cfg_enable_pbde)
bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
else
bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
if (phba->fcp_embed_io) {
struct lpfc_io_buf *lpfc_cmd;
struct sli4_sge *sgl;
struct fcp_cmnd *fcp_cmnd;
uint32_t *ptr;
/* 128 byte wqe support here */
lpfc_cmd = iocbq->context1;
sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
fcp_cmnd = lpfc_cmd->fcp_cmnd;
/* Word 0-2 - FCP_CMND */
wqe->generic.bde.tus.f.bdeFlags =
BUFF_TYPE_BDE_IMMED;
wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
wqe->generic.bde.addrHigh = 0;
wqe->generic.bde.addrLow = 88; /* Word 22 */
bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
/* Word 22-29 FCP CMND Payload */
ptr = &wqe->words[22];
memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
}
break;
case CMD_FCP_ICMND64_CR:
/* word3 iocb=iotag wqe=payload_offset_len */
/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
bf_set(payload_offset_len, &wqe->fcp_icmd,
xmit_len + sizeof(struct fcp_rsp));
bf_set(cmd_buff_len, &wqe->fcp_icmd,
0);
/* word3 iocb=IO_TAG wqe=reserved */
bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
/* Always open the exchange */
bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
LPFC_WQE_LENLOC_NONE);
bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
iocbq->iocb.ulpFCP2Rcvy);
if (iocbq->iocb_flag & LPFC_IO_OAS) {
bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
if (iocbq->priority) {
bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
(iocbq->priority << 1));
} else {
bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
(phba->cfg_XLanePriority << 1));
}
}
/* Note, word 10 is already initialized to 0 */
if (phba->fcp_embed_io) {
struct lpfc_io_buf *lpfc_cmd;
struct sli4_sge *sgl;
struct fcp_cmnd *fcp_cmnd;
uint32_t *ptr;
/* 128 byte wqe support here */
lpfc_cmd = iocbq->context1;
sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
fcp_cmnd = lpfc_cmd->fcp_cmnd;
/* Word 0-2 - FCP_CMND */
wqe->generic.bde.tus.f.bdeFlags =
BUFF_TYPE_BDE_IMMED;
wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
wqe->generic.bde.addrHigh = 0;
wqe->generic.bde.addrLow = 88; /* Word 22 */
bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
/* Word 22-29 FCP CMND Payload */
ptr = &wqe->words[22];
memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
}
break;
case CMD_GEN_REQUEST64_CR:
/* For this command calculate the xmit length of the
* request bde.
*/
xmit_len = 0;
numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
sizeof(struct ulp_bde64);
for (i = 0; i < numBdes; i++) {
bde.tus.w = le32_to_cpu(bpl[i].tus.w);
if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
break;
xmit_len += bde.tus.f.bdeSize;
}
/* word3 iocb=IO_TAG wqe=request_payload_len */
wqe->gen_req.request_payload_len = xmit_len;
/* word4 iocb=parameter wqe=relative_offset memcpy */
/* word5 [rctl, type, df_ctl, la] copied in memcpy */
/* word6 context tag copied in memcpy */
if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2015 Invalid CT %x command 0x%x\n",
ct, iocbq->iocb.ulpCommand);
return IOCB_ERROR;
}
bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
wqe->gen_req.max_response_payload_len = total_len - xmit_len;
command_type = OTHER_COMMAND;
break;
case CMD_XMIT_ELS_RSP64_CX:
ndlp = (struct lpfc_nodelist *)iocbq->context1;
/* words0-2 BDE memcpy */
/* word3 iocb=iotag32 wqe=response_payload_len */
wqe->xmit_els_rsp.response_payload_len = xmit_len;
/* word4 */
wqe->xmit_els_rsp.word4 = 0;
/* word5 iocb=rsvd wge=did */
bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
iocbq->iocb.un.xseq64.xmit_els_remoteID);
if_type = bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf);
if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
if (iocbq->vport->fc_flag & FC_PT2PT) {
bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
iocbq->vport->fc_myDID);
if (iocbq->vport->fc_myDID == Fabric_DID) {
bf_set(wqe_els_did,
&wqe->xmit_els_rsp.wqe_dest, 0);
}
}
}
bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
iocbq->iocb.unsli3.rcvsli3.ox_id);
if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
phba->vpi_ids[iocbq->vport->vpi]);
bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
LPFC_WQE_LENLOC_WORD3);
bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
iocbq->context2)->virt);
if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
iocbq->vport->fc_myDID);
bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
phba->vpi_ids[phba->pport->vpi]);
}
command_type = OTHER_COMMAND;
break;
case CMD_CLOSE_XRI_CN:
case CMD_ABORT_XRI_CN:
case CMD_ABORT_XRI_CX:
/* words 0-2 memcpy should be 0 rserved */
/* port will send abts */
abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
} else
fip = 0;
if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
/*
* The link is down, or the command was ELS_FIP
* so the fw does not need to send abts
* on the wire.
*/
bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
else
bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
wqe->abort_cmd.rsrvd5 = 0;
bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
abort_tag = iocbq->iocb.un.acxri.abortIoTag;
/*
* The abort handler will send us CMD_ABORT_XRI_CN or
* CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
*/
bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
LPFC_WQE_LENLOC_NONE);
cmnd = CMD_ABORT_XRI_CX;
command_type = OTHER_COMMAND;
xritag = 0;
break;
case CMD_XMIT_BLS_RSP64_CX:
ndlp = (struct lpfc_nodelist *)iocbq->context1;
/* As BLS ABTS RSP WQE is very different from other WQEs,
* we re-construct this WQE here based on information in
* iocbq from scratch.
*/
memset(wqe, 0, sizeof(*wqe));
/* OX_ID is invariable to who sent ABTS to CT exchange */
bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
LPFC_ABTS_UNSOL_INT) {
/* ABTS sent by initiator to CT exchange, the
* RX_ID field will be filled with the newly
* allocated responder XRI.
*/
bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
iocbq->sli4_xritag);
} else {
/* ABTS sent by responder to CT exchange, the
* RX_ID field will be filled with the responder
* RX_ID from ABTS.
*/
bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
}
bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
/* Use CT=VPI */
bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
ndlp->nlp_DID);
bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
iocbq->iocb.ulpContext);
bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
phba->vpi_ids[phba->pport->vpi]);
bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
LPFC_WQE_LENLOC_NONE);
/* Overwrite the pre-set comnd type with OTHER_COMMAND */
command_type = OTHER_COMMAND;
if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
}
break;
case CMD_SEND_FRAME:
bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
return 0;
case CMD_XRI_ABORTED_CX:
case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
case CMD_FCP_TRSP64_CX: /* Target mode rcv */
case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2014 Invalid command 0x%x\n",
iocbq->iocb.ulpCommand);
return IOCB_ERROR;
}
if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
LPFC_IO_DIF_INSERT);
bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
wqe->generic.wqe_com.abort_tag = abort_tag;
bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
return 0;
}
/**
* __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
* @phba: Pointer to HBA context object.
* @ring_number: SLI ring number to issue wqe on.
* @piocb: Pointer to command iocb.
* @flag: Flag indicating if this command can be put into txq.
*
* __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
* send an iocb command to an HBA with SLI-4 interface spec.
*
* This function takes the hbalock before invoking the lockless version.
* The function will return success after it successfully submit the wqe to
* firmware or after adding to the txq.
**/
static int
__lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
struct lpfc_iocbq *piocb, uint32_t flag)
{
unsigned long iflags;
int rc;
spin_lock_irqsave(&phba->hbalock, iflags);
rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return rc;
}
/**
* __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
* @phba: Pointer to HBA context object.
* @ring_number: SLI ring number to issue wqe on.
* @piocb: Pointer to command iocb.
* @flag: Flag indicating if this command can be put into txq.
*
* __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
* an wqe command to an HBA with SLI-4 interface spec.
*
* This function is a lockless version. The function will return success
* after it successfully submit the wqe to firmware or after adding to the
* txq.
**/
static int
__lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
struct lpfc_iocbq *piocb, uint32_t flag)
{
int rc;
struct lpfc_io_buf *lpfc_cmd =
(struct lpfc_io_buf *)piocb->context1;
union lpfc_wqe128 *wqe = &piocb->wqe;
struct sli4_sge *sgl;
/* 128 byte wqe support here */
sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
if (phba->fcp_embed_io) {
struct fcp_cmnd *fcp_cmnd;
u32 *ptr;
fcp_cmnd = lpfc_cmd->fcp_cmnd;
/* Word 0-2 - FCP_CMND */
wqe->generic.bde.tus.f.bdeFlags =
BUFF_TYPE_BDE_IMMED;
wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
wqe->generic.bde.addrHigh = 0;
wqe->generic.bde.addrLow = 88; /* Word 22 */
bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
/* Word 22-29 FCP CMND Payload */
ptr = &wqe->words[22];
memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
} else {
/* Word 0-2 - Inline BDE */
wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
wqe->generic.bde.addrHigh = sgl->addr_hi;
wqe->generic.bde.addrLow = sgl->addr_lo;
/* Word 10 */
bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
}
rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
return rc;
}
/**
* __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
* @phba: Pointer to HBA context object.
* @ring_number: SLI ring number to issue iocb on.
* @piocb: Pointer to command iocb.
* @flag: Flag indicating if this command can be put into txq.
*
* __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
* an iocb command to an HBA with SLI-4 interface spec.
*
* This function is called with ringlock held. The function will return success
* after it successfully submit the iocb to firmware or after adding to the
* txq.
**/
static int
__lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
struct lpfc_iocbq *piocb, uint32_t flag)
{
struct lpfc_sglq *sglq;
union lpfc_wqe128 wqe;
struct lpfc_queue *wq;
struct lpfc_sli_ring *pring;
/* Get the WQ */
if ((piocb->iocb_flag & LPFC_IO_FCP) ||
(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
} else {
wq = phba->sli4_hba.els_wq;
}
/* Get corresponding ring */
pring = wq->pring;
/*
* The WQE can be either 64 or 128 bytes,
*/
lockdep_assert_held(&pring->ring_lock);
if (piocb->sli4_xritag == NO_XRI) {
if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
sglq = NULL;
else {
if (!list_empty(&pring->txq)) {
if (!(flag & SLI_IOCB_RET_IOCB)) {
__lpfc_sli_ringtx_put(phba,
pring, piocb);
return IOCB_SUCCESS;
} else {
return IOCB_BUSY;
}
} else {
sglq = __lpfc_sli_get_els_sglq(phba, piocb);
if (!sglq) {
if (!(flag & SLI_IOCB_RET_IOCB)) {
__lpfc_sli_ringtx_put(phba,
pring,
piocb);
return IOCB_SUCCESS;
} else
return IOCB_BUSY;
}
}
}
} else if (piocb->iocb_flag & LPFC_IO_FCP) {
/* These IO's already have an XRI and a mapped sgl. */
sglq = NULL;
}
else {
/*
* This is a continuation of a commandi,(CX) so this
* sglq is on the active list
*/
sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
if (!sglq)
return IOCB_ERROR;
}
if (sglq) {
piocb->sli4_lxritag = sglq->sli4_lxritag;
piocb->sli4_xritag = sglq->sli4_xritag;
if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
return IOCB_ERROR;
}
if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
return IOCB_ERROR;
if (lpfc_sli4_wq_put(wq, &wqe))
return IOCB_ERROR;
lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
return 0;
}
/*
* lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
*
* This routine wraps the actual fcp i/o function for issusing WQE for sli-4
* or IOCB for sli-3 function.
* pointer from the lpfc_hba struct.
*
* Return codes:
* IOCB_ERROR - Error
* IOCB_SUCCESS - Success
* IOCB_BUSY - Busy
**/
int
lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
struct lpfc_iocbq *piocb, uint32_t flag)
{
return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
}
/*
* __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
*
* This routine wraps the actual lockless version for issusing IOCB function
* pointer from the lpfc_hba struct.
*
* Return codes:
* IOCB_ERROR - Error
* IOCB_SUCCESS - Success
* IOCB_BUSY - Busy
**/
int
__lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
struct lpfc_iocbq *piocb, uint32_t flag)
{
return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
}
/**
* lpfc_sli_api_table_setup - Set up sli api function jump table
* @phba: The hba struct for which this call is being executed.
* @dev_grp: The HBA PCI-Device group number.
*
* This routine sets up the SLI interface API function jump table in @phba
* struct.
* Returns: 0 - success, -ENODEV - failure.
**/
int
lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
{
switch (dev_grp) {
case LPFC_PCI_DEV_LP:
phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
break;
case LPFC_PCI_DEV_OC:
phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1419 Invalid HBA PCI-device group: 0x%x\n",
dev_grp);
return -ENODEV;
}
phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
return 0;
}
/**
* lpfc_sli4_calc_ring - Calculates which ring to use
* @phba: Pointer to HBA context object.
* @piocb: Pointer to command iocb.
*
* For SLI4 only, FCP IO can deferred to one fo many WQs, based on
* hba_wqidx, thus we need to calculate the corresponding ring.
* Since ABORTS must go on the same WQ of the command they are
* aborting, we use command's hba_wqidx.
*/
struct lpfc_sli_ring *
lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
{
struct lpfc_io_buf *lpfc_cmd;
if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
if (unlikely(!phba->sli4_hba.hdwq))
return NULL;
/*
* for abort iocb hba_wqidx should already
* be setup based on what work queue we used.
*/
if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
piocb->hba_wqidx = lpfc_cmd->hdwq_no;
}
return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
} else {
if (unlikely(!phba->sli4_hba.els_wq))
return NULL;
piocb->hba_wqidx = 0;
return phba->sli4_hba.els_wq->pring;
}
}
/**
* lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
* @phba: Pointer to HBA context object.
* @ring_number: Ring number
* @piocb: Pointer to command iocb.
* @flag: Flag indicating if this command can be put into txq.
*
* lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
* function. This function gets the hbalock and calls
* __lpfc_sli_issue_iocb function and will return the error returned
* by __lpfc_sli_issue_iocb function. This wrapper is used by
* functions which do not hold hbalock.
**/
int
lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
struct lpfc_iocbq *piocb, uint32_t flag)
{
struct lpfc_sli_ring *pring;
struct lpfc_queue *eq;
unsigned long iflags;
int rc;
if (phba->sli_rev == LPFC_SLI_REV4) {
eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
pring = lpfc_sli4_calc_ring(phba, piocb);
if (unlikely(pring == NULL))
return IOCB_ERROR;
spin_lock_irqsave(&pring->ring_lock, iflags);
rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
} else {
/* For now, SLI2/3 will still use hbalock */
spin_lock_irqsave(&phba->hbalock, iflags);
rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
spin_unlock_irqrestore(&phba->hbalock, iflags);
}
return rc;
}
/**
* lpfc_extra_ring_setup - Extra ring setup function
* @phba: Pointer to HBA context object.
*
* This function is called while driver attaches with the
* HBA to setup the extra ring. The extra ring is used
* only when driver needs to support target mode functionality
* or IP over FC functionalities.
*
* This function is called with no lock held. SLI3 only.
**/
static int
lpfc_extra_ring_setup( struct lpfc_hba *phba)
{
struct lpfc_sli *psli;
struct lpfc_sli_ring *pring;
psli = &phba->sli;
/* Adjust cmd/rsp ring iocb entries more evenly */
/* Take some away from the FCP ring */
pring = &psli->sli3_ring[LPFC_FCP_RING];
pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
/* and give them to the extra ring */
pring = &psli->sli3_ring[LPFC_EXTRA_RING];
pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
/* Setup default profile for this ring */
pring->iotag_max = 4096;
pring->num_mask = 1;
pring->prt[0].profile = 0; /* Mask 0 */
pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
pring->prt[0].type = phba->cfg_multi_ring_type;
pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
return 0;
}
static void
lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
struct lpfc_nodelist *ndlp)
{
unsigned long iflags;
struct lpfc_work_evt *evtp = &ndlp->recovery_evt;
spin_lock_irqsave(&phba->hbalock, iflags);
if (!list_empty(&evtp->evt_listp)) {
spin_unlock_irqrestore(&phba->hbalock, iflags);
return;
}
/* Incrementing the reference count until the queued work is done. */
evtp->evt_arg1 = lpfc_nlp_get(ndlp);
if (!evtp->evt_arg1) {
spin_unlock_irqrestore(&phba->hbalock, iflags);
return;
}
evtp->evt = LPFC_EVT_RECOVER_PORT;
list_add_tail(&evtp->evt_listp, &phba->work_list);
spin_unlock_irqrestore(&phba->hbalock, iflags);
lpfc_worker_wake_up(phba);
}
/* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
* @phba: Pointer to HBA context object.
* @iocbq: Pointer to iocb object.
*
* The async_event handler calls this routine when it receives
* an ASYNC_STATUS_CN event from the port. The port generates
* this event when an Abort Sequence request to an rport fails
* twice in succession. The abort could be originated by the
* driver or by the port. The ABTS could have been for an ELS
* or FCP IO. The port only generates this event when an ABTS
* fails to complete after one retry.
*/
static void
lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
struct lpfc_iocbq *iocbq)
{
struct lpfc_nodelist *ndlp = NULL;
uint16_t rpi = 0, vpi = 0;
struct lpfc_vport *vport = NULL;
/* The rpi in the ulpContext is vport-sensitive. */
vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
rpi = iocbq->iocb.ulpContext;
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3092 Port generated ABTS async event "
"on vpi %d rpi %d status 0x%x\n",
vpi, rpi, iocbq->iocb.ulpStatus);
vport = lpfc_find_vport_by_vpid(phba, vpi);
if (!vport)
goto err_exit;
ndlp = lpfc_findnode_rpi(vport, rpi);
if (!ndlp)
goto err_exit;
if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
lpfc_sli_abts_recover_port(vport, ndlp);
return;
err_exit:
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3095 Event Context not found, no "
"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
vpi, rpi);
}
/* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
* @phba: pointer to HBA context object.
* @ndlp: nodelist pointer for the impacted rport.
* @axri: pointer to the wcqe containing the failed exchange.
*
* The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
* port. The port generates this event when an abort exchange request to an
* rport fails twice in succession with no reply. The abort could be originated
* by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
*/
void
lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
struct lpfc_nodelist *ndlp,
struct sli4_wcqe_xri_aborted *axri)
{
uint32_t ext_status = 0;
if (!ndlp) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3115 Node Context not found, driver "
"ignoring abts err event\n");
return;
}
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"3116 Port generated FCP XRI ABORT event on "
"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
bf_get(lpfc_wcqe_xa_xri, axri),
bf_get(lpfc_wcqe_xa_status, axri),
axri->parameter);
/*
* Catch the ABTS protocol failure case. Older OCe FW releases returned
* LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
* LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
*/
ext_status = axri->parameter & IOERR_PARAM_MASK;
if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
lpfc_sli_post_recovery_event(phba, ndlp);
}
/**
* lpfc_sli_async_event_handler - ASYNC iocb handler function
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @iocbq: Pointer to iocb object.
*
* This function is called by the slow ring event handler
* function when there is an ASYNC event iocb in the ring.
* This function is called with no lock held.
* Currently this function handles only temperature related
* ASYNC events. The function decodes the temperature sensor
* event message and posts events for the management applications.
**/
static void
lpfc_sli_async_event_handler(struct lpfc_hba * phba,
struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
{
IOCB_t *icmd;
uint16_t evt_code;
struct temp_event temp_event_data;
struct Scsi_Host *shost;
uint32_t *iocb_w;
icmd = &iocbq->iocb;
evt_code = icmd->un.asyncstat.evt_code;
switch (evt_code) {
case ASYNC_TEMP_WARN:
case ASYNC_TEMP_SAFE:
temp_event_data.data = (uint32_t) icmd->ulpContext;
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
if (evt_code == ASYNC_TEMP_WARN) {
temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0347 Adapter is very hot, please take "
"corrective action. temperature : %d Celsius\n",
(uint32_t) icmd->ulpContext);
} else {
temp_event_data.event_code = LPFC_NORMAL_TEMP;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0340 Adapter temperature is OK now. "
"temperature : %d Celsius\n",
(uint32_t) icmd->ulpContext);
}
/* Send temperature change event to applications */
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data), (char *) &temp_event_data,
LPFC_NL_VENDOR_ID);
break;
case ASYNC_STATUS_CN:
lpfc_sli_abts_err_handler(phba, iocbq);
break;
default:
iocb_w = (uint32_t *) icmd;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0346 Ring %d handler: unexpected ASYNC_STATUS"
" evt_code 0x%x\n"
"W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
"W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
"W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
pring->ringno, icmd->un.asyncstat.evt_code,
iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
break;
}
}
/**
* lpfc_sli4_setup - SLI ring setup function
* @phba: Pointer to HBA context object.
*
* lpfc_sli_setup sets up rings of the SLI interface with
* number of iocbs per ring and iotags. This function is
* called while driver attach to the HBA and before the
* interrupts are enabled. So there is no need for locking.
*
* This function always returns 0.
**/
int
lpfc_sli4_setup(struct lpfc_hba *phba)
{
struct lpfc_sli_ring *pring;
pring = phba->sli4_hba.els_wq->pring;
pring->num_mask = LPFC_MAX_RING_MASK;
pring->prt[0].profile = 0; /* Mask 0 */
pring->prt[0].rctl = FC_RCTL_ELS_REQ;
pring->prt[0].type = FC_TYPE_ELS;
pring->prt[0].lpfc_sli_rcv_unsol_event =
lpfc_els_unsol_event;
pring->prt[1].profile = 0; /* Mask 1 */
pring->prt[1].rctl = FC_RCTL_ELS_REP;
pring->prt[1].type = FC_TYPE_ELS;
pring->prt[1].lpfc_sli_rcv_unsol_event =
lpfc_els_unsol_event;
pring->prt[2].profile = 0; /* Mask 2 */
/* NameServer Inquiry */
pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
/* NameServer */
pring->prt[2].type = FC_TYPE_CT;
pring->prt[2].lpfc_sli_rcv_unsol_event =
lpfc_ct_unsol_event;
pring->prt[3].profile = 0; /* Mask 3 */
/* NameServer response */
pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
/* NameServer */
pring->prt[3].type = FC_TYPE_CT;
pring->prt[3].lpfc_sli_rcv_unsol_event =
lpfc_ct_unsol_event;
return 0;
}
/**
* lpfc_sli_setup - SLI ring setup function
* @phba: Pointer to HBA context object.
*
* lpfc_sli_setup sets up rings of the SLI interface with
* number of iocbs per ring and iotags. This function is
* called while driver attach to the HBA and before the
* interrupts are enabled. So there is no need for locking.
*
* This function always returns 0. SLI3 only.
**/
int
lpfc_sli_setup(struct lpfc_hba *phba)
{
int i, totiocbsize = 0;
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
psli->sli_flag = 0;
psli->iocbq_lookup = NULL;
psli->iocbq_lookup_len = 0;
psli->last_iotag = 0;
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
switch (i) {
case LPFC_FCP_RING: /* ring 0 - FCP */
/* numCiocb and numRiocb are used in config_port */
pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
pring->sli.sli3.numCiocb +=
SLI2_IOCB_CMD_R1XTRA_ENTRIES;
pring->sli.sli3.numRiocb +=
SLI2_IOCB_RSP_R1XTRA_ENTRIES;
pring->sli.sli3.numCiocb +=
SLI2_IOCB_CMD_R3XTRA_ENTRIES;
pring->sli.sli3.numRiocb +=
SLI2_IOCB_RSP_R3XTRA_ENTRIES;
pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
SLI3_IOCB_CMD_SIZE :
SLI2_IOCB_CMD_SIZE;
pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
SLI3_IOCB_RSP_SIZE :
SLI2_IOCB_RSP_SIZE;
pring->iotag_ctr = 0;
pring->iotag_max =
(phba->cfg_hba_queue_depth * 2);
pring->fast_iotag = pring->iotag_max;
pring->num_mask = 0;
break;
case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
/* numCiocb and numRiocb are used in config_port */
pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
SLI3_IOCB_CMD_SIZE :
SLI2_IOCB_CMD_SIZE;
pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
SLI3_IOCB_RSP_SIZE :
SLI2_IOCB_RSP_SIZE;
pring->iotag_max = phba->cfg_hba_queue_depth;
pring->num_mask = 0;
break;
case LPFC_ELS_RING: /* ring 2 - ELS / CT */
/* numCiocb and numRiocb are used in config_port */
pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
SLI3_IOCB_CMD_SIZE :
SLI2_IOCB_CMD_SIZE;
pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
SLI3_IOCB_RSP_SIZE :
SLI2_IOCB_RSP_SIZE;
pring->fast_iotag = 0;
pring->iotag_ctr = 0;
pring->iotag_max = 4096;
pring->lpfc_sli_rcv_async_status =
lpfc_sli_async_event_handler;
pring->num_mask = LPFC_MAX_RING_MASK;
pring->prt[0].profile = 0; /* Mask 0 */
pring->prt[0].rctl = FC_RCTL_ELS_REQ;
pring->prt[0].type = FC_TYPE_ELS;
pring->prt[0].lpfc_sli_rcv_unsol_event =
lpfc_els_unsol_event;
pring->prt[1].profile = 0; /* Mask 1 */
pring->prt[1].rctl = FC_RCTL_ELS_REP;
pring->prt[1].type = FC_TYPE_ELS;
pring->prt[1].lpfc_sli_rcv_unsol_event =
lpfc_els_unsol_event;
pring->prt[2].profile = 0; /* Mask 2 */
/* NameServer Inquiry */
pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
/* NameServer */
pring->prt[2].type = FC_TYPE_CT;
pring->prt[2].lpfc_sli_rcv_unsol_event =
lpfc_ct_unsol_event;
pring->prt[3].profile = 0; /* Mask 3 */
/* NameServer response */
pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
/* NameServer */
pring->prt[3].type = FC_TYPE_CT;
pring->prt[3].lpfc_sli_rcv_unsol_event =
lpfc_ct_unsol_event;
break;
}
totiocbsize += (pring->sli.sli3.numCiocb *
pring->sli.sli3.sizeCiocb) +
(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
}
if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
/* Too many cmd / rsp ring entries in SLI2 SLIM */
printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
"SLI2 SLIM Data: x%x x%lx\n",
phba->brd_no, totiocbsize,
(unsigned long) MAX_SLIM_IOCB_SIZE);
}
if (phba->cfg_multi_ring_support == 2)
lpfc_extra_ring_setup(phba);
return 0;
}
/**
* lpfc_sli4_queue_init - Queue initialization function
* @phba: Pointer to HBA context object.
*
* lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
* ring. This function also initializes ring indices of each ring.
* This function is called during the initialization of the SLI
* interface of an HBA.
* This function is called with no lock held and always returns
* 1.
**/
void
lpfc_sli4_queue_init(struct lpfc_hba *phba)
{
struct lpfc_sli *psli;
struct lpfc_sli_ring *pring;
int i;
psli = &phba->sli;
spin_lock_irq(&phba->hbalock);
INIT_LIST_HEAD(&psli->mboxq);
INIT_LIST_HEAD(&psli->mboxq_cmpl);
/* Initialize list headers for txq and txcmplq as double linked lists */
for (i = 0; i < phba->cfg_hdw_queue; i++) {
pring = phba->sli4_hba.hdwq[i].io_wq->pring;
pring->flag = 0;
pring->ringno = LPFC_FCP_RING;
pring->txcmplq_cnt = 0;
INIT_LIST_HEAD(&pring->txq);
INIT_LIST_HEAD(&pring->txcmplq);
INIT_LIST_HEAD(&pring->iocb_continueq);
spin_lock_init(&pring->ring_lock);
}
pring = phba->sli4_hba.els_wq->pring;
pring->flag = 0;
pring->ringno = LPFC_ELS_RING;
pring->txcmplq_cnt = 0;
INIT_LIST_HEAD(&pring->txq);
INIT_LIST_HEAD(&pring->txcmplq);
INIT_LIST_HEAD(&pring->iocb_continueq);
spin_lock_init(&pring->ring_lock);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
pring = phba->sli4_hba.nvmels_wq->pring;
pring->flag = 0;
pring->ringno = LPFC_ELS_RING;
pring->txcmplq_cnt = 0;
INIT_LIST_HEAD(&pring->txq);
INIT_LIST_HEAD(&pring->txcmplq);
INIT_LIST_HEAD(&pring->iocb_continueq);
spin_lock_init(&pring->ring_lock);
}
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli_queue_init - Queue initialization function
* @phba: Pointer to HBA context object.
*
* lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
* ring. This function also initializes ring indices of each ring.
* This function is called during the initialization of the SLI
* interface of an HBA.
* This function is called with no lock held and always returns
* 1.
**/
void
lpfc_sli_queue_init(struct lpfc_hba *phba)
{
struct lpfc_sli *psli;
struct lpfc_sli_ring *pring;
int i;
psli = &phba->sli;
spin_lock_irq(&phba->hbalock);
INIT_LIST_HEAD(&psli->mboxq);
INIT_LIST_HEAD(&psli->mboxq_cmpl);
/* Initialize list headers for txq and txcmplq as double linked lists */
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
pring->ringno = i;
pring->sli.sli3.next_cmdidx = 0;
pring->sli.sli3.local_getidx = 0;
pring->sli.sli3.cmdidx = 0;
INIT_LIST_HEAD(&pring->iocb_continueq);
INIT_LIST_HEAD(&pring->iocb_continue_saveq);
INIT_LIST_HEAD(&pring->postbufq);
pring->flag = 0;
INIT_LIST_HEAD(&pring->txq);
INIT_LIST_HEAD(&pring->txcmplq);
spin_lock_init(&pring->ring_lock);
}
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
* @phba: Pointer to HBA context object.
*
* This routine flushes the mailbox command subsystem. It will unconditionally
* flush all the mailbox commands in the three possible stages in the mailbox
* command sub-system: pending mailbox command queue; the outstanding mailbox
* command; and completed mailbox command queue. It is caller's responsibility
* to make sure that the driver is in the proper state to flush the mailbox
* command sub-system. Namely, the posting of mailbox commands into the
* pending mailbox command queue from the various clients must be stopped;
* either the HBA is in a state that it will never works on the outstanding
* mailbox command (such as in EEH or ERATT conditions) or the outstanding
* mailbox command has been completed.
**/
static void
lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
{
LIST_HEAD(completions);
struct lpfc_sli *psli = &phba->sli;
LPFC_MBOXQ_t *pmb;
unsigned long iflag;
/* Disable softirqs, including timers from obtaining phba->hbalock */
local_bh_disable();
/* Flush all the mailbox commands in the mbox system */
spin_lock_irqsave(&phba->hbalock, iflag);
/* The pending mailbox command queue */
list_splice_init(&phba->sli.mboxq, &completions);
/* The outstanding active mailbox command */
if (psli->mbox_active) {
list_add_tail(&psli->mbox_active->list, &completions);
psli->mbox_active = NULL;
psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
}
/* The completed mailbox command queue */
list_splice_init(&phba->sli.mboxq_cmpl, &completions);
spin_unlock_irqrestore(&phba->hbalock, iflag);
/* Enable softirqs again, done with phba->hbalock */
local_bh_enable();
/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
while (!list_empty(&completions)) {
list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
if (pmb->mbox_cmpl)
pmb->mbox_cmpl(phba, pmb);
}
}
/**
* lpfc_sli_host_down - Vport cleanup function
* @vport: Pointer to virtual port object.
*
* lpfc_sli_host_down is called to clean up the resources
* associated with a vport before destroying virtual
* port data structures.
* This function does following operations:
* - Free discovery resources associated with this virtual
* port.
* - Free iocbs associated with this virtual port in
* the txq.
* - Send abort for all iocb commands associated with this
* vport in txcmplq.
*
* This function is called with no lock held and always returns 1.
**/
int
lpfc_sli_host_down(struct lpfc_vport *vport)
{
LIST_HEAD(completions);
struct lpfc_hba *phba = vport->phba;
struct lpfc_sli *psli = &phba->sli;
struct lpfc_queue *qp = NULL;
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *iocb, *next_iocb;
int i;
unsigned long flags = 0;
uint16_t prev_pring_flag;
lpfc_cleanup_discovery_resources(vport);
spin_lock_irqsave(&phba->hbalock, flags);
/*
* Error everything on the txq since these iocbs
* have not been given to the FW yet.
* Also issue ABTS for everything on the txcmplq
*/
if (phba->sli_rev != LPFC_SLI_REV4) {
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
prev_pring_flag = pring->flag;
/* Only slow rings */
if (pring->ringno == LPFC_ELS_RING) {
pring->flag |= LPFC_DEFERRED_RING_EVENT;
/* Set the lpfc data pending flag */
set_bit(LPFC_DATA_READY, &phba->data_flags);
}
list_for_each_entry_safe(iocb, next_iocb,
&pring->txq, list) {
if (iocb->vport != vport)
continue;
list_move_tail(&iocb->list, &completions);
}
list_for_each_entry_safe(iocb, next_iocb,
&pring->txcmplq, list) {
if (iocb->vport != vport)
continue;
lpfc_sli_issue_abort_iotag(phba, pring, iocb,
NULL);
}
pring->flag = prev_pring_flag;
}
} else {
list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
pring = qp->pring;
if (!pring)
continue;
if (pring == phba->sli4_hba.els_wq->pring) {
pring->flag |= LPFC_DEFERRED_RING_EVENT;
/* Set the lpfc data pending flag */
set_bit(LPFC_DATA_READY, &phba->data_flags);
}
prev_pring_flag = pring->flag;
spin_lock(&pring->ring_lock);
list_for_each_entry_safe(iocb, next_iocb,
&pring->txq, list) {
if (iocb->vport != vport)
continue;
list_move_tail(&iocb->list, &completions);
}
spin_unlock(&pring->ring_lock);
list_for_each_entry_safe(iocb, next_iocb,
&pring->txcmplq, list) {
if (iocb->vport != vport)
continue;
lpfc_sli_issue_abort_iotag(phba, pring, iocb,
NULL);
}
pring->flag = prev_pring_flag;
}
}
spin_unlock_irqrestore(&phba->hbalock, flags);
/* Make sure HBA is alive */
lpfc_issue_hb_tmo(phba);
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
IOERR_SLI_DOWN);
return 1;
}
/**
* lpfc_sli_hba_down - Resource cleanup function for the HBA
* @phba: Pointer to HBA context object.
*
* This function cleans up all iocb, buffers, mailbox commands
* while shutting down the HBA. This function is called with no
* lock held and always returns 1.
* This function does the following to cleanup driver resources:
* - Free discovery resources for each virtual port
* - Cleanup any pending fabric iocbs
* - Iterate through the iocb txq and free each entry
* in the list.
* - Free up any buffer posted to the HBA
* - Free mailbox commands in the mailbox queue.
**/
int
lpfc_sli_hba_down(struct lpfc_hba *phba)
{
LIST_HEAD(completions);
struct lpfc_sli *psli = &phba->sli;
struct lpfc_queue *qp = NULL;
struct lpfc_sli_ring *pring;
struct lpfc_dmabuf *buf_ptr;
unsigned long flags = 0;
int i;
/* Shutdown the mailbox command sub-system */
lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
lpfc_hba_down_prep(phba);
/* Disable softirqs, including timers from obtaining phba->hbalock */
local_bh_disable();
lpfc_fabric_abort_hba(phba);
spin_lock_irqsave(&phba->hbalock, flags);
/*
* Error everything on the txq since these iocbs
* have not been given to the FW yet.
*/
if (phba->sli_rev != LPFC_SLI_REV4) {
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
/* Only slow rings */
if (pring->ringno == LPFC_ELS_RING) {
pring->flag |= LPFC_DEFERRED_RING_EVENT;
/* Set the lpfc data pending flag */
set_bit(LPFC_DATA_READY, &phba->data_flags);
}
list_splice_init(&pring->txq, &completions);
}
} else {
list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
pring = qp->pring;
if (!pring)
continue;
spin_lock(&pring->ring_lock);
list_splice_init(&pring->txq, &completions);
spin_unlock(&pring->ring_lock);
if (pring == phba->sli4_hba.els_wq->pring) {
pring->flag |= LPFC_DEFERRED_RING_EVENT;
/* Set the lpfc data pending flag */
set_bit(LPFC_DATA_READY, &phba->data_flags);
}
}
}
spin_unlock_irqrestore(&phba->hbalock, flags);
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
IOERR_SLI_DOWN);
spin_lock_irqsave(&phba->hbalock, flags);
list_splice_init(&phba->elsbuf, &completions);
phba->elsbuf_cnt = 0;
phba->elsbuf_prev_cnt = 0;
spin_unlock_irqrestore(&phba->hbalock, flags);
while (!list_empty(&completions)) {
list_remove_head(&completions, buf_ptr,
struct lpfc_dmabuf, list);
lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
kfree(buf_ptr);
}
/* Enable softirqs again, done with phba->hbalock */
local_bh_enable();
/* Return any active mbox cmds */
del_timer_sync(&psli->mbox_tmo);
spin_lock_irqsave(&phba->pport->work_port_lock, flags);
phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
return 1;
}
/**
* lpfc_sli_pcimem_bcopy - SLI memory copy function
* @srcp: Source memory pointer.
* @destp: Destination memory pointer.
* @cnt: Number of words required to be copied.
*
* This function is used for copying data between driver memory
* and the SLI memory. This function also changes the endianness
* of each word if native endianness is different from SLI
* endianness. This function can be called with or without
* lock.
**/
void
lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
{
uint32_t *src = srcp;
uint32_t *dest = destp;
uint32_t ldata;
int i;
for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
ldata = *src;
ldata = le32_to_cpu(ldata);
*dest = ldata;
src++;
dest++;
}
}
/**
* lpfc_sli_bemem_bcopy - SLI memory copy function
* @srcp: Source memory pointer.
* @destp: Destination memory pointer.
* @cnt: Number of words required to be copied.
*
* This function is used for copying data between a data structure
* with big endian representation to local endianness.
* This function can be called with or without lock.
**/
void
lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
{
uint32_t *src = srcp;
uint32_t *dest = destp;
uint32_t ldata;
int i;
for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
ldata = *src;
ldata = be32_to_cpu(ldata);
*dest = ldata;
src++;
dest++;
}
}
/**
* lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @mp: Pointer to driver buffer object.
*
* This function is called with no lock held.
* It always return zero after adding the buffer to the postbufq
* buffer list.
**/
int
lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_dmabuf *mp)
{
/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
later */
spin_lock_irq(&phba->hbalock);
list_add_tail(&mp->list, &pring->postbufq);
pring->postbufq_cnt++;
spin_unlock_irq(&phba->hbalock);
return 0;
}
/**
* lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
* @phba: Pointer to HBA context object.
*
* When HBQ is enabled, buffers are searched based on tags. This function
* allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
* tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
* does not conflict with tags of buffer posted for unsolicited events.
* The function returns the allocated tag. The function is called with
* no locks held.
**/
uint32_t
lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
{
spin_lock_irq(&phba->hbalock);
phba->buffer_tag_count++;
/*
* Always set the QUE_BUFTAG_BIT to distiguish between
* a tag assigned by HBQ.
*/
phba->buffer_tag_count |= QUE_BUFTAG_BIT;
spin_unlock_irq(&phba->hbalock);
return phba->buffer_tag_count;
}
/**
* lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @tag: Buffer tag.
*
* Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
* list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
* iocb is posted to the response ring with the tag of the buffer.
* This function searches the pring->postbufq list using the tag
* to find buffer associated with CMD_IOCB_RET_XRI64_CX
* iocb. If the buffer is found then lpfc_dmabuf object of the
* buffer is returned to the caller else NULL is returned.
* This function is called with no lock held.
**/
struct lpfc_dmabuf *
lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
uint32_t tag)
{
struct lpfc_dmabuf *mp, *next_mp;
struct list_head *slp = &pring->postbufq;
/* Search postbufq, from the beginning, looking for a match on tag */
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
if (mp->buffer_tag == tag) {
list_del_init(&mp->list);
pring->postbufq_cnt--;
spin_unlock_irq(&phba->hbalock);
return mp;
}
}
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0402 Cannot find virtual addr for buffer tag on "
"ring %d Data x%lx x%px x%px x%x\n",
pring->ringno, (unsigned long) tag,
slp->next, slp->prev, pring->postbufq_cnt);
return NULL;
}
/**
* lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @phys: DMA address of the buffer.
*
* This function searches the buffer list using the dma_address
* of unsolicited event to find the driver's lpfc_dmabuf object
* corresponding to the dma_address. The function returns the
* lpfc_dmabuf object if a buffer is found else it returns NULL.
* This function is called by the ct and els unsolicited event
* handlers to get the buffer associated with the unsolicited
* event.
*
* This function is called with no lock held.
**/
struct lpfc_dmabuf *
lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
dma_addr_t phys)
{
struct lpfc_dmabuf *mp, *next_mp;
struct list_head *slp = &pring->postbufq;
/* Search postbufq, from the beginning, looking for a match on phys */
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
if (mp->phys == phys) {
list_del_init(&mp->list);
pring->postbufq_cnt--;
spin_unlock_irq(&phba->hbalock);
return mp;
}
}
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0410 Cannot find virtual addr for mapped buf on "
"ring %d Data x%llx x%px x%px x%x\n",
pring->ringno, (unsigned long long)phys,
slp->next, slp->prev, pring->postbufq_cnt);
return NULL;
}
/**
* lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
* @phba: Pointer to HBA context object.
* @cmdiocb: Pointer to driver command iocb object.
* @rspiocb: Pointer to driver response iocb object.
*
* This function is the completion handler for the abort iocbs for
* ELS commands. This function is called from the ELS ring event
* handler with no lock held. This function frees memory resources
* associated with the abort iocb.
**/
static void
lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_iocbq *rspiocb)
{
IOCB_t *irsp = &rspiocb->iocb;
uint16_t abort_iotag, abort_context;
struct lpfc_iocbq *abort_iocb = NULL;
if (irsp->ulpStatus) {
/*
* Assume that the port already completed and returned, or
* will return the iocb. Just Log the message.
*/
abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
spin_lock_irq(&phba->hbalock);
if (phba->sli_rev < LPFC_SLI_REV4) {
if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
spin_unlock_irq(&phba->hbalock);
goto release_iocb;
}
if (abort_iotag != 0 &&
abort_iotag <= phba->sli.last_iotag)
abort_iocb =
phba->sli.iocbq_lookup[abort_iotag];
} else
/* For sli4 the abort_tag is the XRI,
* so the abort routine puts the iotag of the iocb
* being aborted in the context field of the abort
* IOCB.
*/
abort_iocb = phba->sli.iocbq_lookup[abort_context];
lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
"0327 Cannot abort els iocb x%px "
"with tag %x context %x, abort status %x, "
"abort code %x\n",
abort_iocb, abort_iotag, abort_context,
irsp->ulpStatus, irsp->un.ulpWord[4]);
spin_unlock_irq(&phba->hbalock);
}
release_iocb:
lpfc_sli_release_iocbq(phba, cmdiocb);
return;
}
/**
* lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
* @phba: Pointer to HBA context object.
* @cmdiocb: Pointer to driver command iocb object.
* @rspiocb: Pointer to driver response iocb object.
*
* The function is called from SLI ring event handler with no
* lock held. This function is the completion handler for ELS commands
* which are aborted. The function frees memory resources used for
* the aborted ELS commands.
**/
void
lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_iocbq *rspiocb)
{
IOCB_t *irsp = &rspiocb->iocb;
/* ELS cmd tag <ulpIoTag> completes */
lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
"0139 Ignoring ELS cmd tag x%x completion Data: "
"x%x x%x x%x\n",
irsp->ulpIoTag, irsp->ulpStatus,
irsp->un.ulpWord[4], irsp->ulpTimeout);
lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1);
if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
lpfc_ct_free_iocb(phba, cmdiocb);
else
lpfc_els_free_iocb(phba, cmdiocb);
}
/**
* lpfc_sli_issue_abort_iotag - Abort function for a command iocb
* @phba: Pointer to HBA context object.
* @pring: Pointer to driver SLI ring object.
* @cmdiocb: Pointer to driver command iocb object.
* @cmpl: completion function.
*
* This function issues an abort iocb for the provided command iocb. In case
* of unloading, the abort iocb will not be issued to commands on the ELS
* ring. Instead, the callback function shall be changed to those commands
* so that nothing happens when them finishes. This function is called with
* hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
* when the command iocb is an abort request.
*
**/
int
lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
struct lpfc_iocbq *cmdiocb, void *cmpl)
{
struct lpfc_vport *vport = cmdiocb->vport;
struct lpfc_iocbq *abtsiocbp;
IOCB_t *icmd = NULL;
IOCB_t *iabt = NULL;
int retval = IOCB_ERROR;
unsigned long iflags;
struct lpfc_nodelist *ndlp;
/*
* There are certain command types we don't want to abort. And we
* don't want to abort commands that are already in the process of
* being aborted.
*/
icmd = &cmdiocb->iocb;
if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED)
return IOCB_ABORTING;
if (!pring) {
if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
else
cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
return retval;
}
/*
* If we're unloading, don't abort iocb on the ELS ring, but change
* the callback so that nothing happens when it finishes.
*/
if ((vport->load_flag & FC_UNLOADING) &&
pring->ringno == LPFC_ELS_RING) {
if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
else
cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
return retval;
}
/* issue ABTS for this IOCB based on iotag */
abtsiocbp = __lpfc_sli_get_iocbq(phba);
if (abtsiocbp == NULL)
return IOCB_NORESOURCE;
/* This signals the response to set the correct status
* before calling the completion handler
*/
cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
iabt = &abtsiocbp->iocb;
iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
iabt->un.acxri.abortContextTag = icmd->ulpContext;
if (phba->sli_rev == LPFC_SLI_REV4) {
iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
if (pring->ringno == LPFC_ELS_RING)
iabt->un.acxri.abortContextTag = cmdiocb->iotag;
} else {
iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
if (pring->ringno == LPFC_ELS_RING) {
ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
}
}
iabt->ulpLe = 1;
iabt->ulpClass = icmd->ulpClass;
/* ABTS WQE must go to the same WQ as the WQE to be aborted */
abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
if (cmdiocb->iocb_flag & LPFC_IO_FCP) {
abtsiocbp->iocb_flag |= LPFC_IO_FCP;
abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
}
if (cmdiocb->iocb_flag & LPFC_IO_FOF)
abtsiocbp->iocb_flag |= LPFC_IO_FOF;
if (phba->link_state >= LPFC_LINK_UP)
iabt->ulpCommand = CMD_ABORT_XRI_CN;
else
iabt->ulpCommand = CMD_CLOSE_XRI_CN;
if (cmpl)
abtsiocbp->iocb_cmpl = cmpl;
else
abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
abtsiocbp->vport = vport;
if (phba->sli_rev == LPFC_SLI_REV4) {
pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
if (unlikely(pring == NULL))
goto abort_iotag_exit;
/* Note: both hbalock and ring_lock need to be set here */
spin_lock_irqsave(&pring->ring_lock, iflags);
retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
abtsiocbp, 0);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
} else {
retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
abtsiocbp, 0);
}
abort_iotag_exit:
lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
"0339 Abort xri x%x, original iotag x%x, "
"abort cmd iotag x%x retval x%x\n",
iabt->un.acxri.abortIoTag,
iabt->un.acxri.abortContextTag,
abtsiocbp->iotag, retval);
if (retval) {
cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
__lpfc_sli_release_iocbq(phba, abtsiocbp);
}
/*
* Caller to this routine should check for IOCB_ERROR
* and handle it properly. This routine no longer removes
* iocb off txcmplq and call compl in case of IOCB_ERROR.
*/
return retval;
}
/**
* lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
* @phba: pointer to lpfc HBA data structure.
*
* This routine will abort all pending and outstanding iocbs to an HBA.
**/
void
lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
struct lpfc_queue *qp = NULL;
int i;
if (phba->sli_rev != LPFC_SLI_REV4) {
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->sli3_ring[i];
lpfc_sli_abort_iocb_ring(phba, pring);
}
return;
}
list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
pring = qp->pring;
if (!pring)
continue;
lpfc_sli_abort_iocb_ring(phba, pring);
}
}
/**
* lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
* @iocbq: Pointer to driver iocb object.
* @vport: Pointer to driver virtual port object.
* @tgt_id: SCSI ID of the target.
* @lun_id: LUN ID of the scsi device.
* @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
*
* This function acts as an iocb filter for functions which abort or count
* all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
* 0 if the filtering criteria is met for the given iocb and will return
* 1 if the filtering criteria is not met.
* If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
* given iocb is for the SCSI device specified by vport, tgt_id and
* lun_id parameter.
* If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
* given iocb is for the SCSI target specified by vport and tgt_id
* parameters.
* If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
* given iocb is for the SCSI host associated with the given vport.
* This function is called with no locks held.
**/
static int
lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
uint16_t tgt_id, uint64_t lun_id,
lpfc_ctx_cmd ctx_cmd)
{
struct lpfc_io_buf *lpfc_cmd;
IOCB_t *icmd = NULL;
int rc = 1;
if (!iocbq || iocbq->vport != vport)
return rc;
if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
!(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) ||
iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
return rc;
icmd = &iocbq->iocb;
if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
icmd->ulpCommand == CMD_CLOSE_XRI_CN)
return rc;
lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
if (lpfc_cmd->pCmd == NULL)
return rc;
switch (ctx_cmd) {
case LPFC_CTX_LUN:
if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
(lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
(scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
rc = 0;
break;
case LPFC_CTX_TGT:
if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
(lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
rc = 0;
break;
case LPFC_CTX_HOST:
rc = 0;
break;
default:
printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
__func__, ctx_cmd);
break;
}
return rc;
}
/**
* lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
* @vport: Pointer to virtual port.
* @tgt_id: SCSI ID of the target.
* @lun_id: LUN ID of the scsi device.
* @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
*
* This function returns number of FCP commands pending for the vport.
* When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
* commands pending on the vport associated with SCSI device specified
* by tgt_id and lun_id parameters.
* When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
* commands pending on the vport associated with SCSI target specified
* by tgt_id parameter.
* When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
* commands pending on the vport.
* This function returns the number of iocbs which satisfy the filter.
* This function is called without any lock held.
**/
int
lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
lpfc_ctx_cmd ctx_cmd)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *iocbq;
int sum, i;
spin_lock_irq(&phba->hbalock);
for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
iocbq = phba->sli.iocbq_lookup[i];
if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
ctx_cmd) == 0)
sum++;
}
spin_unlock_irq(&phba->hbalock);
return sum;
}
/**
* lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
* @phba: Pointer to HBA context object
* @cmdiocb: Pointer to command iocb object.
* @wcqe: pointer to the complete wcqe
*
* This function is called when an aborted FCP iocb completes. This
* function is called by the ring event handler with no lock held.
* This function frees the iocb. It is called for sli-4 adapters.
**/
void
lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_wcqe_complete *wcqe)
{
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3017 ABORT_XRI_CN completing on rpi x%x "
"original iotag x%x, abort cmd iotag x%x "
"status 0x%x, reason 0x%x\n",
cmdiocb->iocb.un.acxri.abortContextTag,
cmdiocb->iocb.un.acxri.abortIoTag,
cmdiocb->iotag,
(bf_get(lpfc_wcqe_c_status, wcqe)
& LPFC_IOCB_STATUS_MASK),
wcqe->parameter);
lpfc_sli_release_iocbq(phba, cmdiocb);
}
/**
* lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
* @phba: Pointer to HBA context object
* @cmdiocb: Pointer to command iocb object.
* @rspiocb: Pointer to response iocb object.
*
* This function is called when an aborted FCP iocb completes. This
* function is called by the ring event handler with no lock held.
* This function frees the iocb.
**/
void
lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_iocbq *rspiocb)
{
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"3096 ABORT_XRI_CN completing on rpi x%x "
"original iotag x%x, abort cmd iotag x%x "
"status 0x%x, reason 0x%x\n",
cmdiocb->iocb.un.acxri.abortContextTag,
cmdiocb->iocb.un.acxri.abortIoTag,
cmdiocb->iotag, rspiocb->iocb.ulpStatus,
rspiocb->iocb.un.ulpWord[4]);
lpfc_sli_release_iocbq(phba, cmdiocb);
return;
}
/**
* lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
* @vport: Pointer to virtual port.
* @tgt_id: SCSI ID of the target.
* @lun_id: LUN ID of the scsi device.
* @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
*
* This function sends an abort command for every SCSI command
* associated with the given virtual port pending on the ring
* filtered by lpfc_sli_validate_fcp_iocb function.
* When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
* FCP iocbs associated with lun specified by tgt_id and lun_id
* parameters
* When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
* FCP iocbs associated with SCSI target specified by tgt_id parameter.
* When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
* FCP iocbs associated with virtual port.
* The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
* lpfc_sli4_calc_ring is used.
* This function returns number of iocbs it failed to abort.
* This function is called with no locks held.
**/
int
lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
lpfc_ctx_cmd abort_cmd)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_sli_ring *pring = NULL;
struct lpfc_iocbq *iocbq;
int errcnt = 0, ret_val = 0;
unsigned long iflags;
int i;
void *fcp_cmpl = NULL;
/* all I/Os are in process of being flushed */
if (phba->hba_flag & HBA_IOQ_FLUSH)
return errcnt;
for (i = 1; i <= phba->sli.last_iotag; i++) {
iocbq = phba->sli.iocbq_lookup[i];
if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
abort_cmd) != 0)
continue;
spin_lock_irqsave(&phba->hbalock, iflags);
if (phba->sli_rev == LPFC_SLI_REV3) {
pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
fcp_cmpl = lpfc_sli_abort_fcp_cmpl;
} else if (phba->sli_rev == LPFC_SLI_REV4) {
pring = lpfc_sli4_calc_ring(phba, iocbq);
fcp_cmpl = lpfc_sli4_abort_fcp_cmpl;
}
ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
fcp_cmpl);
spin_unlock_irqrestore(&phba->hbalock, iflags);
if (ret_val != IOCB_SUCCESS)
errcnt++;
}
return errcnt;
}
/**
* lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
* @vport: Pointer to virtual port.
* @pring: Pointer to driver SLI ring object.
* @tgt_id: SCSI ID of the target.
* @lun_id: LUN ID of the scsi device.
* @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
*
* This function sends an abort command for every SCSI command
* associated with the given virtual port pending on the ring
* filtered by lpfc_sli_validate_fcp_iocb function.
* When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
* FCP iocbs associated with lun specified by tgt_id and lun_id
* parameters
* When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
* FCP iocbs associated with SCSI target specified by tgt_id parameter.
* When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
* FCP iocbs associated with virtual port.
* This function returns number of iocbs it aborted .
* This function is called with no locks held right after a taskmgmt
* command is sent.
**/
int
lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_io_buf *lpfc_cmd;
struct lpfc_iocbq *abtsiocbq;
struct lpfc_nodelist *ndlp;
struct lpfc_iocbq *iocbq;
IOCB_t *icmd;
int sum, i, ret_val;
unsigned long iflags;
struct lpfc_sli_ring *pring_s4 = NULL;
spin_lock_irqsave(&phba->hbalock, iflags);
/* all I/Os are in process of being flushed */
if (phba->hba_flag & HBA_IOQ_FLUSH) {
spin_unlock_irqrestore(&phba->hbalock, iflags);
return 0;
}
sum = 0;
for (i = 1; i <= phba->sli.last_iotag; i++) {
iocbq = phba->sli.iocbq_lookup[i];
if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
cmd) != 0)
continue;
/* Guard against IO completion being called at same time */
lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
spin_lock(&lpfc_cmd->buf_lock);
if (!lpfc_cmd->pCmd) {
spin_unlock(&lpfc_cmd->buf_lock);
continue;
}
if (phba->sli_rev == LPFC_SLI_REV4) {
pring_s4 =
phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
if (!pring_s4) {
spin_unlock(&lpfc_cmd->buf_lock);
continue;
}
/* Note: both hbalock and ring_lock must be set here */
spin_lock(&pring_s4->ring_lock);
}
/*
* If the iocbq is already being aborted, don't take a second
* action, but do count it.
*/
if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
!(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring_s4->ring_lock);
spin_unlock(&lpfc_cmd->buf_lock);
continue;
}
/* issue ABTS for this IOCB based on iotag */
abtsiocbq = __lpfc_sli_get_iocbq(phba);
if (!abtsiocbq) {
if (phba->sli_rev == LPFC_SLI_REV4)
spin_unlock(&pring_s4->ring_lock);
spin_unlock(&lpfc_cmd->buf_lock);
continue;
}
icmd = &iocbq->iocb;
abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
if (phba->sli_rev == LPFC_SLI_REV4)
abtsiocbq->iocb.un.acxri.abortIoTag =
iocbq->sli4_xritag;
else
abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
abtsiocbq->iocb.ulpLe = 1;
abtsiocbq->iocb.ulpClass = icmd->ulpClass;
abtsiocbq->vport = vport;
/* ABTS WQE must go to the same WQ as the WQE to be aborted */
abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
if (iocbq->iocb_flag & LPFC_IO_FCP)
abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
if (iocbq->iocb_flag & LPFC_IO_FOF)
abtsiocbq->iocb_flag |= LPFC_IO_FOF;
ndlp = lpfc_cmd->rdata->pnode;
if (lpfc_is_link_up(phba) &&
(ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
else
abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
/* Setup callback routine and issue the command. */
abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
/*
* Indicate the IO is being aborted by the driver and set
* the caller's flag into the aborted IO.
*/
iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
if (phba->sli_rev == LPFC_SLI_REV4) {
ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
abtsiocbq, 0);
spin_unlock(&pring_s4->ring_lock);
} else {
ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
abtsiocbq, 0);
}
spin_unlock(&lpfc_cmd->buf_lock);
if (ret_val == IOCB_ERROR)
__lpfc_sli_release_iocbq(phba, abtsiocbq);
else
sum++;
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
return sum;
}
/**
* lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
* @phba: Pointer to HBA context object.
* @cmdiocbq: Pointer to command iocb.
* @rspiocbq: Pointer to response iocb.
*
* This function is the completion handler for iocbs issued using
* lpfc_sli_issue_iocb_wait function. This function is called by the
* ring event handler function without any lock held. This function
* can be called from both worker thread context and interrupt
* context. This function also can be called from other thread which
* cleans up the SLI layer objects.
* This function copy the contents of the response iocb to the
* response iocb memory object provided by the caller of
* lpfc_sli_issue_iocb_wait and then wakes up the thread which
* sleeps for the iocb completion.
**/
static void
lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
struct lpfc_iocbq *cmdiocbq,
struct lpfc_iocbq *rspiocbq)
{
wait_queue_head_t *pdone_q;
unsigned long iflags;
struct lpfc_io_buf *lpfc_cmd;
spin_lock_irqsave(&phba->hbalock, iflags);
if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
/*
* A time out has occurred for the iocb. If a time out
* completion handler has been supplied, call it. Otherwise,
* just free the iocbq.
*/
spin_unlock_irqrestore(&phba->hbalock, iflags);
cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
cmdiocbq->wait_iocb_cmpl = NULL;
if (cmdiocbq->iocb_cmpl)
(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
else
lpfc_sli_release_iocbq(phba, cmdiocbq);
return;
}
cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
if (cmdiocbq->context2 && rspiocbq)
memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
&rspiocbq->iocb, sizeof(IOCB_t));
/* Set the exchange busy flag for task management commands */
if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
cur_iocbq);
if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
else
lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
}
pdone_q = cmdiocbq->context_un.wait_queue;
if (pdone_q)
wake_up(pdone_q);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return;
}
/**
* lpfc_chk_iocb_flg - Test IOCB flag with lock held.
* @phba: Pointer to HBA context object..
* @piocbq: Pointer to command iocb.
* @flag: Flag to test.
*
* This routine grabs the hbalock and then test the iocb_flag to
* see if the passed in flag is set.
* Returns:
* 1 if flag is set.
* 0 if flag is not set.
**/
static int
lpfc_chk_iocb_flg(struct lpfc_hba *phba,
struct lpfc_iocbq *piocbq, uint32_t flag)
{
unsigned long iflags;
int ret;
spin_lock_irqsave(&phba->hbalock, iflags);
ret = piocbq->iocb_flag & flag;
spin_unlock_irqrestore(&phba->hbalock, iflags);
return ret;
}
/**
* lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
* @phba: Pointer to HBA context object..
* @ring_number: Ring number
* @piocb: Pointer to command iocb.
* @prspiocbq: Pointer to response iocb.
* @timeout: Timeout in number of seconds.
*
* This function issues the iocb to firmware and waits for the
* iocb to complete. The iocb_cmpl field of the shall be used
* to handle iocbs which time out. If the field is NULL, the
* function shall free the iocbq structure. If more clean up is
* needed, the caller is expected to provide a completion function
* that will provide the needed clean up. If the iocb command is
* not completed within timeout seconds, the function will either
* free the iocbq structure (if iocb_cmpl == NULL) or execute the
* completion function set in the iocb_cmpl field and then return
* a status of IOCB_TIMEDOUT. The caller should not free the iocb
* resources if this function returns IOCB_TIMEDOUT.
* The function waits for the iocb completion using an
* non-interruptible wait.
* This function will sleep while waiting for iocb completion.
* So, this function should not be called from any context which
* does not allow sleeping. Due to the same reason, this function
* cannot be called with interrupt disabled.
* This function assumes that the iocb completions occur while
* this function sleep. So, this function cannot be called from
* the thread which process iocb completion for this ring.
* This function clears the iocb_flag of the iocb object before
* issuing the iocb and the iocb completion handler sets this
* flag and wakes this thread when the iocb completes.
* The contents of the response iocb will be copied to prspiocbq
* by the completion handler when the command completes.
* This function returns IOCB_SUCCESS when success.
* This function is called with no lock held.
**/
int
lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
uint32_t ring_number,
struct lpfc_iocbq *piocb,
struct lpfc_iocbq *prspiocbq,
uint32_t timeout)
{
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
long timeleft, timeout_req = 0;
int retval = IOCB_SUCCESS;
uint32_t creg_val;
struct lpfc_iocbq *iocb;
int txq_cnt = 0;
int txcmplq_cnt = 0;
struct lpfc_sli_ring *pring;
unsigned long iflags;
bool iocb_completed = true;
if (phba->sli_rev >= LPFC_SLI_REV4)
pring = lpfc_sli4_calc_ring(phba, piocb);
else
pring = &phba->sli.sli3_ring[ring_number];
/*
* If the caller has provided a response iocbq buffer, then context2
* is NULL or its an error.
*/
if (prspiocbq) {
if (piocb->context2)
return IOCB_ERROR;
piocb->context2 = prspiocbq;
}
piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
piocb->context_un.wait_queue = &done_q;
piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
if (lpfc_readl(phba->HCregaddr, &creg_val))
return IOCB_ERROR;
creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
writel(creg_val, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
}
retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
SLI_IOCB_RET_IOCB);
if (retval == IOCB_SUCCESS) {
timeout_req = msecs_to_jiffies(timeout * 1000);
timeleft = wait_event_timeout(done_q,
lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
timeout_req);
spin_lock_irqsave(&phba->hbalock, iflags);
if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
/*
* IOCB timed out. Inform the wake iocb wait
* completion function and set local status
*/
iocb_completed = false;
piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
if (iocb_completed) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0331 IOCB wake signaled\n");
/* Note: we are not indicating if the IOCB has a success
* status or not - that's for the caller to check.
* IOCB_SUCCESS means just that the command was sent and
* completed. Not that it completed successfully.
* */
} else if (timeleft == 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0338 IOCB wait timeout error - no "
"wake response Data x%x\n", timeout);
retval = IOCB_TIMEDOUT;
} else {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0330 IOCB wake NOT set, "
"Data x%x x%lx\n",
timeout, (timeleft / jiffies));
retval = IOCB_TIMEDOUT;
}
} else if (retval == IOCB_BUSY) {
if (phba->cfg_log_verbose & LOG_SLI) {
list_for_each_entry(iocb, &pring->txq, list) {
txq_cnt++;
}
list_for_each_entry(iocb, &pring->txcmplq, list) {
txcmplq_cnt++;
}
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
phba->iocb_cnt, txq_cnt, txcmplq_cnt);
}
return retval;
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0332 IOCB wait issue failed, Data x%x\n",
retval);
retval = IOCB_ERROR;
}
if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
if (lpfc_readl(phba->HCregaddr, &creg_val))
return IOCB_ERROR;
creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
writel(creg_val, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
}
if (prspiocbq)
piocb->context2 = NULL;
piocb->context_un.wait_queue = NULL;
piocb->iocb_cmpl = NULL;
return retval;
}
/**
* lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
* @phba: Pointer to HBA context object.
* @pmboxq: Pointer to driver mailbox object.
* @timeout: Timeout in number of seconds.
*
* This function issues the mailbox to firmware and waits for the
* mailbox command to complete. If the mailbox command is not
* completed within timeout seconds, it returns MBX_TIMEOUT.
* The function waits for the mailbox completion using an
* interruptible wait. If the thread is woken up due to a
* signal, MBX_TIMEOUT error is returned to the caller. Caller
* should not free the mailbox resources, if this function returns
* MBX_TIMEOUT.
* This function will sleep while waiting for mailbox completion.
* So, this function should not be called from any context which
* does not allow sleeping. Due to the same reason, this function
* cannot be called with interrupt disabled.
* This function assumes that the mailbox completion occurs while
* this function sleep. So, this function cannot be called from
* the worker thread which processes mailbox completion.
* This function is called in the context of HBA management
* applications.
* This function returns MBX_SUCCESS when successful.
* This function is called with no lock held.
**/
int
lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
uint32_t timeout)
{
struct completion mbox_done;
int retval;
unsigned long flag;
pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
/* setup wake call as IOCB callback */
pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
/* setup context3 field to pass wait_queue pointer to wake function */
init_completion(&mbox_done);
pmboxq->context3 = &mbox_done;
/* now issue the command */
retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
wait_for_completion_timeout(&mbox_done,
msecs_to_jiffies(timeout * 1000));
spin_lock_irqsave(&phba->hbalock, flag);
pmboxq->context3 = NULL;
/*
* if LPFC_MBX_WAKE flag is set the mailbox is completed
* else do not free the resources.
*/
if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
retval = MBX_SUCCESS;
} else {
retval = MBX_TIMEOUT;
pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
}
spin_unlock_irqrestore(&phba->hbalock, flag);
}
return retval;
}
/**
* lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
* @phba: Pointer to HBA context.
* @mbx_action: Mailbox shutdown options.
*
* This function is called to shutdown the driver's mailbox sub-system.
* It first marks the mailbox sub-system is in a block state to prevent
* the asynchronous mailbox command from issued off the pending mailbox
* command queue. If the mailbox command sub-system shutdown is due to
* HBA error conditions such as EEH or ERATT, this routine shall invoke
* the mailbox sub-system flush routine to forcefully bring down the
* mailbox sub-system. Otherwise, if it is due to normal condition (such
* as with offline or HBA function reset), this routine will wait for the
* outstanding mailbox command to complete before invoking the mailbox
* sub-system flush routine to gracefully bring down mailbox sub-system.
**/
void
lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
{
struct lpfc_sli *psli = &phba->sli;
unsigned long timeout;
if (mbx_action == LPFC_MBX_NO_WAIT) {
/* delay 100ms for port state */
msleep(100);
lpfc_sli_mbox_sys_flush(phba);
return;
}
timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
/* Disable softirqs, including timers from obtaining phba->hbalock */
local_bh_disable();
spin_lock_irq(&phba->hbalock);
psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
if (psli->sli_flag & LPFC_SLI_ACTIVE) {
/* Determine how long we might wait for the active mailbox
* command to be gracefully completed by firmware.
*/
if (phba->sli.mbox_active)
timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
phba->sli.mbox_active) *
1000) + jiffies;
spin_unlock_irq(&phba->hbalock);
/* Enable softirqs again, done with phba->hbalock */
local_bh_enable();
while (phba->sli.mbox_active) {
/* Check active mailbox complete status every 2ms */
msleep(2);
if (time_after(jiffies, timeout))
/* Timeout, let the mailbox flush routine to
* forcefully release active mailbox command
*/
break;
}
} else {
spin_unlock_irq(&phba->hbalock);
/* Enable softirqs again, done with phba->hbalock */
local_bh_enable();
}
lpfc_sli_mbox_sys_flush(phba);
}
/**
* lpfc_sli_eratt_read - read sli-3 error attention events
* @phba: Pointer to HBA context.
*
* This function is called to read the SLI3 device error attention registers
* for possible error attention events. The caller must hold the hostlock
* with spin_lock_irq().
*
* This function returns 1 when there is Error Attention in the Host Attention
* Register and returns 0 otherwise.
**/
static int
lpfc_sli_eratt_read(struct lpfc_hba *phba)
{
uint32_t ha_copy;
/* Read chip Host Attention (HA) register */
if (lpfc_readl(phba->HAregaddr, &ha_copy))
goto unplug_err;
if (ha_copy & HA_ERATT) {
/* Read host status register to retrieve error event */
if (lpfc_sli_read_hs(phba))
goto unplug_err;
/* Check if there is a deferred error condition is active */
if ((HS_FFER1 & phba->work_hs) &&
((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
phba->hba_flag |= DEFER_ERATT;
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr);
}
/* Set the driver HA work bitmap */
phba->work_ha |= HA_ERATT;
/* Indicate polling handles this ERATT */
phba->hba_flag |= HBA_ERATT_HANDLED;
return 1;
}
return 0;
unplug_err:
/* Set the driver HS work bitmap */
phba->work_hs |= UNPLUG_ERR;
/* Set the driver HA work bitmap */
phba->work_ha |= HA_ERATT;
/* Indicate polling handles this ERATT */
phba->hba_flag |= HBA_ERATT_HANDLED;
return 1;
}
/**
* lpfc_sli4_eratt_read - read sli-4 error attention events
* @phba: Pointer to HBA context.
*
* This function is called to read the SLI4 device error attention registers
* for possible error attention events. The caller must hold the hostlock
* with spin_lock_irq().
*
* This function returns 1 when there is Error Attention in the Host Attention
* Register and returns 0 otherwise.
**/
static int
lpfc_sli4_eratt_read(struct lpfc_hba *phba)
{
uint32_t uerr_sta_hi, uerr_sta_lo;
uint32_t if_type, portsmphr;
struct lpfc_register portstat_reg;
/*
* For now, use the SLI4 device internal unrecoverable error
* registers for error attention. This can be changed later.
*/
if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
switch (if_type) {
case LPFC_SLI_INTF_IF_TYPE_0:
if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
&uerr_sta_lo) ||
lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
&uerr_sta_hi)) {
phba->work_hs |= UNPLUG_ERR;
phba->work_ha |= HA_ERATT;
phba->hba_flag |= HBA_ERATT_HANDLED;
return 1;
}
if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
(~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1423 HBA Unrecoverable error: "
"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
"ue_mask_lo_reg=0x%x, "
"ue_mask_hi_reg=0x%x\n",
uerr_sta_lo, uerr_sta_hi,
phba->sli4_hba.ue_mask_lo,
phba->sli4_hba.ue_mask_hi);
phba->work_status[0] = uerr_sta_lo;
phba->work_status[1] = uerr_sta_hi;
phba->work_ha |= HA_ERATT;
phba->hba_flag |= HBA_ERATT_HANDLED;
return 1;
}
break;
case LPFC_SLI_INTF_IF_TYPE_2:
case LPFC_SLI_INTF_IF_TYPE_6:
if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
&portstat_reg.word0) ||
lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
&portsmphr)){
phba->work_hs |= UNPLUG_ERR;
phba->work_ha |= HA_ERATT;
phba->hba_flag |= HBA_ERATT_HANDLED;
return 1;
}
if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
phba->work_status[0] =
readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
phba->work_status[1] =
readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2885 Port Status Event: "
"port status reg 0x%x, "
"port smphr reg 0x%x, "
"error 1=0x%x, error 2=0x%x\n",
portstat_reg.word0,
portsmphr,
phba->work_status[0],
phba->work_status[1]);
phba->work_ha |= HA_ERATT;
phba->hba_flag |= HBA_ERATT_HANDLED;
return 1;
}
break;
case LPFC_SLI_INTF_IF_TYPE_1:
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2886 HBA Error Attention on unsupported "
"if type %d.", if_type);
return 1;
}
return 0;
}
/**
* lpfc_sli_check_eratt - check error attention events
* @phba: Pointer to HBA context.
*
* This function is called from timer soft interrupt context to check HBA's
* error attention register bit for error attention events.
*
* This function returns 1 when there is Error Attention in the Host Attention
* Register and returns 0 otherwise.
**/
int
lpfc_sli_check_eratt(struct lpfc_hba *phba)
{
uint32_t ha_copy;
/* If somebody is waiting to handle an eratt, don't process it
* here. The brdkill function will do this.
*/
if (phba->link_flag & LS_IGNORE_ERATT)
return 0;
/* Check if interrupt handler handles this ERATT */
spin_lock_irq(&phba->hbalock);
if (phba->hba_flag & HBA_ERATT_HANDLED) {
/* Interrupt handler has handled ERATT */
spin_unlock_irq(&phba->hbalock);
return 0;
}
/*
* If there is deferred error attention, do not check for error
* attention
*/
if (unlikely(phba->hba_flag & DEFER_ERATT)) {
spin_unlock_irq(&phba->hbalock);
return 0;
}
/* If PCI channel is offline, don't process it */
if (unlikely(pci_channel_offline(phba->pcidev))) {
spin_unlock_irq(&phba->hbalock);
return 0;
}
switch (phba->sli_rev) {
case LPFC_SLI_REV2:
case LPFC_SLI_REV3:
/* Read chip Host Attention (HA) register */
ha_copy = lpfc_sli_eratt_read(phba);
break;
case LPFC_SLI_REV4:
/* Read device Uncoverable Error (UERR) registers */
ha_copy = lpfc_sli4_eratt_read(phba);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0299 Invalid SLI revision (%d)\n",
phba->sli_rev);
ha_copy = 0;
break;
}
spin_unlock_irq(&phba->hbalock);
return ha_copy;
}
/**
* lpfc_intr_state_check - Check device state for interrupt handling
* @phba: Pointer to HBA context.
*
* This inline routine checks whether a device or its PCI slot is in a state
* that the interrupt should be handled.
*
* This function returns 0 if the device or the PCI slot is in a state that
* interrupt should be handled, otherwise -EIO.
*/
static inline int
lpfc_intr_state_check(struct lpfc_hba *phba)
{
/* If the pci channel is offline, ignore all the interrupts */
if (unlikely(pci_channel_offline(phba->pcidev)))
return -EIO;
/* Update device level interrupt statistics */
phba->sli.slistat.sli_intr++;
/* Ignore all interrupts during initialization. */
if (unlikely(phba->link_state < LPFC_LINK_DOWN))
return -EIO;
return 0;
}
/**
* lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
* @irq: Interrupt number.
* @dev_id: The device context pointer.
*
* This function is directly called from the PCI layer as an interrupt
* service routine when device with SLI-3 interface spec is enabled with
* MSI-X multi-message interrupt mode and there are slow-path events in
* the HBA. However, when the device is enabled with either MSI or Pin-IRQ
* interrupt mode, this function is called as part of the device-level
* interrupt handler. When the PCI slot is in error recovery or the HBA
* is undergoing initialization, the interrupt handler will not process
* the interrupt. The link attention and ELS ring attention events are
* handled by the worker thread. The interrupt handler signals the worker
* thread and returns for these events. This function is called without
* any lock held. It gets the hbalock to access and update SLI data
* structures.
*
* This function returns IRQ_HANDLED when interrupt is handled else it
* returns IRQ_NONE.
**/
irqreturn_t
lpfc_sli_sp_intr_handler(int irq, void *dev_id)
{
struct lpfc_hba *phba;
uint32_t ha_copy, hc_copy;
uint32_t work_ha_copy;
unsigned long status;
unsigned long iflag;
uint32_t control;
MAILBOX_t *mbox, *pmbox;
struct lpfc_vport *vport;
struct lpfc_nodelist *ndlp;
struct lpfc_dmabuf *mp;
LPFC_MBOXQ_t *pmb;
int rc;
/*
* Get the driver's phba structure from the dev_id and
* assume the HBA is not interrupting.
*/
phba = (struct lpfc_hba *)dev_id;
if (unlikely(!phba))
return IRQ_NONE;
/*
* Stuff needs to be attented to when this function is invoked as an
* individual interrupt handler in MSI-X multi-message interrupt mode
*/
if (phba->intr_type == MSIX) {
/* Check device state for handling interrupt */
if (lpfc_intr_state_check(phba))
return IRQ_NONE;
/* Need to read HA REG for slow-path events */
spin_lock_irqsave(&phba->hbalock, iflag);
if (lpfc_readl(phba->HAregaddr, &ha_copy))
goto unplug_error;
/* If somebody is waiting to handle an eratt don't process it
* here. The brdkill function will do this.
*/
if (phba->link_flag & LS_IGNORE_ERATT)
ha_copy &= ~HA_ERATT;
/* Check the need for handling ERATT in interrupt handler */
if (ha_copy & HA_ERATT) {
if (phba->hba_flag & HBA_ERATT_HANDLED)
/* ERATT polling has handled ERATT */
ha_copy &= ~HA_ERATT;
else
/* Indicate interrupt handler handles ERATT */
phba->hba_flag |= HBA_ERATT_HANDLED;
}
/*
* If there is deferred error attention, do not check for any
* interrupt.
*/
if (unlikely(phba->hba_flag & DEFER_ERATT)) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
return IRQ_NONE;
}
/* Clear up only attention source related to slow-path */
if (lpfc_readl(phba->HCregaddr, &hc_copy))
goto unplug_error;
writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
HC_LAINT_ENA | HC_ERINT_ENA),
phba->HCregaddr);
writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
phba->HAregaddr);
writel(hc_copy, phba->HCregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irqrestore(&phba->hbalock, iflag);
} else
ha_copy = phba->ha_copy;
work_ha_copy = ha_copy & phba->work_ha_mask;
if (work_ha_copy) {
if (work_ha_copy & HA_LATT) {
if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
/*
* Turn off Link Attention interrupts
* until CLEAR_LA done
*/
spin_lock_irqsave(&phba->hbalock, iflag);
phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
if (lpfc_readl(phba->HCregaddr, &control))
goto unplug_error;
control &= ~HC_LAINT_ENA;
writel(control, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
else
work_ha_copy &= ~HA_LATT;
}
if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
/*
* Turn off Slow Rings interrupts, LPFC_ELS_RING is
* the only slow ring.
*/
status = (work_ha_copy &
(HA_RXMASK << (4*LPFC_ELS_RING)));
status >>= (4*LPFC_ELS_RING);
if (status & HA_RXMASK) {
spin_lock_irqsave(&phba->hbalock, iflag);
if (lpfc_readl(phba->HCregaddr, &control))
goto unplug_error;
lpfc_debugfs_slow_ring_trc(phba,
"ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
control, status,
(uint32_t)phba->sli.slistat.sli_intr);
if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
lpfc_debugfs_slow_ring_trc(phba,
"ISR Disable ring:"
"pwork:x%x hawork:x%x wait:x%x",
phba->work_ha, work_ha_copy,
(uint32_t)((unsigned long)
&phba->work_waitq));
control &=
~(HC_R0INT_ENA << LPFC_ELS_RING);
writel(control, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
}
else {
lpfc_debugfs_slow_ring_trc(phba,
"ISR slow ring: pwork:"
"x%x hawork:x%x wait:x%x",
phba->work_ha, work_ha_copy,
(uint32_t)((unsigned long)
&phba->work_waitq));
}
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
}
spin_lock_irqsave(&phba->hbalock, iflag);
if (work_ha_copy & HA_ERATT) {
if (lpfc_sli_read_hs(phba))
goto unplug_error;
/*
* Check if there is a deferred error condition
* is active
*/
if ((HS_FFER1 & phba->work_hs) &&
((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
HS_FFER6 | HS_FFER7 | HS_FFER8) &
phba->work_hs)) {
phba->hba_flag |= DEFER_ERATT;
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr);
}
}
if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
pmb = phba->sli.mbox_active;
pmbox = &pmb->u.mb;
mbox = phba->mbox;
vport = pmb->vport;
/* First check out the status word */
lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
if (pmbox->mbxOwner != OWN_HOST) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
/*
* Stray Mailbox Interrupt, mbxCommand <cmd>
* mbxStatus <status>
*/
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"(%d):0304 Stray Mailbox "
"Interrupt mbxCommand x%x "
"mbxStatus x%x\n",
(vport ? vport->vpi : 0),
pmbox->mbxCommand,
pmbox->mbxStatus);
/* clear mailbox attention bit */
work_ha_copy &= ~HA_MBATT;
} else {
phba->sli.mbox_active = NULL;
spin_unlock_irqrestore(&phba->hbalock, iflag);
phba->last_completion_time = jiffies;
del_timer(&phba->sli.mbox_tmo);
if (pmb->mbox_cmpl) {
lpfc_sli_pcimem_bcopy(mbox, pmbox,
MAILBOX_CMD_SIZE);
if (pmb->out_ext_byte_len &&
pmb->ctx_buf)
lpfc_sli_pcimem_bcopy(
phba->mbox_ext,
pmb->ctx_buf,
pmb->out_ext_byte_len);
}
if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
lpfc_debugfs_disc_trc(vport,
LPFC_DISC_TRC_MBOX_VPORT,
"MBOX dflt rpi: : "
"status:x%x rpi:x%x",
(uint32_t)pmbox->mbxStatus,
pmbox->un.varWords[0], 0);
if (!pmbox->mbxStatus) {
mp = (struct lpfc_dmabuf *)
(pmb->ctx_buf);
ndlp = (struct lpfc_nodelist *)
pmb->ctx_ndlp;
/* Reg_LOGIN of dflt RPI was
* successful. new lets get
* rid of the RPI using the
* same mbox buffer.
*/
lpfc_unreg_login(phba,
vport->vpi,
pmbox->un.varWords[0],
pmb);
pmb->mbox_cmpl =
lpfc_mbx_cmpl_dflt_rpi;
pmb->ctx_buf = mp;
pmb->ctx_ndlp = ndlp;
pmb->vport = vport;
rc = lpfc_sli_issue_mbox(phba,
pmb,
MBX_NOWAIT);
if (rc != MBX_BUSY)
lpfc_printf_log(phba,
KERN_ERR,
LOG_TRACE_EVENT,
"0350 rc should have"
"been MBX_BUSY\n");
if (rc != MBX_NOT_FINISHED)
goto send_current_mbox;
}
}
spin_lock_irqsave(
&phba->pport->work_port_lock,
iflag);
phba->pport->work_port_events &=
~WORKER_MBOX_TMO;
spin_unlock_irqrestore(
&phba->pport->work_port_lock,
iflag);
/* Do NOT queue MBX_HEARTBEAT to the worker
* thread for processing.
*/
if (pmbox->mbxCommand == MBX_HEARTBEAT) {
/* Process mbox now */
phba->sli.mbox_active = NULL;
phba->sli.sli_flag &=
~LPFC_SLI_MBOX_ACTIVE;
if (pmb->mbox_cmpl)
pmb->mbox_cmpl(phba, pmb);
} else {
/* Queue to worker thread to process */
lpfc_mbox_cmpl_put(phba, pmb);
}
}
} else
spin_unlock_irqrestore(&phba->hbalock, iflag);
if ((work_ha_copy & HA_MBATT) &&
(phba->sli.mbox_active == NULL)) {
send_current_mbox:
/* Process next mailbox command if there is one */
do {
rc = lpfc_sli_issue_mbox(phba, NULL,
MBX_NOWAIT);
} while (rc == MBX_NOT_FINISHED);
if (rc != MBX_SUCCESS)
lpfc_printf_log(phba, KERN_ERR,
LOG_TRACE_EVENT,
"0349 rc should be "
"MBX_SUCCESS\n");
}
spin_lock_irqsave(&phba->hbalock, iflag);
phba->work_ha |= work_ha_copy;
spin_unlock_irqrestore(&phba->hbalock, iflag);
lpfc_worker_wake_up(phba);
}
return IRQ_HANDLED;
unplug_error:
spin_unlock_irqrestore(&phba->hbalock, iflag);
return IRQ_HANDLED;
} /* lpfc_sli_sp_intr_handler */
/**
* lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
* @irq: Interrupt number.
* @dev_id: The device context pointer.
*
* This function is directly called from the PCI layer as an interrupt
* service routine when device with SLI-3 interface spec is enabled with
* MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
* ring event in the HBA. However, when the device is enabled with either
* MSI or Pin-IRQ interrupt mode, this function is called as part of the
* device-level interrupt handler. When the PCI slot is in error recovery
* or the HBA is undergoing initialization, the interrupt handler will not
* process the interrupt. The SCSI FCP fast-path ring event are handled in
* the intrrupt context. This function is called without any lock held.
* It gets the hbalock to access and update SLI data structures.
*
* This function returns IRQ_HANDLED when interrupt is handled else it
* returns IRQ_NONE.
**/
irqreturn_t
lpfc_sli_fp_intr_handler(int irq, void *dev_id)
{
struct lpfc_hba *phba;
uint32_t ha_copy;
unsigned long status;
unsigned long iflag;
struct lpfc_sli_ring *pring;
/* Get the driver's phba structure from the dev_id and
* assume the HBA is not interrupting.
*/
phba = (struct lpfc_hba *) dev_id;
if (unlikely(!phba))
return IRQ_NONE;
/*
* Stuff needs to be attented to when this function is invoked as an
* individual interrupt handler in MSI-X multi-message interrupt mode
*/
if (phba->intr_type == MSIX) {
/* Check device state for handling interrupt */
if (lpfc_intr_state_check(phba))
return IRQ_NONE;
/* Need to read HA REG for FCP ring and other ring events */
if (lpfc_readl(phba->HAregaddr, &ha_copy))
return IRQ_HANDLED;
/* Clear up only attention source related to fast-path */
spin_lock_irqsave(&phba->hbalock, iflag);
/*
* If there is deferred error attention, do not check for
* any interrupt.
*/
if (unlikely(phba->hba_flag & DEFER_ERATT)) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
return IRQ_NONE;
}
writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irqrestore(&phba->hbalock, iflag);
} else
ha_copy = phba->ha_copy;
/*
* Process all events on FCP ring. Take the optimized path for FCP IO.
*/
ha_copy &= ~(phba->work_ha_mask);
status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
status >>= (4*LPFC_FCP_RING);
pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
if (status & HA_RXMASK)
lpfc_sli_handle_fast_ring_event(phba, pring, status);
if (phba->cfg_multi_ring_support == 2) {
/*
* Process all events on extra ring. Take the optimized path
* for extra ring IO.
*/
status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
status >>= (4*LPFC_EXTRA_RING);
if (status & HA_RXMASK) {
lpfc_sli_handle_fast_ring_event(phba,
&phba->sli.sli3_ring[LPFC_EXTRA_RING],
status);
}
}
return IRQ_HANDLED;
} /* lpfc_sli_fp_intr_handler */
/**
* lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
* @irq: Interrupt number.
* @dev_id: The device context pointer.
*
* This function is the HBA device-level interrupt handler to device with
* SLI-3 interface spec, called from the PCI layer when either MSI or
* Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
* requires driver attention. This function invokes the slow-path interrupt
* attention handling function and fast-path interrupt attention handling
* function in turn to process the relevant HBA attention events. This
* function is called without any lock held. It gets the hbalock to access
* and update SLI data structures.
*
* This function returns IRQ_HANDLED when interrupt is handled, else it
* returns IRQ_NONE.
**/
irqreturn_t
lpfc_sli_intr_handler(int irq, void *dev_id)
{
struct lpfc_hba *phba;
irqreturn_t sp_irq_rc, fp_irq_rc;
unsigned long status1, status2;
uint32_t hc_copy;
/*
* Get the driver's phba structure from the dev_id and
* assume the HBA is not interrupting.
*/
phba = (struct lpfc_hba *) dev_id;
if (unlikely(!phba))
return IRQ_NONE;
/* Check device state for handling interrupt */
if (lpfc_intr_state_check(phba))
return IRQ_NONE;
spin_lock(&phba->hbalock);
if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
spin_unlock(&phba->hbalock);
return IRQ_HANDLED;
}
if (unlikely(!phba->ha_copy)) {
spin_unlock(&phba->hbalock);
return IRQ_NONE;
} else if (phba->ha_copy & HA_ERATT) {
if (phba->hba_flag & HBA_ERATT_HANDLED)
/* ERATT polling has handled ERATT */
phba->ha_copy &= ~HA_ERATT;
else
/* Indicate interrupt handler handles ERATT */
phba->hba_flag |= HBA_ERATT_HANDLED;
}
/*
* If there is deferred error attention, do not check for any interrupt.
*/
if (unlikely(phba->hba_flag & DEFER_ERATT)) {
spin_unlock(&phba->hbalock);
return IRQ_NONE;
}
/* Clear attention sources except link and error attentions */
if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
spin_unlock(&phba->hbalock);
return IRQ_HANDLED;
}
writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
phba->HCregaddr);
writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
writel(hc_copy, phba->HCregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock(&phba->hbalock);
/*
* Invokes slow-path host attention interrupt handling as appropriate.
*/
/* status of events with mailbox and link attention */
status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
/* status of events with ELS ring */
status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
status2 >>= (4*LPFC_ELS_RING);
if (status1 || (status2 & HA_RXMASK))
sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
else
sp_irq_rc = IRQ_NONE;
/*
* Invoke fast-path host attention interrupt handling as appropriate.
*/
/* status of events with FCP ring */
status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
status1 >>= (4*LPFC_FCP_RING);
/* status of events with extra ring */
if (phba->cfg_multi_ring_support == 2) {
status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
status2 >>= (4*LPFC_EXTRA_RING);
} else
status2 = 0;
if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
else
fp_irq_rc = IRQ_NONE;
/* Return device-level interrupt handling status */
return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
} /* lpfc_sli_intr_handler */
/**
* lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked by the worker thread to process all the pending
* SLI4 els abort xri events.
**/
void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
{
struct lpfc_cq_event *cq_event;
unsigned long iflags;
/* First, declare the els xri abort event has been handled */
spin_lock_irqsave(&phba->hbalock, iflags);
phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
spin_unlock_irqrestore(&phba->hbalock, iflags);
/* Now, handle all the els xri abort events */
spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
/* Get the first event from the head of the event queue */
list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
cq_event, struct lpfc_cq_event, list);
spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
iflags);
/* Notify aborted XRI for ELS work queue */
lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
/* Free the event processed back to the free pool */
lpfc_sli4_cq_event_release(phba, cq_event);
spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
iflags);
}
spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
}
/**
* lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
* @phba: pointer to lpfc hba data structure
* @pIocbIn: pointer to the rspiocbq
* @pIocbOut: pointer to the cmdiocbq
* @wcqe: pointer to the complete wcqe
*
* This routine transfers the fields of a command iocbq to a response iocbq
* by copying all the IOCB fields from command iocbq and transferring the
* completion status information from the complete wcqe.
**/
static void
lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
struct lpfc_iocbq *pIocbIn,
struct lpfc_iocbq *pIocbOut,
struct lpfc_wcqe_complete *wcqe)
{
int numBdes, i;
unsigned long iflags;
uint32_t status, max_response;
struct lpfc_dmabuf *dmabuf;
struct ulp_bde64 *bpl, bde;
size_t offset = offsetof(struct lpfc_iocbq, iocb);
memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
sizeof(struct lpfc_iocbq) - offset);
/* Map WCQE parameters into irspiocb parameters */
status = bf_get(lpfc_wcqe_c_status, wcqe);
pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
if (pIocbOut->iocb_flag & LPFC_IO_FCP)
if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
pIocbIn->iocb.un.fcpi.fcpi_parm =
pIocbOut->iocb.un.fcpi.fcpi_parm -
wcqe->total_data_placed;
else
pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
else {
pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
switch (pIocbOut->iocb.ulpCommand) {
case CMD_ELS_REQUEST64_CR:
dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
bpl = (struct ulp_bde64 *)dmabuf->virt;
bde.tus.w = le32_to_cpu(bpl[1].tus.w);
max_response = bde.tus.f.bdeSize;
break;
case CMD_GEN_REQUEST64_CR:
max_response = 0;
if (!pIocbOut->context3)
break;
numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
sizeof(struct ulp_bde64);
dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
bpl = (struct ulp_bde64 *)dmabuf->virt;
for (i = 0; i < numBdes; i++) {
bde.tus.w = le32_to_cpu(bpl[i].tus.w);
if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
max_response += bde.tus.f.bdeSize;
}
break;
default:
max_response = wcqe->total_data_placed;
break;
}
if (max_response < wcqe->total_data_placed)
pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
else
pIocbIn->iocb.un.genreq64.bdl.bdeSize =
wcqe->total_data_placed;
}
/* Convert BG errors for completion status */
if (status == CQE_STATUS_DI_ERROR) {
pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
else
pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
BGS_GUARD_ERR_MASK;
if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
BGS_APPTAG_ERR_MASK;
if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
BGS_REFTAG_ERR_MASK;
/* Check to see if there was any good data before the error */
if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
BGS_HI_WATER_MARK_PRESENT_MASK;
pIocbIn->iocb.unsli3.sli3_bg.bghm =
wcqe->total_data_placed;
}
/*
* Set ALL the error bits to indicate we don't know what
* type of error it is.
*/
if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
BGS_GUARD_ERR_MASK);
}
/* Pick up HBA exchange busy condition */
if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
spin_lock_irqsave(&phba->hbalock, iflags);
pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
spin_unlock_irqrestore(&phba->hbalock, iflags);
}
}
/**
* lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
* @phba: Pointer to HBA context object.
* @irspiocbq: Pointer to work-queue completion queue entry.
*
* This routine handles an ELS work-queue completion event and construct
* a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
* discovery engine to handle.
*
* Return: Pointer to the receive IOCBQ, NULL otherwise.
**/
static struct lpfc_iocbq *
lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
struct lpfc_iocbq *irspiocbq)
{
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *cmdiocbq;
struct lpfc_wcqe_complete *wcqe;
unsigned long iflags;
pring = lpfc_phba_elsring(phba);
if (unlikely(!pring))
return NULL;
wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
pring->stats.iocb_event++;
/* Look up the ELS command IOCB and create pseudo response IOCB */
cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
bf_get(lpfc_wcqe_c_request_tag, wcqe));
if (unlikely(!cmdiocbq)) {
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0386 ELS complete with no corresponding "
"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
wcqe->word0, wcqe->total_data_placed,
wcqe->parameter, wcqe->word3);
lpfc_sli_release_iocbq(phba, irspiocbq);
return NULL;
}
spin_lock_irqsave(&pring->ring_lock, iflags);
/* Put the iocb back on the txcmplq */
lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
/* Fake the irspiocbq and copy necessary response information */
lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
return irspiocbq;
}
inline struct lpfc_cq_event *
lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
{
struct lpfc_cq_event *cq_event;
/* Allocate a new internal CQ_EVENT entry */
cq_event = lpfc_sli4_cq_event_alloc(phba);
if (!cq_event) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0602 Failed to alloc CQ_EVENT entry\n");
return NULL;
}
/* Move the CQE into the event */
memcpy(&cq_event->cqe, entry, size);
return cq_event;
}
/**
* lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
* @phba: Pointer to HBA context object.
* @mcqe: Pointer to mailbox completion queue entry.
*
* This routine process a mailbox completion queue entry with asynchronous
* event.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
{
struct lpfc_cq_event *cq_event;
unsigned long iflags;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0392 Async Event: word0:x%x, word1:x%x, "
"word2:x%x, word3:x%x\n", mcqe->word0,
mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
if (!cq_event)
return false;
spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
/* Set the async event flag */
spin_lock_irqsave(&phba->hbalock, iflags);
phba->hba_flag |= ASYNC_EVENT;
spin_unlock_irqrestore(&phba->hbalock, iflags);
return true;
}
/**
* lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
* @phba: Pointer to HBA context object.
* @mcqe: Pointer to mailbox completion queue entry.
*
* This routine process a mailbox completion queue entry with mailbox
* completion event.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
{
uint32_t mcqe_status;
MAILBOX_t *mbox, *pmbox;
struct lpfc_mqe *mqe;
struct lpfc_vport *vport;
struct lpfc_nodelist *ndlp;
struct lpfc_dmabuf *mp;
unsigned long iflags;
LPFC_MBOXQ_t *pmb;
bool workposted = false;
int rc;
/* If not a mailbox complete MCQE, out by checking mailbox consume */
if (!bf_get(lpfc_trailer_completed, mcqe))
goto out_no_mqe_complete;
/* Get the reference to the active mbox command */
spin_lock_irqsave(&phba->hbalock, iflags);
pmb = phba->sli.mbox_active;
if (unlikely(!pmb)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"1832 No pending MBOX command to handle\n");
spin_unlock_irqrestore(&phba->hbalock, iflags);
goto out_no_mqe_complete;
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
mqe = &pmb->u.mqe;
pmbox = (MAILBOX_t *)&pmb->u.mqe;
mbox = phba->mbox;
vport = pmb->vport;
/* Reset heartbeat timer */
phba->last_completion_time = jiffies;
del_timer(&phba->sli.mbox_tmo);
/* Move mbox data to caller's mailbox region, do endian swapping */
if (pmb->mbox_cmpl && mbox)
lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
/*
* For mcqe errors, conditionally move a modified error code to
* the mbox so that the error will not be missed.
*/
mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
bf_set(lpfc_mqe_status, mqe,
(LPFC_MBX_ERROR_RANGE | mcqe_status));
}
if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
"MBOX dflt rpi: status:x%x rpi:x%x",
mcqe_status,
pmbox->un.varWords[0], 0);
if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
/* Reg_LOGIN of dflt RPI was successful. Now lets get
* RID of the PPI using the same mbox buffer.
*/
lpfc_unreg_login(phba, vport->vpi,
pmbox->un.varWords[0], pmb);
pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
pmb->ctx_buf = mp;
/* No reference taken here. This is a default
* RPI reg/immediate unreg cycle. The reference was
* taken in the reg rpi path and is released when
* this mailbox completes.
*/
pmb->ctx_ndlp = ndlp;
pmb->vport = vport;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc != MBX_BUSY)
lpfc_printf_log(phba, KERN_ERR,
LOG_TRACE_EVENT,
"0385 rc should "
"have been MBX_BUSY\n");
if (rc != MBX_NOT_FINISHED)
goto send_current_mbox;
}
}
spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
/* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
if (pmbox->mbxCommand == MBX_HEARTBEAT) {
spin_lock_irqsave(&phba->hbalock, iflags);
/* Release the mailbox command posting token */
phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
phba->sli.mbox_active = NULL;
if (bf_get(lpfc_trailer_consumed, mcqe))
lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
spin_unlock_irqrestore(&phba->hbalock, iflags);
/* Post the next mbox command, if there is one */
lpfc_sli4_post_async_mbox(phba);
/* Process cmpl now */
if (pmb->mbox_cmpl)
pmb->mbox_cmpl(phba, pmb);
return false;
}
/* There is mailbox completion work to queue to the worker thread */
spin_lock_irqsave(&phba->hbalock, iflags);
__lpfc_mbox_cmpl_put(phba, pmb);
phba->work_ha |= HA_MBATT;
spin_unlock_irqrestore(&phba->hbalock, iflags);
workposted = true;
send_current_mbox:
spin_lock_irqsave(&phba->hbalock, iflags);
/* Release the mailbox command posting token */
phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
/* Setting active mailbox pointer need to be in sync to flag clear */
phba->sli.mbox_active = NULL;
if (bf_get(lpfc_trailer_consumed, mcqe))
lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
spin_unlock_irqrestore(&phba->hbalock, iflags);
/* Wake up worker thread to post the next pending mailbox command */
lpfc_worker_wake_up(phba);
return workposted;
out_no_mqe_complete:
spin_lock_irqsave(&phba->hbalock, iflags);
if (bf_get(lpfc_trailer_consumed, mcqe))
lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
spin_unlock_irqrestore(&phba->hbalock, iflags);
return false;
}
/**
* lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
* @phba: Pointer to HBA context object.
* @cq: Pointer to associated CQ
* @cqe: Pointer to mailbox completion queue entry.
*
* This routine process a mailbox completion queue entry, it invokes the
* proper mailbox complete handling or asynchronous event handling routine
* according to the MCQE's async bit.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_cqe *cqe)
{
struct lpfc_mcqe mcqe;
bool workposted;
cq->CQ_mbox++;
/* Copy the mailbox MCQE and convert endian order as needed */
lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
/* Invoke the proper event handling routine */
if (!bf_get(lpfc_trailer_async, &mcqe))
workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
else
workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
return workposted;
}
/**
* lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
* @phba: Pointer to HBA context object.
* @cq: Pointer to associated CQ
* @wcqe: Pointer to work-queue completion queue entry.
*
* This routine handles an ELS work-queue completion event.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_wcqe_complete *wcqe)
{
struct lpfc_iocbq *irspiocbq;
unsigned long iflags;
struct lpfc_sli_ring *pring = cq->pring;
int txq_cnt = 0;
int txcmplq_cnt = 0;
/* Check for response status */
if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
/* Log the error status */
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0357 ELS CQE error: status=x%x: "
"CQE: %08x %08x %08x %08x\n",
bf_get(lpfc_wcqe_c_status, wcqe),
wcqe->word0, wcqe->total_data_placed,
wcqe->parameter, wcqe->word3);
}
/* Get an irspiocbq for later ELS response processing use */
irspiocbq = lpfc_sli_get_iocbq(phba);
if (!irspiocbq) {
if (!list_empty(&pring->txq))
txq_cnt++;
if (!list_empty(&pring->txcmplq))
txcmplq_cnt++;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
"els_txcmplq_cnt=%d\n",
txq_cnt, phba->iocb_cnt,
txcmplq_cnt);
return false;
}
/* Save off the slow-path queue event for work thread to process */
memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
spin_lock_irqsave(&phba->hbalock, iflags);
list_add_tail(&irspiocbq->cq_event.list,
&phba->sli4_hba.sp_queue_event);
phba->hba_flag |= HBA_SP_QUEUE_EVT;
spin_unlock_irqrestore(&phba->hbalock, iflags);
return true;
}
/**
* lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
* @phba: Pointer to HBA context object.
* @wcqe: Pointer to work-queue completion queue entry.
*
* This routine handles slow-path WQ entry consumed event by invoking the
* proper WQ release routine to the slow-path WQ.
**/
static void
lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
struct lpfc_wcqe_release *wcqe)
{
/* sanity check on queue memory */
if (unlikely(!phba->sli4_hba.els_wq))
return;
/* Check for the slow-path ELS work queue */
if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
bf_get(lpfc_wcqe_r_wqe_index, wcqe));
else
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"2579 Slow-path wqe consume event carries "
"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
bf_get(lpfc_wcqe_r_wqe_index, wcqe),
phba->sli4_hba.els_wq->queue_id);
}
/**
* lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
* @phba: Pointer to HBA context object.
* @cq: Pointer to a WQ completion queue.
* @wcqe: Pointer to work-queue completion queue entry.
*
* This routine handles an XRI abort event.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
struct lpfc_queue *cq,
struct sli4_wcqe_xri_aborted *wcqe)
{
bool workposted = false;
struct lpfc_cq_event *cq_event;
unsigned long iflags;
switch (cq->subtype) {
case LPFC_IO:
lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
/* Notify aborted XRI for NVME work queue */
if (phba->nvmet_support)
lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
}
workposted = false;
break;
case LPFC_NVME_LS: /* NVME LS uses ELS resources */
case LPFC_ELS:
cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
if (!cq_event) {
workposted = false;
break;
}
cq_event->hdwq = cq->hdwq;
spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
iflags);
list_add_tail(&cq_event->list,
&phba->sli4_hba.sp_els_xri_aborted_work_queue);
/* Set the els xri abort event flag */
phba->hba_flag |= ELS_XRI_ABORT_EVENT;
spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
iflags);
workposted = true;
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0603 Invalid CQ subtype %d: "
"%08x %08x %08x %08x\n",
cq->subtype, wcqe->word0, wcqe->parameter,
wcqe->word2, wcqe->word3);
workposted = false;
break;
}
return workposted;
}
#define FC_RCTL_MDS_DIAGS 0xF4
/**
* lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
* @phba: Pointer to HBA context object.
* @rcqe: Pointer to receive-queue completion queue entry.
*
* This routine process a receive-queue completion queue entry.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
{
bool workposted = false;
struct fc_frame_header *fc_hdr;
struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
struct lpfc_nvmet_tgtport *tgtp;
struct hbq_dmabuf *dma_buf;
uint32_t status, rq_id;
unsigned long iflags;
/* sanity check on queue memory */
if (unlikely(!hrq) || unlikely(!drq))
return workposted;
if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
else
rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
if (rq_id != hrq->queue_id)
goto out;
status = bf_get(lpfc_rcqe_status, rcqe);
switch (status) {
case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2537 Receive Frame Truncated!!\n");
fallthrough;
case FC_STATUS_RQ_SUCCESS:
spin_lock_irqsave(&phba->hbalock, iflags);
lpfc_sli4_rq_release(hrq, drq);
dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
if (!dma_buf) {
hrq->RQ_no_buf_found++;
spin_unlock_irqrestore(&phba->hbalock, iflags);
goto out;
}
hrq->RQ_rcv_buf++;
hrq->RQ_buf_posted--;
memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
spin_unlock_irqrestore(&phba->hbalock, iflags);
/* Handle MDS Loopback frames */
if (!(phba->pport->load_flag & FC_UNLOADING))
lpfc_sli4_handle_mds_loopback(phba->pport,
dma_buf);
else
lpfc_in_buf_free(phba, &dma_buf->dbuf);
break;
}
/* save off the frame for the work thread to process */
list_add_tail(&dma_buf->cq_event.list,
&phba->sli4_hba.sp_queue_event);
/* Frame received */
phba->hba_flag |= HBA_SP_QUEUE_EVT;
spin_unlock_irqrestore(&phba->hbalock, iflags);
workposted = true;
break;
case FC_STATUS_INSUFF_BUF_FRM_DISC:
if (phba->nvmet_support) {
tgtp = phba->targetport->private;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6402 RQE Error x%x, posted %d err_cnt "
"%d: %x %x %x\n",
status, hrq->RQ_buf_posted,
hrq->RQ_no_posted_buf,
atomic_read(&tgtp->rcv_fcp_cmd_in),
atomic_read(&tgtp->rcv_fcp_cmd_out),
atomic_read(&tgtp->xmt_fcp_release));
}
fallthrough;
case FC_STATUS_INSUFF_BUF_NEED_BUF:
hrq->RQ_no_posted_buf++;
/* Post more buffers if possible */
spin_lock_irqsave(&phba->hbalock, iflags);
phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
spin_unlock_irqrestore(&phba->hbalock, iflags);
workposted = true;
break;
}
out:
return workposted;
}
/**
* lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
* @phba: Pointer to HBA context object.
* @cq: Pointer to the completion queue.
* @cqe: Pointer to a completion queue entry.
*
* This routine process a slow-path work-queue or receive queue completion queue
* entry.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_cqe *cqe)
{
struct lpfc_cqe cqevt;
bool workposted = false;
/* Copy the work queue CQE and convert endian order if needed */
lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
/* Check and process for different type of WCQE and dispatch */
switch (bf_get(lpfc_cqe_code, &cqevt)) {
case CQE_CODE_COMPL_WQE:
/* Process the WQ/RQ complete event */
phba->last_completion_time = jiffies;
workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
(struct lpfc_wcqe_complete *)&cqevt);
break;
case CQE_CODE_RELEASE_WQE:
/* Process the WQ release event */
lpfc_sli4_sp_handle_rel_wcqe(phba,
(struct lpfc_wcqe_release *)&cqevt);
break;
case CQE_CODE_XRI_ABORTED:
/* Process the WQ XRI abort event */
phba->last_completion_time = jiffies;
workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
(struct sli4_wcqe_xri_aborted *)&cqevt);
break;
case CQE_CODE_RECEIVE:
case CQE_CODE_RECEIVE_V1:
/* Process the RQ event */
phba->last_completion_time = jiffies;
workposted = lpfc_sli4_sp_handle_rcqe(phba,
(struct lpfc_rcqe *)&cqevt);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0388 Not a valid WCQE code: x%x\n",
bf_get(lpfc_cqe_code, &cqevt));
break;
}
return workposted;
}
/**
* lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
* @phba: Pointer to HBA context object.
* @eqe: Pointer to fast-path event queue entry.
* @speq: Pointer to slow-path event queue.
*
* This routine process a event queue entry from the slow-path event queue.
* It will check the MajorCode and MinorCode to determine this is for a
* completion event on a completion queue, if not, an error shall be logged
* and just return. Otherwise, it will get to the corresponding completion
* queue and process all the entries on that completion queue, rearm the
* completion queue, and then return.
*
**/
static void
lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
struct lpfc_queue *speq)
{
struct lpfc_queue *cq = NULL, *childq;
uint16_t cqid;
int ret = 0;
/* Get the reference to the corresponding CQ */
cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
list_for_each_entry(childq, &speq->child_list, list) {
if (childq->queue_id == cqid) {
cq = childq;
break;
}
}
if (unlikely(!cq)) {
if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0365 Slow-path CQ identifier "
"(%d) does not exist\n", cqid);
return;
}
/* Save EQ associated with this CQ */
cq->assoc_qp = speq;
if (is_kdump_kernel())
ret = queue_work(phba->wq, &cq->spwork);
else
ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
if (!ret)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0390 Cannot schedule queue work "
"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
cqid, cq->queue_id, raw_smp_processor_id());
}
/**
* __lpfc_sli4_process_cq - Process elements of a CQ
* @phba: Pointer to HBA context object.
* @cq: Pointer to CQ to be processed
* @handler: Routine to process each cqe
* @delay: Pointer to usdelay to set in case of rescheduling of the handler
* @poll_mode: Polling mode we were called from
*
* This routine processes completion queue entries in a CQ. While a valid
* queue element is found, the handler is called. During processing checks
* are made for periodic doorbell writes to let the hardware know of
* element consumption.
*
* If the max limit on cqes to process is hit, or there are no more valid
* entries, the loop stops. If we processed a sufficient number of elements,
* meaning there is sufficient load, rather than rearming and generating
* another interrupt, a cq rescheduling delay will be set. A delay of 0
* indicates no rescheduling.
*
* Returns True if work scheduled, False otherwise.
**/
static bool
__lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
struct lpfc_cqe *), unsigned long *delay,
enum lpfc_poll_mode poll_mode)
{
struct lpfc_cqe *cqe;
bool workposted = false;
int count = 0, consumed = 0;
bool arm = true;
/* default - no reschedule */
*delay = 0;
if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
goto rearm_and_exit;
/* Process all the entries to the CQ */
cq->q_flag = 0;
cqe = lpfc_sli4_cq_get(cq);
while (cqe) {
workposted |= handler(phba, cq, cqe);
__lpfc_sli4_consume_cqe(phba, cq, cqe);
consumed++;
if (!(++count % cq->max_proc_limit))
break;
if (!(count % cq->notify_interval)) {
phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
LPFC_QUEUE_NOARM);
consumed = 0;
cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
}
if (count == LPFC_NVMET_CQ_NOTIFY)
cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
cqe = lpfc_sli4_cq_get(cq);
}
if (count >= phba->cfg_cq_poll_threshold) {
*delay = 1;
arm = false;
}
/* Note: complete the irq_poll softirq before rearming CQ */
if (poll_mode == LPFC_IRQ_POLL)
irq_poll_complete(&cq->iop);
/* Track the max number of CQEs processed in 1 EQ */
if (count > cq->CQ_max_cqe)
cq->CQ_max_cqe = count;
cq->assoc_qp->EQ_cqe_cnt += count;
/* Catch the no cq entry condition */
if (unlikely(count == 0))
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0369 No entry from completion queue "
"qid=%d\n", cq->queue_id);
xchg(&cq->queue_claimed, 0);
rearm_and_exit:
phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
return workposted;
}
/**
* __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
* @cq: pointer to CQ to process
*
* This routine calls the cq processing routine with a handler specific
* to the type of queue bound to it.
*
* The CQ routine returns two values: the first is the calling status,
* which indicates whether work was queued to the background discovery
* thread. If true, the routine should wakeup the discovery thread;
* the second is the delay parameter. If non-zero, rather than rearming
* the CQ and yet another interrupt, the CQ handler should be queued so
* that it is processed in a subsequent polling action. The value of
* the delay indicates when to reschedule it.
**/
static void
__lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
{
struct lpfc_hba *phba = cq->phba;
unsigned long delay;
bool workposted = false;
int ret = 0;
/* Process and rearm the CQ */
switch (cq->type) {
case LPFC_MCQ:
workposted |= __lpfc_sli4_process_cq(phba, cq,
lpfc_sli4_sp_handle_mcqe,
&delay, LPFC_QUEUE_WORK);
break;
case LPFC_WCQ:
if (cq->subtype == LPFC_IO)
workposted |= __lpfc_sli4_process_cq(phba, cq,
lpfc_sli4_fp_handle_cqe,
&delay, LPFC_QUEUE_WORK);
else
workposted |= __lpfc_sli4_process_cq(phba, cq,
lpfc_sli4_sp_handle_cqe,
&delay, LPFC_QUEUE_WORK);
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0370 Invalid completion queue type (%d)\n",
cq->type);
return;
}
if (delay) {
if (is_kdump_kernel())
ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
delay);
else
ret = queue_delayed_work_on(cq->chann, phba->wq,
&cq->sched_spwork, delay);
if (!ret)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0394 Cannot schedule queue work "
"for cqid=%d on CPU %d\n",
cq->queue_id, cq->chann);
}
/* wake up worker thread if there are works to be done */
if (workposted)
lpfc_worker_wake_up(phba);
}
/**
* lpfc_sli4_sp_process_cq - slow-path work handler when started by
* interrupt
* @work: pointer to work element
*
* translates from the work handler and calls the slow-path handler.
**/
static void
lpfc_sli4_sp_process_cq(struct work_struct *work)
{
struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
__lpfc_sli4_sp_process_cq(cq);
}
/**
* lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
* @work: pointer to work element
*
* translates from the work handler and calls the slow-path handler.
**/
static void
lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
{
struct lpfc_queue *cq = container_of(to_delayed_work(work),
struct lpfc_queue, sched_spwork);
__lpfc_sli4_sp_process_cq(cq);
}
/**
* lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
* @phba: Pointer to HBA context object.
* @cq: Pointer to associated CQ
* @wcqe: Pointer to work-queue completion queue entry.
*
* This routine process a fast-path work queue completion entry from fast-path
* event queue for FCP command response completion.
**/
static void
lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_wcqe_complete *wcqe)
{
struct lpfc_sli_ring *pring = cq->pring;
struct lpfc_iocbq *cmdiocbq;
struct lpfc_iocbq irspiocbq;
unsigned long iflags;
/* Check for response status */
if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
/* If resource errors reported from HBA, reduce queue
* depth of the SCSI device.
*/
if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
IOSTAT_LOCAL_REJECT)) &&
((wcqe->parameter & IOERR_PARAM_MASK) ==
IOERR_NO_RESOURCES))
phba->lpfc_rampdown_queue_depth(phba);
/* Log the cmpl status */
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"0373 FCP CQE cmpl: status=x%x: "
"CQE: %08x %08x %08x %08x\n",
bf_get(lpfc_wcqe_c_status, wcqe),
wcqe->word0, wcqe->total_data_placed,
wcqe->parameter, wcqe->word3);
}
/* Look up the FCP command IOCB and create pseudo response IOCB */
spin_lock_irqsave(&pring->ring_lock, iflags);
pring->stats.iocb_event++;
spin_unlock_irqrestore(&pring->ring_lock, iflags);
cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
bf_get(lpfc_wcqe_c_request_tag, wcqe));
if (unlikely(!cmdiocbq)) {
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0374 FCP complete with no corresponding "
"cmdiocb: iotag (%d)\n",
bf_get(lpfc_wcqe_c_request_tag, wcqe));
return;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
cmdiocbq->isr_timestamp = cq->isr_timestamp;
#endif
if (cmdiocbq->iocb_cmpl == NULL) {
if (cmdiocbq->wqe_cmpl) {
/* For FCP the flag is cleared in wqe_cmpl */
if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
spin_lock_irqsave(&phba->hbalock, iflags);
cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
spin_unlock_irqrestore(&phba->hbalock, iflags);
}
/* Pass the cmd_iocb and the wcqe to the upper layer */
(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
return;
}
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0375 FCP cmdiocb not callback function "
"iotag: (%d)\n",
bf_get(lpfc_wcqe_c_request_tag, wcqe));
return;
}
/* Only SLI4 non-IO commands stil use IOCB */
/* Fake the irspiocb and copy necessary response information */
lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
spin_lock_irqsave(&phba->hbalock, iflags);
cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
spin_unlock_irqrestore(&phba->hbalock, iflags);
}
/* Pass the cmd_iocb and the rsp state to the upper layer */
(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
}
/**
* lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
* @phba: Pointer to HBA context object.
* @cq: Pointer to completion queue.
* @wcqe: Pointer to work-queue completion queue entry.
*
* This routine handles an fast-path WQ entry consumed event by invoking the
* proper WQ release routine to the slow-path WQ.
**/
static void
lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_wcqe_release *wcqe)
{
struct lpfc_queue *childwq;
bool wqid_matched = false;
uint16_t hba_wqid;
/* Check for fast-path FCP work queue release */
hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
list_for_each_entry(childwq, &cq->child_list, list) {
if (childwq->queue_id == hba_wqid) {
lpfc_sli4_wq_release(childwq,
bf_get(lpfc_wcqe_r_wqe_index, wcqe));
if (childwq->q_flag & HBA_NVMET_WQFULL)
lpfc_nvmet_wqfull_process(phba, childwq);
wqid_matched = true;
break;
}
}
/* Report warning log message if no match found */
if (wqid_matched != true)
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"2580 Fast-path wqe consume event carries "
"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
}
/**
* lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
* @phba: Pointer to HBA context object.
* @cq: Pointer to completion queue.
* @rcqe: Pointer to receive-queue completion queue entry.
*
* This routine process a receive-queue completion queue entry.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_rcqe *rcqe)
{
bool workposted = false;
struct lpfc_queue *hrq;
struct lpfc_queue *drq;
struct rqb_dmabuf *dma_buf;
struct fc_frame_header *fc_hdr;
struct lpfc_nvmet_tgtport *tgtp;
uint32_t status, rq_id;
unsigned long iflags;
uint32_t fctl, idx;
if ((phba->nvmet_support == 0) ||
(phba->sli4_hba.nvmet_cqset == NULL))
return workposted;
idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
drq = phba->sli4_hba.nvmet_mrq_data[idx];
/* sanity check on queue memory */
if (unlikely(!hrq) || unlikely(!drq))
return workposted;
if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
else
rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
if ((phba->nvmet_support == 0) ||
(rq_id != hrq->queue_id))
return workposted;
status = bf_get(lpfc_rcqe_status, rcqe);
switch (status) {
case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6126 Receive Frame Truncated!!\n");
fallthrough;
case FC_STATUS_RQ_SUCCESS:
spin_lock_irqsave(&phba->hbalock, iflags);
lpfc_sli4_rq_release(hrq, drq);
dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
if (!dma_buf) {
hrq->RQ_no_buf_found++;
spin_unlock_irqrestore(&phba->hbalock, iflags);
goto out;
}
spin_unlock_irqrestore(&phba->hbalock, iflags);
hrq->RQ_rcv_buf++;
hrq->RQ_buf_posted--;
fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
/* Just some basic sanity checks on FCP Command frame */
fctl = (fc_hdr->fh_f_ctl[0] << 16 |
fc_hdr->fh_f_ctl[1] << 8 |
fc_hdr->fh_f_ctl[2]);
if (((fctl &
(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
(fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
goto drop;
if (fc_hdr->fh_type == FC_TYPE_FCP) {
dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
lpfc_nvmet_unsol_fcp_event(
phba, idx, dma_buf, cq->isr_timestamp,
cq->q_flag & HBA_NVMET_CQ_NOTIFY);
return false;
}
drop:
lpfc_rq_buf_free(phba, &dma_buf->hbuf);
break;
case FC_STATUS_INSUFF_BUF_FRM_DISC:
if (phba->nvmet_support) {
tgtp = phba->targetport->private;
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6401 RQE Error x%x, posted %d err_cnt "
"%d: %x %x %x\n",
status, hrq->RQ_buf_posted,
hrq->RQ_no_posted_buf,
atomic_read(&tgtp->rcv_fcp_cmd_in),
atomic_read(&tgtp->rcv_fcp_cmd_out),
atomic_read(&tgtp->xmt_fcp_release));
}
fallthrough;
case FC_STATUS_INSUFF_BUF_NEED_BUF:
hrq->RQ_no_posted_buf++;
/* Post more buffers if possible */
break;
}
out:
return workposted;
}
/**
* lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
* @phba: adapter with cq
* @cq: Pointer to the completion queue.
* @cqe: Pointer to fast-path completion queue entry.
*
* This routine process a fast-path work queue completion entry from fast-path
* event queue for FCP command response completion.
*
* Return: true if work posted to worker thread, otherwise false.
**/
static bool
lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_cqe *cqe)
{
struct lpfc_wcqe_release wcqe;
bool workposted = false;
/* Copy the work queue CQE and convert endian order if needed */
lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
/* Check and process for different type of WCQE and dispatch */
switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
case CQE_CODE_COMPL_WQE:
case CQE_CODE_NVME_ERSP:
cq->CQ_wq++;
/* Process the WQ complete event */
phba->last_completion_time = jiffies;
if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
(struct lpfc_wcqe_complete *)&wcqe);
break;
case CQE_CODE_RELEASE_WQE:
cq->CQ_release_wqe++;
/* Process the WQ release event */
lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
(struct lpfc_wcqe_release *)&wcqe);
break;
case CQE_CODE_XRI_ABORTED:
cq->CQ_xri_aborted++;
/* Process the WQ XRI abort event */
phba->last_completion_time = jiffies;
workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
(struct sli4_wcqe_xri_aborted *)&wcqe);
break;
case CQE_CODE_RECEIVE_V1:
case CQE_CODE_RECEIVE:
phba->last_completion_time = jiffies;
if (cq->subtype == LPFC_NVMET) {
workposted = lpfc_sli4_nvmet_handle_rcqe(
phba, cq, (struct lpfc_rcqe *)&wcqe);
}
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0144 Not a valid CQE code: x%x\n",
bf_get(lpfc_wcqe_c_code, &wcqe));
break;
}
return workposted;
}
/**
* lpfc_sli4_sched_cq_work - Schedules cq work
* @phba: Pointer to HBA context object.
* @cq: Pointer to CQ
* @cqid: CQ ID
*
* This routine checks the poll mode of the CQ corresponding to
* cq->chann, then either schedules a softirq or queue_work to complete
* cq work.
*
* queue_work path is taken if in NVMET mode, or if poll_mode is in
* LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken.
*
**/
static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
struct lpfc_queue *cq, uint16_t cqid)
{
int ret = 0;
switch (cq->poll_mode) {
case LPFC_IRQ_POLL:
irq_poll_sched(&cq->iop);
break;
case LPFC_QUEUE_WORK:
default:
if (is_kdump_kernel())
ret = queue_work(phba->wq, &cq->irqwork);
else
ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
if (!ret)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0383 Cannot schedule queue work "
"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
cqid, cq->queue_id,
raw_smp_processor_id());
}
}
/**
* lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
* @phba: Pointer to HBA context object.
* @eq: Pointer to the queue structure.
* @eqe: Pointer to fast-path event queue entry.
*
* This routine process a event queue entry from the fast-path event queue.
* It will check the MajorCode and MinorCode to determine this is for a
* completion event on a completion queue, if not, an error shall be logged
* and just return. Otherwise, it will get to the corresponding completion
* queue and process all the entries on the completion queue, rearm the
* completion queue, and then return.
**/
static void
lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
struct lpfc_eqe *eqe)
{
struct lpfc_queue *cq = NULL;
uint32_t qidx = eq->hdwq;
uint16_t cqid, id;
if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0366 Not a valid completion "
"event: majorcode=x%x, minorcode=x%x\n",
bf_get_le32(lpfc_eqe_major_code, eqe),
bf_get_le32(lpfc_eqe_minor_code, eqe));
return;
}
/* Get the reference to the corresponding CQ */
cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
/* Use the fast lookup method first */
if (cqid <= phba->sli4_hba.cq_max) {
cq = phba->sli4_hba.cq_lookup[cqid];
if (cq)
goto work_cq;
}
/* Next check for NVMET completion */
if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
/* Process NVMET unsol rcv */
cq = phba->sli4_hba.nvmet_cqset[cqid - id];
goto process_cq;
}
}
if (phba->sli4_hba.nvmels_cq &&
(cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
/* Process NVME unsol rcv */
cq = phba->sli4_hba.nvmels_cq;
}
/* Otherwise this is a Slow path event */
if (cq == NULL) {
lpfc_sli4_sp_handle_eqe(phba, eqe,
phba->sli4_hba.hdwq[qidx].hba_eq);
return;
}
process_cq:
if (unlikely(cqid != cq->queue_id)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0368 Miss-matched fast-path completion "
"queue identifier: eqcqid=%d, fcpcqid=%d\n",
cqid, cq->queue_id);
return;
}
work_cq:
#if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
if (phba->ktime_on)
cq->isr_timestamp = ktime_get_ns();
else
cq->isr_timestamp = 0;
#endif
lpfc_sli4_sched_cq_work(phba, cq, cqid);
}
/**
* __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
* @cq: Pointer to CQ to be processed
* @poll_mode: Enum lpfc_poll_state to determine poll mode
*
* This routine calls the cq processing routine with the handler for
* fast path CQEs.
*
* The CQ routine returns two values: the first is the calling status,
* which indicates whether work was queued to the background discovery
* thread. If true, the routine should wakeup the discovery thread;
* the second is the delay parameter. If non-zero, rather than rearming
* the CQ and yet another interrupt, the CQ handler should be queued so
* that it is processed in a subsequent polling action. The value of
* the delay indicates when to reschedule it.
**/
static void
__lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
enum lpfc_poll_mode poll_mode)
{
struct lpfc_hba *phba = cq->phba;
unsigned long delay;
bool workposted = false;
int ret = 0;
/* process and rearm the CQ */
workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
&delay, poll_mode);
if (delay) {
if (is_kdump_kernel())
ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
delay);
else
ret = queue_delayed_work_on(cq->chann, phba->wq,
&cq->sched_irqwork, delay);
if (!ret)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0367 Cannot schedule queue work "
"for cqid=%d on CPU %d\n",
cq->queue_id, cq->chann);
}
/* wake up worker thread if there are works to be done */
if (workposted)
lpfc_worker_wake_up(phba);
}
/**
* lpfc_sli4_hba_process_cq - fast-path work handler when started by
* interrupt
* @work: pointer to work element
*
* translates from the work handler and calls the fast-path handler.
**/
static void
lpfc_sli4_hba_process_cq(struct work_struct *work)
{
struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
}
/**
* lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
* @work: pointer to work element
*
* translates from the work handler and calls the fast-path handler.
**/
static void
lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
{
struct lpfc_queue *cq = container_of(to_delayed_work(work),
struct lpfc_queue, sched_irqwork);
__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
}
/**
* lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
* @irq: Interrupt number.
* @dev_id: The device context pointer.
*
* This function is directly called from the PCI layer as an interrupt
* service routine when device with SLI-4 interface spec is enabled with
* MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
* ring event in the HBA. However, when the device is enabled with either
* MSI or Pin-IRQ interrupt mode, this function is called as part of the
* device-level interrupt handler. When the PCI slot is in error recovery
* or the HBA is undergoing initialization, the interrupt handler will not
* process the interrupt. The SCSI FCP fast-path ring event are handled in
* the intrrupt context. This function is called without any lock held.
* It gets the hbalock to access and update SLI data structures. Note that,
* the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
* equal to that of FCP CQ index.
*
* The link attention and ELS ring attention events are handled
* by the worker thread. The interrupt handler signals the worker thread
* and returns for these events. This function is called without any lock
* held. It gets the hbalock to access and update SLI data structures.
*
* This function returns IRQ_HANDLED when interrupt is handled else it
* returns IRQ_NONE.
**/
irqreturn_t
lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
{
struct lpfc_hba *phba;
struct lpfc_hba_eq_hdl *hba_eq_hdl;
struct lpfc_queue *fpeq;
unsigned long iflag;
int ecount = 0;
int hba_eqidx;
struct lpfc_eq_intr_info *eqi;
/* Get the driver's phba structure from the dev_id */
hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
phba = hba_eq_hdl->phba;
hba_eqidx = hba_eq_hdl->idx;
if (unlikely(!phba))
return IRQ_NONE;
if (unlikely(!phba->sli4_hba.hdwq))
return IRQ_NONE;
/* Get to the EQ struct associated with this vector */
fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
if (unlikely(!fpeq))
return IRQ_NONE;
/* Check device state for handling interrupt */
if (unlikely(lpfc_intr_state_check(phba))) {
/* Check again for link_state with lock held */
spin_lock_irqsave(&phba->hbalock, iflag);
if (phba->link_state < LPFC_LINK_DOWN)
/* Flush, clear interrupt, and rearm the EQ */
lpfc_sli4_eqcq_flush(phba, fpeq);
spin_unlock_irqrestore(&phba->hbalock, iflag);
return IRQ_NONE;
}
eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
eqi->icnt++;
fpeq->last_cpu = raw_smp_processor_id();
if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
fpeq->q_flag & HBA_EQ_DELAY_CHK &&
phba->cfg_auto_imax &&
fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
/* process and rearm the EQ */
ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
if (unlikely(ecount == 0)) {
fpeq->EQ_no_entry++;
if (phba->intr_type == MSIX)
/* MSI-X treated interrupt served as no EQ share INT */
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"0358 MSI-X interrupt with no EQE\n");
else
/* Non MSI-X treated on interrupt as EQ share INT */
return IRQ_NONE;
}
return IRQ_HANDLED;
} /* lpfc_sli4_hba_intr_handler */
/**
* lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
* @irq: Interrupt number.
* @dev_id: The device context pointer.
*
* This function is the device-level interrupt handler to device with SLI-4
* interface spec, called from the PCI layer when either MSI or Pin-IRQ
* interrupt mode is enabled and there is an event in the HBA which requires
* driver attention. This function invokes the slow-path interrupt attention
* handling function and fast-path interrupt attention handling function in
* turn to process the relevant HBA attention events. This function is called
* without any lock held. It gets the hbalock to access and update SLI data
* structures.
*
* This function returns IRQ_HANDLED when interrupt is handled, else it
* returns IRQ_NONE.
**/
irqreturn_t
lpfc_sli4_intr_handler(int irq, void *dev_id)
{
struct lpfc_hba *phba;
irqreturn_t hba_irq_rc;
bool hba_handled = false;
int qidx;
/* Get the driver's phba structure from the dev_id */
phba = (struct lpfc_hba *)dev_id;
if (unlikely(!phba))
return IRQ_NONE;
/*
* Invoke fast-path host attention interrupt handling as appropriate.
*/
for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
&phba->sli4_hba.hba_eq_hdl[qidx]);
if (hba_irq_rc == IRQ_HANDLED)
hba_handled |= true;
}
return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
} /* lpfc_sli4_intr_handler */
void lpfc_sli4_poll_hbtimer(struct timer_list *t)
{
struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
struct lpfc_queue *eq;
int i = 0;
rcu_read_lock();
list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
if (!list_empty(&phba->poll_list))
mod_timer(&phba->cpuhp_poll_timer,
jiffies + msecs_to_jiffies(LPFC_POLL_HB));
rcu_read_unlock();
}
inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
{
struct lpfc_hba *phba = eq->phba;
int i = 0;
/*
* Unlocking an irq is one of the entry point to check
* for re-schedule, but we are good for io submission
* path as midlayer does a get_cpu to glue us in. Flush
* out the invalidate queue so we can see the updated
* value for flag.
*/
smp_rmb();
if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
/* We will not likely get the completion for the caller
* during this iteration but i guess that's fine.
* Future io's coming on this eq should be able to
* pick it up. As for the case of single io's, they
* will be handled through a sched from polling timer
* function which is currently triggered every 1msec.
*/
i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
return i;
}
static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
{
struct lpfc_hba *phba = eq->phba;
/* kickstart slowpath processing if needed */
if (list_empty(&phba->poll_list))
mod_timer(&phba->cpuhp_poll_timer,
jiffies + msecs_to_jiffies(LPFC_POLL_HB));
list_add_rcu(&eq->_poll_list, &phba->poll_list);
synchronize_rcu();
}
static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
{
struct lpfc_hba *phba = eq->phba;
/* Disable slowpath processing for this eq. Kick start the eq
* by RE-ARMING the eq's ASAP
*/
list_del_rcu(&eq->_poll_list);
synchronize_rcu();
if (list_empty(&phba->poll_list))
del_timer_sync(&phba->cpuhp_poll_timer);
}
void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
{
struct lpfc_queue *eq, *next;
list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
list_del(&eq->_poll_list);
INIT_LIST_HEAD(&phba->poll_list);
synchronize_rcu();
}
static inline void
__lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
{
if (mode == eq->mode)
return;
/*
* currently this function is only called during a hotplug
* event and the cpu on which this function is executing
* is going offline. By now the hotplug has instructed
* the scheduler to remove this cpu from cpu active mask.
* So we don't need to work about being put aside by the
* scheduler for a high priority process. Yes, the inte-
* rrupts could come but they are known to retire ASAP.
*/
/* Disable polling in the fastpath */
WRITE_ONCE(eq->mode, mode);
/* flush out the store buffer */
smp_wmb();
/*
* Add this eq to the polling list and start polling. For
* a grace period both interrupt handler and poller will
* try to process the eq _but_ that's fine. We have a
* synchronization mechanism in place (queue_claimed) to
* deal with it. This is just a draining phase for int-
* errupt handler (not eq's) as we have guranteed through
* barrier that all the CPUs have seen the new CQ_POLLED
* state. which will effectively disable the REARMING of
* the EQ. The whole idea is eq's die off eventually as
* we are not rearming EQ's anymore.
*/
mode ? lpfc_sli4_add_to_poll_list(eq) :
lpfc_sli4_remove_from_poll_list(eq);
}
void lpfc_sli4_start_polling(struct lpfc_queue *eq)
{
__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
}
void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
{
struct lpfc_hba *phba = eq->phba;
__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
/* Kick start for the pending io's in h/w.
* Once we switch back to interrupt processing on a eq
* the io path completion will only arm eq's when it
* receives a completion. But since eq's are in disa-
* rmed state it doesn't receive a completion. This
* creates a deadlock scenaro.
*/
phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
}
/**
* lpfc_sli4_queue_free - free a queue structure and associated memory
* @queue: The queue structure to free.
*
* This function frees a queue structure and the DMAable memory used for
* the host resident queue. This function must be called after destroying the
* queue on the HBA.
**/
void
lpfc_sli4_queue_free(struct lpfc_queue *queue)
{
struct lpfc_dmabuf *dmabuf;
if (!queue)
return;
if (!list_empty(&queue->wq_list))
list_del(&queue->wq_list);
while (!list_empty(&queue->page_list)) {
list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
list);
dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
dmabuf->virt, dmabuf->phys);
kfree(dmabuf);
}
if (queue->rqbp) {
lpfc_free_rq_buffer(queue->phba, queue);
kfree(queue->rqbp);
}
if (!list_empty(&queue->cpu_list))
list_del(&queue->cpu_list);
kfree(queue);
return;
}
/**
* lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
* @phba: The HBA that this queue is being created on.
* @page_size: The size of a queue page
* @entry_size: The size of each queue entry for this queue.
* @entry_count: The number of entries that this queue will handle.
* @cpu: The cpu that will primarily utilize this queue.
*
* This function allocates a queue structure and the DMAable memory used for
* the host resident queue. This function must be called before creating the
* queue on the HBA.
**/
struct lpfc_queue *
lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
uint32_t entry_size, uint32_t entry_count, int cpu)
{
struct lpfc_queue *queue;
struct lpfc_dmabuf *dmabuf;
uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
uint16_t x, pgcnt;
if (!phba->sli4_hba.pc_sli4_params.supported)
hw_page_size = page_size;
pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
/* If needed, Adjust page count to match the max the adapter supports */
if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
GFP_KERNEL, cpu_to_node(cpu));
if (!queue)
return NULL;
INIT_LIST_HEAD(&queue->list);
INIT_LIST_HEAD(&queue->_poll_list);
INIT_LIST_HEAD(&queue->wq_list);
INIT_LIST_HEAD(&queue->wqfull_list);
INIT_LIST_HEAD(&queue->page_list);
INIT_LIST_HEAD(&queue->child_list);
INIT_LIST_HEAD(&queue->cpu_list);
/* Set queue parameters now. If the system cannot provide memory
* resources, the free routine needs to know what was allocated.
*/
queue->page_count = pgcnt;
queue->q_pgs = (void **)&queue[1];
queue->entry_cnt_per_pg = hw_page_size / entry_size;
queue->entry_size = entry_size;
queue->entry_count = entry_count;
queue->page_size = hw_page_size;
queue->phba = phba;
for (x = 0; x < queue->page_count; x++) {
dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
dev_to_node(&phba->pcidev->dev));
if (!dmabuf)
goto out_fail;
dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
hw_page_size, &dmabuf->phys,
GFP_KERNEL);
if (!dmabuf->virt) {
kfree(dmabuf);
goto out_fail;
}
dmabuf->buffer_tag = x;
list_add_tail(&dmabuf->list, &queue->page_list);
/* use lpfc_sli4_qe to index a paritcular entry in this page */
queue->q_pgs[x] = dmabuf->virt;
}
INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
/* notify_interval will be set during q creation */
return queue;
out_fail:
lpfc_sli4_queue_free(queue);
return NULL;
}
/**
* lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
* @phba: HBA structure that indicates port to create a queue on.
* @pci_barset: PCI BAR set flag.
*
* This function shall perform iomap of the specified PCI BAR address to host
* memory address if not already done so and return it. The returned host
* memory address can be NULL.
*/
static void __iomem *
lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
{
if (!phba->pcidev)
return NULL;
switch (pci_barset) {
case WQ_PCI_BAR_0_AND_1:
return phba->pci_bar0_memmap_p;
case WQ_PCI_BAR_2_AND_3:
return phba->pci_bar2_memmap_p;
case WQ_PCI_BAR_4_AND_5:
return phba->pci_bar4_memmap_p;
default:
break;
}
return NULL;
}
/**
* lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
* @phba: HBA structure that EQs are on.
* @startq: The starting EQ index to modify
* @numq: The number of EQs (consecutive indexes) to modify
* @usdelay: amount of delay
*
* This function revises the EQ delay on 1 or more EQs. The EQ delay
* is set either by writing to a register (if supported by the SLI Port)
* or by mailbox command. The mailbox command allows several EQs to be
* updated at once.
*
* The @phba struct is used to send a mailbox command to HBA. The @startq
* is used to get the starting EQ index to change. The @numq value is
* used to specify how many consecutive EQ indexes, starting at EQ index,
* are to be changed. This function is asynchronous and will wait for any
* mailbox commands to finish before returning.
*
* On success this function will return a zero. If unable to allocate
* enough memory this function will return -ENOMEM. If a mailbox command
* fails this function will return -ENXIO. Note: on ENXIO, some EQs may
* have had their delay multipler changed.
**/
void
lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
uint32_t numq, uint32_t usdelay)
{
struct lpfc_mbx_modify_eq_delay *eq_delay;
LPFC_MBOXQ_t *mbox;
struct lpfc_queue *eq;
int cnt = 0, rc, length;
uint32_t shdr_status, shdr_add_status;
uint32_t dmult;
int qidx;
union lpfc_sli4_cfg_shdr *shdr;
if (startq >= phba->cfg_irq_chann)
return;
if (usdelay > 0xFFFF) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
"6429 usdelay %d too large. Scaled down to "
"0xFFFF.\n", usdelay);
usdelay = 0xFFFF;
}
/* set values by EQ_DELAY register if supported */
if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
if (!eq)
continue;
lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
if (++cnt >= numq)
break;
}
return;
}
/* Otherwise, set values by mailbox cmd */
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6428 Failed allocating mailbox cmd buffer."
" EQ delay was not set.\n");
return;
}
length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
length, LPFC_SLI4_MBX_EMBED);
eq_delay = &mbox->u.mqe.un.eq_delay;
/* Calculate delay multiper from maximum interrupt per second */
dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
if (dmult)
dmult--;
if (dmult > LPFC_DMULT_MAX)
dmult = LPFC_DMULT_MAX;
for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
if (!eq)
continue;
eq->q_mode = usdelay;
eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
eq_delay->u.request.eq[cnt].phase = 0;
eq_delay->u.request.eq[cnt].delay_multi = dmult;
if (++cnt >= numq)
break;
}
eq_delay->u.request.num_eq = cnt;
mbox->vport = phba->pport;
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
mbox->ctx_buf = NULL;
mbox->ctx_ndlp = NULL;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2512 MODIFY_EQ_DELAY mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
}
mempool_free(mbox, phba->mbox_mem_pool);
return;
}
/**
* lpfc_eq_create - Create an Event Queue on the HBA
* @phba: HBA structure that indicates port to create a queue on.
* @eq: The queue structure to use to create the event queue.
* @imax: The maximum interrupt per second limit.
*
* This function creates an event queue, as detailed in @eq, on a port,
* described by @phba by sending an EQ_CREATE mailbox command to the HBA.
*
* The @phba struct is used to send mailbox command to HBA. The @eq struct
* is used to get the entry count and entry size that are necessary to
* determine the number of pages to allocate and use for this queue. This
* function will send the EQ_CREATE mailbox command to the HBA to setup the
* event queue. This function is asynchronous and will wait for the mailbox
* command to finish before continuing.
*
* On success this function will return a zero. If unable to allocate enough
* memory this function will return -ENOMEM. If the queue create mailbox command
* fails this function will return -ENXIO.
**/
int
lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
{
struct lpfc_mbx_eq_create *eq_create;
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
struct lpfc_dmabuf *dmabuf;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
uint16_t dmult;
uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
/* sanity check on queue memory */
if (!eq)
return -ENODEV;
if (!phba->sli4_hba.pc_sli4_params.supported)
hw_page_size = SLI4_PAGE_SIZE;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_eq_create) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_EQ_CREATE,
length, LPFC_SLI4_MBX_EMBED);
eq_create = &mbox->u.mqe.un.eq_create;
shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
eq->page_count);
bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
LPFC_EQE_SIZE);
bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
/* Use version 2 of CREATE_EQ if eqav is set */
if (phba->sli4_hba.pc_sli4_params.eqav) {
bf_set(lpfc_mbox_hdr_version, &shdr->request,
LPFC_Q_CREATE_VERSION_2);
bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
phba->sli4_hba.pc_sli4_params.eqav);
}
/* don't setup delay multiplier using EQ_CREATE */
dmult = 0;
bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
dmult);
switch (eq->entry_count) {
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0360 Unsupported EQ count. (%d)\n",
eq->entry_count);
if (eq->entry_count < 256) {
status = -EINVAL;
goto out;
}
fallthrough; /* otherwise default to smallest count */
case 256:
bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
LPFC_EQ_CNT_256);
break;
case 512:
bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
LPFC_EQ_CNT_512);
break;
case 1024:
bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
LPFC_EQ_CNT_1024);
break;
case 2048:
bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
LPFC_EQ_CNT_2048);
break;
case 4096:
bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
LPFC_EQ_CNT_4096);
break;
}
list_for_each_entry(dmabuf, &eq->page_list, list) {
memset(dmabuf->virt, 0, hw_page_size);
eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
putPaddrLow(dmabuf->phys);
eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
putPaddrHigh(dmabuf->phys);
}
mbox->vport = phba->pport;
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
mbox->ctx_buf = NULL;
mbox->ctx_ndlp = NULL;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2500 EQ_CREATE mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
}
eq->type = LPFC_EQ;
eq->subtype = LPFC_NONE;
eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
if (eq->queue_id == 0xFFFF)
status = -ENXIO;
eq->host_index = 0;
eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
out:
mempool_free(mbox, phba->mbox_mem_pool);
return status;
}
static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
{
struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
return 1;
}
/**
* lpfc_cq_create - Create a Completion Queue on the HBA
* @phba: HBA structure that indicates port to create a queue on.
* @cq: The queue structure to use to create the completion queue.
* @eq: The event queue to bind this completion queue to.
* @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
* @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
*
* This function creates a completion queue, as detailed in @wq, on a port,
* described by @phba by sending a CQ_CREATE mailbox command to the HBA.
*
* The @phba struct is used to send mailbox command to HBA. The @cq struct
* is used to get the entry count and entry size that are necessary to
* determine the number of pages to allocate and use for this queue. The @eq
* is used to indicate which event queue to bind this completion queue to. This
* function will send the CQ_CREATE mailbox command to the HBA to setup the
* completion queue. This function is asynchronous and will wait for the mailbox
* command to finish before continuing.
*
* On success this function will return a zero. If unable to allocate enough
* memory this function will return -ENOMEM. If the queue create mailbox command
* fails this function will return -ENXIO.
**/
int
lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
{
struct lpfc_mbx_cq_create *cq_create;
struct lpfc_dmabuf *dmabuf;
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
/* sanity check on queue memory */
if (!cq || !eq)
return -ENODEV;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_cq_create) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_CQ_CREATE,
length, LPFC_SLI4_MBX_EMBED);
cq_create = &mbox->u.mqe.un.cq_create;
shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
cq->page_count);
bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
bf_set(lpfc_mbox_hdr_version, &shdr->request,
phba->sli4_hba.pc_sli4_params.cqv);
if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
(cq->page_size / SLI4_PAGE_SIZE));
bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
eq->queue_id);
bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
phba->sli4_hba.pc_sli4_params.cqav);
} else {
bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
eq->queue_id);
}
switch (cq->entry_count) {
case 2048:
case 4096:
if (phba->sli4_hba.pc_sli4_params.cqv ==
LPFC_Q_CREATE_VERSION_2) {
cq_create->u.request.context.lpfc_cq_context_count =
cq->entry_count;
bf_set(lpfc_cq_context_count,
&cq_create->u.request.context,
LPFC_CQ_CNT_WORD7);
break;
}
fallthrough;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0361 Unsupported CQ count: "
"entry cnt %d sz %d pg cnt %d\n",
cq->entry_count, cq->entry_size,
cq->page_count);
if (cq->entry_count < 256) {
status = -EINVAL;
goto out;
}
fallthrough; /* otherwise default to smallest count */
case 256:
bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
LPFC_CQ_CNT_256);
break;
case 512:
bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
LPFC_CQ_CNT_512);
break;
case 1024:
bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
LPFC_CQ_CNT_1024);
break;
}
list_for_each_entry(dmabuf, &cq->page_list, list) {
memset(dmabuf->virt, 0, cq->page_size);
cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
putPaddrLow(dmabuf->phys);
cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
putPaddrHigh(dmabuf->phys);
}
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2501 CQ_CREATE mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
goto out;
}
cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
if (cq->queue_id == 0xFFFF) {
status = -ENXIO;
goto out;
}
/* link the cq onto the parent eq child list */
list_add_tail(&cq->list, &eq->child_list);
/* Set up completion queue's type and subtype */
cq->type = type;
cq->subtype = subtype;
cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
cq->assoc_qid = eq->queue_id;
cq->assoc_qp = eq;
cq->host_index = 0;
cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
if (cq->queue_id > phba->sli4_hba.cq_max)
phba->sli4_hba.cq_max = cq->queue_id;
irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
out:
mempool_free(mbox, phba->mbox_mem_pool);
return status;
}
/**
* lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
* @phba: HBA structure that indicates port to create a queue on.
* @cqp: The queue structure array to use to create the completion queues.
* @hdwq: The hardware queue array with the EQ to bind completion queues to.
* @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
* @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
*
* This function creates a set of completion queue, s to support MRQ
* as detailed in @cqp, on a port,
* described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
*
* The @phba struct is used to send mailbox command to HBA. The @cq struct
* is used to get the entry count and entry size that are necessary to
* determine the number of pages to allocate and use for this queue. The @eq
* is used to indicate which event queue to bind this completion queue to. This
* function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
* completion queue. This function is asynchronous and will wait for the mailbox
* command to finish before continuing.
*
* On success this function will return a zero. If unable to allocate enough
* memory this function will return -ENOMEM. If the queue create mailbox command
* fails this function will return -ENXIO.
**/
int
lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
uint32_t subtype)
{
struct lpfc_queue *cq;
struct lpfc_queue *eq;
struct lpfc_mbx_cq_create_set *cq_set;
struct lpfc_dmabuf *dmabuf;
LPFC_MBOXQ_t *mbox;
int rc, length, alloclen, status = 0;
int cnt, idx, numcq, page_idx = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
/* sanity check on queue memory */
numcq = phba->cfg_nvmet_mrq;
if (!cqp || !hdwq || !numcq)
return -ENODEV;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = sizeof(struct lpfc_mbx_cq_create_set);
length += ((numcq * cqp[0]->page_count) *
sizeof(struct dma_address));
alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
LPFC_SLI4_MBX_NEMBED);
if (alloclen < length) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3098 Allocated DMA memory size (%d) is "
"less than the requested DMA memory size "
"(%d)\n", alloclen, length);
status = -ENOMEM;
goto out;
}
cq_set = mbox->sge_array->addr[0];
shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
for (idx = 0; idx < numcq; idx++) {
cq = cqp[idx];
eq = hdwq[idx].hba_eq;
if (!cq || !eq) {
status = -ENOMEM;
goto out;
}
if (!phba->sli4_hba.pc_sli4_params.supported)
hw_page_size = cq->page_size;
switch (idx) {
case 0:
bf_set(lpfc_mbx_cq_create_set_page_size,
&cq_set->u.request,
(hw_page_size / SLI4_PAGE_SIZE));
bf_set(lpfc_mbx_cq_create_set_num_pages,
&cq_set->u.request, cq->page_count);
bf_set(lpfc_mbx_cq_create_set_evt,
&cq_set->u.request, 1);
bf_set(lpfc_mbx_cq_create_set_valid,
&cq_set->u.request, 1);
bf_set(lpfc_mbx_cq_create_set_cqe_size,
&cq_set->u.request, 0);
bf_set(lpfc_mbx_cq_create_set_num_cq,
&cq_set->u.request, numcq);
bf_set(lpfc_mbx_cq_create_set_autovalid,
&cq_set->u.request,
phba->sli4_hba.pc_sli4_params.cqav);
switch (cq->entry_count) {
case 2048:
case 4096:
if (phba->sli4_hba.pc_sli4_params.cqv ==
LPFC_Q_CREATE_VERSION_2) {
bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
&cq_set->u.request,
cq->entry_count);
bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
&cq_set->u.request,
LPFC_CQ_CNT_WORD7);
break;
}
fallthrough;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3118 Bad CQ count. (%d)\n",
cq->entry_count);
if (cq->entry_count < 256) {
status = -EINVAL;
goto out;
}
fallthrough; /* otherwise default to smallest */
case 256:
bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
&cq_set->u.request, LPFC_CQ_CNT_256);
break;
case 512:
bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
&cq_set->u.request, LPFC_CQ_CNT_512);
break;
case 1024:
bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
&cq_set->u.request, LPFC_CQ_CNT_1024);
break;
}
bf_set(lpfc_mbx_cq_create_set_eq_id0,
&cq_set->u.request, eq->queue_id);
break;
case 1:
bf_set(lpfc_mbx_cq_create_set_eq_id1,
&cq_set->u.request, eq->queue_id);
break;
case 2:
bf_set(lpfc_mbx_cq_create_set_eq_id2,
&cq_set->u.request, eq->queue_id);
break;
case 3:
bf_set(lpfc_mbx_cq_create_set_eq_id3,
&cq_set->u.request, eq->queue_id);
break;
case 4:
bf_set(lpfc_mbx_cq_create_set_eq_id4,
&cq_set->u.request, eq->queue_id);
break;
case 5:
bf_set(lpfc_mbx_cq_create_set_eq_id5,
&cq_set->u.request, eq->queue_id);
break;
case 6:
bf_set(lpfc_mbx_cq_create_set_eq_id6,
&cq_set->u.request, eq->queue_id);
break;
case 7:
bf_set(lpfc_mbx_cq_create_set_eq_id7,
&cq_set->u.request, eq->queue_id);
break;
case 8:
bf_set(lpfc_mbx_cq_create_set_eq_id8,
&cq_set->u.request, eq->queue_id);
break;
case 9:
bf_set(lpfc_mbx_cq_create_set_eq_id9,
&cq_set->u.request, eq->queue_id);
break;
case 10:
bf_set(lpfc_mbx_cq_create_set_eq_id10,
&cq_set->u.request, eq->queue_id);
break;
case 11:
bf_set(lpfc_mbx_cq_create_set_eq_id11,
&cq_set->u.request, eq->queue_id);
break;
case 12:
bf_set(lpfc_mbx_cq_create_set_eq_id12,
&cq_set->u.request, eq->queue_id);
break;
case 13:
bf_set(lpfc_mbx_cq_create_set_eq_id13,
&cq_set->u.request, eq->queue_id);
break;
case 14:
bf_set(lpfc_mbx_cq_create_set_eq_id14,
&cq_set->u.request, eq->queue_id);
break;
case 15:
bf_set(lpfc_mbx_cq_create_set_eq_id15,
&cq_set->u.request, eq->queue_id);
break;
}
/* link the cq onto the parent eq child list */
list_add_tail(&cq->list, &eq->child_list);
/* Set up completion queue's type and subtype */
cq->type = type;
cq->subtype = subtype;
cq->assoc_qid = eq->queue_id;
cq->assoc_qp = eq;
cq->host_index = 0;
cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
cq->entry_count);
cq->chann = idx;
rc = 0;
list_for_each_entry(dmabuf, &cq->page_list, list) {
memset(dmabuf->virt, 0, hw_page_size);
cnt = page_idx + dmabuf->buffer_tag;
cq_set->u.request.page[cnt].addr_lo =
putPaddrLow(dmabuf->phys);
cq_set->u.request.page[cnt].addr_hi =
putPaddrHigh(dmabuf->phys);
rc++;
}
page_idx += rc;
}
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3119 CQ_CREATE_SET mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
goto out;
}
rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
if (rc == 0xFFFF) {
status = -ENXIO;
goto out;
}
for (idx = 0; idx < numcq; idx++) {
cq = cqp[idx];
cq->queue_id = rc + idx;
if (cq->queue_id > phba->sli4_hba.cq_max)
phba->sli4_hba.cq_max = cq->queue_id;
}
out:
lpfc_sli4_mbox_cmd_free(phba, mbox);
return status;
}
/**
* lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
* @phba: HBA structure that indicates port to create a queue on.
* @mq: The queue structure to use to create the mailbox queue.
* @mbox: An allocated pointer to type LPFC_MBOXQ_t
* @cq: The completion queue to associate with this cq.
*
* This function provides failback (fb) functionality when the
* mq_create_ext fails on older FW generations. It's purpose is identical
* to mq_create_ext otherwise.
*
* This routine cannot fail as all attributes were previously accessed and
* initialized in mq_create_ext.
**/
static void
lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
{
struct lpfc_mbx_mq_create *mq_create;
struct lpfc_dmabuf *dmabuf;
int length;
length = (sizeof(struct lpfc_mbx_mq_create) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_MQ_CREATE,
length, LPFC_SLI4_MBX_EMBED);
mq_create = &mbox->u.mqe.un.mq_create;
bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
mq->page_count);
bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
cq->queue_id);
bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
switch (mq->entry_count) {
case 16:
bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
LPFC_MQ_RING_SIZE_16);
break;
case 32:
bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
LPFC_MQ_RING_SIZE_32);
break;
case 64:
bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
LPFC_MQ_RING_SIZE_64);
break;
case 128:
bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
LPFC_MQ_RING_SIZE_128);
break;
}
list_for_each_entry(dmabuf, &mq->page_list, list) {
mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
putPaddrLow(dmabuf->phys);
mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
putPaddrHigh(dmabuf->phys);
}
}
/**
* lpfc_mq_create - Create a mailbox Queue on the HBA
* @phba: HBA structure that indicates port to create a queue on.
* @mq: The queue structure to use to create the mailbox queue.
* @cq: The completion queue to associate with this cq.
* @subtype: The queue's subtype.
*
* This function creates a mailbox queue, as detailed in @mq, on a port,
* described by @phba by sending a MQ_CREATE mailbox command to the HBA.
*
* The @phba struct is used to send mailbox command to HBA. The @cq struct
* is used to get the entry count and entry size that are necessary to
* determine the number of pages to allocate and use for this queue. This
* function will send the MQ_CREATE mailbox command to the HBA to setup the
* mailbox queue. This function is asynchronous and will wait for the mailbox
* command to finish before continuing.
*
* On success this function will return a zero. If unable to allocate enough
* memory this function will return -ENOMEM. If the queue create mailbox command
* fails this function will return -ENXIO.
**/
int32_t
lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
struct lpfc_queue *cq, uint32_t subtype)
{
struct lpfc_mbx_mq_create *mq_create;
struct lpfc_mbx_mq_create_ext *mq_create_ext;
struct lpfc_dmabuf *dmabuf;
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
/* sanity check on queue memory */
if (!mq || !cq)
return -ENODEV;
if (!phba->sli4_hba.pc_sli4_params.supported)
hw_page_size = SLI4_PAGE_SIZE;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_mq_create_ext) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
length, LPFC_SLI4_MBX_EMBED);
mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
bf_set(lpfc_mbx_mq_create_ext_num_pages,
&mq_create_ext->u.request, mq->page_count);
bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
&mq_create_ext->u.request, 1);
bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
&mq_create_ext->u.request, 1);
bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
&mq_create_ext->u.request, 1);
bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
&mq_create_ext->u.request, 1);
bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
&mq_create_ext->u.request, 1);
bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
bf_set(lpfc_mbox_hdr_version, &shdr->request,
phba->sli4_hba.pc_sli4_params.mqv);
if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
cq->queue_id);
else
bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
cq->queue_id);
switch (mq->entry_count) {
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0362 Unsupported MQ count. (%d)\n",
mq->entry_count);
if (mq->entry_count < 16) {
status = -EINVAL;
goto out;
}
fallthrough; /* otherwise default to smallest count */
case 16:
bf_set(lpfc_mq_context_ring_size,
&mq_create_ext->u.request.context,
LPFC_MQ_RING_SIZE_16);
break;
case 32:
bf_set(lpfc_mq_context_ring_size,
&mq_create_ext->u.request.context,
LPFC_MQ_RING_SIZE_32);
break;
case 64:
bf_set(lpfc_mq_context_ring_size,
&mq_create_ext->u.request.context,
LPFC_MQ_RING_SIZE_64);
break;
case 128:
bf_set(lpfc_mq_context_ring_size,
&mq_create_ext->u.request.context,
LPFC_MQ_RING_SIZE_128);
break;
}
list_for_each_entry(dmabuf, &mq->page_list, list) {
memset(dmabuf->virt, 0, hw_page_size);
mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
putPaddrLow(dmabuf->phys);
mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
putPaddrHigh(dmabuf->phys);
}
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
&mq_create_ext->u.response);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2795 MQ_CREATE_EXT failed with "
"status x%x. Failback to MQ_CREATE.\n",
rc);
lpfc_mq_create_fb_init(phba, mq, mbox, cq);
mq_create = &mbox->u.mqe.un.mq_create;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
&mq_create->u.response);
}
/* The IOCTL status is embedded in the mailbox subheader. */
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2502 MQ_CREATE mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
goto out;
}
if (mq->queue_id == 0xFFFF) {
status = -ENXIO;
goto out;
}
mq->type = LPFC_MQ;
mq->assoc_qid = cq->queue_id;
mq->subtype = subtype;
mq->host_index = 0;
mq->hba_index = 0;
/* link the mq onto the parent cq child list */
list_add_tail(&mq->list, &cq->child_list);
out:
mempool_free(mbox, phba->mbox_mem_pool);
return status;
}
/**
* lpfc_wq_create - Create a Work Queue on the HBA
* @phba: HBA structure that indicates port to create a queue on.
* @wq: The queue structure to use to create the work queue.
* @cq: The completion queue to bind this work queue to.
* @subtype: The subtype of the work queue indicating its functionality.
*
* This function creates a work queue, as detailed in @wq, on a port, described
* by @phba by sending a WQ_CREATE mailbox command to the HBA.
*
* The @phba struct is used to send mailbox command to HBA. The @wq struct
* is used to get the entry count and entry size that are necessary to
* determine the number of pages to allocate and use for this queue. The @cq
* is used to indicate which completion queue to bind this work queue to. This
* function will send the WQ_CREATE mailbox command to the HBA to setup the
* work queue. This function is asynchronous and will wait for the mailbox
* command to finish before continuing.
*
* On success this function will return a zero. If unable to allocate enough
* memory this function will return -ENOMEM. If the queue create mailbox command
* fails this function will return -ENXIO.
**/
int
lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
struct lpfc_queue *cq, uint32_t subtype)
{
struct lpfc_mbx_wq_create *wq_create;
struct lpfc_dmabuf *dmabuf;
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
struct dma_address *page;
void __iomem *bar_memmap_p;
uint32_t db_offset;
uint16_t pci_barset;
uint8_t dpp_barset;
uint32_t dpp_offset;
uint8_t wq_create_version;
#ifdef CONFIG_X86
unsigned long pg_addr;
#endif
/* sanity check on queue memory */
if (!wq || !cq)
return -ENODEV;
if (!phba->sli4_hba.pc_sli4_params.supported)
hw_page_size = wq->page_size;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_wq_create) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
length, LPFC_SLI4_MBX_EMBED);
wq_create = &mbox->u.mqe.un.wq_create;
shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
wq->page_count);
bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
cq->queue_id);
/* wqv is the earliest version supported, NOT the latest */
bf_set(lpfc_mbox_hdr_version, &shdr->request,
phba->sli4_hba.pc_sli4_params.wqv);
if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
(wq->page_size > SLI4_PAGE_SIZE))
wq_create_version = LPFC_Q_CREATE_VERSION_1;
else
wq_create_version = LPFC_Q_CREATE_VERSION_0;
switch (wq_create_version) {
case LPFC_Q_CREATE_VERSION_1:
bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
wq->entry_count);
bf_set(lpfc_mbox_hdr_version, &shdr->request,
LPFC_Q_CREATE_VERSION_1);
switch (wq->entry_size) {
default:
case 64:
bf_set(lpfc_mbx_wq_create_wqe_size,
&wq_create->u.request_1,
LPFC_WQ_WQE_SIZE_64);
break;
case 128:
bf_set(lpfc_mbx_wq_create_wqe_size,
&wq_create->u.request_1,
LPFC_WQ_WQE_SIZE_128);
break;
}
/* Request DPP by default */
bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
bf_set(lpfc_mbx_wq_create_page_size,
&wq_create->u.request_1,
(wq->page_size / SLI4_PAGE_SIZE));
page = wq_create->u.request_1.page;
break;
default:
page = wq_create->u.request.page;
break;
}
list_for_each_entry(dmabuf, &wq->page_list, list) {
memset(dmabuf->virt, 0, hw_page_size);
page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
}
if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2503 WQ_CREATE mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
goto out;
}
if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
&wq_create->u.response);
else
wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
&wq_create->u.response_1);
if (wq->queue_id == 0xFFFF) {
status = -ENXIO;
goto out;
}
wq->db_format = LPFC_DB_LIST_FORMAT;
if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
&wq_create->u.response);
if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
(wq->db_format != LPFC_DB_RING_FORMAT)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3265 WQ[%d] doorbell format "
"not supported: x%x\n",
wq->queue_id, wq->db_format);
status = -EINVAL;
goto out;
}
pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
&wq_create->u.response);
bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
pci_barset);
if (!bar_memmap_p) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3263 WQ[%d] failed to memmap "
"pci barset:x%x\n",
wq->queue_id, pci_barset);
status = -ENOMEM;
goto out;
}
db_offset = wq_create->u.response.doorbell_offset;
if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
(db_offset != LPFC_ULP1_WQ_DOORBELL)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3252 WQ[%d] doorbell offset "
"not supported: x%x\n",
wq->queue_id, db_offset);
status = -EINVAL;
goto out;
}
wq->db_regaddr = bar_memmap_p + db_offset;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3264 WQ[%d]: barset:x%x, offset:x%x, "
"format:x%x\n", wq->queue_id,
pci_barset, db_offset, wq->db_format);
} else
wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
} else {
/* Check if DPP was honored by the firmware */
wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
&wq_create->u.response_1);
if (wq->dpp_enable) {
pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
&wq_create->u.response_1);
bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
pci_barset);
if (!bar_memmap_p) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3267 WQ[%d] failed to memmap "
"pci barset:x%x\n",
wq->queue_id, pci_barset);
status = -ENOMEM;
goto out;
}
db_offset = wq_create->u.response_1.doorbell_offset;
wq->db_regaddr = bar_memmap_p + db_offset;
wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
&wq_create->u.response_1);
dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
&wq_create->u.response_1);
bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
dpp_barset);
if (!bar_memmap_p) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3268 WQ[%d] failed to memmap "
"pci barset:x%x\n",
wq->queue_id, dpp_barset);
status = -ENOMEM;
goto out;
}
dpp_offset = wq_create->u.response_1.dpp_offset;
wq->dpp_regaddr = bar_memmap_p + dpp_offset;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3271 WQ[%d]: barset:x%x, offset:x%x, "
"dpp_id:x%x dpp_barset:x%x "
"dpp_offset:x%x\n",
wq->queue_id, pci_barset, db_offset,
wq->dpp_id, dpp_barset, dpp_offset);
#ifdef CONFIG_X86
/* Enable combined writes for DPP aperture */
pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
rc = set_memory_wc(pg_addr, 1);
if (rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"3272 Cannot setup Combined "
"Write on WQ[%d] - disable DPP\n",
wq->queue_id);
phba->cfg_enable_dpp = 0;
}
#else
phba->cfg_enable_dpp = 0;
#endif
} else
wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
}
wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
if (wq->pring == NULL) {
status = -ENOMEM;
goto out;
}
wq->type = LPFC_WQ;
wq->assoc_qid = cq->queue_id;
wq->subtype = subtype;
wq->host_index = 0;
wq->hba_index = 0;
wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
/* link the wq onto the parent cq child list */
list_add_tail(&wq->list, &cq->child_list);
out:
mempool_free(mbox, phba->mbox_mem_pool);
return status;
}
/**
* lpfc_rq_create - Create a Receive Queue on the HBA
* @phba: HBA structure that indicates port to create a queue on.
* @hrq: The queue structure to use to create the header receive queue.
* @drq: The queue structure to use to create the data receive queue.
* @cq: The completion queue to bind this work queue to.
* @subtype: The subtype of the work queue indicating its functionality.
*
* This function creates a receive buffer queue pair , as detailed in @hrq and
* @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
* to the HBA.
*
* The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
* struct is used to get the entry count that is necessary to determine the
* number of pages to use for this queue. The @cq is used to indicate which
* completion queue to bind received buffers that are posted to these queues to.
* This function will send the RQ_CREATE mailbox command to the HBA to setup the
* receive queue pair. This function is asynchronous and will wait for the
* mailbox command to finish before continuing.
*
* On success this function will return a zero. If unable to allocate enough
* memory this function will return -ENOMEM. If the queue create mailbox command
* fails this function will return -ENXIO.
**/
int
lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
{
struct lpfc_mbx_rq_create *rq_create;
struct lpfc_dmabuf *dmabuf;
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
void __iomem *bar_memmap_p;
uint32_t db_offset;
uint16_t pci_barset;
/* sanity check on queue memory */
if (!hrq || !drq || !cq)
return -ENODEV;
if (!phba->sli4_hba.pc_sli4_params.supported)
hw_page_size = SLI4_PAGE_SIZE;
if (hrq->entry_count != drq->entry_count)
return -EINVAL;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_rq_create) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
length, LPFC_SLI4_MBX_EMBED);
rq_create = &mbox->u.mqe.un.rq_create;
shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
bf_set(lpfc_mbox_hdr_version, &shdr->request,
phba->sli4_hba.pc_sli4_params.rqv);
if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
bf_set(lpfc_rq_context_rqe_count_1,
&rq_create->u.request.context,
hrq->entry_count);
rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
bf_set(lpfc_rq_context_rqe_size,
&rq_create->u.request.context,
LPFC_RQE_SIZE_8);
bf_set(lpfc_rq_context_page_size,
&rq_create->u.request.context,
LPFC_RQ_PAGE_SIZE_4096);
} else {
switch (hrq->entry_count) {
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2535 Unsupported RQ count. (%d)\n",
hrq->entry_count);
if (hrq->entry_count < 512) {
status = -EINVAL;
goto out;
}
fallthrough; /* otherwise default to smallest count */
case 512:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_512);
break;
case 1024:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_1024);
break;
case 2048:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_2048);
break;
case 4096:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_4096);
break;
}
bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
LPFC_HDR_BUF_SIZE);
}
bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
cq->queue_id);
bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
hrq->page_count);
list_for_each_entry(dmabuf, &hrq->page_list, list) {
memset(dmabuf->virt, 0, hw_page_size);
rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
putPaddrLow(dmabuf->phys);
rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
putPaddrHigh(dmabuf->phys);
}
if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2504 RQ_CREATE mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
goto out;
}
hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
if (hrq->queue_id == 0xFFFF) {
status = -ENXIO;
goto out;
}
if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
&rq_create->u.response);
if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
(hrq->db_format != LPFC_DB_RING_FORMAT)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3262 RQ [%d] doorbell format not "
"supported: x%x\n", hrq->queue_id,
hrq->db_format);
status = -EINVAL;
goto out;
}
pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
&rq_create->u.response);
bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
if (!bar_memmap_p) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3269 RQ[%d] failed to memmap pci "
"barset:x%x\n", hrq->queue_id,
pci_barset);
status = -ENOMEM;
goto out;
}
db_offset = rq_create->u.response.doorbell_offset;
if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
(db_offset != LPFC_ULP1_RQ_DOORBELL)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3270 RQ[%d] doorbell offset not "
"supported: x%x\n", hrq->queue_id,
db_offset);
status = -EINVAL;
goto out;
}
hrq->db_regaddr = bar_memmap_p + db_offset;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
"format:x%x\n", hrq->queue_id, pci_barset,
db_offset, hrq->db_format);
} else {
hrq->db_format = LPFC_DB_RING_FORMAT;
hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
}
hrq->type = LPFC_HRQ;
hrq->assoc_qid = cq->queue_id;
hrq->subtype = subtype;
hrq->host_index = 0;
hrq->hba_index = 0;
hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
/* now create the data queue */
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
length, LPFC_SLI4_MBX_EMBED);
bf_set(lpfc_mbox_hdr_version, &shdr->request,
phba->sli4_hba.pc_sli4_params.rqv);
if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
bf_set(lpfc_rq_context_rqe_count_1,
&rq_create->u.request.context, hrq->entry_count);
if (subtype == LPFC_NVMET)
rq_create->u.request.context.buffer_size =
LPFC_NVMET_DATA_BUF_SIZE;
else
rq_create->u.request.context.buffer_size =
LPFC_DATA_BUF_SIZE;
bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
LPFC_RQE_SIZE_8);
bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
(PAGE_SIZE/SLI4_PAGE_SIZE));
} else {
switch (drq->entry_count) {
default:
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2536 Unsupported RQ count. (%d)\n",
drq->entry_count);
if (drq->entry_count < 512) {
status = -EINVAL;
goto out;
}
fallthrough; /* otherwise default to smallest count */
case 512:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_512);
break;
case 1024:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_1024);
break;
case 2048:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_2048);
break;
case 4096:
bf_set(lpfc_rq_context_rqe_count,
&rq_create->u.request.context,
LPFC_RQ_RING_SIZE_4096);
break;
}
if (subtype == LPFC_NVMET)
bf_set(lpfc_rq_context_buf_size,
&rq_create->u.request.context,
LPFC_NVMET_DATA_BUF_SIZE);
else
bf_set(lpfc_rq_context_buf_size,
&rq_create->u.request.context,
LPFC_DATA_BUF_SIZE);
}
bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
cq->queue_id);
bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
drq->page_count);
list_for_each_entry(dmabuf, &drq->page_list, list) {
rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
putPaddrLow(dmabuf->phys);
rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
putPaddrHigh(dmabuf->phys);
}
if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
status = -ENXIO;
goto out;
}
drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
if (drq->queue_id == 0xFFFF) {
status = -ENXIO;
goto out;
}
drq->type = LPFC_DRQ;
drq->assoc_qid = cq->queue_id;
drq->subtype = subtype;
drq->host_index = 0;
drq->hba_index = 0;
drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
/* link the header and data RQs onto the parent cq child list */
list_add_tail(&hrq->list, &cq->child_list);
list_add_tail(&drq->list, &cq->child_list);
out:
mempool_free(mbox, phba->mbox_mem_pool);
return status;
}
/**
* lpfc_mrq_create - Create MRQ Receive Queues on the HBA
* @phba: HBA structure that indicates port to create a queue on.
* @hrqp: The queue structure array to use to create the header receive queues.
* @drqp: The queue structure array to use to create the data receive queues.
* @cqp: The completion queue array to bind these receive queues to.
* @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
*
* This function creates a receive buffer queue pair , as detailed in @hrq and
* @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
* to the HBA.
*
* The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
* struct is used to get the entry count that is necessary to determine the
* number of pages to use for this queue. The @cq is used to indicate which
* completion queue to bind received buffers that are posted to these queues to.
* This function will send the RQ_CREATE mailbox command to the HBA to setup the
* receive queue pair. This function is asynchronous and will wait for the
* mailbox command to finish before continuing.
*
* On success this function will return a zero. If unable to allocate enough
* memory this function will return -ENOMEM. If the queue create mailbox command
* fails this function will return -ENXIO.
**/
int
lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
struct lpfc_queue **drqp, struct lpfc_queue **cqp,
uint32_t subtype)
{
struct lpfc_queue *hrq, *drq, *cq;
struct lpfc_mbx_rq_create_v2 *rq_create;
struct lpfc_dmabuf *dmabuf;
LPFC_MBOXQ_t *mbox;
int rc, length, alloclen, status = 0;
int cnt, idx, numrq, page_idx = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
numrq = phba->cfg_nvmet_mrq;
/* sanity check on array memory */
if (!hrqp || !drqp || !cqp || !numrq)
return -ENODEV;
if (!phba->sli4_hba.pc_sli4_params.supported)
hw_page_size = SLI4_PAGE_SIZE;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = sizeof(struct lpfc_mbx_rq_create_v2);
length += ((2 * numrq * hrqp[0]->page_count) *
sizeof(struct dma_address));
alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
LPFC_SLI4_MBX_NEMBED);
if (alloclen < length) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3099 Allocated DMA memory size (%d) is "
"less than the requested DMA memory size "
"(%d)\n", alloclen, length);
status = -ENOMEM;
goto out;
}
rq_create = mbox->sge_array->addr[0];
shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
cnt = 0;
for (idx = 0; idx < numrq; idx++) {
hrq = hrqp[idx];
drq = drqp[idx];
cq = cqp[idx];
/* sanity check on queue memory */
if (!hrq || !drq || !cq) {
status = -ENODEV;
goto out;
}
if (hrq->entry_count != drq->entry_count) {
status = -EINVAL;
goto out;
}
if (idx == 0) {
bf_set(lpfc_mbx_rq_create_num_pages,
&rq_create->u.request,
hrq->page_count);
bf_set(lpfc_mbx_rq_create_rq_cnt,
&rq_create->u.request, (numrq * 2));
bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
1);
bf_set(lpfc_rq_context_base_cq,
&rq_create->u.request.context,
cq->queue_id);
bf_set(lpfc_rq_context_data_size,
&rq_create->u.request.context,
LPFC_NVMET_DATA_BUF_SIZE);
bf_set(lpfc_rq_context_hdr_size,
&rq_create->u.request.context,
LPFC_HDR_BUF_SIZE);
bf_set(lpfc_rq_context_rqe_count_1,
&rq_create->u.request.context,
hrq->entry_count);
bf_set(lpfc_rq_context_rqe_size,
&rq_create->u.request.context,
LPFC_RQE_SIZE_8);
bf_set(lpfc_rq_context_page_size,
&rq_create->u.request.context,
(PAGE_SIZE/SLI4_PAGE_SIZE));
}
rc = 0;
list_for_each_entry(dmabuf, &hrq->page_list, list) {
memset(dmabuf->virt, 0, hw_page_size);
cnt = page_idx + dmabuf->buffer_tag;
rq_create->u.request.page[cnt].addr_lo =
putPaddrLow(dmabuf->phys);
rq_create->u.request.page[cnt].addr_hi =
putPaddrHigh(dmabuf->phys);
rc++;
}
page_idx += rc;
rc = 0;
list_for_each_entry(dmabuf, &drq->page_list, list) {
memset(dmabuf->virt, 0, hw_page_size);
cnt = page_idx + dmabuf->buffer_tag;
rq_create->u.request.page[cnt].addr_lo =
putPaddrLow(dmabuf->phys);
rq_create->u.request.page[cnt].addr_hi =
putPaddrHigh(dmabuf->phys);
rc++;
}
page_idx += rc;
hrq->db_format = LPFC_DB_RING_FORMAT;
hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
hrq->type = LPFC_HRQ;
hrq->assoc_qid = cq->queue_id;
hrq->subtype = subtype;
hrq->host_index = 0;
hrq->hba_index = 0;
hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
drq->db_format = LPFC_DB_RING_FORMAT;
drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
drq->type = LPFC_DRQ;
drq->assoc_qid = cq->queue_id;
drq->subtype = subtype;
drq->host_index = 0;
drq->hba_index = 0;
drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
list_add_tail(&hrq->list, &cq->child_list);
list_add_tail(&drq->list, &cq->child_list);
}
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3120 RQ_CREATE mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
goto out;
}
rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
if (rc == 0xFFFF) {
status = -ENXIO;
goto out;
}
/* Initialize all RQs with associated queue id */
for (idx = 0; idx < numrq; idx++) {
hrq = hrqp[idx];
hrq->queue_id = rc + (2 * idx);
drq = drqp[idx];
drq->queue_id = rc + (2 * idx) + 1;
}
out:
lpfc_sli4_mbox_cmd_free(phba, mbox);
return status;
}
/**
* lpfc_eq_destroy - Destroy an event Queue on the HBA
* @phba: HBA structure that indicates port to destroy a queue on.
* @eq: The queue structure associated with the queue to destroy.
*
* This function destroys a queue, as detailed in @eq by sending an mailbox
* command, specific to the type of queue, to the HBA.
*
* The @eq struct is used to get the queue ID of the queue to destroy.
*
* On success this function will return a zero. If the queue destroy mailbox
* command fails this function will return -ENXIO.
**/
int
lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
{
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
/* sanity check on queue memory */
if (!eq)
return -ENODEV;
mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_eq_destroy) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_EQ_DESTROY,
length, LPFC_SLI4_MBX_EMBED);
bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
eq->queue_id);
mbox->vport = eq->phba->pport;
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr = (union lpfc_sli4_cfg_shdr *)
&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2505 EQ_DESTROY mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
}
/* Remove eq from any list */
list_del_init(&eq->list);
mempool_free(mbox, eq->phba->mbox_mem_pool);
return status;
}
/**
* lpfc_cq_destroy - Destroy a Completion Queue on the HBA
* @phba: HBA structure that indicates port to destroy a queue on.
* @cq: The queue structure associated with the queue to destroy.
*
* This function destroys a queue, as detailed in @cq by sending an mailbox
* command, specific to the type of queue, to the HBA.
*
* The @cq struct is used to get the queue ID of the queue to destroy.
*
* On success this function will return a zero. If the queue destroy mailbox
* command fails this function will return -ENXIO.
**/
int
lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
{
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
/* sanity check on queue memory */
if (!cq)
return -ENODEV;
mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_cq_destroy) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_CQ_DESTROY,
length, LPFC_SLI4_MBX_EMBED);
bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
cq->queue_id);
mbox->vport = cq->phba->pport;
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr = (union lpfc_sli4_cfg_shdr *)
&mbox->u.mqe.un.wq_create.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2506 CQ_DESTROY mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
}
/* Remove cq from any list */
list_del_init(&cq->list);
mempool_free(mbox, cq->phba->mbox_mem_pool);
return status;
}
/**
* lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
* @phba: HBA structure that indicates port to destroy a queue on.
* @mq: The queue structure associated with the queue to destroy.
*
* This function destroys a queue, as detailed in @mq by sending an mailbox
* command, specific to the type of queue, to the HBA.
*
* The @mq struct is used to get the queue ID of the queue to destroy.
*
* On success this function will return a zero. If the queue destroy mailbox
* command fails this function will return -ENXIO.
**/
int
lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
{
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
/* sanity check on queue memory */
if (!mq)
return -ENODEV;
mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_mq_destroy) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_MQ_DESTROY,
length, LPFC_SLI4_MBX_EMBED);
bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
mq->queue_id);
mbox->vport = mq->phba->pport;
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr = (union lpfc_sli4_cfg_shdr *)
&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2507 MQ_DESTROY mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
}
/* Remove mq from any list */
list_del_init(&mq->list);
mempool_free(mbox, mq->phba->mbox_mem_pool);
return status;
}
/**
* lpfc_wq_destroy - Destroy a Work Queue on the HBA
* @phba: HBA structure that indicates port to destroy a queue on.
* @wq: The queue structure associated with the queue to destroy.
*
* This function destroys a queue, as detailed in @wq by sending an mailbox
* command, specific to the type of queue, to the HBA.
*
* The @wq struct is used to get the queue ID of the queue to destroy.
*
* On success this function will return a zero. If the queue destroy mailbox
* command fails this function will return -ENXIO.
**/
int
lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
{
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
/* sanity check on queue memory */
if (!wq)
return -ENODEV;
mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_wq_destroy) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
length, LPFC_SLI4_MBX_EMBED);
bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
wq->queue_id);
mbox->vport = wq->phba->pport;
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2508 WQ_DESTROY mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
}
/* Remove wq from any list */
list_del_init(&wq->list);
kfree(wq->pring);
wq->pring = NULL;
mempool_free(mbox, wq->phba->mbox_mem_pool);
return status;
}
/**
* lpfc_rq_destroy - Destroy a Receive Queue on the HBA
* @phba: HBA structure that indicates port to destroy a queue on.
* @hrq: The queue structure associated with the queue to destroy.
* @drq: The queue structure associated with the queue to destroy.
*
* This function destroys a queue, as detailed in @rq by sending an mailbox
* command, specific to the type of queue, to the HBA.
*
* The @rq struct is used to get the queue ID of the queue to destroy.
*
* On success this function will return a zero. If the queue destroy mailbox
* command fails this function will return -ENXIO.
**/
int
lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
struct lpfc_queue *drq)
{
LPFC_MBOXQ_t *mbox;
int rc, length, status = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
/* sanity check on queue memory */
if (!hrq || !drq)
return -ENODEV;
mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
length = (sizeof(struct lpfc_mbx_rq_destroy) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
length, LPFC_SLI4_MBX_EMBED);
bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
hrq->queue_id);
mbox->vport = hrq->phba->pport;
mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
/* The IOCTL status is embedded in the mailbox subheader. */
shdr = (union lpfc_sli4_cfg_shdr *)
&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2509 RQ_DESTROY mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
mempool_free(mbox, hrq->phba->mbox_mem_pool);
return -ENXIO;
}
bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
drq->queue_id);
rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *)
&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2510 RQ_DESTROY mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
status = -ENXIO;
}
list_del_init(&hrq->list);
list_del_init(&drq->list);
mempool_free(mbox, hrq->phba->mbox_mem_pool);
return status;
}
/**
* lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
* @phba: The virtual port for which this call being executed.
* @pdma_phys_addr0: Physical address of the 1st SGL page.
* @pdma_phys_addr1: Physical address of the 2nd SGL page.
* @xritag: the xritag that ties this io to the SGL pages.
*
* This routine will post the sgl pages for the IO that has the xritag
* that is in the iocbq structure. The xritag is assigned during iocbq
* creation and persists for as long as the driver is loaded.
* if the caller has fewer than 256 scatter gather segments to map then
* pdma_phys_addr1 should be 0.
* If the caller needs to map more than 256 scatter gather segment then
* pdma_phys_addr1 should be a valid physical address.
* physical address for SGLs must be 64 byte aligned.
* If you are going to map 2 SGL's then the first one must have 256 entries
* the second sgl can have between 1 and 256 entries.
*
* Return codes:
* 0 - Success
* -ENXIO, -ENOMEM - Failure
**/
int
lpfc_sli4_post_sgl(struct lpfc_hba *phba,
dma_addr_t pdma_phys_addr0,
dma_addr_t pdma_phys_addr1,
uint16_t xritag)
{
struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
LPFC_MBOXQ_t *mbox;
int rc;
uint32_t shdr_status, shdr_add_status;
uint32_t mbox_tmo;
union lpfc_sli4_cfg_shdr *shdr;
if (xritag == NO_XRI) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0364 Invalid param:\n");
return -EINVAL;
}
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
sizeof(struct lpfc_mbx_post_sgl_pages) -
sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
&mbox->u.mqe.un.post_sgl_pages;
bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
cpu_to_le32(putPaddrLow(pdma_phys_addr0));
post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
cpu_to_le32(putPaddrLow(pdma_phys_addr1));
post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
/* The IOCTL status is embedded in the mailbox subheader. */
shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (!phba->sli4_hba.intr_enable)
mempool_free(mbox, phba->mbox_mem_pool);
else if (rc != MBX_TIMEOUT)
mempool_free(mbox, phba->mbox_mem_pool);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2511 POST_SGL mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
}
return 0;
}
/**
* lpfc_sli4_alloc_xri - Get an available rpi in the device's range
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to post rpi header templates to the
* HBA consistent with the SLI-4 interface spec. This routine
* posts a SLI4_PAGE_SIZE memory region to the port to hold up to
* SLI4_PAGE_SIZE modulo 64 rpi context headers.
*
* Returns
* A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
* LPFC_RPI_ALLOC_ERROR if no rpis are available.
**/
static uint16_t
lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
{
unsigned long xri;
/*
* Fetch the next logical xri. Because this index is logical,
* the driver starts at 0 each time.
*/
spin_lock_irq(&phba->hbalock);
xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
phba->sli4_hba.max_cfg_param.max_xri, 0);
if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
spin_unlock_irq(&phba->hbalock);
return NO_XRI;
} else {
set_bit(xri, phba->sli4_hba.xri_bmask);
phba->sli4_hba.max_cfg_param.xri_used++;
}
spin_unlock_irq(&phba->hbalock);
return xri;
}
/**
* __lpfc_sli4_free_xri - Release an xri for reuse.
* @phba: pointer to lpfc hba data structure.
* @xri: xri to release.
*
* This routine is invoked to release an xri to the pool of
* available rpis maintained by the driver.
**/
static void
__lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
{
if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
phba->sli4_hba.max_cfg_param.xri_used--;
}
}
/**
* lpfc_sli4_free_xri - Release an xri for reuse.
* @phba: pointer to lpfc hba data structure.
* @xri: xri to release.
*
* This routine is invoked to release an xri to the pool of
* available rpis maintained by the driver.
**/
void
lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
{
spin_lock_irq(&phba->hbalock);
__lpfc_sli4_free_xri(phba, xri);
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli4_next_xritag - Get an xritag for the io
* @phba: Pointer to HBA context object.
*
* This function gets an xritag for the iocb. If there is no unused xritag
* it will return 0xffff.
* The function returns the allocated xritag if successful, else returns zero.
* Zero is not a valid xritag.
* The caller is not required to hold any lock.
**/
uint16_t
lpfc_sli4_next_xritag(struct lpfc_hba *phba)
{
uint16_t xri_index;
xri_index = lpfc_sli4_alloc_xri(phba);
if (xri_index == NO_XRI)
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"2004 Failed to allocate XRI.last XRITAG is %d"
" Max XRI is %d, Used XRI is %d\n",
xri_index,
phba->sli4_hba.max_cfg_param.max_xri,
phba->sli4_hba.max_cfg_param.xri_used);
return xri_index;
}
/**
* lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
* @phba: pointer to lpfc hba data structure.
* @post_sgl_list: pointer to els sgl entry list.
* @post_cnt: number of els sgl entries on the list.
*
* This routine is invoked to post a block of driver's sgl pages to the
* HBA using non-embedded mailbox command. No Lock is held. This routine
* is only called when the driver is loading and after all IO has been
* stopped.
**/
static int
lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
struct list_head *post_sgl_list,
int post_cnt)
{
struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
struct sgl_page_pairs *sgl_pg_pairs;
void *viraddr;
LPFC_MBOXQ_t *mbox;
uint32_t reqlen, alloclen, pg_pairs;
uint32_t mbox_tmo;
uint16_t xritag_start = 0;
int rc = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
if (reqlen > SLI4_PAGE_SIZE) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2559 Block sgl registration required DMA "
"size (%d) great than a page\n", reqlen);
return -ENOMEM;
}
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
/* Allocate DMA memory and set up the non-embedded mailbox command */
alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
LPFC_SLI4_MBX_NEMBED);
if (alloclen < reqlen) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"0285 Allocated DMA memory size (%d) is "
"less than the requested DMA memory "
"size (%d)\n", alloclen, reqlen);
lpfc_sli4_mbox_cmd_free(phba, mbox);
return -ENOMEM;
}
/* Set up the SGL pages in the non-embedded DMA pages */
viraddr = mbox->sge_array->addr[0];
sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
sgl_pg_pairs = &sgl->sgl_pg_pairs;
pg_pairs = 0;
list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
/* Set up the sge entry */
sgl_pg_pairs->sgl_pg0_addr_lo =
cpu_to_le32(putPaddrLow(sglq_entry->phys));
sgl_pg_pairs->sgl_pg0_addr_hi =
cpu_to_le32(putPaddrHigh(sglq_entry->phys));
sgl_pg_pairs->sgl_pg1_addr_lo =
cpu_to_le32(putPaddrLow(0));
sgl_pg_pairs->sgl_pg1_addr_hi =
cpu_to_le32(putPaddrHigh(0));
/* Keep the first xritag on the list */
if (pg_pairs == 0)
xritag_start = sglq_entry->sli4_xritag;
sgl_pg_pairs++;
pg_pairs++;
}
/* Complete initialization and perform endian conversion. */
bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
sgl->word0 = cpu_to_le32(sgl->word0);
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (!phba->sli4_hba.intr_enable)
lpfc_sli4_mbox_cmd_free(phba, mbox);
else if (rc != MBX_TIMEOUT)
lpfc_sli4_mbox_cmd_free(phba, mbox);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2513 POST_SGL_BLOCK mailbox command failed "
"status x%x add_status x%x mbx status x%x\n",
shdr_status, shdr_add_status, rc);
rc = -ENXIO;
}
return rc;
}
/**
* lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
* @phba: pointer to lpfc hba data structure.
* @nblist: pointer to nvme buffer list.
* @count: number of scsi buffers on the list.
*
* This routine is invoked to post a block of @count scsi sgl pages from a
* SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
* No Lock is held.
*
**/
static int
lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
int count)
{
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
struct sgl_page_pairs *sgl_pg_pairs;
void *viraddr;
LPFC_MBOXQ_t *mbox;
uint32_t reqlen, alloclen, pg_pairs;
uint32_t mbox_tmo;
uint16_t xritag_start = 0;
int rc = 0;
uint32_t shdr_status, shdr_add_status;
dma_addr_t pdma_phys_bpl1;
union lpfc_sli4_cfg_shdr *shdr;
/* Calculate the requested length of the dma memory */
reqlen = count * sizeof(struct sgl_page_pairs) +
sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
if (reqlen > SLI4_PAGE_SIZE) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"6118 Block sgl registration required DMA "
"size (%d) great than a page\n", reqlen);
return -ENOMEM;
}
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6119 Failed to allocate mbox cmd memory\n");
return -ENOMEM;
}
/* Allocate DMA memory and set up the non-embedded mailbox command */
alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
reqlen, LPFC_SLI4_MBX_NEMBED);
if (alloclen < reqlen) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6120 Allocated DMA memory size (%d) is "
"less than the requested DMA memory "
"size (%d)\n", alloclen, reqlen);
lpfc_sli4_mbox_cmd_free(phba, mbox);
return -ENOMEM;
}
/* Get the first SGE entry from the non-embedded DMA memory */
viraddr = mbox->sge_array->addr[0];
/* Set up the SGL pages in the non-embedded DMA pages */
sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
sgl_pg_pairs = &sgl->sgl_pg_pairs;
pg_pairs = 0;
list_for_each_entry(lpfc_ncmd, nblist, list) {
/* Set up the sge entry */
sgl_pg_pairs->sgl_pg0_addr_lo =
cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
sgl_pg_pairs->sgl_pg0_addr_hi =
cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
SGL_PAGE_SIZE;
else
pdma_phys_bpl1 = 0;
sgl_pg_pairs->sgl_pg1_addr_lo =
cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
sgl_pg_pairs->sgl_pg1_addr_hi =
cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
/* Keep the first xritag on the list */
if (pg_pairs == 0)
xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
sgl_pg_pairs++;
pg_pairs++;
}
bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
/* Perform endian conversion if necessary */
sgl->word0 = cpu_to_le32(sgl->word0);
if (!phba->sli4_hba.intr_enable) {
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
} else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if (!phba->sli4_hba.intr_enable)
lpfc_sli4_mbox_cmd_free(phba, mbox);
else if (rc != MBX_TIMEOUT)
lpfc_sli4_mbox_cmd_free(phba, mbox);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6125 POST_SGL_BLOCK mailbox command failed "
"status x%x add_status x%x mbx status x%x\n",
shdr_status, shdr_add_status, rc);
rc = -ENXIO;
}
return rc;
}
/**
* lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
* @phba: pointer to lpfc hba data structure.
* @post_nblist: pointer to the nvme buffer list.
* @sb_count: number of nvme buffers.
*
* This routine walks a list of nvme buffers that was passed in. It attempts
* to construct blocks of nvme buffer sgls which contains contiguous xris and
* uses the non-embedded SGL block post mailbox commands to post to the port.
* For single NVME buffer sgl with non-contiguous xri, if any, it shall use
* embedded SGL post mailbox command for posting. The @post_nblist passed in
* must be local list, thus no lock is needed when manipulate the list.
*
* Returns: 0 = failure, non-zero number of successfully posted buffers.
**/
int
lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
struct list_head *post_nblist, int sb_count)
{
struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
int status, sgl_size;
int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
dma_addr_t pdma_phys_sgl1;
int last_xritag = NO_XRI;
int cur_xritag;
LIST_HEAD(prep_nblist);
LIST_HEAD(blck_nblist);
LIST_HEAD(nvme_nblist);
/* sanity check */
if (sb_count <= 0)
return -EINVAL;
sgl_size = phba->cfg_sg_dma_buf_size;
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
list_del_init(&lpfc_ncmd->list);
block_cnt++;
if ((last_xritag != NO_XRI) &&
(lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
/* a hole in xri block, form a sgl posting block */
list_splice_init(&prep_nblist, &blck_nblist);
post_cnt = block_cnt - 1;
/* prepare list for next posting block */
list_add_tail(&lpfc_ncmd->list, &prep_nblist);
block_cnt = 1;
} else {
/* prepare list for next posting block */
list_add_tail(&lpfc_ncmd->list, &prep_nblist);
/* enough sgls for non-embed sgl mbox command */
if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
list_splice_init(&prep_nblist, &blck_nblist);
post_cnt = block_cnt;
block_cnt = 0;
}
}
num_posting++;
last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
/* end of repost sgl list condition for NVME buffers */
if (num_posting == sb_count) {
if (post_cnt == 0) {
/* last sgl posting block */
list_splice_init(&prep_nblist, &blck_nblist);
post_cnt = block_cnt;
} else if (block_cnt == 1) {
/* last single sgl with non-contiguous xri */
if (sgl_size > SGL_PAGE_SIZE)
pdma_phys_sgl1 =
lpfc_ncmd->dma_phys_sgl +
SGL_PAGE_SIZE;
else
pdma_phys_sgl1 = 0;
cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
status = lpfc_sli4_post_sgl(
phba, lpfc_ncmd->dma_phys_sgl,
pdma_phys_sgl1, cur_xritag);
if (status) {
/* Post error. Buffer unavailable. */
lpfc_ncmd->flags |=
LPFC_SBUF_NOT_POSTED;
} else {
/* Post success. Bffer available. */
lpfc_ncmd->flags &=
~LPFC_SBUF_NOT_POSTED;
lpfc_ncmd->status = IOSTAT_SUCCESS;
num_posted++;
}
/* success, put on NVME buffer sgl list */
list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
}
}
/* continue until a nembed page worth of sgls */
if (post_cnt == 0)
continue;
/* post block of NVME buffer list sgls */
status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
post_cnt);
/* don't reset xirtag due to hole in xri block */
if (block_cnt == 0)
last_xritag = NO_XRI;
/* reset NVME buffer post count for next round of posting */
post_cnt = 0;
/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
while (!list_empty(&blck_nblist)) {
list_remove_head(&blck_nblist, lpfc_ncmd,
struct lpfc_io_buf, list);
if (status) {
/* Post error. Mark buffer unavailable. */
lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
} else {
/* Post success, Mark buffer available. */
lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
lpfc_ncmd->status = IOSTAT_SUCCESS;
num_posted++;
}
list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
}
}
/* Push NVME buffers with sgl posted to the available list */
lpfc_io_buf_replenish(phba, &nvme_nblist);
return num_posted;
}
/**
* lpfc_fc_frame_check - Check that this frame is a valid frame to handle
* @phba: pointer to lpfc_hba struct that the frame was received on
* @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
*
* This function checks the fields in the @fc_hdr to see if the FC frame is a
* valid type of frame that the LPFC driver will handle. This function will
* return a zero if the frame is a valid frame or a non zero value when the
* frame does not pass the check.
**/
static int
lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
{
/* make rctl_names static to save stack space */
struct fc_vft_header *fc_vft_hdr;
uint32_t *header = (uint32_t *) fc_hdr;
#define FC_RCTL_MDS_DIAGS 0xF4
switch (fc_hdr->fh_r_ctl) {
case FC_RCTL_DD_UNCAT: /* uncategorized information */
case FC_RCTL_DD_SOL_DATA: /* solicited data */
case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
case FC_RCTL_DD_DATA_DESC: /* data descriptor */
case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
case FC_RCTL_DD_CMD_STATUS: /* command status */
case FC_RCTL_ELS_REQ: /* extended link services request */
case FC_RCTL_ELS_REP: /* extended link services reply */
case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
case FC_RCTL_BA_NOP: /* basic link service NOP */
case FC_RCTL_BA_ABTS: /* basic link service abort */
case FC_RCTL_BA_RMC: /* remove connection */
case FC_RCTL_BA_ACC: /* basic accept */
case FC_RCTL_BA_RJT: /* basic reject */
case FC_RCTL_BA_PRMT:
case FC_RCTL_ACK_1: /* acknowledge_1 */
case FC_RCTL_ACK_0: /* acknowledge_0 */
case FC_RCTL_P_RJT: /* port reject */
case FC_RCTL_F_RJT: /* fabric reject */
case FC_RCTL_P_BSY: /* port busy */
case FC_RCTL_F_BSY: /* fabric busy to data frame */
case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
case FC_RCTL_LCR: /* link credit reset */
case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
case FC_RCTL_END: /* end */
break;
case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
return lpfc_fc_frame_check(phba, fc_hdr);
default:
goto drop;
}
switch (fc_hdr->fh_type) {
case FC_TYPE_BLS:
case FC_TYPE_ELS:
case FC_TYPE_FCP:
case FC_TYPE_CT:
case FC_TYPE_NVME:
break;
case FC_TYPE_IP:
case FC_TYPE_ILS:
default:
goto drop;
}
lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
"2538 Received frame rctl:x%x, type:x%x, "
"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
fc_hdr->fh_r_ctl, fc_hdr->fh_type,
be32_to_cpu(header[0]), be32_to_cpu(header[1]),
be32_to_cpu(header[2]), be32_to_cpu(header[3]),
be32_to_cpu(header[4]), be32_to_cpu(header[5]),
be32_to_cpu(header[6]));
return 0;
drop:
lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
"2539 Dropped frame rctl:x%x type:x%x\n",
fc_hdr->fh_r_ctl, fc_hdr->fh_type);
return 1;
}
/**
* lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
* @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
*
* This function processes the FC header to retrieve the VFI from the VF
* header, if one exists. This function will return the VFI if one exists
* or 0 if no VSAN Header exists.
**/
static uint32_t
lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
{
struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
return 0;
return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
}
/**
* lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
* @phba: Pointer to the HBA structure to search for the vport on
* @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
* @fcfi: The FC Fabric ID that the frame came from
* @did: Destination ID to match against
*
* This function searches the @phba for a vport that matches the content of the
* @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
* VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
* returns the matching vport pointer or NULL if unable to match frame to a
* vport.
**/
static struct lpfc_vport *
lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
uint16_t fcfi, uint32_t did)
{
struct lpfc_vport **vports;
struct lpfc_vport *vport = NULL;
int i;
if (did == Fabric_DID)
return phba->pport;
if ((phba->pport->fc_flag & FC_PT2PT) &&
!(phba->link_state == LPFC_HBA_READY))
return phba->pport;
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL) {
for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
if (phba->fcf.fcfi == fcfi &&
vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
vports[i]->fc_myDID == did) {
vport = vports[i];
break;
}
}
}
lpfc_destroy_vport_work_array(phba, vports);
return vport;
}
/**
* lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
* @vport: The vport to work on.
*
* This function updates the receive sequence time stamp for this vport. The
* receive sequence time stamp indicates the time that the last frame of the
* the sequence that has been idle for the longest amount of time was received.
* the driver uses this time stamp to indicate if any received sequences have
* timed out.
**/
static void
lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
{
struct lpfc_dmabuf *h_buf;
struct hbq_dmabuf *dmabuf = NULL;
/* get the oldest sequence on the rcv list */
h_buf = list_get_first(&vport->rcv_buffer_list,
struct lpfc_dmabuf, list);
if (!h_buf)
return;
dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
}
/**
* lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
* @vport: The vport that the received sequences were sent to.
*
* This function cleans up all outstanding received sequences. This is called
* by the driver when a link event or user action invalidates all the received
* sequences.
**/
void
lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
{
struct lpfc_dmabuf *h_buf, *hnext;
struct lpfc_dmabuf *d_buf, *dnext;
struct hbq_dmabuf *dmabuf = NULL;
/* start with the oldest sequence on the rcv list */
list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
list_del_init(&dmabuf->hbuf.list);
list_for_each_entry_safe(d_buf, dnext,
&dmabuf->dbuf.list, list) {
list_del_init(&d_buf->list);
lpfc_in_buf_free(vport->phba, d_buf);
}
lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
}
}
/**
* lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
* @vport: The vport that the received sequences were sent to.
*
* This function determines whether any received sequences have timed out by
* first checking the vport's rcv_buffer_time_stamp. If this time_stamp
* indicates that there is at least one timed out sequence this routine will
* go through the received sequences one at a time from most inactive to most
* active to determine which ones need to be cleaned up. Once it has determined
* that a sequence needs to be cleaned up it will simply free up the resources
* without sending an abort.
**/
void
lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
{
struct lpfc_dmabuf *h_buf, *hnext;
struct lpfc_dmabuf *d_buf, *dnext;
struct hbq_dmabuf *dmabuf = NULL;
unsigned long timeout;
int abort_count = 0;
timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
vport->rcv_buffer_time_stamp);
if (list_empty(&vport->rcv_buffer_list) ||
time_before(jiffies, timeout))
return;
/* start with the oldest sequence on the rcv list */
list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
dmabuf->time_stamp);
if (time_before(jiffies, timeout))
break;
abort_count++;
list_del_init(&dmabuf->hbuf.list);
list_for_each_entry_safe(d_buf, dnext,
&dmabuf->dbuf.list, list) {
list_del_init(&d_buf->list);
lpfc_in_buf_free(vport->phba, d_buf);
}
lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
}
if (abort_count)
lpfc_update_rcv_time_stamp(vport);
}
/**
* lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
* @vport: pointer to a vitural port
* @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
*
* This function searches through the existing incomplete sequences that have
* been sent to this @vport. If the frame matches one of the incomplete
* sequences then the dbuf in the @dmabuf is added to the list of frames that
* make up that sequence. If no sequence is found that matches this frame then
* the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
* This function returns a pointer to the first dmabuf in the sequence list that
* the frame was linked to.
**/
static struct hbq_dmabuf *
lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
{
struct fc_frame_header *new_hdr;
struct fc_frame_header *temp_hdr;
struct lpfc_dmabuf *d_buf;
struct lpfc_dmabuf *h_buf;
struct hbq_dmabuf *seq_dmabuf = NULL;
struct hbq_dmabuf *temp_dmabuf = NULL;
uint8_t found = 0;
INIT_LIST_HEAD(&dmabuf->dbuf.list);
dmabuf->time_stamp = jiffies;
new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
/* Use the hdr_buf to find the sequence that this frame belongs to */
list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
temp_hdr = (struct fc_frame_header *)h_buf->virt;
if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
(temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
(memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
continue;
/* found a pending sequence that matches this frame */
seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
break;
}
if (!seq_dmabuf) {
/*
* This indicates first frame received for this sequence.
* Queue the buffer on the vport's rcv_buffer_list.
*/
list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
lpfc_update_rcv_time_stamp(vport);
return dmabuf;
}
temp_hdr = seq_dmabuf->hbuf.virt;
if (be16_to_cpu(new_hdr->fh_seq_cnt) <
be16_to_cpu(temp_hdr->fh_seq_cnt)) {
list_del_init(&seq_dmabuf->hbuf.list);
list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
lpfc_update_rcv_time_stamp(vport);
return dmabuf;
}
/* move this sequence to the tail to indicate a young sequence */
list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
seq_dmabuf->time_stamp = jiffies;
lpfc_update_rcv_time_stamp(vport);
if (list_empty(&seq_dmabuf->dbuf.list)) {
temp_hdr = dmabuf->hbuf.virt;
list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
return seq_dmabuf;
}
/* find the correct place in the sequence to insert this frame */
d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
while (!found) {
temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
/*
* If the frame's sequence count is greater than the frame on
* the list then insert the frame right after this frame
*/
if (be16_to_cpu(new_hdr->fh_seq_cnt) >
be16_to_cpu(temp_hdr->fh_seq_cnt)) {
list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
found = 1;
break;
}
if (&d_buf->list == &seq_dmabuf->dbuf.list)
break;
d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
}
if (found)
return seq_dmabuf;
return NULL;
}
/**
* lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
* @vport: pointer to a vitural port
* @dmabuf: pointer to a dmabuf that describes the FC sequence
*
* This function tries to abort from the partially assembed sequence, described
* by the information from basic abbort @dmabuf. It checks to see whether such
* partially assembled sequence held by the driver. If so, it shall free up all
* the frames from the partially assembled sequence.
*
* Return
* true -- if there is matching partially assembled sequence present and all
* the frames freed with the sequence;
* false -- if there is no matching partially assembled sequence present so
* nothing got aborted in the lower layer driver
**/
static bool
lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
struct hbq_dmabuf *dmabuf)
{
struct fc_frame_header *new_hdr;
struct fc_frame_header *temp_hdr;
struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
struct hbq_dmabuf *seq_dmabuf = NULL;
/* Use the hdr_buf to find the sequence that matches this frame */
INIT_LIST_HEAD(&dmabuf->dbuf.list);
INIT_LIST_HEAD(&dmabuf->hbuf.list);
new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
temp_hdr = (struct fc_frame_header *)h_buf->virt;
if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
(temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
(memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
continue;
/* found a pending sequence that matches this frame */
seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
break;
}
/* Free up all the frames from the partially assembled sequence */
if (seq_dmabuf) {
list_for_each_entry_safe(d_buf, n_buf,
&seq_dmabuf->dbuf.list, list) {
list_del_init(&d_buf->list);
lpfc_in_buf_free(vport->phba, d_buf);
}
return true;
}
return false;
}
/**
* lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
* @vport: pointer to a vitural port
* @dmabuf: pointer to a dmabuf that describes the FC sequence
*
* This function tries to abort from the assembed sequence from upper level
* protocol, described by the information from basic abbort @dmabuf. It
* checks to see whether such pending context exists at upper level protocol.
* If so, it shall clean up the pending context.
*
* Return
* true -- if there is matching pending context of the sequence cleaned
* at ulp;
* false -- if there is no matching pending context of the sequence present
* at ulp.
**/
static bool
lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
{
struct lpfc_hba *phba = vport->phba;
int handled;
/* Accepting abort at ulp with SLI4 only */
if (phba->sli_rev < LPFC_SLI_REV4)
return false;
/* Register all caring upper level protocols to attend abort */
handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
if (handled)
return true;
return false;
}
/**
* lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
* @phba: Pointer to HBA context object.
* @cmd_iocbq: pointer to the command iocbq structure.
* @rsp_iocbq: pointer to the response iocbq structure.
*
* This function handles the sequence abort response iocb command complete
* event. It properly releases the memory allocated to the sequence abort
* accept iocb.
**/
static void
lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
struct lpfc_iocbq *cmd_iocbq,
struct lpfc_iocbq *rsp_iocbq)
{
struct lpfc_nodelist *ndlp;
if (cmd_iocbq) {
ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
lpfc_nlp_put(ndlp);
lpfc_sli_release_iocbq(phba, cmd_iocbq);
}
/* Failure means BLS ABORT RSP did not get delivered to remote node*/
if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3154 BLS ABORT RSP failed, data: x%x/x%x\n",
rsp_iocbq->iocb.ulpStatus,
rsp_iocbq->iocb.un.ulpWord[4]);
}
/**
* lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
* @phba: Pointer to HBA context object.
* @xri: xri id in transaction.
*
* This function validates the xri maps to the known range of XRIs allocated an
* used by the driver.
**/
uint16_t
lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
uint16_t xri)
{
uint16_t i;
for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
if (xri == phba->sli4_hba.xri_ids[i])
return i;
}
return NO_XRI;
}
/**
* lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
* @vport: pointer to a virtual port.
* @fc_hdr: pointer to a FC frame header.
* @aborted: was the partially assembled receive sequence successfully aborted
*
* This function sends a basic response to a previous unsol sequence abort
* event after aborting the sequence handling.
**/
void
lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
struct fc_frame_header *fc_hdr, bool aborted)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *ctiocb = NULL;
struct lpfc_nodelist *ndlp;
uint16_t oxid, rxid, xri, lxri;
uint32_t sid, fctl;
IOCB_t *icmd;
int rc;
if (!lpfc_is_link_up(phba))
return;
sid = sli4_sid_from_fc_hdr(fc_hdr);
oxid = be16_to_cpu(fc_hdr->fh_ox_id);
rxid = be16_to_cpu(fc_hdr->fh_rx_id);
ndlp = lpfc_findnode_did(vport, sid);
if (!ndlp) {
ndlp = lpfc_nlp_init(vport, sid);
if (!ndlp) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
"1268 Failed to allocate ndlp for "
"oxid:x%x SID:x%x\n", oxid, sid);
return;
}
/* Put ndlp onto pport node list */
lpfc_enqueue_node(vport, ndlp);
}
/* Allocate buffer for rsp iocb */
ctiocb = lpfc_sli_get_iocbq(phba);
if (!ctiocb)
return;
/* Extract the F_CTL field from FC_HDR */
fctl = sli4_fctl_from_fc_hdr(fc_hdr);
icmd = &ctiocb->iocb;
icmd->un.xseq64.bdl.bdeSize = 0;
icmd->un.xseq64.bdl.ulpIoTag32 = 0;
icmd->un.xseq64.w5.hcsw.Dfctl = 0;
icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
/* Fill in the rest of iocb fields */
icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
icmd->ulpBdeCount = 0;
icmd->ulpLe = 1;
icmd->ulpClass = CLASS3;
icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
ctiocb->context1 = lpfc_nlp_get(ndlp);
if (!ctiocb->context1) {
lpfc_sli_release_iocbq(phba, ctiocb);
return;
}
ctiocb->vport = phba->pport;
ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
ctiocb->sli4_lxritag = NO_XRI;
ctiocb->sli4_xritag = NO_XRI;
if (fctl & FC_FC_EX_CTX)
/* Exchange responder sent the abort so we
* own the oxid.
*/
xri = oxid;
else
xri = rxid;
lxri = lpfc_sli4_xri_inrange(phba, xri);
if (lxri != NO_XRI)
lpfc_set_rrq_active(phba, ndlp, lxri,
(xri == oxid) ? rxid : oxid, 0);
/* For BA_ABTS from exchange responder, if the logical xri with
* the oxid maps to the FCP XRI range, the port no longer has
* that exchange context, send a BLS_RJT. Override the IOCB for
* a BA_RJT.
*/
if ((fctl & FC_FC_EX_CTX) &&
(lxri > lpfc_sli4_get_iocb_cnt(phba))) {
icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
}
/* If BA_ABTS failed to abort a partially assembled receive sequence,
* the driver no longer has that exchange, send a BLS_RJT. Override
* the IOCB for a BA_RJT.
*/
if (aborted == false) {
icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
}
if (fctl & FC_FC_EX_CTX) {
/* ABTS sent by responder to CT exchange, construction
* of BA_ACC will use OX_ID from ABTS for the XRI_TAG
* field and RX_ID from ABTS for RX_ID field.
*/
bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
} else {
/* ABTS sent by initiator to CT exchange, construction
* of BA_ACC will need to allocate a new XRI as for the
* XRI_TAG field.
*/
bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
}
bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
/* Xmit CT abts response on exchange <xid> */
lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
"1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
if (rc == IOCB_ERROR) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"2925 Failed to issue CT ABTS RSP x%x on "
"xri x%x, Data x%x\n",
icmd->un.xseq64.w5.hcsw.Rctl, oxid,
phba->link_state);
lpfc_nlp_put(ndlp);
ctiocb->context1 = NULL;
lpfc_sli_release_iocbq(phba, ctiocb);
}
}
/**
* lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
* @vport: Pointer to the vport on which this sequence was received
* @dmabuf: pointer to a dmabuf that describes the FC sequence
*
* This function handles an SLI-4 unsolicited abort event. If the unsolicited
* receive sequence is only partially assembed by the driver, it shall abort
* the partially assembled frames for the sequence. Otherwise, if the
* unsolicited receive sequence has been completely assembled and passed to
* the Upper Layer Protocol (ULP), it then mark the per oxid status for the
* unsolicited sequence has been aborted. After that, it will issue a basic
* accept to accept the abort.
**/
static void
lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
struct hbq_dmabuf *dmabuf)
{
struct lpfc_hba *phba = vport->phba;
struct fc_frame_header fc_hdr;
uint32_t fctl;
bool aborted;
/* Make a copy of fc_hdr before the dmabuf being released */
memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
if (fctl & FC_FC_EX_CTX) {
/* ABTS by responder to exchange, no cleanup needed */
aborted = true;
} else {
/* ABTS by initiator to exchange, need to do cleanup */
aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
if (aborted == false)
aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
}
lpfc_in_buf_free(phba, &dmabuf->dbuf);
if (phba->nvmet_support) {
lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
return;
}
/* Respond with BA_ACC or BA_RJT accordingly */
lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
}
/**
* lpfc_seq_complete - Indicates if a sequence is complete
* @dmabuf: pointer to a dmabuf that describes the FC sequence
*
* This function checks the sequence, starting with the frame described by
* @dmabuf, to see if all the frames associated with this sequence are present.
* the frames associated with this sequence are linked to the @dmabuf using the
* dbuf list. This function looks for two major things. 1) That the first frame
* has a sequence count of zero. 2) There is a frame with last frame of sequence
* set. 3) That there are no holes in the sequence count. The function will
* return 1 when the sequence is complete, otherwise it will return 0.
**/
static int
lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
{
struct fc_frame_header *hdr;
struct lpfc_dmabuf *d_buf;
struct hbq_dmabuf *seq_dmabuf;
uint32_t fctl;
int seq_count = 0;
hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
/* make sure first fame of sequence has a sequence count of zero */
if (hdr->fh_seq_cnt != seq_count)
return 0;
fctl = (hdr->fh_f_ctl[0] << 16 |
hdr->fh_f_ctl[1] << 8 |
hdr->fh_f_ctl[2]);
/* If last frame of sequence we can return success. */
if (fctl & FC_FC_END_SEQ)
return 1;
list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
/* If there is a hole in the sequence count then fail. */
if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
return 0;
fctl = (hdr->fh_f_ctl[0] << 16 |
hdr->fh_f_ctl[1] << 8 |
hdr->fh_f_ctl[2]);
/* If last frame of sequence we can return success. */
if (fctl & FC_FC_END_SEQ)
return 1;
}
return 0;
}
/**
* lpfc_prep_seq - Prep sequence for ULP processing
* @vport: Pointer to the vport on which this sequence was received
* @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
*
* This function takes a sequence, described by a list of frames, and creates
* a list of iocbq structures to describe the sequence. This iocbq list will be
* used to issue to the generic unsolicited sequence handler. This routine
* returns a pointer to the first iocbq in the list. If the function is unable
* to allocate an iocbq then it throw out the received frames that were not
* able to be described and return a pointer to the first iocbq. If unable to
* allocate any iocbqs (including the first) this function will return NULL.
**/
static struct lpfc_iocbq *
lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
{
struct hbq_dmabuf *hbq_buf;
struct lpfc_dmabuf *d_buf, *n_buf;
struct lpfc_iocbq *first_iocbq, *iocbq;
struct fc_frame_header *fc_hdr;
uint32_t sid;
uint32_t len, tot_len;
struct ulp_bde64 *pbde;
fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
/* remove from receive buffer list */
list_del_init(&seq_dmabuf->hbuf.list);
lpfc_update_rcv_time_stamp(vport);
/* get the Remote Port's SID */
sid = sli4_sid_from_fc_hdr(fc_hdr);
tot_len = 0;
/* Get an iocbq struct to fill in. */
first_iocbq = lpfc_sli_get_iocbq(vport->phba);
if (first_iocbq) {
/* Initialize the first IOCB. */
first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
first_iocbq->vport = vport;
/* Check FC Header to see what TYPE of frame we are rcv'ing */
if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
first_iocbq->iocb.un.rcvels.parmRo =
sli4_did_from_fc_hdr(fc_hdr);
first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
} else
first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
first_iocbq->iocb.ulpContext = NO_XRI;
first_iocbq->iocb.unsli3.rcvsli3.ox_id =
be16_to_cpu(fc_hdr->fh_ox_id);
/* iocbq is prepped for internal consumption. Physical vpi. */
first_iocbq->iocb.unsli3.rcvsli3.vpi =
vport->phba->vpi_ids[vport->vpi];
/* put the first buffer into the first IOCBq */
tot_len = bf_get(lpfc_rcqe_length,
&seq_dmabuf->cq_event.cqe.rcqe_cmpl);
first_iocbq->context2 = &seq_dmabuf->dbuf;
first_iocbq->context3 = NULL;
first_iocbq->iocb.ulpBdeCount = 1;
if (tot_len > LPFC_DATA_BUF_SIZE)
first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
LPFC_DATA_BUF_SIZE;
else
first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
first_iocbq->iocb.un.rcvels.remoteID = sid;
first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
}
iocbq = first_iocbq;
/*
* Each IOCBq can have two Buffers assigned, so go through the list
* of buffers for this sequence and save two buffers in each IOCBq
*/
list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
if (!iocbq) {
lpfc_in_buf_free(vport->phba, d_buf);
continue;
}
if (!iocbq->context3) {
iocbq->context3 = d_buf;
iocbq->iocb.ulpBdeCount++;
/* We need to get the size out of the right CQE */
hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
len = bf_get(lpfc_rcqe_length,
&hbq_buf->cq_event.cqe.rcqe_cmpl);
pbde = (struct ulp_bde64 *)
&iocbq->iocb.unsli3.sli3Words[4];
if (len > LPFC_DATA_BUF_SIZE)
pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
else
pbde->tus.f.bdeSize = len;
iocbq->iocb.unsli3.rcvsli3.acc_len += len;
tot_len += len;
} else {
iocbq = lpfc_sli_get_iocbq(vport->phba);
if (!iocbq) {
if (first_iocbq) {
first_iocbq->iocb.ulpStatus =
IOSTAT_FCP_RSP_ERROR;
first_iocbq->iocb.un.ulpWord[4] =
IOERR_NO_RESOURCES;
}
lpfc_in_buf_free(vport->phba, d_buf);
continue;
}
/* We need to get the size out of the right CQE */
hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
len = bf_get(lpfc_rcqe_length,
&hbq_buf->cq_event.cqe.rcqe_cmpl);
iocbq->context2 = d_buf;
iocbq->context3 = NULL;
iocbq->iocb.ulpBdeCount = 1;
if (len > LPFC_DATA_BUF_SIZE)
iocbq->iocb.un.cont64[0].tus.f.bdeSize =
LPFC_DATA_BUF_SIZE;
else
iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
tot_len += len;
iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
iocbq->iocb.un.rcvels.remoteID = sid;
list_add_tail(&iocbq->list, &first_iocbq->list);
}
}
/* Free the sequence's header buffer */
if (!first_iocbq)
lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
return first_iocbq;
}
static void
lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
struct hbq_dmabuf *seq_dmabuf)
{
struct fc_frame_header *fc_hdr;
struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
struct lpfc_hba *phba = vport->phba;
fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
iocbq = lpfc_prep_seq(vport, seq_dmabuf);
if (!iocbq) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2707 Ring %d handler: Failed to allocate "
"iocb Rctl x%x Type x%x received\n",
LPFC_ELS_RING,
fc_hdr->fh_r_ctl, fc_hdr->fh_type);
return;
}
if (!lpfc_complete_unsol_iocb(phba,
phba->sli4_hba.els_wq->pring,
iocbq, fc_hdr->fh_r_ctl,
fc_hdr->fh_type))
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2540 Ring %d handler: unexpected Rctl "
"x%x Type x%x received\n",
LPFC_ELS_RING,
fc_hdr->fh_r_ctl, fc_hdr->fh_type);
/* Free iocb created in lpfc_prep_seq */
list_for_each_entry_safe(curr_iocb, next_iocb,
&iocbq->list, list) {
list_del_init(&curr_iocb->list);
lpfc_sli_release_iocbq(phba, curr_iocb);
}
lpfc_sli_release_iocbq(phba, iocbq);
}
static void
lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_iocbq *rspiocb)
{
struct lpfc_dmabuf *pcmd = cmdiocb->context2;
if (pcmd && pcmd->virt)
dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
kfree(pcmd);
lpfc_sli_release_iocbq(phba, cmdiocb);
lpfc_drain_txq(phba);
}
static void
lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
struct hbq_dmabuf *dmabuf)
{
struct fc_frame_header *fc_hdr;
struct lpfc_hba *phba = vport->phba;
struct lpfc_iocbq *iocbq = NULL;
union lpfc_wqe *wqe;
struct lpfc_dmabuf *pcmd = NULL;
uint32_t frame_len;
int rc;
unsigned long iflags;
fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
/* Send the received frame back */
iocbq = lpfc_sli_get_iocbq(phba);
if (!iocbq) {
/* Queue cq event and wakeup worker thread to process it */
spin_lock_irqsave(&phba->hbalock, iflags);
list_add_tail(&dmabuf->cq_event.list,
&phba->sli4_hba.sp_queue_event);
phba->hba_flag |= HBA_SP_QUEUE_EVT;
spin_unlock_irqrestore(&phba->hbalock, iflags);
lpfc_worker_wake_up(phba);
return;
}
/* Allocate buffer for command payload */
pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (pcmd)
pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
&pcmd->phys);
if (!pcmd || !pcmd->virt)
goto exit;
INIT_LIST_HEAD(&pcmd->list);
/* copyin the payload */
memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
/* fill in BDE's for command */
iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
iocbq->context2 = pcmd;
iocbq->vport = vport;
iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
/*
* Setup rest of the iocb as though it were a WQE
* Build the SEND_FRAME WQE
*/
wqe = (union lpfc_wqe *)&iocbq->iocb;
wqe->send_frame.frame_len = frame_len;
wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
iocbq->iocb.ulpLe = 1;
iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
if (rc == IOCB_ERROR)
goto exit;
lpfc_in_buf_free(phba, &dmabuf->dbuf);
return;
exit:
lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
"2023 Unable to process MDS loopback frame\n");
if (pcmd && pcmd->virt)
dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
kfree(pcmd);
if (iocbq)
lpfc_sli_release_iocbq(phba, iocbq);
lpfc_in_buf_free(phba, &dmabuf->dbuf);
}
/**
* lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
* @phba: Pointer to HBA context object.
* @dmabuf: Pointer to a dmabuf that describes the FC sequence.
*
* This function is called with no lock held. This function processes all
* the received buffers and gives it to upper layers when a received buffer
* indicates that it is the final frame in the sequence. The interrupt
* service routine processes received buffers at interrupt contexts.
* Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
* appropriate receive function when the final frame in a sequence is received.
**/
void
lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
struct hbq_dmabuf *dmabuf)
{
struct hbq_dmabuf *seq_dmabuf;
struct fc_frame_header *fc_hdr;
struct lpfc_vport *vport;
uint32_t fcfi;
uint32_t did;
/* Process each received buffer */
fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
vport = phba->pport;
/* Handle MDS Loopback frames */
if (!(phba->pport->load_flag & FC_UNLOADING))
lpfc_sli4_handle_mds_loopback(vport, dmabuf);
else
lpfc_in_buf_free(phba, &dmabuf->dbuf);
return;
}
/* check to see if this a valid type of frame */
if (lpfc_fc_frame_check(phba, fc_hdr)) {
lpfc_in_buf_free(phba, &dmabuf->dbuf);
return;
}
if ((bf_get(lpfc_cqe_code,
&dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
&dmabuf->cq_event.cqe.rcqe_cmpl);
else
fcfi = bf_get(lpfc_rcqe_fcf_id,
&dmabuf->cq_event.cqe.rcqe_cmpl);
if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
vport = phba->pport;
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"2023 MDS Loopback %d bytes\n",
bf_get(lpfc_rcqe_length,
&dmabuf->cq_event.cqe.rcqe_cmpl));
/* Handle MDS Loopback frames */
lpfc_sli4_handle_mds_loopback(vport, dmabuf);
return;
}
/* d_id this frame is directed to */
did = sli4_did_from_fc_hdr(fc_hdr);
vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
if (!vport) {
/* throw out the frame */
lpfc_in_buf_free(phba, &dmabuf->dbuf);
return;
}
/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
(did != Fabric_DID)) {
/*
* Throw out the frame if we are not pt2pt.
* The pt2pt protocol allows for discovery frames
* to be received without a registered VPI.
*/
if (!(vport->fc_flag & FC_PT2PT) ||
(phba->link_state == LPFC_HBA_READY)) {
lpfc_in_buf_free(phba, &dmabuf->dbuf);
return;
}
}
/* Handle the basic abort sequence (BA_ABTS) event */
if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
lpfc_sli4_handle_unsol_abort(vport, dmabuf);
return;
}
/* Link this frame */
seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
if (!seq_dmabuf) {
/* unable to add frame to vport - throw it out */
lpfc_in_buf_free(phba, &dmabuf->dbuf);
return;
}
/* If not last frame in sequence continue processing frames. */
if (!lpfc_seq_complete(seq_dmabuf))
return;
/* Send the complete sequence to the upper layer protocol */
lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
}
/**
* lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to post rpi header templates to the
* HBA consistent with the SLI-4 interface spec. This routine
* posts a SLI4_PAGE_SIZE memory region to the port to hold up to
* SLI4_PAGE_SIZE modulo 64 rpi context headers.
*
* This routine does not require any locks. It's usage is expected
* to be driver load or reset recovery when the driver is
* sequential.
*
* Return codes
* 0 - successful
* -EIO - The mailbox failed to complete successfully.
* When this error occurs, the driver is not guaranteed
* to have any rpi regions posted to the device and
* must either attempt to repost the regions or take a
* fatal error.
**/
int
lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
{
struct lpfc_rpi_hdr *rpi_page;
uint32_t rc = 0;
uint16_t lrpi = 0;
/* SLI4 ports that support extents do not require RPI headers. */
if (!phba->sli4_hba.rpi_hdrs_in_use)
goto exit;
if (phba->sli4_hba.extents_in_use)
return -EIO;
list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
/*
* Assign the rpi headers a physical rpi only if the driver
* has not initialized those resources. A port reset only
* needs the headers posted.
*/
if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
LPFC_RPI_RSRC_RDY)
rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2008 Error %d posting all rpi "
"headers\n", rc);
rc = -EIO;
break;
}
}
exit:
bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
LPFC_RPI_RSRC_RDY);
return rc;
}
/**
* lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
* @phba: pointer to lpfc hba data structure.
* @rpi_page: pointer to the rpi memory region.
*
* This routine is invoked to post a single rpi header to the
* HBA consistent with the SLI-4 interface spec. This memory region
* maps up to 64 rpi context regions.
*
* Return codes
* 0 - successful
* -ENOMEM - No available memory
* -EIO - The mailbox failed to complete successfully.
**/
int
lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
{
LPFC_MBOXQ_t *mboxq;
struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
uint32_t rc = 0;
uint32_t shdr_status, shdr_add_status;
union lpfc_sli4_cfg_shdr *shdr;
/* SLI4 ports that support extents do not require RPI headers. */
if (!phba->sli4_hba.rpi_hdrs_in_use)
return rc;
if (phba->sli4_hba.extents_in_use)
return -EIO;
/* The port is notified of the header region via a mailbox command. */
mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2001 Unable to allocate memory for issuing "
"SLI_CONFIG_SPECIAL mailbox command\n");
return -ENOMEM;
}
/* Post all rpi memory regions to the port. */
hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
sizeof(struct lpfc_mbx_post_hdr_tmpl) -
sizeof(struct lpfc_sli4_cfg_mhdr),
LPFC_SLI4_MBX_EMBED);
/* Post the physical rpi to the port for this rpi header. */
bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
rpi_page->start_rpi);
bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
hdr_tmpl, rpi_page->page_count);
hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
mempool_free(mboxq, phba->mbox_mem_pool);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2514 POST_RPI_HDR mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
rc = -ENXIO;
} else {
/*
* The next_rpi stores the next logical module-64 rpi value used
* to post physical rpis in subsequent rpi postings.
*/
spin_lock_irq(&phba->hbalock);
phba->sli4_hba.next_rpi = rpi_page->next_rpi;
spin_unlock_irq(&phba->hbalock);
}
return rc;
}
/**
* lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to post rpi header templates to the
* HBA consistent with the SLI-4 interface spec. This routine
* posts a SLI4_PAGE_SIZE memory region to the port to hold up to
* SLI4_PAGE_SIZE modulo 64 rpi context headers.
*
* Returns
* A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
* LPFC_RPI_ALLOC_ERROR if no rpis are available.
**/
int
lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
{
unsigned long rpi;
uint16_t max_rpi, rpi_limit;
uint16_t rpi_remaining, lrpi = 0;
struct lpfc_rpi_hdr *rpi_hdr;
unsigned long iflag;
/*
* Fetch the next logical rpi. Because this index is logical,
* the driver starts at 0 each time.
*/
spin_lock_irqsave(&phba->hbalock, iflag);
max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
rpi_limit = phba->sli4_hba.next_rpi;
rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
if (rpi >= rpi_limit)
rpi = LPFC_RPI_ALLOC_ERROR;
else {
set_bit(rpi, phba->sli4_hba.rpi_bmask);
phba->sli4_hba.max_cfg_param.rpi_used++;
phba->sli4_hba.rpi_count++;
}
lpfc_printf_log(phba, KERN_INFO,
LOG_NODE | LOG_DISCOVERY,
"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
(int) rpi, max_rpi, rpi_limit);
/*
* Don't try to allocate more rpi header regions if the device limit
* has been exhausted.
*/
if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
(phba->sli4_hba.rpi_count >= max_rpi)) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
return rpi;
}
/*
* RPI header postings are not required for SLI4 ports capable of
* extents.
*/
if (!phba->sli4_hba.rpi_hdrs_in_use) {
spin_unlock_irqrestore(&phba->hbalock, iflag);
return rpi;
}
/*
* If the driver is running low on rpi resources, allocate another
* page now. Note that the next_rpi value is used because
* it represents how many are actually in use whereas max_rpi notes
* how many are supported max by the device.
*/
rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
spin_unlock_irqrestore(&phba->hbalock, iflag);
if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
if (!rpi_hdr) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2002 Error Could not grow rpi "
"count\n");
} else {
lrpi = rpi_hdr->start_rpi;
rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
}
}
return rpi;
}
/**
* __lpfc_sli4_free_rpi - Release an rpi for reuse.
* @phba: pointer to lpfc hba data structure.
* @rpi: rpi to free
*
* This routine is invoked to release an rpi to the pool of
* available rpis maintained by the driver.
**/
static void
__lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
{
/*
* if the rpi value indicates a prior unreg has already
* been done, skip the unreg.
*/
if (rpi == LPFC_RPI_ALLOC_ERROR)
return;
if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
phba->sli4_hba.rpi_count--;
phba->sli4_hba.max_cfg_param.rpi_used--;
} else {
lpfc_printf_log(phba, KERN_INFO,
LOG_NODE | LOG_DISCOVERY,
"2016 rpi %x not inuse\n",
rpi);
}
}
/**
* lpfc_sli4_free_rpi - Release an rpi for reuse.
* @phba: pointer to lpfc hba data structure.
* @rpi: rpi to free
*
* This routine is invoked to release an rpi to the pool of
* available rpis maintained by the driver.
**/
void
lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
{
spin_lock_irq(&phba->hbalock);
__lpfc_sli4_free_rpi(phba, rpi);
spin_unlock_irq(&phba->hbalock);
}
/**
* lpfc_sli4_remove_rpis - Remove the rpi bitmask region
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to remove the memory region that
* provided rpi via a bitmask.
**/
void
lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
{
kfree(phba->sli4_hba.rpi_bmask);
kfree(phba->sli4_hba.rpi_ids);
bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
}
/**
* lpfc_sli4_resume_rpi - Remove the rpi bitmask region
* @ndlp: pointer to lpfc nodelist data structure.
* @cmpl: completion call-back.
* @arg: data to load as MBox 'caller buffer information'
*
* This routine is invoked to remove the memory region that
* provided rpi via a bitmask.
**/
int
lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
{
LPFC_MBOXQ_t *mboxq;
struct lpfc_hba *phba = ndlp->phba;
int rc;
/* The port is notified of the header region via a mailbox command. */
mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq)
return -ENOMEM;
/* Post all rpi memory regions to the port. */
lpfc_resume_rpi(mboxq, ndlp);
if (cmpl) {
mboxq->mbox_cmpl = cmpl;
mboxq->ctx_buf = arg;
mboxq->ctx_ndlp = ndlp;
} else
mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
mboxq->vport = ndlp->vport;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2010 Resume RPI Mailbox failed "
"status %d, mbxStatus x%x\n", rc,
bf_get(lpfc_mqe_status, &mboxq->u.mqe));
mempool_free(mboxq, phba->mbox_mem_pool);
return -EIO;
}
return 0;
}
/**
* lpfc_sli4_init_vpi - Initialize a vpi with the port
* @vport: Pointer to the vport for which the vpi is being initialized
*
* This routine is invoked to activate a vpi with the port.
*
* Returns:
* 0 success
* -Evalue otherwise
**/
int
lpfc_sli4_init_vpi(struct lpfc_vport *vport)
{
LPFC_MBOXQ_t *mboxq;
int rc = 0;
int retval = MBX_SUCCESS;
uint32_t mbox_tmo;
struct lpfc_hba *phba = vport->phba;
mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq)
return -ENOMEM;
lpfc_init_vpi(phba, mboxq, vport->vpi);
mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
if (rc != MBX_SUCCESS) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"2022 INIT VPI Mailbox failed "
"status %d, mbxStatus x%x\n", rc,
bf_get(lpfc_mqe_status, &mboxq->u.mqe));
retval = -EIO;
}
if (rc != MBX_TIMEOUT)
mempool_free(mboxq, vport->phba->mbox_mem_pool);
return retval;
}
/**
* lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
* @phba: pointer to lpfc hba data structure.
* @mboxq: Pointer to mailbox object.
*
* This routine is invoked to manually add a single FCF record. The caller
* must pass a completely initialized FCF_Record. This routine takes
* care of the nonembedded mailbox operations.
**/
static void
lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
{
void *virt_addr;
union lpfc_sli4_cfg_shdr *shdr;
uint32_t shdr_status, shdr_add_status;
virt_addr = mboxq->sge_array->addr[0];
/* The IOCTL status is embedded in the mailbox subheader. */
shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
if ((shdr_status || shdr_add_status) &&
(shdr_status != STATUS_FCF_IN_USE))
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2558 ADD_FCF_RECORD mailbox failed with "
"status x%x add_status x%x\n",
shdr_status, shdr_add_status);
lpfc_sli4_mbox_cmd_free(phba, mboxq);
}
/**
* lpfc_sli4_add_fcf_record - Manually add an FCF Record.
* @phba: pointer to lpfc hba data structure.
* @fcf_record: pointer to the initialized fcf record to add.
*
* This routine is invoked to manually add a single FCF record. The caller
* must pass a completely initialized FCF_Record. This routine takes
* care of the nonembedded mailbox operations.
**/
int
lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
{
int rc = 0;
LPFC_MBOXQ_t *mboxq;
uint8_t *bytep;
void *virt_addr;
struct lpfc_mbx_sge sge;
uint32_t alloc_len, req_len;
uint32_t fcfindex;
mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2009 Failed to allocate mbox for ADD_FCF cmd\n");
return -ENOMEM;
}
req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
sizeof(uint32_t);
/* Allocate DMA memory and set up the non-embedded mailbox command */
alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
req_len, LPFC_SLI4_MBX_NEMBED);
if (alloc_len < req_len) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2523 Allocated DMA memory size (x%x) is "
"less than the requested DMA memory "
"size (x%x)\n", alloc_len, req_len);
lpfc_sli4_mbox_cmd_free(phba, mboxq);
return -ENOMEM;
}
/*
* Get the first SGE entry from the non-embedded DMA memory. This
* routine only uses a single SGE.
*/
lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
virt_addr = mboxq->sge_array->addr[0];
/*
* Configure the FCF record for FCFI 0. This is the driver's
* hardcoded default and gets used in nonFIP mode.
*/
fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
/*
* Copy the fcf_index and the FCF Record Data. The data starts after
* the FCoE header plus word10. The data copy needs to be endian
* correct.
*/
bytep += sizeof(uint32_t);
lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
mboxq->vport = phba->pport;
mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2515 ADD_FCF_RECORD mailbox failed with "
"status 0x%x\n", rc);
lpfc_sli4_mbox_cmd_free(phba, mboxq);
rc = -EIO;
} else
rc = 0;
return rc;
}
/**
* lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
* @phba: pointer to lpfc hba data structure.
* @fcf_record: pointer to the fcf record to write the default data.
* @fcf_index: FCF table entry index.
*
* This routine is invoked to build the driver's default FCF record. The
* values used are hardcoded. This routine handles memory initialization.
*
**/
void
lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
struct fcf_record *fcf_record,
uint16_t fcf_index)
{
memset(fcf_record, 0, sizeof(struct fcf_record));
fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
LPFC_FCF_FPMA | LPFC_FCF_SPMA);
/* Set the VLAN bit map */
if (phba->valid_vlan) {
fcf_record->vlan_bitmap[phba->vlan_id / 8]
= 1 << (phba->vlan_id % 8);
}
}
/**
* lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
* @phba: pointer to lpfc hba data structure.
* @fcf_index: FCF table entry offset.
*
* This routine is invoked to scan the entire FCF table by reading FCF
* record and processing it one at a time starting from the @fcf_index
* for initial FCF discovery or fast FCF failover rediscovery.
*
* Return 0 if the mailbox command is submitted successfully, none 0
* otherwise.
**/
int
lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
{
int rc = 0, error;
LPFC_MBOXQ_t *mboxq;
phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2000 Failed to allocate mbox for "
"READ_FCF cmd\n");
error = -ENOMEM;
goto fail_fcf_scan;
}
/* Construct the read FCF record mailbox command */
rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
if (rc) {
error = -EINVAL;
goto fail_fcf_scan;
}
/* Issue the mailbox command asynchronously */
mboxq->vport = phba->pport;
mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
spin_lock_irq(&phba->hbalock);
phba->hba_flag |= FCF_TS_INPROG;
spin_unlock_irq(&phba->hbalock);
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
error = -EIO;
else {
/* Reset eligible FCF count for new scan */
if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
phba->fcf.eligible_fcf_cnt = 0;
error = 0;
}
fail_fcf_scan:
if (error) {
if (mboxq)
lpfc_sli4_mbox_cmd_free(phba, mboxq);
/* FCF scan failed, clear FCF_TS_INPROG flag */
spin_lock_irq(&phba->hbalock);
phba->hba_flag &= ~FCF_TS_INPROG;
spin_unlock_irq(&phba->hbalock);
}
return error;
}
/**
* lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
* @phba: pointer to lpfc hba data structure.
* @fcf_index: FCF table entry offset.
*
* This routine is invoked to read an FCF record indicated by @fcf_index
* and to use it for FLOGI roundrobin FCF failover.
*
* Return 0 if the mailbox command is submitted successfully, none 0
* otherwise.
**/
int
lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
{
int rc = 0, error;
LPFC_MBOXQ_t *mboxq;
mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
"2763 Failed to allocate mbox for "
"READ_FCF cmd\n");
error = -ENOMEM;
goto fail_fcf_read;
}
/* Construct the read FCF record mailbox command */
rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
if (rc) {
error = -EINVAL;
goto fail_fcf_read;
}
/* Issue the mailbox command asynchronously */
mboxq->vport = phba->pport;
mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
error = -EIO;
else
error = 0;
fail_fcf_read:
if (error && mboxq)
lpfc_sli4_mbox_cmd_free(phba, mboxq);
return error;
}
/**
* lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
* @phba: pointer to lpfc hba data structure.
* @fcf_index: FCF table entry offset.
*
* This routine is invoked to read an FCF record indicated by @fcf_index to
* determine whether it's eligible for FLOGI roundrobin failover list.
*
* Return 0 if the mailbox command is submitted successfully, none 0
* otherwise.
**/
int
lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
{
int rc = 0, error;
LPFC_MBOXQ_t *mboxq;
mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
"2758 Failed to allocate mbox for "
"READ_FCF cmd\n");
error = -ENOMEM;
goto fail_fcf_read;
}
/* Construct the read FCF record mailbox command */
rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
if (rc) {
error = -EINVAL;
goto fail_fcf_read;
}
/* Issue the mailbox command asynchronously */
mboxq->vport = phba->pport;
mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED)
error = -EIO;
else
error = 0;
fail_fcf_read:
if (error && mboxq)
lpfc_sli4_mbox_cmd_free(phba, mboxq);
return error;
}
/**
* lpfc_check_next_fcf_pri_level
* @phba: pointer to the lpfc_hba struct for this port.
* This routine is called from the lpfc_sli4_fcf_rr_next_index_get
* routine when the rr_bmask is empty. The FCF indecies are put into the
* rr_bmask based on their priority level. Starting from the highest priority
* to the lowest. The most likely FCF candidate will be in the highest
* priority group. When this routine is called it searches the fcf_pri list for
* next lowest priority group and repopulates the rr_bmask with only those
* fcf_indexes.
* returns:
* 1=success 0=failure
**/
static int
lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
{
uint16_t next_fcf_pri;
uint16_t last_index;
struct lpfc_fcf_pri *fcf_pri;
int rc;
int ret = 0;
last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
LPFC_SLI4_FCF_TBL_INDX_MAX);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
"3060 Last IDX %d\n", last_index);
/* Verify the priority list has 2 or more entries */
spin_lock_irq(&phba->hbalock);
if (list_empty(&phba->fcf.fcf_pri_list) ||
list_is_singular(&phba->fcf.fcf_pri_list)) {
spin_unlock_irq(&phba->hbalock);
lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
"3061 Last IDX %d\n", last_index);
return 0; /* Empty rr list */
}
spin_unlock_irq(&phba->hbalock);
next_fcf_pri = 0;
/*
* Clear the rr_bmask and set all of the bits that are at this
* priority.
*/
memset(phba->fcf.fcf_rr_bmask, 0,
sizeof(*phba->fcf.fcf_rr_bmask));
spin_lock_irq(&phba->hbalock);
list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
continue;
/*
* the 1st priority that has not FLOGI failed
* will be the highest.
*/
if (!next_fcf_pri)
next_fcf_pri = fcf_pri->fcf_rec.priority;
spin_unlock_irq(&phba->hbalock);
if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
rc = lpfc_sli4_fcf_rr_index_set(phba,
fcf_pri->fcf_rec.fcf_index);
if (rc)
return 0;
}
spin_lock_irq(&phba->hbalock);
}
/*
* if next_fcf_pri was not set above and the list is not empty then
* we have failed flogis on all of them. So reset flogi failed
* and start at the beginning.
*/
if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
/*
* the 1st priority that has not FLOGI failed
* will be the highest.
*/
if (!next_fcf_pri)
next_fcf_pri = fcf_pri->fcf_rec.priority;
spin_unlock_irq(&phba->hbalock);
if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
rc = lpfc_sli4_fcf_rr_index_set(phba,
fcf_pri->fcf_rec.fcf_index);
if (rc)
return 0;
}
spin_lock_irq(&phba->hbalock);
}
} else
ret = 1;
spin_unlock_irq(&phba->hbalock);
return ret;
}
/**
* lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
* @phba: pointer to lpfc hba data structure.
*
* This routine is to get the next eligible FCF record index in a round
* robin fashion. If the next eligible FCF record index equals to the
* initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
* shall be returned, otherwise, the next eligible FCF record's index
* shall be returned.
**/
uint16_t
lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
{
uint16_t next_fcf_index;
initial_priority:
/* Search start from next bit of currently registered FCF index */
next_fcf_index = phba->fcf.current_rec.fcf_indx;
next_priority:
/* Determine the next fcf index to check */
next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
LPFC_SLI4_FCF_TBL_INDX_MAX,
next_fcf_index);
/* Wrap around condition on phba->fcf.fcf_rr_bmask */
if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
/*
* If we have wrapped then we need to clear the bits that
* have been tested so that we can detect when we should
* change the priority level.
*/
next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
}
/* Check roundrobin failover list empty condition */
if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
next_fcf_index == phba->fcf.current_rec.fcf_indx) {
/*
* If next fcf index is not found check if there are lower
* Priority level fcf's in the fcf_priority list.
* Set up the rr_bmask with all of the avaiable fcf bits
* at that level and continue the selection process.
*/
if (lpfc_check_next_fcf_pri_level(phba))
goto initial_priority;
lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
"2844 No roundrobin failover FCF available\n");
return LPFC_FCOE_FCF_NEXT_NONE;
}
if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
LPFC_FCF_FLOGI_FAILED) {
if (list_is_singular(&phba->fcf.fcf_pri_list))
return LPFC_FCOE_FCF_NEXT_NONE;
goto next_priority;
}
lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
"2845 Get next roundrobin failover FCF (x%x)\n",
next_fcf_index);
return next_fcf_index;
}
/**
* lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
* @phba: pointer to lpfc hba data structure.
* @fcf_index: index into the FCF table to 'set'
*
* This routine sets the FCF record index in to the eligible bmask for
* roundrobin failover search. It checks to make sure that the index
* does not go beyond the range of the driver allocated bmask dimension
* before setting the bit.
*
* Returns 0 if the index bit successfully set, otherwise, it returns
* -EINVAL.
**/
int
lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
{
if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
"2610 FCF (x%x) reached driver's book "
"keeping dimension:x%x\n",
fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
return -EINVAL;
}
/* Set the eligible FCF record index bmask */
set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
"2790 Set FCF (x%x) to roundrobin FCF failover "
"bmask\n", fcf_index);
return 0;
}
/**
* lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
* @phba: pointer to lpfc hba data structure.
* @fcf_index: index into the FCF table to 'clear'
*
* This routine clears the FCF record index from the eligible bmask for
* roundrobin failover search. It checks to make sure that the index
* does not go beyond the range of the driver allocated bmask dimension
* before clearing the bit.
**/
void
lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
{
struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
"2762 FCF (x%x) reached driver's book "
"keeping dimension:x%x\n",
fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
return;
}
/* Clear the eligible FCF record index bmask */
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
list) {
if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
list_del_init(&fcf_pri->list);
break;
}
}
spin_unlock_irq(&phba->hbalock);
clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
"2791 Clear FCF (x%x) from roundrobin failover "
"bmask\n", fcf_index);
}
/**
* lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
* @phba: pointer to lpfc hba data structure.
* @mbox: An allocated pointer to type LPFC_MBOXQ_t
*
* This routine is the completion routine for the rediscover FCF table mailbox
* command. If the mailbox command returned failure, it will try to stop the
* FCF rediscover wait timer.
**/
static void
lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
{
struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
uint32_t shdr_status, shdr_add_status;
redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
shdr_status = bf_get(lpfc_mbox_hdr_status,
&redisc_fcf->header.cfg_shdr.response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
&redisc_fcf->header.cfg_shdr.response);
if (shdr_status || shdr_add_status) {
lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
"2746 Requesting for FCF rediscovery failed "
"status x%x add_status x%x\n",
shdr_status, shdr_add_status);
if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
spin_lock_irq(&phba->hbalock);
phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
spin_unlock_irq(&phba->hbalock);
/*
* CVL event triggered FCF rediscover request failed,
* last resort to re-try current registered FCF entry.
*/
lpfc_retry_pport_discovery(phba);
} else {
spin_lock_irq(&phba->hbalock);
phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
spin_unlock_irq(&phba->hbalock);
/*
* DEAD FCF event triggered FCF rediscover request
* failed, last resort to fail over as a link down
* to FCF registration.
*/
lpfc_sli4_fcf_dead_failthrough(phba);
}
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
"2775 Start FCF rediscover quiescent timer\n");
/*
* Start FCF rediscovery wait timer for pending FCF
* before rescan FCF record table.
*/
lpfc_fcf_redisc_wait_start_timer(phba);
}
mempool_free(mbox, phba->mbox_mem_pool);
}
/**
* lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to request for rediscovery of the entire FCF table
* by the port.
**/
int
lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *mbox;
struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
int rc, length;
/* Cancel retry delay timers to all vports before FCF rediscover */
lpfc_cancel_all_vport_retry_delay_timer(phba);
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2745 Failed to allocate mbox for "
"requesting FCF rediscover.\n");
return -ENOMEM;
}
length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
sizeof(struct lpfc_sli4_cfg_mhdr));
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
length, LPFC_SLI4_MBX_EMBED);
redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
/* Set count to 0 for invalidating the entire FCF database */
bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
/* Issue the mailbox command asynchronously */
mbox->vport = phba->pport;
mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
mempool_free(mbox, phba->mbox_mem_pool);
return -EIO;
}
return 0;
}
/**
* lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
* @phba: pointer to lpfc hba data structure.
*
* This function is the failover routine as a last resort to the FCF DEAD
* event when driver failed to perform fast FCF failover.
**/
void
lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
{
uint32_t link_state;
/*
* Last resort as FCF DEAD event failover will treat this as
* a link down, but save the link state because we don't want
* it to be changed to Link Down unless it is already down.
*/
link_state = phba->link_state;
lpfc_linkdown(phba);
phba->link_state = link_state;
/* Unregister FCF if no devices connected to it */
lpfc_unregister_unused_fcf(phba);
}
/**
* lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
* @phba: pointer to lpfc hba data structure.
* @rgn23_data: pointer to configure region 23 data.
*
* This function gets SLI3 port configure region 23 data through memory dump
* mailbox command. When it successfully retrieves data, the size of the data
* will be returned, otherwise, 0 will be returned.
**/
static uint32_t
lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
{
LPFC_MBOXQ_t *pmb = NULL;
MAILBOX_t *mb;
uint32_t offset = 0;
int rc;
if (!rgn23_data)
return 0;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2600 failed to allocate mailbox memory\n");
return 0;
}
mb = &pmb->u.mb;
do {
lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"2601 failed to read config "
"region 23, rc 0x%x Status 0x%x\n",
rc, mb->mbxStatus);
mb->un.varDmp.word_cnt = 0;
}
/*
* dump mem may return a zero when finished or we got a
* mailbox error, either way we are done.
*/
if (mb->un.varDmp.word_cnt == 0)
break;
if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
rgn23_data + offset,
mb->un.varDmp.word_cnt);
offset += mb->un.varDmp.word_cnt;
} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
mempool_free(pmb, phba->mbox_mem_pool);
return offset;
}
/**
* lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
* @phba: pointer to lpfc hba data structure.
* @rgn23_data: pointer to configure region 23 data.
*
* This function gets SLI4 port configure region 23 data through memory dump
* mailbox command. When it successfully retrieves data, the size of the data
* will be returned, otherwise, 0 will be returned.
**/
static uint32_t
lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
{
LPFC_MBOXQ_t *mboxq = NULL;
struct lpfc_dmabuf *mp = NULL;
struct lpfc_mqe *mqe;
uint32_t data_length = 0;
int rc;
if (!rgn23_data)
return 0;
mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mboxq) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3105 failed to allocate mailbox memory\n");
return 0;
}
if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
goto out;
mqe = &mboxq->u.mqe;
mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
if (rc)
goto out;
data_length = mqe->un.mb_words[5];
if (data_length == 0)
goto out;
if (data_length > DMP_RGN23_SIZE) {
data_length = 0;
goto out;
}
lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
out:
mempool_free(mboxq, phba->mbox_mem_pool);
if (mp) {
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
return data_length;
}
/**
* lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
* @phba: pointer to lpfc hba data structure.
*
* This function read region 23 and parse TLV for port status to
* decide if the user disaled the port. If the TLV indicates the
* port is disabled, the hba_flag is set accordingly.
**/
void
lpfc_sli_read_link_ste(struct lpfc_hba *phba)
{
uint8_t *rgn23_data = NULL;
uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
uint32_t offset = 0;
/* Get adapter Region 23 data */
rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
if (!rgn23_data)
goto out;
if (phba->sli_rev < LPFC_SLI_REV4)
data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
else {
if_type = bf_get(lpfc_sli_intf_if_type,
&phba->sli4_hba.sli_intf);
if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
goto out;
data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
}
if (!data_size)
goto out;
/* Check the region signature first */
if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2619 Config region 23 has bad signature\n");
goto out;
}
offset += 4;
/* Check the data structure version */
if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2620 Config region 23 has bad version\n");
goto out;
}
offset += 4;
/* Parse TLV entries in the region */
while (offset < data_size) {
if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
break;
/*
* If the TLV is not driver specific TLV or driver id is
* not linux driver id, skip the record.
*/
if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
(rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
(rgn23_data[offset + 3] != 0)) {
offset += rgn23_data[offset + 1] * 4 + 4;
continue;
}
/* Driver found a driver specific TLV in the config region */
sub_tlv_len = rgn23_data[offset + 1] * 4;
offset += 4;
tlv_offset = 0;
/*
* Search for configured port state sub-TLV.
*/
while ((offset < data_size) &&
(tlv_offset < sub_tlv_len)) {
if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
offset += 4;
tlv_offset += 4;
break;
}
if (rgn23_data[offset] != PORT_STE_TYPE) {
offset += rgn23_data[offset + 1] * 4 + 4;
tlv_offset += rgn23_data[offset + 1] * 4 + 4;
continue;
}
/* This HBA contains PORT_STE configured */
if (!rgn23_data[offset + 2])
phba->hba_flag |= LINK_DISABLED;
goto out;
}
}
out:
kfree(rgn23_data);
return;
}
/**
* lpfc_wr_object - write an object to the firmware
* @phba: HBA structure that indicates port to create a queue on.
* @dmabuf_list: list of dmabufs to write to the port.
* @size: the total byte value of the objects to write to the port.
* @offset: the current offset to be used to start the transfer.
*
* This routine will create a wr_object mailbox command to send to the port.
* the mailbox command will be constructed using the dma buffers described in
* @dmabuf_list to create a list of BDEs. This routine will fill in as many
* BDEs that the imbedded mailbox can support. The @offset variable will be
* used to indicate the starting offset of the transfer and will also return
* the offset after the write object mailbox has completed. @size is used to
* determine the end of the object and whether the eof bit should be set.
*
* Return 0 is successful and offset will contain the the new offset to use
* for the next write.
* Return negative value for error cases.
**/
int
lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
uint32_t size, uint32_t *offset)
{
struct lpfc_mbx_wr_object *wr_object;
LPFC_MBOXQ_t *mbox;
int rc = 0, i = 0;
uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
uint32_t mbox_tmo;
struct lpfc_dmabuf *dmabuf;
uint32_t written = 0;
bool check_change_status = false;
mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!mbox)
return -ENOMEM;
lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
LPFC_MBOX_OPCODE_WRITE_OBJECT,
sizeof(struct lpfc_mbx_wr_object) -
sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
wr_object->u.request.write_offset = *offset;
sprintf((uint8_t *)wr_object->u.request.object_name, "/");
wr_object->u.request.object_name[0] =
cpu_to_le32(wr_object->u.request.object_name[0]);
bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
list_for_each_entry(dmabuf, dmabuf_list, list) {
if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
break;
wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
wr_object->u.request.bde[i].addrHigh =
putPaddrHigh(dmabuf->phys);
if (written + SLI4_PAGE_SIZE >= size) {
wr_object->u.request.bde[i].tus.f.bdeSize =
(size - written);
written += (size - written);
bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
check_change_status = true;
} else {
wr_object->u.request.bde[i].tus.f.bdeSize =
SLI4_PAGE_SIZE;
written += SLI4_PAGE_SIZE;
}
i++;
}
wr_object->u.request.bde_count = i;
bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
if (!phba->sli4_hba.intr_enable)
rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
else {
mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
}
/* The IOCTL status is embedded in the mailbox subheader. */
shdr_status = bf_get(lpfc_mbox_hdr_status,
&wr_object->header.cfg_shdr.response);
shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
&wr_object->header.cfg_shdr.response);
if (check_change_status) {
shdr_change_status = bf_get(lpfc_wr_object_change_status,
&wr_object->u.response);
if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
shdr_csf = bf_get(lpfc_wr_object_csf,
&wr_object->u.response);
if (shdr_csf)
shdr_change_status =
LPFC_CHANGE_STATUS_PCI_RESET;
}
switch (shdr_change_status) {
case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3198 Firmware write complete: System "
"reboot required to instantiate\n");
break;
case (LPFC_CHANGE_STATUS_FW_RESET):
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3199 Firmware write complete: Firmware"
" reset required to instantiate\n");
break;
case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3200 Firmware write complete: Port "
"Migration or PCI Reset required to "
"instantiate\n");
break;
case (LPFC_CHANGE_STATUS_PCI_RESET):
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"3201 Firmware write complete: PCI "
"Reset required to instantiate\n");
break;
default:
break;
}
}
if (!phba->sli4_hba.intr_enable)
mempool_free(mbox, phba->mbox_mem_pool);
else if (rc != MBX_TIMEOUT)
mempool_free(mbox, phba->mbox_mem_pool);
if (shdr_status || shdr_add_status || rc) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"3025 Write Object mailbox failed with "
"status x%x add_status x%x, mbx status x%x\n",
shdr_status, shdr_add_status, rc);
rc = -ENXIO;
*offset = shdr_add_status;
} else
*offset += wr_object->u.response.actual_write_length;
return rc;
}
/**
* lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
* @vport: pointer to vport data structure.
*
* This function iterate through the mailboxq and clean up all REG_LOGIN
* and REG_VPI mailbox commands associated with the vport. This function
* is called when driver want to restart discovery of the vport due to
* a Clear Virtual Link event.
**/
void
lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
{
struct lpfc_hba *phba = vport->phba;
LPFC_MBOXQ_t *mb, *nextmb;
struct lpfc_dmabuf *mp;
struct lpfc_nodelist *ndlp;
struct lpfc_nodelist *act_mbx_ndlp = NULL;
LIST_HEAD(mbox_cmd_list);
uint8_t restart_loop;
/* Clean up internally queued mailbox commands with the vport */
spin_lock_irq(&phba->hbalock);
list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
if (mb->vport != vport)
continue;
if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
(mb->u.mb.mbxCommand != MBX_REG_VPI))
continue;
list_del(&mb->list);
list_add_tail(&mb->list, &mbox_cmd_list);
}
/* Clean up active mailbox command with the vport */
mb = phba->sli.mbox_active;
if (mb && (mb->vport == vport)) {
if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
(mb->u.mb.mbxCommand == MBX_REG_VPI))
mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
/* Put reference count for delayed processing */
act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
/* Unregister the RPI when mailbox complete */
mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
}
}
/* Cleanup any mailbox completions which are not yet processed */
do {
restart_loop = 0;
list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
/*
* If this mailox is already processed or it is
* for another vport ignore it.
*/
if ((mb->vport != vport) ||
(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
continue;
if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
(mb->u.mb.mbxCommand != MBX_REG_VPI))
continue;
mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
/* Unregister the RPI when mailbox complete */
mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
restart_loop = 1;
spin_unlock_irq(&phba->hbalock);
spin_lock(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
spin_unlock(&ndlp->lock);
spin_lock_irq(&phba->hbalock);
break;
}
}
} while (restart_loop);
spin_unlock_irq(&phba->hbalock);
/* Release the cleaned-up mailbox commands */
while (!list_empty(&mbox_cmd_list)) {
list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
if (mp) {
__lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
mb->ctx_buf = NULL;
ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
mb->ctx_ndlp = NULL;
if (ndlp) {
spin_lock(&ndlp->lock);
ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
spin_unlock(&ndlp->lock);
lpfc_nlp_put(ndlp);
}
}
mempool_free(mb, phba->mbox_mem_pool);
}
/* Release the ndlp with the cleaned-up active mailbox command */
if (act_mbx_ndlp) {
spin_lock(&act_mbx_ndlp->lock);
act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
spin_unlock(&act_mbx_ndlp->lock);
lpfc_nlp_put(act_mbx_ndlp);
}
}
/**
* lpfc_drain_txq - Drain the txq
* @phba: Pointer to HBA context object.
*
* This function attempt to submit IOCBs on the txq
* to the adapter. For SLI4 adapters, the txq contains
* ELS IOCBs that have been deferred because the there
* are no SGLs. This congestion can occur with large
* vport counts during node discovery.
**/
uint32_t
lpfc_drain_txq(struct lpfc_hba *phba)
{
LIST_HEAD(completions);
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *piocbq = NULL;
unsigned long iflags = 0;
char *fail_msg = NULL;
struct lpfc_sglq *sglq;
union lpfc_wqe128 wqe;
uint32_t txq_cnt = 0;
struct lpfc_queue *wq;
if (phba->link_flag & LS_MDS_LOOPBACK) {
/* MDS WQE are posted only to first WQ*/
wq = phba->sli4_hba.hdwq[0].io_wq;
if (unlikely(!wq))
return 0;
pring = wq->pring;
} else {
wq = phba->sli4_hba.els_wq;
if (unlikely(!wq))
return 0;
pring = lpfc_phba_elsring(phba);
}
if (unlikely(!pring) || list_empty(&pring->txq))
return 0;
spin_lock_irqsave(&pring->ring_lock, iflags);
list_for_each_entry(piocbq, &pring->txq, list) {
txq_cnt++;
}
if (txq_cnt > pring->txq_max)
pring->txq_max = txq_cnt;
spin_unlock_irqrestore(&pring->ring_lock, iflags);
while (!list_empty(&pring->txq)) {
spin_lock_irqsave(&pring->ring_lock, iflags);
piocbq = lpfc_sli_ringtx_get(phba, pring);
if (!piocbq) {
spin_unlock_irqrestore(&pring->ring_lock, iflags);
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2823 txq empty and txq_cnt is %d\n ",
txq_cnt);
break;
}
sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
if (!sglq) {
__lpfc_sli_ringtx_put(phba, pring, piocbq);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
break;
}
txq_cnt--;
/* The xri and iocb resources secured,
* attempt to issue request
*/
piocbq->sli4_lxritag = sglq->sli4_lxritag;
piocbq->sli4_xritag = sglq->sli4_xritag;
if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
fail_msg = "to convert bpl to sgl";
else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
fail_msg = "to convert iocb to wqe";
else if (lpfc_sli4_wq_put(wq, &wqe))
fail_msg = " - Wq is full";
else
lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
if (fail_msg) {
/* Failed means we can't issue and need to cancel */
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"2822 IOCB failed %s iotag 0x%x "
"xri 0x%x\n",
fail_msg,
piocbq->iotag, piocbq->sli4_xritag);
list_add_tail(&piocbq->list, &completions);
}
spin_unlock_irqrestore(&pring->ring_lock, iflags);
}
/* Cancel all the IOCBs that cannot be issued */
lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
IOERR_SLI_ABORTED);
return txq_cnt;
}
/**
* lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
* @phba: Pointer to HBA context object.
* @pwqeq: Pointer to command WQE.
* @sglq: Pointer to the scatter gather queue object.
*
* This routine converts the bpl or bde that is in the WQE
* to a sgl list for the sli4 hardware. The physical address
* of the bpl/bde is converted back to a virtual address.
* If the WQE contains a BPL then the list of BDE's is
* converted to sli4_sge's. If the WQE contains a single
* BDE then it is converted to a single sli_sge.
* The WQE is still in cpu endianness so the contents of
* the bpl can be used without byte swapping.
*
* Returns valid XRI = Success, NO_XRI = Failure.
*/
static uint16_t
lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
struct lpfc_sglq *sglq)
{
uint16_t xritag = NO_XRI;
struct ulp_bde64 *bpl = NULL;
struct ulp_bde64 bde;
struct sli4_sge *sgl = NULL;
struct lpfc_dmabuf *dmabuf;
union lpfc_wqe128 *wqe;
int numBdes = 0;
int i = 0;
uint32_t offset = 0; /* accumulated offset in the sg request list */
int inbound = 0; /* number of sg reply entries inbound from firmware */
uint32_t cmd;
if (!pwqeq || !sglq)
return xritag;
sgl = (struct sli4_sge *)sglq->sgl;
wqe = &pwqeq->wqe;
pwqeq->iocb.ulpIoTag = pwqeq->iotag;
cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
if (cmd == CMD_XMIT_BLS_RSP64_WQE)
return sglq->sli4_xritag;
numBdes = pwqeq->rsvd2;
if (numBdes) {
/* The addrHigh and addrLow fields within the WQE
* have not been byteswapped yet so there is no
* need to swap them back.
*/
if (pwqeq->context3)
dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
else
return xritag;
bpl = (struct ulp_bde64 *)dmabuf->virt;
if (!bpl)
return xritag;
for (i = 0; i < numBdes; i++) {
/* Should already be byte swapped. */
sgl->addr_hi = bpl->addrHigh;
sgl->addr_lo = bpl->addrLow;
sgl->word2 = le32_to_cpu(sgl->word2);
if ((i+1) == numBdes)
bf_set(lpfc_sli4_sge_last, sgl, 1);
else
bf_set(lpfc_sli4_sge_last, sgl, 0);
/* swap the size field back to the cpu so we
* can assign it to the sgl.
*/
bde.tus.w = le32_to_cpu(bpl->tus.w);
sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
/* The offsets in the sgl need to be accumulated
* separately for the request and reply lists.
* The request is always first, the reply follows.
*/
switch (cmd) {
case CMD_GEN_REQUEST64_WQE:
/* add up the reply sg entries */
if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
inbound++;
/* first inbound? reset the offset */
if (inbound == 1)
offset = 0;
bf_set(lpfc_sli4_sge_offset, sgl, offset);
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
offset += bde.tus.f.bdeSize;
break;
case CMD_FCP_TRSP64_WQE:
bf_set(lpfc_sli4_sge_offset, sgl, 0);
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
break;
case CMD_FCP_TSEND64_WQE:
case CMD_FCP_TRECEIVE64_WQE:
bf_set(lpfc_sli4_sge_type, sgl,
bpl->tus.f.bdeFlags);
if (i < 3)
offset = 0;
else
offset += bde.tus.f.bdeSize;
bf_set(lpfc_sli4_sge_offset, sgl, offset);
break;
}
sgl->word2 = cpu_to_le32(sgl->word2);
bpl++;
sgl++;
}
} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
/* The addrHigh and addrLow fields of the BDE have not
* been byteswapped yet so they need to be swapped
* before putting them in the sgl.
*/
sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
sgl->word2 = le32_to_cpu(sgl->word2);
bf_set(lpfc_sli4_sge_last, sgl, 1);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
}
return sglq->sli4_xritag;
}
/**
* lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
* @phba: Pointer to HBA context object.
* @qp: Pointer to HDW queue.
* @pwqe: Pointer to command WQE.
**/
int
lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
struct lpfc_iocbq *pwqe)
{
union lpfc_wqe128 *wqe = &pwqe->wqe;
struct lpfc_async_xchg_ctx *ctxp;
struct lpfc_queue *wq;
struct lpfc_sglq *sglq;
struct lpfc_sli_ring *pring;
unsigned long iflags;
uint32_t ret = 0;
/* NVME_LS and NVME_LS ABTS requests. */
if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
pring = phba->sli4_hba.nvmels_wq->pring;
lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
qp, wq_access);
sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
if (!sglq) {
spin_unlock_irqrestore(&pring->ring_lock, iflags);
return WQE_BUSY;
}
pwqe->sli4_lxritag = sglq->sli4_lxritag;
pwqe->sli4_xritag = sglq->sli4_xritag;
if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
spin_unlock_irqrestore(&pring->ring_lock, iflags);
return WQE_ERROR;
}
bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
pwqe->sli4_xritag);
ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
if (ret) {
spin_unlock_irqrestore(&pring->ring_lock, iflags);
return ret;
}
lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
return 0;
}
/* NVME_FCREQ and NVME_ABTS requests */
if (pwqe->iocb_flag & LPFC_IO_NVME ||
pwqe->iocb_flag & LPFC_IO_FCP) {
/* Get the IO distribution (hba_wqidx) for WQ assignment. */
wq = qp->io_wq;
pring = wq->pring;
bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
qp, wq_access);
ret = lpfc_sli4_wq_put(wq, wqe);
if (ret) {
spin_unlock_irqrestore(&pring->ring_lock, iflags);
return ret;
}
lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
return 0;
}
/* NVMET requests */
if (pwqe->iocb_flag & LPFC_IO_NVMET) {
/* Get the IO distribution (hba_wqidx) for WQ assignment. */
wq = qp->io_wq;
pring = wq->pring;
ctxp = pwqe->context2;
sglq = ctxp->ctxbuf->sglq;
if (pwqe->sli4_xritag == NO_XRI) {
pwqe->sli4_lxritag = sglq->sli4_lxritag;
pwqe->sli4_xritag = sglq->sli4_xritag;
}
bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
pwqe->sli4_xritag);
bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
qp, wq_access);
ret = lpfc_sli4_wq_put(wq, wqe);
if (ret) {
spin_unlock_irqrestore(&pring->ring_lock, iflags);
return ret;
}
lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
spin_unlock_irqrestore(&pring->ring_lock, iflags);
lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
return 0;
}
return WQE_ERROR;
}
/**
* lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
* @phba: Pointer to HBA context object.
* @cmdiocb: Pointer to driver command iocb object.
* @cmpl: completion function.
*
* Fill the appropriate fields for the abort WQE and call
* internal routine lpfc_sli4_issue_wqe to send the WQE
* This function is called with hbalock held and no ring_lock held.
*
* RETURNS 0 - SUCCESS
**/
int
lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
void *cmpl)
{
struct lpfc_vport *vport = cmdiocb->vport;
struct lpfc_iocbq *abtsiocb = NULL;
union lpfc_wqe128 *abtswqe;
struct lpfc_io_buf *lpfc_cmd;
int retval = IOCB_ERROR;
u16 xritag = cmdiocb->sli4_xritag;
/*
* The scsi command can not be in txq and it is in flight because the
* pCmd is still pointing at the SCSI command we have to abort. There
* is no need to search the txcmplq. Just send an abort to the FW.
*/
abtsiocb = __lpfc_sli_get_iocbq(phba);
if (!abtsiocb)
return WQE_NORESOURCE;
/* Indicate the IO is being aborted by the driver. */
cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
abtswqe = &abtsiocb->wqe;
memset(abtswqe, 0, sizeof(*abtswqe));
if (!lpfc_is_link_up(phba))
bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
abtswqe->abort_cmd.rsrvd5 = 0;
abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
/* ABTS WQE must go to the same WQ as the WQE to be aborted */
abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
if (cmdiocb->iocb_flag & LPFC_IO_FCP)
abtsiocb->iocb_flag |= LPFC_IO_FCP;
if (cmdiocb->iocb_flag & LPFC_IO_NVME)
abtsiocb->iocb_flag |= LPFC_IO_NVME;
if (cmdiocb->iocb_flag & LPFC_IO_FOF)
abtsiocb->iocb_flag |= LPFC_IO_FOF;
abtsiocb->vport = vport;
abtsiocb->wqe_cmpl = cmpl;
lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
"0359 Abort xri x%x, original iotag x%x, "
"abort cmd iotag x%x retval x%x\n",
xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
if (retval) {
cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
__lpfc_sli_release_iocbq(phba, abtsiocb);
}
return retval;
}
#ifdef LPFC_MXP_STAT
/**
* lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
* @phba: pointer to lpfc hba data structure.
* @hwqid: belong to which HWQ.
*
* The purpose of this routine is to take a snapshot of pbl, pvt and busy count
* 15 seconds after a test case is running.
*
* The user should call lpfc_debugfs_multixripools_write before running a test
* case to clear stat_snapshot_taken. Then the user starts a test case. During
* test case is running, stat_snapshot_taken is incremented by 1 every time when
* this routine is called from heartbeat timer. When stat_snapshot_taken is
* equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
**/
void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
{
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_pvt_pool *pvt_pool;
struct lpfc_pbl_pool *pbl_pool;
u32 txcmplq_cnt;
qp = &phba->sli4_hba.hdwq[hwqid];
multixri_pool = qp->p_multixri_pool;
if (!multixri_pool)
return;
if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
pvt_pool = &qp->p_multixri_pool->pvt_pool;
pbl_pool = &qp->p_multixri_pool->pbl_pool;
txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
multixri_pool->stat_pbl_count = pbl_pool->count;
multixri_pool->stat_pvt_count = pvt_pool->count;
multixri_pool->stat_busy_count = txcmplq_cnt;
}
multixri_pool->stat_snapshot_taken++;
}
#endif
/**
* lpfc_adjust_pvt_pool_count - Adjust private pool count
* @phba: pointer to lpfc hba data structure.
* @hwqid: belong to which HWQ.
*
* This routine moves some XRIs from private to public pool when private pool
* is not busy.
**/
void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
{
struct lpfc_multixri_pool *multixri_pool;
u32 io_req_count;
u32 prev_io_req_count;
multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
if (!multixri_pool)
return;
io_req_count = multixri_pool->io_req_count;
prev_io_req_count = multixri_pool->prev_io_req_count;
if (prev_io_req_count != io_req_count) {
/* Private pool is busy */
multixri_pool->prev_io_req_count = io_req_count;
} else {
/* Private pool is not busy.
* Move XRIs from private to public pool.
*/
lpfc_move_xri_pvt_to_pbl(phba, hwqid);
}
}
/**
* lpfc_adjust_high_watermark - Adjust high watermark
* @phba: pointer to lpfc hba data structure.
* @hwqid: belong to which HWQ.
*
* This routine sets high watermark as number of outstanding XRIs,
* but make sure the new value is between xri_limit/2 and xri_limit.
**/
void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
{
u32 new_watermark;
u32 watermark_max;
u32 watermark_min;
u32 xri_limit;
u32 txcmplq_cnt;
u32 abts_io_bufs;
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_sli4_hdw_queue *qp;
qp = &phba->sli4_hba.hdwq[hwqid];
multixri_pool = qp->p_multixri_pool;
if (!multixri_pool)
return;
xri_limit = multixri_pool->xri_limit;
watermark_max = xri_limit;
watermark_min = xri_limit / 2;
txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
abts_io_bufs = qp->abts_scsi_io_bufs;
abts_io_bufs += qp->abts_nvme_io_bufs;
new_watermark = txcmplq_cnt + abts_io_bufs;
new_watermark = min(watermark_max, new_watermark);
new_watermark = max(watermark_min, new_watermark);
multixri_pool->pvt_pool.high_watermark = new_watermark;
#ifdef LPFC_MXP_STAT
multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
new_watermark);
#endif
}
/**
* lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
* @phba: pointer to lpfc hba data structure.
* @hwqid: belong to which HWQ.
*
* This routine is called from hearbeat timer when pvt_pool is idle.
* All free XRIs are moved from private to public pool on hwqid with 2 steps.
* The first step moves (all - low_watermark) amount of XRIs.
* The second step moves the rest of XRIs.
**/
void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
{
struct lpfc_pbl_pool *pbl_pool;
struct lpfc_pvt_pool *pvt_pool;
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
unsigned long iflag;
struct list_head tmp_list;
u32 tmp_count;
qp = &phba->sli4_hba.hdwq[hwqid];
pbl_pool = &qp->p_multixri_pool->pbl_pool;
pvt_pool = &qp->p_multixri_pool->pvt_pool;
tmp_count = 0;
lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
if (pvt_pool->count > pvt_pool->low_watermark) {
/* Step 1: move (all - low_watermark) from pvt_pool
* to pbl_pool
*/
/* Move low watermark of bufs from pvt_pool to tmp_list */
INIT_LIST_HEAD(&tmp_list);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&pvt_pool->list, list) {
list_move_tail(&lpfc_ncmd->list, &tmp_list);
tmp_count++;
if (tmp_count >= pvt_pool->low_watermark)
break;
}
/* Move all bufs from pvt_pool to pbl_pool */
list_splice_init(&pvt_pool->list, &pbl_pool->list);
/* Move all bufs from tmp_list to pvt_pool */
list_splice(&tmp_list, &pvt_pool->list);
pbl_pool->count += (pvt_pool->count - tmp_count);
pvt_pool->count = tmp_count;
} else {
/* Step 2: move the rest from pvt_pool to pbl_pool */
list_splice_init(&pvt_pool->list, &pbl_pool->list);
pbl_pool->count += pvt_pool->count;
pvt_pool->count = 0;
}
spin_unlock(&pvt_pool->lock);
spin_unlock_irqrestore(&pbl_pool->lock, iflag);
}
/**
* _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
* @phba: pointer to lpfc hba data structure
* @qp: pointer to HDW queue
* @pbl_pool: specified public free XRI pool
* @pvt_pool: specified private free XRI pool
* @count: number of XRIs to move
*
* This routine tries to move some free common bufs from the specified pbl_pool
* to the specified pvt_pool. It might move less than count XRIs if there's not
* enough in public pool.
*
* Return:
* true - if XRIs are successfully moved from the specified pbl_pool to the
* specified pvt_pool
* false - if the specified pbl_pool is empty or locked by someone else
**/
static bool
_lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
struct lpfc_pbl_pool *pbl_pool,
struct lpfc_pvt_pool *pvt_pool, u32 count)
{
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
unsigned long iflag;
int ret;
ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
if (ret) {
if (pbl_pool->count) {
/* Move a batch of XRIs from public to private pool */
lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
list_for_each_entry_safe(lpfc_ncmd,
lpfc_ncmd_next,
&pbl_pool->list,
list) {
list_move_tail(&lpfc_ncmd->list,
&pvt_pool->list);
pvt_pool->count++;
pbl_pool->count--;
count--;
if (count == 0)
break;
}
spin_unlock(&pvt_pool->lock);
spin_unlock_irqrestore(&pbl_pool->lock, iflag);
return true;
}
spin_unlock_irqrestore(&pbl_pool->lock, iflag);
}
return false;
}
/**
* lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
* @phba: pointer to lpfc hba data structure.
* @hwqid: belong to which HWQ.
* @count: number of XRIs to move
*
* This routine tries to find some free common bufs in one of public pools with
* Round Robin method. The search always starts from local hwqid, then the next
* HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
* a batch of free common bufs are moved to private pool on hwqid.
* It might move less than count XRIs if there's not enough in public pool.
**/
void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
{
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_multixri_pool *next_multixri_pool;
struct lpfc_pvt_pool *pvt_pool;
struct lpfc_pbl_pool *pbl_pool;
struct lpfc_sli4_hdw_queue *qp;
u32 next_hwqid;
u32 hwq_count;
int ret;
qp = &phba->sli4_hba.hdwq[hwqid];
multixri_pool = qp->p_multixri_pool;
pvt_pool = &multixri_pool->pvt_pool;
pbl_pool = &multixri_pool->pbl_pool;
/* Check if local pbl_pool is available */
ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
if (ret) {
#ifdef LPFC_MXP_STAT
multixri_pool->local_pbl_hit_count++;
#endif
return;
}
hwq_count = phba->cfg_hdw_queue;
/* Get the next hwqid which was found last time */
next_hwqid = multixri_pool->rrb_next_hwqid;
do {
/* Go to next hwq */
next_hwqid = (next_hwqid + 1) % hwq_count;
next_multixri_pool =
phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
pbl_pool = &next_multixri_pool->pbl_pool;
/* Check if the public free xri pool is available */
ret = _lpfc_move_xri_pbl_to_pvt(
phba, qp, pbl_pool, pvt_pool, count);
/* Exit while-loop if success or all hwqid are checked */
} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
/* Starting point for the next time */
multixri_pool->rrb_next_hwqid = next_hwqid;
if (!ret) {
/* stats: all public pools are empty*/
multixri_pool->pbl_empty_count++;
}
#ifdef LPFC_MXP_STAT
if (ret) {
if (next_hwqid == hwqid)
multixri_pool->local_pbl_hit_count++;
else
multixri_pool->other_pbl_hit_count++;
}
#endif
}
/**
* lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
* @phba: pointer to lpfc hba data structure.
* @hwqid: belong to which HWQ.
*
* This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
* low watermark.
**/
void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
{
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_pvt_pool *pvt_pool;
multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
pvt_pool = &multixri_pool->pvt_pool;
if (pvt_pool->count < pvt_pool->low_watermark)
lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
}
/**
* lpfc_release_io_buf - Return one IO buf back to free pool
* @phba: pointer to lpfc hba data structure.
* @lpfc_ncmd: IO buf to be returned.
* @qp: belong to which HWQ.
*
* This routine returns one IO buf back to free pool. If this is an urgent IO,
* the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
* the IO buf is returned to pbl_pool or pvt_pool based on watermark and
* xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to
* lpfc_io_buf_list_put.
**/
void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
struct lpfc_sli4_hdw_queue *qp)
{
unsigned long iflag;
struct lpfc_pbl_pool *pbl_pool;
struct lpfc_pvt_pool *pvt_pool;
struct lpfc_epd_pool *epd_pool;
u32 txcmplq_cnt;
u32 xri_owned;
u32 xri_limit;
u32 abts_io_bufs;
/* MUST zero fields if buffer is reused by another protocol */
lpfc_ncmd->nvmeCmd = NULL;
lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
if (phba->cfg_xpsgl && !phba->nvmet_support &&
!list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
if (phba->cfg_xri_rebalancing) {
if (lpfc_ncmd->expedite) {
/* Return to expedite pool */
epd_pool = &phba->epd_pool;
spin_lock_irqsave(&epd_pool->lock, iflag);
list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
epd_pool->count++;
spin_unlock_irqrestore(&epd_pool->lock, iflag);
return;
}
/* Avoid invalid access if an IO sneaks in and is being rejected
* just _after_ xri pools are destroyed in lpfc_offline.
* Nothing much can be done at this point.
*/
if (!qp->p_multixri_pool)
return;
pbl_pool = &qp->p_multixri_pool->pbl_pool;
pvt_pool = &qp->p_multixri_pool->pvt_pool;
txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
abts_io_bufs = qp->abts_scsi_io_bufs;
abts_io_bufs += qp->abts_nvme_io_bufs;
xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
xri_limit = qp->p_multixri_pool->xri_limit;
#ifdef LPFC_MXP_STAT
if (xri_owned <= xri_limit)
qp->p_multixri_pool->below_limit_count++;
else
qp->p_multixri_pool->above_limit_count++;
#endif
/* XRI goes to either public or private free xri pool
* based on watermark and xri_limit
*/
if ((pvt_pool->count < pvt_pool->low_watermark) ||
(xri_owned < xri_limit &&
pvt_pool->count < pvt_pool->high_watermark)) {
lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
qp, free_pvt_pool);
list_add_tail(&lpfc_ncmd->list,
&pvt_pool->list);
pvt_pool->count++;
spin_unlock_irqrestore(&pvt_pool->lock, iflag);
} else {
lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
qp, free_pub_pool);
list_add_tail(&lpfc_ncmd->list,
&pbl_pool->list);
pbl_pool->count++;
spin_unlock_irqrestore(&pbl_pool->lock, iflag);
}
} else {
lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
qp, free_xri);
list_add_tail(&lpfc_ncmd->list,
&qp->lpfc_io_buf_list_put);
qp->put_io_bufs++;
spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
iflag);
}
}
/**
* lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
* @phba: pointer to lpfc hba data structure.
* @qp: pointer to HDW queue
* @pvt_pool: pointer to private pool data structure.
* @ndlp: pointer to lpfc nodelist data structure.
*
* This routine tries to get one free IO buf from private pool.
*
* Return:
* pointer to one free IO buf - if private pool is not empty
* NULL - if private pool is empty
**/
static struct lpfc_io_buf *
lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
struct lpfc_sli4_hdw_queue *qp,
struct lpfc_pvt_pool *pvt_pool,
struct lpfc_nodelist *ndlp)
{
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
unsigned long iflag;
lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&pvt_pool->list, list) {
if (lpfc_test_rrq_active(
phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
continue;
list_del(&lpfc_ncmd->list);
pvt_pool->count--;
spin_unlock_irqrestore(&pvt_pool->lock, iflag);
return lpfc_ncmd;
}
spin_unlock_irqrestore(&pvt_pool->lock, iflag);
return NULL;
}
/**
* lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
* @phba: pointer to lpfc hba data structure.
*
* This routine tries to get one free IO buf from expedite pool.
*
* Return:
* pointer to one free IO buf - if expedite pool is not empty
* NULL - if expedite pool is empty
**/
static struct lpfc_io_buf *
lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
{
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_io_buf *lpfc_ncmd_next;
unsigned long iflag;
struct lpfc_epd_pool *epd_pool;
epd_pool = &phba->epd_pool;
lpfc_ncmd = NULL;
spin_lock_irqsave(&epd_pool->lock, iflag);
if (epd_pool->count > 0) {
list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
&epd_pool->list, list) {
list_del(&lpfc_ncmd->list);
epd_pool->count--;
break;
}
}
spin_unlock_irqrestore(&epd_pool->lock, iflag);
return lpfc_ncmd;
}
/**
* lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
* @phba: pointer to lpfc hba data structure.
* @ndlp: pointer to lpfc nodelist data structure.
* @hwqid: belong to which HWQ
* @expedite: 1 means this request is urgent.
*
* This routine will do the following actions and then return a pointer to
* one free IO buf.
*
* 1. If private free xri count is empty, move some XRIs from public to
* private pool.
* 2. Get one XRI from private free xri pool.
* 3. If we fail to get one from pvt_pool and this is an expedite request,
* get one free xri from expedite pool.
*
* Note: ndlp is only used on SCSI side for RRQ testing.
* The caller should pass NULL for ndlp on NVME side.
*
* Return:
* pointer to one free IO buf - if private pool is not empty
* NULL - if private pool is empty
**/
static struct lpfc_io_buf *
lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
struct lpfc_nodelist *ndlp,
int hwqid, int expedite)
{
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_multixri_pool *multixri_pool;
struct lpfc_pvt_pool *pvt_pool;
struct lpfc_io_buf *lpfc_ncmd;
qp = &phba->sli4_hba.hdwq[hwqid];
lpfc_ncmd = NULL;
multixri_pool = qp->p_multixri_pool;
pvt_pool = &multixri_pool->pvt_pool;
multixri_pool->io_req_count++;
/* If pvt_pool is empty, move some XRIs from public to private pool */
if (pvt_pool->count == 0)
lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
/* Get one XRI from private free xri pool */
lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
if (lpfc_ncmd) {
lpfc_ncmd->hdwq = qp;
lpfc_ncmd->hdwq_no = hwqid;
} else if (expedite) {
/* If we fail to get one from pvt_pool and this is an expedite
* request, get one free xri from expedite pool.
*/
lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
}
return lpfc_ncmd;
}
static inline struct lpfc_io_buf *
lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
{
struct lpfc_sli4_hdw_queue *qp;
struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
qp = &phba->sli4_hba.hdwq[idx];
list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
&qp->lpfc_io_buf_list_get, list) {
if (lpfc_test_rrq_active(phba, ndlp,
lpfc_cmd->cur_iocbq.sli4_lxritag))
continue;
if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
continue;
list_del_init(&lpfc_cmd->list);
qp->get_io_bufs--;
lpfc_cmd->hdwq = qp;
lpfc_cmd->hdwq_no = idx;
return lpfc_cmd;
}
return NULL;
}
/**
* lpfc_get_io_buf - Get one IO buffer from free pool
* @phba: The HBA for which this call is being executed.
* @ndlp: pointer to lpfc nodelist data structure.
* @hwqid: belong to which HWQ
* @expedite: 1 means this request is urgent.
*
* This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
* removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
* a IO buffer from head of @hdwq io_buf_list and returns to caller.
*
* Note: ndlp is only used on SCSI side for RRQ testing.
* The caller should pass NULL for ndlp on NVME side.
*
* Return codes:
* NULL - Error
* Pointer to lpfc_io_buf - Success
**/
struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
struct lpfc_nodelist *ndlp,
u32 hwqid, int expedite)
{
struct lpfc_sli4_hdw_queue *qp;
unsigned long iflag;
struct lpfc_io_buf *lpfc_cmd;
qp = &phba->sli4_hba.hdwq[hwqid];
lpfc_cmd = NULL;
if (phba->cfg_xri_rebalancing)
lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
phba, ndlp, hwqid, expedite);
else {
lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
qp, alloc_xri_get);
if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
if (!lpfc_cmd) {
lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
qp, alloc_xri_put);
list_splice(&qp->lpfc_io_buf_list_put,
&qp->lpfc_io_buf_list_get);
qp->get_io_bufs += qp->put_io_bufs;
INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
qp->put_io_bufs = 0;
spin_unlock(&qp->io_buf_list_put_lock);
if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
expedite)
lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
}
spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
}
return lpfc_cmd;
}
/**
* lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
* @phba: The HBA for which this call is being executed.
* @lpfc_buf: IO buf structure to append the SGL chunk
*
* This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
* and will allocate an SGL chunk if the pool is empty.
*
* Return codes:
* NULL - Error
* Pointer to sli4_hybrid_sgl - Success
**/
struct sli4_hybrid_sgl *
lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
{
struct sli4_hybrid_sgl *list_entry = NULL;
struct sli4_hybrid_sgl *tmp = NULL;
struct sli4_hybrid_sgl *allocated_sgl = NULL;
struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
struct list_head *buf_list = &hdwq->sgl_list;
unsigned long iflags;
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
if (likely(!list_empty(buf_list))) {
/* break off 1 chunk from the sgl_list */
list_for_each_entry_safe(list_entry, tmp,
buf_list, list_node) {
list_move_tail(&list_entry->list_node,
&lpfc_buf->dma_sgl_xtra_list);
break;
}
} else {
/* allocate more */
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
cpu_to_node(hdwq->io_wq->chann));
if (!tmp) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"8353 error kmalloc memory for HDWQ "
"%d %s\n",
lpfc_buf->hdwq_no, __func__);
return NULL;
}
tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
GFP_ATOMIC, &tmp->dma_phys_sgl);
if (!tmp->dma_sgl) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"8354 error pool_alloc memory for HDWQ "
"%d %s\n",
lpfc_buf->hdwq_no, __func__);
kfree(tmp);
return NULL;
}
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
}
allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
struct sli4_hybrid_sgl,
list_node);
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
return allocated_sgl;
}
/**
* lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
* @phba: The HBA for which this call is being executed.
* @lpfc_buf: IO buf structure with the SGL chunk
*
* This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
*
* Return codes:
* 0 - Success
* -EINVAL - Error
**/
int
lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
{
int rc = 0;
struct sli4_hybrid_sgl *list_entry = NULL;
struct sli4_hybrid_sgl *tmp = NULL;
struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
struct list_head *buf_list = &hdwq->sgl_list;
unsigned long iflags;
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
list_for_each_entry_safe(list_entry, tmp,
&lpfc_buf->dma_sgl_xtra_list,
list_node) {
list_move_tail(&list_entry->list_node,
buf_list);
}
} else {
rc = -EINVAL;
}
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
return rc;
}
/**
* lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
* @phba: phba object
* @hdwq: hdwq to cleanup sgl buff resources on
*
* This routine frees all SGL chunks of hdwq SGL chunk pool.
*
* Return codes:
* None
**/
void
lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
struct lpfc_sli4_hdw_queue *hdwq)
{
struct list_head *buf_list = &hdwq->sgl_list;
struct sli4_hybrid_sgl *list_entry = NULL;
struct sli4_hybrid_sgl *tmp = NULL;
unsigned long iflags;
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
/* Free sgl pool */
list_for_each_entry_safe(list_entry, tmp,
buf_list, list_node) {
dma_pool_free(phba->lpfc_sg_dma_buf_pool,
list_entry->dma_sgl,
list_entry->dma_phys_sgl);
list_del(&list_entry->list_node);
kfree(list_entry);
}
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
}
/**
* lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
* @phba: The HBA for which this call is being executed.
* @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
*
* This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
* and will allocate an CMD/RSP buffer if the pool is empty.
*
* Return codes:
* NULL - Error
* Pointer to fcp_cmd_rsp_buf - Success
**/
struct fcp_cmd_rsp_buf *
lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
struct lpfc_io_buf *lpfc_buf)
{
struct fcp_cmd_rsp_buf *list_entry = NULL;
struct fcp_cmd_rsp_buf *tmp = NULL;
struct fcp_cmd_rsp_buf *allocated_buf = NULL;
struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
unsigned long iflags;
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
if (likely(!list_empty(buf_list))) {
/* break off 1 chunk from the list */
list_for_each_entry_safe(list_entry, tmp,
buf_list,
list_node) {
list_move_tail(&list_entry->list_node,
&lpfc_buf->dma_cmd_rsp_list);
break;
}
} else {
/* allocate more */
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
cpu_to_node(hdwq->io_wq->chann));
if (!tmp) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"8355 error kmalloc memory for HDWQ "
"%d %s\n",
lpfc_buf->hdwq_no, __func__);
return NULL;
}
tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
GFP_ATOMIC,
&tmp->fcp_cmd_rsp_dma_handle);
if (!tmp->fcp_cmnd) {
lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
"8356 error pool_alloc memory for HDWQ "
"%d %s\n",
lpfc_buf->hdwq_no, __func__);
kfree(tmp);
return NULL;
}
tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
sizeof(struct fcp_cmnd));
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
}
allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
struct fcp_cmd_rsp_buf,
list_node);
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
return allocated_buf;
}
/**
* lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
* @phba: The HBA for which this call is being executed.
* @lpfc_buf: IO buf structure with the CMD/RSP buf
*
* This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
*
* Return codes:
* 0 - Success
* -EINVAL - Error
**/
int
lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
struct lpfc_io_buf *lpfc_buf)
{
int rc = 0;
struct fcp_cmd_rsp_buf *list_entry = NULL;
struct fcp_cmd_rsp_buf *tmp = NULL;
struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
unsigned long iflags;
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
list_for_each_entry_safe(list_entry, tmp,
&lpfc_buf->dma_cmd_rsp_list,
list_node) {
list_move_tail(&list_entry->list_node,
buf_list);
}
} else {
rc = -EINVAL;
}
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
return rc;
}
/**
* lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
* @phba: phba object
* @hdwq: hdwq to cleanup cmd rsp buff resources on
*
* This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
*
* Return codes:
* None
**/
void
lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
struct lpfc_sli4_hdw_queue *hdwq)
{
struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
struct fcp_cmd_rsp_buf *list_entry = NULL;
struct fcp_cmd_rsp_buf *tmp = NULL;
unsigned long iflags;
spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
/* Free cmd_rsp buf pool */
list_for_each_entry_safe(list_entry, tmp,
buf_list,
list_node) {
dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
list_entry->fcp_cmnd,
list_entry->fcp_cmd_rsp_dma_handle);
list_del(&list_entry->list_node);
kfree(list_entry);
}
spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
}