blob: a6f6acc8fbb7ea33d1f9fb62ba3b48371fb09fa6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_extfree_item.h"
#include "xfs_log.h"
#include "xfs_btree.h"
#include "xfs_rmap.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_trace.h"
#include "xfs_error.h"
kmem_zone_t *xfs_efi_zone;
kmem_zone_t *xfs_efd_zone;
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_efi_log_item, efi_item);
}
void
xfs_efi_item_free(
struct xfs_efi_log_item *efip)
{
kmem_free(efip->efi_item.li_lv_shadow);
if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
kmem_free(efip);
else
kmem_zone_free(xfs_efi_zone, efip);
}
/*
* Freeing the efi requires that we remove it from the AIL if it has already
* been placed there. However, the EFI may not yet have been placed in the AIL
* when called by xfs_efi_release() from EFD processing due to the ordering of
* committed vs unpin operations in bulk insert operations. Hence the reference
* count to ensure only the last caller frees the EFI.
*/
void
xfs_efi_release(
struct xfs_efi_log_item *efip)
{
ASSERT(atomic_read(&efip->efi_refcount) > 0);
if (atomic_dec_and_test(&efip->efi_refcount)) {
xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
xfs_efi_item_free(efip);
}
}
/*
* This returns the number of iovecs needed to log the given efi item.
* We only need 1 iovec for an efi item. It just logs the efi_log_format
* structure.
*/
static inline int
xfs_efi_item_sizeof(
struct xfs_efi_log_item *efip)
{
return sizeof(struct xfs_efi_log_format) +
(efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
}
STATIC void
xfs_efi_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
*nvecs += 1;
*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
}
/*
* This is called to fill in the vector of log iovecs for the
* given efi log item. We use only 1 iovec, and we point that
* at the efi_log_format structure embedded in the efi item.
* It is at this point that we assert that all of the extent
* slots in the efi item have been filled.
*/
STATIC void
xfs_efi_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(atomic_read(&efip->efi_next_extent) ==
efip->efi_format.efi_nextents);
efip->efi_format.efi_type = XFS_LI_EFI;
efip->efi_format.efi_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
&efip->efi_format,
xfs_efi_item_sizeof(efip));
}
/*
* The unpin operation is the last place an EFI is manipulated in the log. It is
* either inserted in the AIL or aborted in the event of a log I/O error. In
* either case, the EFI transaction has been successfully committed to make it
* this far. Therefore, we expect whoever committed the EFI to either construct
* and commit the EFD or drop the EFD's reference in the event of error. Simply
* drop the log's EFI reference now that the log is done with it.
*/
STATIC void
xfs_efi_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
xfs_efi_release(efip);
}
/*
* The EFI has been either committed or aborted if the transaction has been
* cancelled. If the transaction was cancelled, an EFD isn't going to be
* constructed and thus we free the EFI here directly.
*/
STATIC void
xfs_efi_item_release(
struct xfs_log_item *lip)
{
xfs_efi_release(EFI_ITEM(lip));
}
static const struct xfs_item_ops xfs_efi_item_ops = {
.iop_size = xfs_efi_item_size,
.iop_format = xfs_efi_item_format,
.iop_unpin = xfs_efi_item_unpin,
.iop_release = xfs_efi_item_release,
};
/*
* Allocate and initialize an efi item with the given number of extents.
*/
struct xfs_efi_log_item *
xfs_efi_init(
struct xfs_mount *mp,
uint nextents)
{
struct xfs_efi_log_item *efip;
uint size;
ASSERT(nextents > 0);
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
size = (uint)(sizeof(xfs_efi_log_item_t) +
((nextents - 1) * sizeof(xfs_extent_t)));
efip = kmem_zalloc(size, 0);
} else {
efip = kmem_zone_zalloc(xfs_efi_zone, 0);
}
xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
efip->efi_format.efi_nextents = nextents;
efip->efi_format.efi_id = (uintptr_t)(void *)efip;
atomic_set(&efip->efi_next_extent, 0);
atomic_set(&efip->efi_refcount, 2);
return efip;
}
/*
* Copy an EFI format buffer from the given buf, and into the destination
* EFI format structure.
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
* one of which will be the native format for this kernel.
* It will handle the conversion of formats if necessary.
*/
int
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
{
xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
uint i;
uint len = sizeof(xfs_efi_log_format_t) +
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
uint len32 = sizeof(xfs_efi_log_format_32_t) +
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
uint len64 = sizeof(xfs_efi_log_format_64_t) +
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
if (buf->i_len == len) {
memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
return 0;
} else if (buf->i_len == len32) {
xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_32->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_32->efi_extents[i].ext_len;
}
return 0;
} else if (buf->i_len == len64) {
xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
dst_efi_fmt->efi_extents[i].ext_start =
src_efi_fmt_64->efi_extents[i].ext_start;
dst_efi_fmt->efi_extents[i].ext_len =
src_efi_fmt_64->efi_extents[i].ext_len;
}
return 0;
}
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
return -EFSCORRUPTED;
}
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_efd_log_item, efd_item);
}
STATIC void
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
{
kmem_free(efdp->efd_item.li_lv_shadow);
if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
kmem_free(efdp);
else
kmem_zone_free(xfs_efd_zone, efdp);
}
/*
* This returns the number of iovecs needed to log the given efd item.
* We only need 1 iovec for an efd item. It just logs the efd_log_format
* structure.
*/
static inline int
xfs_efd_item_sizeof(
struct xfs_efd_log_item *efdp)
{
return sizeof(xfs_efd_log_format_t) +
(efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
}
STATIC void
xfs_efd_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
*nvecs += 1;
*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
}
/*
* This is called to fill in the vector of log iovecs for the
* given efd log item. We use only 1 iovec, and we point that
* at the efd_log_format structure embedded in the efd item.
* It is at this point that we assert that all of the extent
* slots in the efd item have been filled.
*/
STATIC void
xfs_efd_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
efdp->efd_format.efd_type = XFS_LI_EFD;
efdp->efd_format.efd_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
&efdp->efd_format,
xfs_efd_item_sizeof(efdp));
}
/*
* The EFD is either committed or aborted if the transaction is cancelled. If
* the transaction is cancelled, drop our reference to the EFI and free the EFD.
*/
STATIC void
xfs_efd_item_release(
struct xfs_log_item *lip)
{
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
xfs_efi_release(efdp->efd_efip);
xfs_efd_item_free(efdp);
}
static const struct xfs_item_ops xfs_efd_item_ops = {
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED,
.iop_size = xfs_efd_item_size,
.iop_format = xfs_efd_item_format,
.iop_release = xfs_efd_item_release,
};
/*
* Allocate an "extent free done" log item that will hold nextents worth of
* extents. The caller must use all nextents extents, because we are not
* flexible about this at all.
*/
static struct xfs_efd_log_item *
xfs_trans_get_efd(
struct xfs_trans *tp,
struct xfs_efi_log_item *efip,
unsigned int nextents)
{
struct xfs_efd_log_item *efdp;
ASSERT(nextents > 0);
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
(nextents - 1) * sizeof(struct xfs_extent),
0);
} else {
efdp = kmem_zone_zalloc(xfs_efd_zone, 0);
}
xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
&xfs_efd_item_ops);
efdp->efd_efip = efip;
efdp->efd_format.efd_nextents = nextents;
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
xfs_trans_add_item(tp, &efdp->efd_item);
return efdp;
}
/*
* Free an extent and log it to the EFD. Note that the transaction is marked
* dirty regardless of whether the extent free succeeds or fails to support the
* EFI/EFD lifecycle rules.
*/
static int
xfs_trans_free_extent(
struct xfs_trans *tp,
struct xfs_efd_log_item *efdp,
xfs_fsblock_t start_block,
xfs_extlen_t ext_len,
const struct xfs_owner_info *oinfo,
bool skip_discard)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_extent *extp;
uint next_extent;
xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block);
xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp,
start_block);
int error;
trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
error = __xfs_free_extent(tp, start_block, ext_len,
oinfo, XFS_AG_RESV_NONE, skip_discard);
/*
* Mark the transaction dirty, even on error. This ensures the
* transaction is aborted, which:
*
* 1.) releases the EFI and frees the EFD
* 2.) shuts down the filesystem
*/
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
next_extent = efdp->efd_next_extent;
ASSERT(next_extent < efdp->efd_format.efd_nextents);
extp = &(efdp->efd_format.efd_extents[next_extent]);
extp->ext_start = start_block;
extp->ext_len = ext_len;
efdp->efd_next_extent++;
return error;
}
/* Sort bmap items by AG. */
static int
xfs_extent_free_diff_items(
void *priv,
struct list_head *a,
struct list_head *b)
{
struct xfs_mount *mp = priv;
struct xfs_extent_free_item *ra;
struct xfs_extent_free_item *rb;
ra = container_of(a, struct xfs_extent_free_item, xefi_list);
rb = container_of(b, struct xfs_extent_free_item, xefi_list);
return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
}
/* Get an EFI. */
STATIC void *
xfs_extent_free_create_intent(
struct xfs_trans *tp,
unsigned int count)
{
struct xfs_efi_log_item *efip;
ASSERT(tp != NULL);
ASSERT(count > 0);
efip = xfs_efi_init(tp->t_mountp, count);
ASSERT(efip != NULL);
/*
* Get a log_item_desc to point at the new item.
*/
xfs_trans_add_item(tp, &efip->efi_item);
return efip;
}
/* Log a free extent to the intent item. */
STATIC void
xfs_extent_free_log_item(
struct xfs_trans *tp,
void *intent,
struct list_head *item)
{
struct xfs_efi_log_item *efip = intent;
struct xfs_extent_free_item *free;
uint next_extent;
struct xfs_extent *extp;
free = container_of(item, struct xfs_extent_free_item, xefi_list);
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
/*
* atomic_inc_return gives us the value after the increment;
* we want to use it as an array index so we need to subtract 1 from
* it.
*/
next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
ASSERT(next_extent < efip->efi_format.efi_nextents);
extp = &efip->efi_format.efi_extents[next_extent];
extp->ext_start = free->xefi_startblock;
extp->ext_len = free->xefi_blockcount;
}
/* Get an EFD so we can process all the free extents. */
STATIC void *
xfs_extent_free_create_done(
struct xfs_trans *tp,
void *intent,
unsigned int count)
{
return xfs_trans_get_efd(tp, intent, count);
}
/* Process a free extent. */
STATIC int
xfs_extent_free_finish_item(
struct xfs_trans *tp,
struct list_head *item,
void *done_item,
void **state)
{
struct xfs_extent_free_item *free;
int error;
free = container_of(item, struct xfs_extent_free_item, xefi_list);
error = xfs_trans_free_extent(tp, done_item,
free->xefi_startblock,
free->xefi_blockcount,
&free->xefi_oinfo, free->xefi_skip_discard);
kmem_free(free);
return error;
}
/* Abort all pending EFIs. */
STATIC void
xfs_extent_free_abort_intent(
void *intent)
{
xfs_efi_release(intent);
}
/* Cancel a free extent. */
STATIC void
xfs_extent_free_cancel_item(
struct list_head *item)
{
struct xfs_extent_free_item *free;
free = container_of(item, struct xfs_extent_free_item, xefi_list);
kmem_free(free);
}
const struct xfs_defer_op_type xfs_extent_free_defer_type = {
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
.diff_items = xfs_extent_free_diff_items,
.create_intent = xfs_extent_free_create_intent,
.abort_intent = xfs_extent_free_abort_intent,
.log_item = xfs_extent_free_log_item,
.create_done = xfs_extent_free_create_done,
.finish_item = xfs_extent_free_finish_item,
.cancel_item = xfs_extent_free_cancel_item,
};
/*
* AGFL blocks are accounted differently in the reserve pools and are not
* inserted into the busy extent list.
*/
STATIC int
xfs_agfl_free_finish_item(
struct xfs_trans *tp,
struct list_head *item,
void *done_item,
void **state)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_efd_log_item *efdp = done_item;
struct xfs_extent_free_item *free;
struct xfs_extent *extp;
struct xfs_buf *agbp;
int error;
xfs_agnumber_t agno;
xfs_agblock_t agbno;
uint next_extent;
free = container_of(item, struct xfs_extent_free_item, xefi_list);
ASSERT(free->xefi_blockcount == 1);
agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
if (!error)
error = xfs_free_agfl_block(tp, agno, agbno, agbp,
&free->xefi_oinfo);
/*
* Mark the transaction dirty, even on error. This ensures the
* transaction is aborted, which:
*
* 1.) releases the EFI and frees the EFD
* 2.) shuts down the filesystem
*/
tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
next_extent = efdp->efd_next_extent;
ASSERT(next_extent < efdp->efd_format.efd_nextents);
extp = &(efdp->efd_format.efd_extents[next_extent]);
extp->ext_start = free->xefi_startblock;
extp->ext_len = free->xefi_blockcount;
efdp->efd_next_extent++;
kmem_free(free);
return error;
}
/* sub-type with special handling for AGFL deferred frees */
const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
.diff_items = xfs_extent_free_diff_items,
.create_intent = xfs_extent_free_create_intent,
.abort_intent = xfs_extent_free_abort_intent,
.log_item = xfs_extent_free_log_item,
.create_done = xfs_extent_free_create_done,
.finish_item = xfs_agfl_free_finish_item,
.cancel_item = xfs_extent_free_cancel_item,
};
/*
* Process an extent free intent item that was recovered from
* the log. We need to free the extents that it describes.
*/
int
xfs_efi_recover(
struct xfs_mount *mp,
struct xfs_efi_log_item *efip)
{
struct xfs_efd_log_item *efdp;
struct xfs_trans *tp;
int i;
int error = 0;
xfs_extent_t *extp;
xfs_fsblock_t startblock_fsb;
ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
/*
* First check the validity of the extents described by the
* EFI. If any are bad, then assume that all are bad and
* just toss the EFI.
*/
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &efip->efi_format.efi_extents[i];
startblock_fsb = XFS_BB_TO_FSB(mp,
XFS_FSB_TO_DADDR(mp, extp->ext_start));
if (startblock_fsb == 0 ||
extp->ext_len == 0 ||
startblock_fsb >= mp->m_sb.sb_dblocks ||
extp->ext_len >= mp->m_sb.sb_agblocks) {
/*
* This will pull the EFI from the AIL and
* free the memory associated with it.
*/
set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
xfs_efi_release(efip);
return -EIO;
}
}
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
if (error)
return error;
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &efip->efi_format.efi_extents[i];
error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
extp->ext_len,
&XFS_RMAP_OINFO_ANY_OWNER, false);
if (error)
goto abort_error;
}
set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
error = xfs_trans_commit(tp);
return error;
abort_error:
xfs_trans_cancel(tp);
return error;
}