| // SPDX-License-Identifier: GPL-2.0 |
| /* kernel/rwsem.c: R/W semaphores, public implementation |
| * |
| * Written by David Howells (dhowells@redhat.com). |
| * Derived from asm-i386/semaphore.h |
| * |
| * Writer lock-stealing by Alex Shi <alex.shi@intel.com> |
| * and Michel Lespinasse <walken@google.com> |
| * |
| * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> |
| * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. |
| * |
| * Rwsem count bit fields re-definition and rwsem rearchitecture |
| * by Waiman Long <longman@redhat.com>. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/sched/rt.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/wake_q.h> |
| #include <linux/sched/signal.h> |
| #include <linux/export.h> |
| #include <linux/rwsem.h> |
| #include <linux/atomic.h> |
| |
| #include "rwsem.h" |
| #include "lock_events.h" |
| |
| /* |
| * The least significant 2 bits of the owner value has the following |
| * meanings when set. |
| * - RWSEM_READER_OWNED (bit 0): The rwsem is owned by readers |
| * - RWSEM_ANONYMOUSLY_OWNED (bit 1): The rwsem is anonymously owned, |
| * i.e. the owner(s) cannot be readily determined. It can be reader |
| * owned or the owning writer is indeterminate. |
| * |
| * When a writer acquires a rwsem, it puts its task_struct pointer |
| * into the owner field. It is cleared after an unlock. |
| * |
| * When a reader acquires a rwsem, it will also puts its task_struct |
| * pointer into the owner field with both the RWSEM_READER_OWNED and |
| * RWSEM_ANONYMOUSLY_OWNED bits set. On unlock, the owner field will |
| * largely be left untouched. So for a free or reader-owned rwsem, |
| * the owner value may contain information about the last reader that |
| * acquires the rwsem. The anonymous bit is set because that particular |
| * reader may or may not still own the lock. |
| * |
| * That information may be helpful in debugging cases where the system |
| * seems to hang on a reader owned rwsem especially if only one reader |
| * is involved. Ideally we would like to track all the readers that own |
| * a rwsem, but the overhead is simply too big. |
| */ |
| #define RWSEM_READER_OWNED (1UL << 0) |
| #define RWSEM_ANONYMOUSLY_OWNED (1UL << 1) |
| |
| #ifdef CONFIG_DEBUG_RWSEMS |
| # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ |
| if (!debug_locks_silent && \ |
| WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ |
| #c, atomic_long_read(&(sem)->count), \ |
| (long)((sem)->owner), (long)current, \ |
| list_empty(&(sem)->wait_list) ? "" : "not ")) \ |
| debug_locks_off(); \ |
| } while (0) |
| #else |
| # define DEBUG_RWSEMS_WARN_ON(c, sem) |
| #endif |
| |
| /* |
| * The definition of the atomic counter in the semaphore: |
| * |
| * Bit 0 - writer locked bit |
| * Bit 1 - waiters present bit |
| * Bits 2-7 - reserved |
| * Bits 8-X - 24-bit (32-bit) or 56-bit reader count |
| * |
| * atomic_long_fetch_add() is used to obtain reader lock, whereas |
| * atomic_long_cmpxchg() will be used to obtain writer lock. |
| */ |
| #define RWSEM_WRITER_LOCKED (1UL << 0) |
| #define RWSEM_FLAG_WAITERS (1UL << 1) |
| #define RWSEM_READER_SHIFT 8 |
| #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) |
| #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) |
| #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED |
| #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) |
| #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS) |
| |
| /* |
| * All writes to owner are protected by WRITE_ONCE() to make sure that |
| * store tearing can't happen as optimistic spinners may read and use |
| * the owner value concurrently without lock. Read from owner, however, |
| * may not need READ_ONCE() as long as the pointer value is only used |
| * for comparison and isn't being dereferenced. |
| */ |
| static inline void rwsem_set_owner(struct rw_semaphore *sem) |
| { |
| WRITE_ONCE(sem->owner, current); |
| } |
| |
| static inline void rwsem_clear_owner(struct rw_semaphore *sem) |
| { |
| WRITE_ONCE(sem->owner, NULL); |
| } |
| |
| /* |
| * The task_struct pointer of the last owning reader will be left in |
| * the owner field. |
| * |
| * Note that the owner value just indicates the task has owned the rwsem |
| * previously, it may not be the real owner or one of the real owners |
| * anymore when that field is examined, so take it with a grain of salt. |
| */ |
| static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, |
| struct task_struct *owner) |
| { |
| unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
| | RWSEM_ANONYMOUSLY_OWNED; |
| |
| WRITE_ONCE(sem->owner, (struct task_struct *)val); |
| } |
| |
| static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) |
| { |
| __rwsem_set_reader_owned(sem, current); |
| } |
| |
| /* |
| * Return true if the a rwsem waiter can spin on the rwsem's owner |
| * and steal the lock, i.e. the lock is not anonymously owned. |
| * N.B. !owner is considered spinnable. |
| */ |
| static inline bool is_rwsem_owner_spinnable(struct task_struct *owner) |
| { |
| return !((unsigned long)owner & RWSEM_ANONYMOUSLY_OWNED); |
| } |
| |
| /* |
| * Return true if rwsem is owned by an anonymous writer or readers. |
| */ |
| static inline bool rwsem_has_anonymous_owner(struct task_struct *owner) |
| { |
| return (unsigned long)owner & RWSEM_ANONYMOUSLY_OWNED; |
| } |
| |
| #ifdef CONFIG_DEBUG_RWSEMS |
| /* |
| * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there |
| * is a task pointer in owner of a reader-owned rwsem, it will be the |
| * real owner or one of the real owners. The only exception is when the |
| * unlock is done by up_read_non_owner(). |
| */ |
| static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) |
| { |
| unsigned long val = (unsigned long)current | RWSEM_READER_OWNED |
| | RWSEM_ANONYMOUSLY_OWNED; |
| if (READ_ONCE(sem->owner) == (struct task_struct *)val) |
| cmpxchg_relaxed((unsigned long *)&sem->owner, val, |
| RWSEM_READER_OWNED | RWSEM_ANONYMOUSLY_OWNED); |
| } |
| #else |
| static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) |
| { |
| } |
| #endif |
| |
| /* |
| * Guide to the rw_semaphore's count field. |
| * |
| * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned |
| * by a writer. |
| * |
| * The lock is owned by readers when |
| * (1) the RWSEM_WRITER_LOCKED isn't set in count, |
| * (2) some of the reader bits are set in count, and |
| * (3) the owner field has RWSEM_READ_OWNED bit set. |
| * |
| * Having some reader bits set is not enough to guarantee a readers owned |
| * lock as the readers may be in the process of backing out from the count |
| * and a writer has just released the lock. So another writer may steal |
| * the lock immediately after that. |
| */ |
| |
| /* |
| * Initialize an rwsem: |
| */ |
| void __init_rwsem(struct rw_semaphore *sem, const char *name, |
| struct lock_class_key *key) |
| { |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| /* |
| * Make sure we are not reinitializing a held semaphore: |
| */ |
| debug_check_no_locks_freed((void *)sem, sizeof(*sem)); |
| lockdep_init_map(&sem->dep_map, name, key, 0); |
| #endif |
| atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); |
| raw_spin_lock_init(&sem->wait_lock); |
| INIT_LIST_HEAD(&sem->wait_list); |
| sem->owner = NULL; |
| #ifdef CONFIG_RWSEM_SPIN_ON_OWNER |
| osq_lock_init(&sem->osq); |
| #endif |
| } |
| |
| EXPORT_SYMBOL(__init_rwsem); |
| |
| enum rwsem_waiter_type { |
| RWSEM_WAITING_FOR_WRITE, |
| RWSEM_WAITING_FOR_READ |
| }; |
| |
| struct rwsem_waiter { |
| struct list_head list; |
| struct task_struct *task; |
| enum rwsem_waiter_type type; |
| }; |
| |
| enum rwsem_wake_type { |
| RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ |
| RWSEM_WAKE_READERS, /* Wake readers only */ |
| RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ |
| }; |
| |
| /* |
| * handle the lock release when processes blocked on it that can now run |
| * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must |
| * have been set. |
| * - there must be someone on the queue |
| * - the wait_lock must be held by the caller |
| * - tasks are marked for wakeup, the caller must later invoke wake_up_q() |
| * to actually wakeup the blocked task(s) and drop the reference count, |
| * preferably when the wait_lock is released |
| * - woken process blocks are discarded from the list after having task zeroed |
| * - writers are only marked woken if downgrading is false |
| */ |
| static void __rwsem_mark_wake(struct rw_semaphore *sem, |
| enum rwsem_wake_type wake_type, |
| struct wake_q_head *wake_q) |
| { |
| struct rwsem_waiter *waiter, *tmp; |
| long oldcount, woken = 0, adjustment = 0; |
| struct list_head wlist; |
| |
| /* |
| * Take a peek at the queue head waiter such that we can determine |
| * the wakeup(s) to perform. |
| */ |
| waiter = list_first_entry(&sem->wait_list, struct rwsem_waiter, list); |
| |
| if (waiter->type == RWSEM_WAITING_FOR_WRITE) { |
| if (wake_type == RWSEM_WAKE_ANY) { |
| /* |
| * Mark writer at the front of the queue for wakeup. |
| * Until the task is actually later awoken later by |
| * the caller, other writers are able to steal it. |
| * Readers, on the other hand, will block as they |
| * will notice the queued writer. |
| */ |
| wake_q_add(wake_q, waiter->task); |
| lockevent_inc(rwsem_wake_writer); |
| } |
| |
| return; |
| } |
| |
| /* |
| * Writers might steal the lock before we grant it to the next reader. |
| * We prefer to do the first reader grant before counting readers |
| * so we can bail out early if a writer stole the lock. |
| */ |
| if (wake_type != RWSEM_WAKE_READ_OWNED) { |
| adjustment = RWSEM_READER_BIAS; |
| oldcount = atomic_long_fetch_add(adjustment, &sem->count); |
| if (unlikely(oldcount & RWSEM_WRITER_MASK)) { |
| atomic_long_sub(adjustment, &sem->count); |
| return; |
| } |
| /* |
| * Set it to reader-owned to give spinners an early |
| * indication that readers now have the lock. |
| */ |
| __rwsem_set_reader_owned(sem, waiter->task); |
| } |
| |
| /* |
| * Grant an infinite number of read locks to the readers at the front |
| * of the queue. We know that woken will be at least 1 as we accounted |
| * for above. Note we increment the 'active part' of the count by the |
| * number of readers before waking any processes up. |
| * |
| * We have to do wakeup in 2 passes to prevent the possibility that |
| * the reader count may be decremented before it is incremented. It |
| * is because the to-be-woken waiter may not have slept yet. So it |
| * may see waiter->task got cleared, finish its critical section and |
| * do an unlock before the reader count increment. |
| * |
| * 1) Collect the read-waiters in a separate list, count them and |
| * fully increment the reader count in rwsem. |
| * 2) For each waiters in the new list, clear waiter->task and |
| * put them into wake_q to be woken up later. |
| */ |
| list_for_each_entry(waiter, &sem->wait_list, list) { |
| if (waiter->type == RWSEM_WAITING_FOR_WRITE) |
| break; |
| |
| woken++; |
| } |
| list_cut_before(&wlist, &sem->wait_list, &waiter->list); |
| |
| adjustment = woken * RWSEM_READER_BIAS - adjustment; |
| lockevent_cond_inc(rwsem_wake_reader, woken); |
| if (list_empty(&sem->wait_list)) { |
| /* hit end of list above */ |
| adjustment -= RWSEM_FLAG_WAITERS; |
| } |
| |
| if (adjustment) |
| atomic_long_add(adjustment, &sem->count); |
| |
| /* 2nd pass */ |
| list_for_each_entry_safe(waiter, tmp, &wlist, list) { |
| struct task_struct *tsk; |
| |
| tsk = waiter->task; |
| get_task_struct(tsk); |
| |
| /* |
| * Ensure calling get_task_struct() before setting the reader |
| * waiter to nil such that rwsem_down_read_failed() cannot |
| * race with do_exit() by always holding a reference count |
| * to the task to wakeup. |
| */ |
| smp_store_release(&waiter->task, NULL); |
| /* |
| * Ensure issuing the wakeup (either by us or someone else) |
| * after setting the reader waiter to nil. |
| */ |
| wake_q_add_safe(wake_q, tsk); |
| } |
| } |
| |
| /* |
| * This function must be called with the sem->wait_lock held to prevent |
| * race conditions between checking the rwsem wait list and setting the |
| * sem->count accordingly. |
| */ |
| static inline bool rwsem_try_write_lock(long count, struct rw_semaphore *sem) |
| { |
| long new; |
| |
| if (count & RWSEM_LOCK_MASK) |
| return false; |
| |
| new = count + RWSEM_WRITER_LOCKED - |
| (list_is_singular(&sem->wait_list) ? RWSEM_FLAG_WAITERS : 0); |
| |
| if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)) { |
| rwsem_set_owner(sem); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_RWSEM_SPIN_ON_OWNER |
| /* |
| * Try to acquire write lock before the writer has been put on wait queue. |
| */ |
| static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) |
| { |
| long count = atomic_long_read(&sem->count); |
| |
| while (!(count & RWSEM_LOCK_MASK)) { |
| if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, |
| count + RWSEM_WRITER_LOCKED)) { |
| rwsem_set_owner(sem); |
| lockevent_inc(rwsem_opt_wlock); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static inline bool owner_on_cpu(struct task_struct *owner) |
| { |
| /* |
| * As lock holder preemption issue, we both skip spinning if |
| * task is not on cpu or its cpu is preempted |
| */ |
| return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); |
| } |
| |
| static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) |
| { |
| struct task_struct *owner; |
| bool ret = true; |
| |
| BUILD_BUG_ON(!rwsem_has_anonymous_owner(RWSEM_OWNER_UNKNOWN)); |
| |
| if (need_resched()) |
| return false; |
| |
| rcu_read_lock(); |
| owner = READ_ONCE(sem->owner); |
| if (owner) { |
| ret = is_rwsem_owner_spinnable(owner) && |
| owner_on_cpu(owner); |
| } |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * Return true only if we can still spin on the owner field of the rwsem. |
| */ |
| static noinline bool rwsem_spin_on_owner(struct rw_semaphore *sem) |
| { |
| struct task_struct *owner = READ_ONCE(sem->owner); |
| |
| if (!is_rwsem_owner_spinnable(owner)) |
| return false; |
| |
| rcu_read_lock(); |
| while (owner && (READ_ONCE(sem->owner) == owner)) { |
| /* |
| * Ensure we emit the owner->on_cpu, dereference _after_ |
| * checking sem->owner still matches owner, if that fails, |
| * owner might point to free()d memory, if it still matches, |
| * the rcu_read_lock() ensures the memory stays valid. |
| */ |
| barrier(); |
| |
| /* |
| * abort spinning when need_resched or owner is not running or |
| * owner's cpu is preempted. |
| */ |
| if (need_resched() || !owner_on_cpu(owner)) { |
| rcu_read_unlock(); |
| return false; |
| } |
| |
| cpu_relax(); |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * If there is a new owner or the owner is not set, we continue |
| * spinning. |
| */ |
| return is_rwsem_owner_spinnable(READ_ONCE(sem->owner)); |
| } |
| |
| static bool rwsem_optimistic_spin(struct rw_semaphore *sem) |
| { |
| bool taken = false; |
| |
| preempt_disable(); |
| |
| /* sem->wait_lock should not be held when doing optimistic spinning */ |
| if (!rwsem_can_spin_on_owner(sem)) |
| goto done; |
| |
| if (!osq_lock(&sem->osq)) |
| goto done; |
| |
| /* |
| * Optimistically spin on the owner field and attempt to acquire the |
| * lock whenever the owner changes. Spinning will be stopped when: |
| * 1) the owning writer isn't running; or |
| * 2) readers own the lock as we can't determine if they are |
| * actively running or not. |
| */ |
| while (rwsem_spin_on_owner(sem)) { |
| /* |
| * Try to acquire the lock |
| */ |
| if (rwsem_try_write_lock_unqueued(sem)) { |
| taken = true; |
| break; |
| } |
| |
| /* |
| * When there's no owner, we might have preempted between the |
| * owner acquiring the lock and setting the owner field. If |
| * we're an RT task that will live-lock because we won't let |
| * the owner complete. |
| */ |
| if (!sem->owner && (need_resched() || rt_task(current))) |
| break; |
| |
| /* |
| * The cpu_relax() call is a compiler barrier which forces |
| * everything in this loop to be re-loaded. We don't need |
| * memory barriers as we'll eventually observe the right |
| * values at the cost of a few extra spins. |
| */ |
| cpu_relax(); |
| } |
| osq_unlock(&sem->osq); |
| done: |
| preempt_enable(); |
| lockevent_cond_inc(rwsem_opt_fail, !taken); |
| return taken; |
| } |
| #else |
| static bool rwsem_optimistic_spin(struct rw_semaphore *sem) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * Wait for the read lock to be granted |
| */ |
| static inline struct rw_semaphore __sched * |
| __rwsem_down_read_failed_common(struct rw_semaphore *sem, int state) |
| { |
| long count, adjustment = -RWSEM_READER_BIAS; |
| struct rwsem_waiter waiter; |
| DEFINE_WAKE_Q(wake_q); |
| |
| waiter.task = current; |
| waiter.type = RWSEM_WAITING_FOR_READ; |
| |
| raw_spin_lock_irq(&sem->wait_lock); |
| if (list_empty(&sem->wait_list)) { |
| /* |
| * In case the wait queue is empty and the lock isn't owned |
| * by a writer, this reader can exit the slowpath and return |
| * immediately as its RWSEM_READER_BIAS has already been |
| * set in the count. |
| */ |
| if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { |
| raw_spin_unlock_irq(&sem->wait_lock); |
| rwsem_set_reader_owned(sem); |
| lockevent_inc(rwsem_rlock_fast); |
| return sem; |
| } |
| adjustment += RWSEM_FLAG_WAITERS; |
| } |
| list_add_tail(&waiter.list, &sem->wait_list); |
| |
| /* we're now waiting on the lock, but no longer actively locking */ |
| count = atomic_long_add_return(adjustment, &sem->count); |
| |
| /* |
| * If there are no active locks, wake the front queued process(es). |
| * |
| * If there are no writers and we are first in the queue, |
| * wake our own waiter to join the existing active readers ! |
| */ |
| if (!(count & RWSEM_LOCK_MASK) || |
| (!(count & RWSEM_WRITER_MASK) && (adjustment & RWSEM_FLAG_WAITERS))) |
| __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); |
| |
| raw_spin_unlock_irq(&sem->wait_lock); |
| wake_up_q(&wake_q); |
| |
| /* wait to be given the lock */ |
| while (true) { |
| set_current_state(state); |
| if (!waiter.task) |
| break; |
| if (signal_pending_state(state, current)) { |
| raw_spin_lock_irq(&sem->wait_lock); |
| if (waiter.task) |
| goto out_nolock; |
| raw_spin_unlock_irq(&sem->wait_lock); |
| break; |
| } |
| schedule(); |
| lockevent_inc(rwsem_sleep_reader); |
| } |
| |
| __set_current_state(TASK_RUNNING); |
| lockevent_inc(rwsem_rlock); |
| return sem; |
| out_nolock: |
| list_del(&waiter.list); |
| if (list_empty(&sem->wait_list)) |
| atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); |
| raw_spin_unlock_irq(&sem->wait_lock); |
| __set_current_state(TASK_RUNNING); |
| lockevent_inc(rwsem_rlock_fail); |
| return ERR_PTR(-EINTR); |
| } |
| |
| __visible struct rw_semaphore * __sched |
| rwsem_down_read_failed(struct rw_semaphore *sem) |
| { |
| return __rwsem_down_read_failed_common(sem, TASK_UNINTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL(rwsem_down_read_failed); |
| |
| __visible struct rw_semaphore * __sched |
| rwsem_down_read_failed_killable(struct rw_semaphore *sem) |
| { |
| return __rwsem_down_read_failed_common(sem, TASK_KILLABLE); |
| } |
| EXPORT_SYMBOL(rwsem_down_read_failed_killable); |
| |
| /* |
| * Wait until we successfully acquire the write lock |
| */ |
| static inline struct rw_semaphore * |
| __rwsem_down_write_failed_common(struct rw_semaphore *sem, int state) |
| { |
| long count; |
| bool waiting = true; /* any queued threads before us */ |
| struct rwsem_waiter waiter; |
| struct rw_semaphore *ret = sem; |
| DEFINE_WAKE_Q(wake_q); |
| |
| /* do optimistic spinning and steal lock if possible */ |
| if (rwsem_optimistic_spin(sem)) |
| return sem; |
| |
| /* |
| * Optimistic spinning failed, proceed to the slowpath |
| * and block until we can acquire the sem. |
| */ |
| waiter.task = current; |
| waiter.type = RWSEM_WAITING_FOR_WRITE; |
| |
| raw_spin_lock_irq(&sem->wait_lock); |
| |
| /* account for this before adding a new element to the list */ |
| if (list_empty(&sem->wait_list)) |
| waiting = false; |
| |
| list_add_tail(&waiter.list, &sem->wait_list); |
| |
| /* we're now waiting on the lock */ |
| if (waiting) { |
| count = atomic_long_read(&sem->count); |
| |
| /* |
| * If there were already threads queued before us and there are |
| * no active writers and some readers, the lock must be read |
| * owned; so we try to any read locks that were queued ahead |
| * of us. |
| */ |
| if (!(count & RWSEM_WRITER_MASK) && |
| (count & RWSEM_READER_MASK)) { |
| __rwsem_mark_wake(sem, RWSEM_WAKE_READERS, &wake_q); |
| /* |
| * The wakeup is normally called _after_ the wait_lock |
| * is released, but given that we are proactively waking |
| * readers we can deal with the wake_q overhead as it is |
| * similar to releasing and taking the wait_lock again |
| * for attempting rwsem_try_write_lock(). |
| */ |
| wake_up_q(&wake_q); |
| |
| /* |
| * Reinitialize wake_q after use. |
| */ |
| wake_q_init(&wake_q); |
| } |
| |
| } else { |
| count = atomic_long_add_return(RWSEM_FLAG_WAITERS, &sem->count); |
| } |
| |
| /* wait until we successfully acquire the lock */ |
| set_current_state(state); |
| while (true) { |
| if (rwsem_try_write_lock(count, sem)) |
| break; |
| raw_spin_unlock_irq(&sem->wait_lock); |
| |
| /* Block until there are no active lockers. */ |
| do { |
| if (signal_pending_state(state, current)) |
| goto out_nolock; |
| |
| schedule(); |
| lockevent_inc(rwsem_sleep_writer); |
| set_current_state(state); |
| count = atomic_long_read(&sem->count); |
| } while (count & RWSEM_LOCK_MASK); |
| |
| raw_spin_lock_irq(&sem->wait_lock); |
| } |
| __set_current_state(TASK_RUNNING); |
| list_del(&waiter.list); |
| raw_spin_unlock_irq(&sem->wait_lock); |
| lockevent_inc(rwsem_wlock); |
| |
| return ret; |
| |
| out_nolock: |
| __set_current_state(TASK_RUNNING); |
| raw_spin_lock_irq(&sem->wait_lock); |
| list_del(&waiter.list); |
| if (list_empty(&sem->wait_list)) |
| atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); |
| else |
| __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); |
| raw_spin_unlock_irq(&sem->wait_lock); |
| wake_up_q(&wake_q); |
| lockevent_inc(rwsem_wlock_fail); |
| |
| return ERR_PTR(-EINTR); |
| } |
| |
| __visible struct rw_semaphore * __sched |
| rwsem_down_write_failed(struct rw_semaphore *sem) |
| { |
| return __rwsem_down_write_failed_common(sem, TASK_UNINTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL(rwsem_down_write_failed); |
| |
| __visible struct rw_semaphore * __sched |
| rwsem_down_write_failed_killable(struct rw_semaphore *sem) |
| { |
| return __rwsem_down_write_failed_common(sem, TASK_KILLABLE); |
| } |
| EXPORT_SYMBOL(rwsem_down_write_failed_killable); |
| |
| /* |
| * handle waking up a waiter on the semaphore |
| * - up_read/up_write has decremented the active part of count if we come here |
| */ |
| __visible |
| struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) |
| { |
| unsigned long flags; |
| DEFINE_WAKE_Q(wake_q); |
| |
| raw_spin_lock_irqsave(&sem->wait_lock, flags); |
| |
| if (!list_empty(&sem->wait_list)) |
| __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); |
| |
| raw_spin_unlock_irqrestore(&sem->wait_lock, flags); |
| wake_up_q(&wake_q); |
| |
| return sem; |
| } |
| EXPORT_SYMBOL(rwsem_wake); |
| |
| /* |
| * downgrade a write lock into a read lock |
| * - caller incremented waiting part of count and discovered it still negative |
| * - just wake up any readers at the front of the queue |
| */ |
| __visible |
| struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) |
| { |
| unsigned long flags; |
| DEFINE_WAKE_Q(wake_q); |
| |
| raw_spin_lock_irqsave(&sem->wait_lock, flags); |
| |
| if (!list_empty(&sem->wait_list)) |
| __rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); |
| |
| raw_spin_unlock_irqrestore(&sem->wait_lock, flags); |
| wake_up_q(&wake_q); |
| |
| return sem; |
| } |
| EXPORT_SYMBOL(rwsem_downgrade_wake); |
| |
| /* |
| * lock for reading |
| */ |
| inline void __down_read(struct rw_semaphore *sem) |
| { |
| if (unlikely(atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, |
| &sem->count) & RWSEM_READ_FAILED_MASK)) { |
| rwsem_down_read_failed(sem); |
| DEBUG_RWSEMS_WARN_ON(!((unsigned long)sem->owner & |
| RWSEM_READER_OWNED), sem); |
| } else { |
| rwsem_set_reader_owned(sem); |
| } |
| } |
| |
| static inline int __down_read_killable(struct rw_semaphore *sem) |
| { |
| if (unlikely(atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, |
| &sem->count) & RWSEM_READ_FAILED_MASK)) { |
| if (IS_ERR(rwsem_down_read_failed_killable(sem))) |
| return -EINTR; |
| DEBUG_RWSEMS_WARN_ON(!((unsigned long)sem->owner & |
| RWSEM_READER_OWNED), sem); |
| } else { |
| rwsem_set_reader_owned(sem); |
| } |
| return 0; |
| } |
| |
| static inline int __down_read_trylock(struct rw_semaphore *sem) |
| { |
| /* |
| * Optimize for the case when the rwsem is not locked at all. |
| */ |
| long tmp = RWSEM_UNLOCKED_VALUE; |
| |
| lockevent_inc(rwsem_rtrylock); |
| do { |
| if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, |
| tmp + RWSEM_READER_BIAS)) { |
| rwsem_set_reader_owned(sem); |
| return 1; |
| } |
| } while (!(tmp & RWSEM_READ_FAILED_MASK)); |
| return 0; |
| } |
| |
| /* |
| * lock for writing |
| */ |
| static inline void __down_write(struct rw_semaphore *sem) |
| { |
| if (unlikely(atomic_long_cmpxchg_acquire(&sem->count, 0, |
| RWSEM_WRITER_LOCKED))) |
| rwsem_down_write_failed(sem); |
| rwsem_set_owner(sem); |
| } |
| |
| static inline int __down_write_killable(struct rw_semaphore *sem) |
| { |
| if (unlikely(atomic_long_cmpxchg_acquire(&sem->count, 0, |
| RWSEM_WRITER_LOCKED))) |
| if (IS_ERR(rwsem_down_write_failed_killable(sem))) |
| return -EINTR; |
| rwsem_set_owner(sem); |
| return 0; |
| } |
| |
| static inline int __down_write_trylock(struct rw_semaphore *sem) |
| { |
| long tmp; |
| |
| lockevent_inc(rwsem_wtrylock); |
| tmp = atomic_long_cmpxchg_acquire(&sem->count, RWSEM_UNLOCKED_VALUE, |
| RWSEM_WRITER_LOCKED); |
| if (tmp == RWSEM_UNLOCKED_VALUE) { |
| rwsem_set_owner(sem); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * unlock after reading |
| */ |
| inline void __up_read(struct rw_semaphore *sem) |
| { |
| long tmp; |
| |
| DEBUG_RWSEMS_WARN_ON(!((unsigned long)sem->owner & RWSEM_READER_OWNED), |
| sem); |
| rwsem_clear_reader_owned(sem); |
| tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); |
| if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) |
| == RWSEM_FLAG_WAITERS)) |
| rwsem_wake(sem); |
| } |
| |
| /* |
| * unlock after writing |
| */ |
| static inline void __up_write(struct rw_semaphore *sem) |
| { |
| DEBUG_RWSEMS_WARN_ON(sem->owner != current, sem); |
| rwsem_clear_owner(sem); |
| if (unlikely(atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, |
| &sem->count) & RWSEM_FLAG_WAITERS)) |
| rwsem_wake(sem); |
| } |
| |
| /* |
| * downgrade write lock to read lock |
| */ |
| static inline void __downgrade_write(struct rw_semaphore *sem) |
| { |
| long tmp; |
| |
| /* |
| * When downgrading from exclusive to shared ownership, |
| * anything inside the write-locked region cannot leak |
| * into the read side. In contrast, anything in the |
| * read-locked region is ok to be re-ordered into the |
| * write side. As such, rely on RELEASE semantics. |
| */ |
| DEBUG_RWSEMS_WARN_ON(sem->owner != current, sem); |
| tmp = atomic_long_fetch_add_release( |
| -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); |
| rwsem_set_reader_owned(sem); |
| if (tmp & RWSEM_FLAG_WAITERS) |
| rwsem_downgrade_wake(sem); |
| } |
| |
| /* |
| * lock for reading |
| */ |
| void __sched down_read(struct rw_semaphore *sem) |
| { |
| might_sleep(); |
| rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); |
| |
| LOCK_CONTENDED(sem, __down_read_trylock, __down_read); |
| } |
| |
| EXPORT_SYMBOL(down_read); |
| |
| int __sched down_read_killable(struct rw_semaphore *sem) |
| { |
| might_sleep(); |
| rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); |
| |
| if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { |
| rwsem_release(&sem->dep_map, 1, _RET_IP_); |
| return -EINTR; |
| } |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(down_read_killable); |
| |
| /* |
| * trylock for reading -- returns 1 if successful, 0 if contention |
| */ |
| int down_read_trylock(struct rw_semaphore *sem) |
| { |
| int ret = __down_read_trylock(sem); |
| |
| if (ret == 1) |
| rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(down_read_trylock); |
| |
| /* |
| * lock for writing |
| */ |
| void __sched down_write(struct rw_semaphore *sem) |
| { |
| might_sleep(); |
| rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); |
| |
| LOCK_CONTENDED(sem, __down_write_trylock, __down_write); |
| } |
| |
| EXPORT_SYMBOL(down_write); |
| |
| /* |
| * lock for writing |
| */ |
| int __sched down_write_killable(struct rw_semaphore *sem) |
| { |
| might_sleep(); |
| rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); |
| |
| if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, __down_write_killable)) { |
| rwsem_release(&sem->dep_map, 1, _RET_IP_); |
| return -EINTR; |
| } |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(down_write_killable); |
| |
| /* |
| * trylock for writing -- returns 1 if successful, 0 if contention |
| */ |
| int down_write_trylock(struct rw_semaphore *sem) |
| { |
| int ret = __down_write_trylock(sem); |
| |
| if (ret == 1) |
| rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); |
| |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(down_write_trylock); |
| |
| /* |
| * release a read lock |
| */ |
| void up_read(struct rw_semaphore *sem) |
| { |
| rwsem_release(&sem->dep_map, 1, _RET_IP_); |
| |
| __up_read(sem); |
| } |
| |
| EXPORT_SYMBOL(up_read); |
| |
| /* |
| * release a write lock |
| */ |
| void up_write(struct rw_semaphore *sem) |
| { |
| rwsem_release(&sem->dep_map, 1, _RET_IP_); |
| |
| __up_write(sem); |
| } |
| |
| EXPORT_SYMBOL(up_write); |
| |
| /* |
| * downgrade write lock to read lock |
| */ |
| void downgrade_write(struct rw_semaphore *sem) |
| { |
| lock_downgrade(&sem->dep_map, _RET_IP_); |
| |
| __downgrade_write(sem); |
| } |
| |
| EXPORT_SYMBOL(downgrade_write); |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| |
| void down_read_nested(struct rw_semaphore *sem, int subclass) |
| { |
| might_sleep(); |
| rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); |
| |
| LOCK_CONTENDED(sem, __down_read_trylock, __down_read); |
| } |
| |
| EXPORT_SYMBOL(down_read_nested); |
| |
| void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) |
| { |
| might_sleep(); |
| rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); |
| |
| LOCK_CONTENDED(sem, __down_write_trylock, __down_write); |
| } |
| |
| EXPORT_SYMBOL(_down_write_nest_lock); |
| |
| void down_read_non_owner(struct rw_semaphore *sem) |
| { |
| might_sleep(); |
| |
| __down_read(sem); |
| __rwsem_set_reader_owned(sem, NULL); |
| } |
| |
| EXPORT_SYMBOL(down_read_non_owner); |
| |
| void down_write_nested(struct rw_semaphore *sem, int subclass) |
| { |
| might_sleep(); |
| rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); |
| |
| LOCK_CONTENDED(sem, __down_write_trylock, __down_write); |
| } |
| |
| EXPORT_SYMBOL(down_write_nested); |
| |
| int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) |
| { |
| might_sleep(); |
| rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); |
| |
| if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, __down_write_killable)) { |
| rwsem_release(&sem->dep_map, 1, _RET_IP_); |
| return -EINTR; |
| } |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(down_write_killable_nested); |
| |
| void up_read_non_owner(struct rw_semaphore *sem) |
| { |
| DEBUG_RWSEMS_WARN_ON(!((unsigned long)sem->owner & RWSEM_READER_OWNED), |
| sem); |
| __up_read(sem); |
| } |
| |
| EXPORT_SYMBOL(up_read_non_owner); |
| |
| #endif |