| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * EDAC driver for Intel(R) Xeon(R) Skylake processors |
| * Copyright (c) 2016, Intel Corporation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/processor.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/intel-family.h> |
| #include <asm/mce.h> |
| |
| #include "edac_module.h" |
| #include "skx_common.h" |
| |
| #define EDAC_MOD_STR "skx_edac" |
| |
| /* |
| * Debug macros |
| */ |
| #define skx_printk(level, fmt, arg...) \ |
| edac_printk(level, "skx", fmt, ##arg) |
| |
| #define skx_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) |
| |
| static struct list_head *skx_edac_list; |
| |
| static u64 skx_tolm, skx_tohm; |
| static int skx_num_sockets; |
| static unsigned int nvdimm_count; |
| |
| #define MASK26 0x3FFFFFF /* Mask for 2^26 */ |
| #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ |
| |
| static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) |
| { |
| struct skx_dev *d; |
| |
| list_for_each_entry(d, skx_edac_list, list) { |
| if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) |
| return d; |
| } |
| |
| return NULL; |
| } |
| |
| enum munittype { |
| CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD, |
| ERRCHAN0, ERRCHAN1, ERRCHAN2, |
| }; |
| |
| struct munit { |
| u16 did; |
| u16 devfn[SKX_NUM_IMC]; |
| u8 busidx; |
| u8 per_socket; |
| enum munittype mtype; |
| }; |
| |
| /* |
| * List of PCI device ids that we need together with some device |
| * number and function numbers to tell which memory controller the |
| * device belongs to. |
| */ |
| static const struct munit skx_all_munits[] = { |
| { 0x2054, { }, 1, 1, SAD_ALL }, |
| { 0x2055, { }, 1, 1, UTIL_ALL }, |
| { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, |
| { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, |
| { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, |
| { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 }, |
| { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 }, |
| { 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 }, |
| { 0x208e, { }, 1, 0, SAD }, |
| { } |
| }; |
| |
| static int get_all_munits(const struct munit *m) |
| { |
| struct pci_dev *pdev, *prev; |
| struct skx_dev *d; |
| u32 reg; |
| int i = 0, ndev = 0; |
| |
| prev = NULL; |
| for (;;) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); |
| if (!pdev) |
| break; |
| ndev++; |
| if (m->per_socket == SKX_NUM_IMC) { |
| for (i = 0; i < SKX_NUM_IMC; i++) |
| if (m->devfn[i] == pdev->devfn) |
| break; |
| if (i == SKX_NUM_IMC) |
| goto fail; |
| } |
| d = get_skx_dev(pdev->bus, m->busidx); |
| if (!d) |
| goto fail; |
| |
| /* Be sure that the device is enabled */ |
| if (unlikely(pci_enable_device(pdev) < 0)) { |
| skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n", |
| PCI_VENDOR_ID_INTEL, m->did); |
| goto fail; |
| } |
| |
| switch (m->mtype) { |
| case CHAN0: |
| case CHAN1: |
| case CHAN2: |
| pci_dev_get(pdev); |
| d->imc[i].chan[m->mtype].cdev = pdev; |
| break; |
| case ERRCHAN0: |
| case ERRCHAN1: |
| case ERRCHAN2: |
| pci_dev_get(pdev); |
| d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev; |
| break; |
| case SAD_ALL: |
| pci_dev_get(pdev); |
| d->sad_all = pdev; |
| break; |
| case UTIL_ALL: |
| pci_dev_get(pdev); |
| d->util_all = pdev; |
| break; |
| case SAD: |
| /* |
| * one of these devices per core, including cores |
| * that don't exist on this SKU. Ignore any that |
| * read a route table of zero, make sure all the |
| * non-zero values match. |
| */ |
| pci_read_config_dword(pdev, 0xB4, ®); |
| if (reg != 0) { |
| if (d->mcroute == 0) { |
| d->mcroute = reg; |
| } else if (d->mcroute != reg) { |
| skx_printk(KERN_ERR, "mcroute mismatch\n"); |
| goto fail; |
| } |
| } |
| ndev--; |
| break; |
| } |
| |
| prev = pdev; |
| } |
| |
| return ndev; |
| fail: |
| pci_dev_put(pdev); |
| return -ENODEV; |
| } |
| |
| static const struct x86_cpu_id skx_cpuids[] = { |
| { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); |
| |
| #define SKX_GET_MTMTR(dev, reg) \ |
| pci_read_config_dword((dev), 0x87c, &(reg)) |
| |
| static bool skx_check_ecc(struct pci_dev *pdev) |
| { |
| u32 mtmtr; |
| |
| SKX_GET_MTMTR(pdev, mtmtr); |
| |
| return !!GET_BITFIELD(mtmtr, 2, 2); |
| } |
| |
| static int skx_get_dimm_config(struct mem_ctl_info *mci) |
| { |
| struct skx_pvt *pvt = mci->pvt_info; |
| struct skx_imc *imc = pvt->imc; |
| u32 mtr, amap, mcddrtcfg; |
| struct dimm_info *dimm; |
| int i, j; |
| int ndimms; |
| |
| for (i = 0; i < SKX_NUM_CHANNELS; i++) { |
| ndimms = 0; |
| pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); |
| pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg); |
| for (j = 0; j < SKX_NUM_DIMMS; j++) { |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, |
| mci->n_layers, i, j, 0); |
| pci_read_config_dword(imc->chan[i].cdev, |
| 0x80 + 4 * j, &mtr); |
| if (IS_DIMM_PRESENT(mtr)) { |
| ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j); |
| } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) { |
| ndimms += skx_get_nvdimm_info(dimm, imc, i, j, |
| EDAC_MOD_STR); |
| nvdimm_count++; |
| } |
| } |
| if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { |
| skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); |
| return -ENODEV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define SKX_MAX_SAD 24 |
| |
| #define SKX_GET_SAD(d, i, reg) \ |
| pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg)) |
| #define SKX_GET_ILV(d, i, reg) \ |
| pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg)) |
| |
| #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) |
| #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) |
| #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) |
| #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) |
| #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) |
| #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) |
| #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) |
| |
| #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) |
| #define SKX_ILV_TARGET(tgt) ((tgt) & 7) |
| |
| static void skx_show_retry_rd_err_log(struct decoded_addr *res, |
| char *msg, int len) |
| { |
| u32 log0, log1, log2, log3, log4; |
| u32 corr0, corr1, corr2, corr3; |
| struct pci_dev *edev; |
| int n; |
| |
| edev = res->dev->imc[res->imc].chan[res->channel].edev; |
| |
| pci_read_config_dword(edev, 0x154, &log0); |
| pci_read_config_dword(edev, 0x148, &log1); |
| pci_read_config_dword(edev, 0x150, &log2); |
| pci_read_config_dword(edev, 0x15c, &log3); |
| pci_read_config_dword(edev, 0x114, &log4); |
| |
| n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]", |
| log0, log1, log2, log3, log4); |
| |
| pci_read_config_dword(edev, 0x104, &corr0); |
| pci_read_config_dword(edev, 0x108, &corr1); |
| pci_read_config_dword(edev, 0x10c, &corr2); |
| pci_read_config_dword(edev, 0x110, &corr3); |
| |
| if (len - n > 0) |
| snprintf(msg + n, len - n, |
| " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]", |
| corr0 & 0xffff, corr0 >> 16, |
| corr1 & 0xffff, corr1 >> 16, |
| corr2 & 0xffff, corr2 >> 16, |
| corr3 & 0xffff, corr3 >> 16); |
| } |
| |
| static bool skx_sad_decode(struct decoded_addr *res) |
| { |
| struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list); |
| u64 addr = res->addr; |
| int i, idx, tgt, lchan, shift; |
| u32 sad, ilv; |
| u64 limit, prev_limit; |
| int remote = 0; |
| |
| /* Simple sanity check for I/O space or out of range */ |
| if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { |
| edac_dbg(0, "Address 0x%llx out of range\n", addr); |
| return false; |
| } |
| |
| restart: |
| prev_limit = 0; |
| for (i = 0; i < SKX_MAX_SAD; i++) { |
| SKX_GET_SAD(d, i, sad); |
| limit = SKX_SAD_LIMIT(sad); |
| if (SKX_SAD_ENABLE(sad)) { |
| if (addr >= prev_limit && addr <= limit) |
| goto sad_found; |
| } |
| prev_limit = limit + 1; |
| } |
| edac_dbg(0, "No SAD entry for 0x%llx\n", addr); |
| return false; |
| |
| sad_found: |
| SKX_GET_ILV(d, i, ilv); |
| |
| switch (SKX_SAD_INTERLEAVE(sad)) { |
| case 0: |
| idx = GET_BITFIELD(addr, 6, 8); |
| break; |
| case 1: |
| idx = GET_BITFIELD(addr, 8, 10); |
| break; |
| case 2: |
| idx = GET_BITFIELD(addr, 12, 14); |
| break; |
| case 3: |
| idx = GET_BITFIELD(addr, 30, 32); |
| break; |
| } |
| |
| tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); |
| |
| /* If point to another node, find it and start over */ |
| if (SKX_ILV_REMOTE(tgt)) { |
| if (remote) { |
| edac_dbg(0, "Double remote!\n"); |
| return false; |
| } |
| remote = 1; |
| list_for_each_entry(d, skx_edac_list, list) { |
| if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) |
| goto restart; |
| } |
| edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); |
| return false; |
| } |
| |
| if (SKX_SAD_MOD3(sad) == 0) { |
| lchan = SKX_ILV_TARGET(tgt); |
| } else { |
| switch (SKX_SAD_MOD3MODE(sad)) { |
| case 0: |
| shift = 6; |
| break; |
| case 1: |
| shift = 8; |
| break; |
| case 2: |
| shift = 12; |
| break; |
| default: |
| edac_dbg(0, "illegal mod3mode\n"); |
| return false; |
| } |
| switch (SKX_SAD_MOD3ASMOD2(sad)) { |
| case 0: |
| lchan = (addr >> shift) % 3; |
| break; |
| case 1: |
| lchan = (addr >> shift) % 2; |
| break; |
| case 2: |
| lchan = (addr >> shift) % 2; |
| lchan = (lchan << 1) | !lchan; |
| break; |
| case 3: |
| lchan = ((addr >> shift) % 2) << 1; |
| break; |
| } |
| lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); |
| } |
| |
| res->dev = d; |
| res->socket = d->imc[0].src_id; |
| res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); |
| res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); |
| |
| edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n", |
| res->addr, res->socket, res->imc, res->channel); |
| return true; |
| } |
| |
| #define SKX_MAX_TAD 8 |
| |
| #define SKX_GET_TADBASE(d, mc, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg)) |
| #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg)) |
| #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg)) |
| |
| #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) |
| #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) |
| #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) |
| #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) |
| #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) |
| #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) |
| #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) |
| |
| /* which bit used for both socket and channel interleave */ |
| static int skx_granularity[] = { 6, 8, 12, 30 }; |
| |
| static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) |
| { |
| addr >>= shift; |
| addr /= ways; |
| addr <<= shift; |
| |
| return addr | (lowbits & ((1ull << shift) - 1)); |
| } |
| |
| static bool skx_tad_decode(struct decoded_addr *res) |
| { |
| int i; |
| u32 base, wayness, chnilvoffset; |
| int skt_interleave_bit, chn_interleave_bit; |
| u64 channel_addr; |
| |
| for (i = 0; i < SKX_MAX_TAD; i++) { |
| SKX_GET_TADBASE(res->dev, res->imc, i, base); |
| SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); |
| if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) |
| goto tad_found; |
| } |
| edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr); |
| return false; |
| |
| tad_found: |
| res->sktways = SKX_TAD_SKTWAYS(wayness); |
| res->chanways = SKX_TAD_CHNWAYS(wayness); |
| skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; |
| chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; |
| |
| SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); |
| channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); |
| |
| if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { |
| /* Must handle channel first, then socket */ |
| channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| res->chanways, channel_addr); |
| channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| res->sktways, channel_addr); |
| } else { |
| /* Handle socket then channel. Preserve low bits from original address */ |
| channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| res->sktways, res->addr); |
| channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| res->chanways, res->addr); |
| } |
| |
| res->chan_addr = channel_addr; |
| |
| edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n", |
| res->addr, res->chan_addr, res->sktways, res->chanways); |
| return true; |
| } |
| |
| #define SKX_MAX_RIR 4 |
| |
| #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 0x108 + 4 * (i), &(reg)) |
| #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 0x120 + 16 * (idx) + 4 * (i), &(reg)) |
| |
| #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) |
| #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) |
| #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) |
| #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) |
| #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) |
| |
| static bool skx_rir_decode(struct decoded_addr *res) |
| { |
| int i, idx, chan_rank; |
| int shift; |
| u32 rirway, rirlv; |
| u64 rank_addr, prev_limit = 0, limit; |
| |
| if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) |
| shift = 6; |
| else |
| shift = 13; |
| |
| for (i = 0; i < SKX_MAX_RIR; i++) { |
| SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); |
| limit = SKX_RIR_LIMIT(rirway); |
| if (SKX_RIR_VALID(rirway)) { |
| if (prev_limit <= res->chan_addr && |
| res->chan_addr <= limit) |
| goto rir_found; |
| } |
| prev_limit = limit; |
| } |
| edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr); |
| return false; |
| |
| rir_found: |
| rank_addr = res->chan_addr >> shift; |
| rank_addr /= SKX_RIR_WAYS(rirway); |
| rank_addr <<= shift; |
| rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); |
| |
| res->rank_address = rank_addr; |
| idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); |
| |
| SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); |
| res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); |
| chan_rank = SKX_RIR_CHAN_RANK(rirlv); |
| res->channel_rank = chan_rank; |
| res->dimm = chan_rank / 4; |
| res->rank = chan_rank % 4; |
| |
| edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n", |
| res->addr, res->dimm, res->rank, |
| res->channel_rank, res->rank_address); |
| return true; |
| } |
| |
| static u8 skx_close_row[] = { |
| 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 |
| }; |
| |
| static u8 skx_close_column[] = { |
| 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 |
| }; |
| |
| static u8 skx_open_row[] = { |
| 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 |
| }; |
| |
| static u8 skx_open_column[] = { |
| 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |
| }; |
| |
| static u8 skx_open_fine_column[] = { |
| 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 |
| }; |
| |
| static int skx_bits(u64 addr, int nbits, u8 *bits) |
| { |
| int i, res = 0; |
| |
| for (i = 0; i < nbits; i++) |
| res |= ((addr >> bits[i]) & 1) << i; |
| return res; |
| } |
| |
| static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) |
| { |
| int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); |
| |
| if (do_xor) |
| ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); |
| |
| return ret; |
| } |
| |
| static bool skx_mad_decode(struct decoded_addr *r) |
| { |
| struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; |
| int bg0 = dimm->fine_grain_bank ? 6 : 13; |
| |
| if (dimm->close_pg) { |
| r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); |
| r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); |
| r->column |= 0x400; /* C10 is autoprecharge, always set */ |
| r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); |
| r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); |
| } else { |
| r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); |
| if (dimm->fine_grain_bank) |
| r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); |
| else |
| r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); |
| r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); |
| r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); |
| } |
| r->row &= (1u << dimm->rowbits) - 1; |
| |
| edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n", |
| r->addr, r->row, r->column, r->bank_address, |
| r->bank_group); |
| return true; |
| } |
| |
| static bool skx_decode(struct decoded_addr *res) |
| { |
| return skx_sad_decode(res) && skx_tad_decode(res) && |
| skx_rir_decode(res) && skx_mad_decode(res); |
| } |
| |
| static struct notifier_block skx_mce_dec = { |
| .notifier_call = skx_mce_check_error, |
| .priority = MCE_PRIO_EDAC, |
| }; |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| /* |
| * Debug feature. |
| * Exercise the address decode logic by writing an address to |
| * /sys/kernel/debug/edac/skx_test/addr. |
| */ |
| static struct dentry *skx_test; |
| |
| static int debugfs_u64_set(void *data, u64 val) |
| { |
| struct mce m; |
| |
| pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); |
| |
| memset(&m, 0, sizeof(m)); |
| /* ADDRV + MemRd + Unknown channel */ |
| m.status = MCI_STATUS_ADDRV + 0x90; |
| /* One corrected error */ |
| m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT); |
| m.addr = val; |
| skx_mce_check_error(NULL, 0, &m); |
| |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); |
| |
| static void setup_skx_debug(void) |
| { |
| skx_test = edac_debugfs_create_dir("skx_test"); |
| if (!skx_test) |
| return; |
| |
| if (!edac_debugfs_create_file("addr", 0200, skx_test, |
| NULL, &fops_u64_wo)) { |
| debugfs_remove(skx_test); |
| skx_test = NULL; |
| } |
| } |
| |
| static void teardown_skx_debug(void) |
| { |
| debugfs_remove_recursive(skx_test); |
| } |
| #else |
| static inline void setup_skx_debug(void) {} |
| static inline void teardown_skx_debug(void) {} |
| #endif /*CONFIG_EDAC_DEBUG*/ |
| |
| /* |
| * skx_init: |
| * make sure we are running on the correct cpu model |
| * search for all the devices we need |
| * check which DIMMs are present. |
| */ |
| static int __init skx_init(void) |
| { |
| const struct x86_cpu_id *id; |
| const struct munit *m; |
| const char *owner; |
| int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8}; |
| u8 mc = 0, src_id, node_id; |
| struct skx_dev *d; |
| |
| edac_dbg(2, "\n"); |
| |
| owner = edac_get_owner(); |
| if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) |
| return -EBUSY; |
| |
| id = x86_match_cpu(skx_cpuids); |
| if (!id) |
| return -ENODEV; |
| |
| rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm); |
| if (rc) |
| return rc; |
| |
| rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list); |
| if (rc < 0) |
| goto fail; |
| if (rc == 0) { |
| edac_dbg(2, "No memory controllers found\n"); |
| return -ENODEV; |
| } |
| skx_num_sockets = rc; |
| |
| for (m = skx_all_munits; m->did; m++) { |
| rc = get_all_munits(m); |
| if (rc < 0) |
| goto fail; |
| if (rc != m->per_socket * skx_num_sockets) { |
| edac_dbg(2, "Expected %d, got %d of 0x%x\n", |
| m->per_socket * skx_num_sockets, rc, m->did); |
| rc = -ENODEV; |
| goto fail; |
| } |
| } |
| |
| list_for_each_entry(d, skx_edac_list, list) { |
| rc = skx_get_src_id(d, 0xf0, &src_id); |
| if (rc < 0) |
| goto fail; |
| rc = skx_get_node_id(d, &node_id); |
| if (rc < 0) |
| goto fail; |
| edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); |
| for (i = 0; i < SKX_NUM_IMC; i++) { |
| d->imc[i].mc = mc++; |
| d->imc[i].lmc = i; |
| d->imc[i].src_id = src_id; |
| d->imc[i].node_id = node_id; |
| rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev, |
| "Skylake Socket", EDAC_MOD_STR, |
| skx_get_dimm_config); |
| if (rc < 0) |
| goto fail; |
| } |
| } |
| |
| skx_set_decode(skx_decode, skx_show_retry_rd_err_log); |
| |
| if (nvdimm_count && skx_adxl_get() == -ENODEV) |
| skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n"); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| setup_skx_debug(); |
| |
| mce_register_decode_chain(&skx_mce_dec); |
| |
| return 0; |
| fail: |
| skx_remove(); |
| return rc; |
| } |
| |
| static void __exit skx_exit(void) |
| { |
| edac_dbg(2, "\n"); |
| mce_unregister_decode_chain(&skx_mce_dec); |
| teardown_skx_debug(); |
| if (nvdimm_count) |
| skx_adxl_put(); |
| skx_remove(); |
| } |
| |
| module_init(skx_init); |
| module_exit(skx_exit); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Tony Luck"); |
| MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |