| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * acpi_osl.c - OS-dependent functions ($Revision: 83 $) |
| * |
| * Copyright (C) 2000 Andrew Henroid |
| * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| * Copyright (c) 2008 Intel Corporation |
| * Author: Matthew Wilcox <willy@linux.intel.com> |
| */ |
| |
| #define pr_fmt(fmt) "ACPI: OSL: " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/lockdep.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <linux/kmod.h> |
| #include <linux/delay.h> |
| #include <linux/workqueue.h> |
| #include <linux/nmi.h> |
| #include <linux/acpi.h> |
| #include <linux/efi.h> |
| #include <linux/ioport.h> |
| #include <linux/list.h> |
| #include <linux/jiffies.h> |
| #include <linux/semaphore.h> |
| #include <linux/security.h> |
| |
| #include <asm/io.h> |
| #include <linux/uaccess.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| |
| #include "acpica/accommon.h" |
| #include "acpica/acnamesp.h" |
| #include "internal.h" |
| |
| /* Definitions for ACPI_DEBUG_PRINT() */ |
| #define _COMPONENT ACPI_OS_SERVICES |
| ACPI_MODULE_NAME("osl"); |
| |
| struct acpi_os_dpc { |
| acpi_osd_exec_callback function; |
| void *context; |
| struct work_struct work; |
| }; |
| |
| #ifdef ENABLE_DEBUGGER |
| #include <linux/kdb.h> |
| |
| /* stuff for debugger support */ |
| int acpi_in_debugger; |
| EXPORT_SYMBOL(acpi_in_debugger); |
| #endif /*ENABLE_DEBUGGER */ |
| |
| static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, |
| u32 pm1b_ctrl); |
| static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, |
| u32 val_b); |
| |
| static acpi_osd_handler acpi_irq_handler; |
| static void *acpi_irq_context; |
| static struct workqueue_struct *kacpid_wq; |
| static struct workqueue_struct *kacpi_notify_wq; |
| static struct workqueue_struct *kacpi_hotplug_wq; |
| static bool acpi_os_initialized; |
| unsigned int acpi_sci_irq = INVALID_ACPI_IRQ; |
| bool acpi_permanent_mmap = false; |
| |
| /* |
| * This list of permanent mappings is for memory that may be accessed from |
| * interrupt context, where we can't do the ioremap(). |
| */ |
| struct acpi_ioremap { |
| struct list_head list; |
| void __iomem *virt; |
| acpi_physical_address phys; |
| acpi_size size; |
| union { |
| unsigned long refcount; |
| struct rcu_work rwork; |
| } track; |
| }; |
| |
| static LIST_HEAD(acpi_ioremaps); |
| static DEFINE_MUTEX(acpi_ioremap_lock); |
| #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map) |
| |
| static void __init acpi_request_region (struct acpi_generic_address *gas, |
| unsigned int length, char *desc) |
| { |
| u64 addr; |
| |
| /* Handle possible alignment issues */ |
| memcpy(&addr, &gas->address, sizeof(addr)); |
| if (!addr || !length) |
| return; |
| |
| /* Resources are never freed */ |
| if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) |
| request_region(addr, length, desc); |
| else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| request_mem_region(addr, length, desc); |
| } |
| |
| static int __init acpi_reserve_resources(void) |
| { |
| acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, |
| "ACPI PM1a_EVT_BLK"); |
| |
| acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, |
| "ACPI PM1b_EVT_BLK"); |
| |
| acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, |
| "ACPI PM1a_CNT_BLK"); |
| |
| acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, |
| "ACPI PM1b_CNT_BLK"); |
| |
| if (acpi_gbl_FADT.pm_timer_length == 4) |
| acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); |
| |
| acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, |
| "ACPI PM2_CNT_BLK"); |
| |
| /* Length of GPE blocks must be a non-negative multiple of 2 */ |
| |
| if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) |
| acpi_request_region(&acpi_gbl_FADT.xgpe0_block, |
| acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); |
| |
| if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) |
| acpi_request_region(&acpi_gbl_FADT.xgpe1_block, |
| acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); |
| |
| return 0; |
| } |
| fs_initcall_sync(acpi_reserve_resources); |
| |
| void acpi_os_printf(const char *fmt, ...) |
| { |
| va_list args; |
| va_start(args, fmt); |
| acpi_os_vprintf(fmt, args); |
| va_end(args); |
| } |
| EXPORT_SYMBOL(acpi_os_printf); |
| |
| void acpi_os_vprintf(const char *fmt, va_list args) |
| { |
| static char buffer[512]; |
| |
| vsprintf(buffer, fmt, args); |
| |
| #ifdef ENABLE_DEBUGGER |
| if (acpi_in_debugger) { |
| kdb_printf("%s", buffer); |
| } else { |
| if (printk_get_level(buffer)) |
| printk("%s", buffer); |
| else |
| printk(KERN_CONT "%s", buffer); |
| } |
| #else |
| if (acpi_debugger_write_log(buffer) < 0) { |
| if (printk_get_level(buffer)) |
| printk("%s", buffer); |
| else |
| printk(KERN_CONT "%s", buffer); |
| } |
| #endif |
| } |
| |
| #ifdef CONFIG_KEXEC |
| static unsigned long acpi_rsdp; |
| static int __init setup_acpi_rsdp(char *arg) |
| { |
| return kstrtoul(arg, 16, &acpi_rsdp); |
| } |
| early_param("acpi_rsdp", setup_acpi_rsdp); |
| #endif |
| |
| acpi_physical_address __init acpi_os_get_root_pointer(void) |
| { |
| acpi_physical_address pa; |
| |
| #ifdef CONFIG_KEXEC |
| /* |
| * We may have been provided with an RSDP on the command line, |
| * but if a malicious user has done so they may be pointing us |
| * at modified ACPI tables that could alter kernel behaviour - |
| * so, we check the lockdown status before making use of |
| * it. If we trust it then also stash it in an architecture |
| * specific location (if appropriate) so it can be carried |
| * over further kexec()s. |
| */ |
| if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) { |
| acpi_arch_set_root_pointer(acpi_rsdp); |
| return acpi_rsdp; |
| } |
| #endif |
| pa = acpi_arch_get_root_pointer(); |
| if (pa) |
| return pa; |
| |
| if (efi_enabled(EFI_CONFIG_TABLES)) { |
| if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) |
| return efi.acpi20; |
| if (efi.acpi != EFI_INVALID_TABLE_ADDR) |
| return efi.acpi; |
| pr_err("System description tables not found\n"); |
| } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) { |
| acpi_find_root_pointer(&pa); |
| } |
| |
| return pa; |
| } |
| |
| /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ |
| static struct acpi_ioremap * |
| acpi_map_lookup(acpi_physical_address phys, acpi_size size) |
| { |
| struct acpi_ioremap *map; |
| |
| list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) |
| if (map->phys <= phys && |
| phys + size <= map->phys + map->size) |
| return map; |
| |
| return NULL; |
| } |
| |
| /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ |
| static void __iomem * |
| acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) |
| { |
| struct acpi_ioremap *map; |
| |
| map = acpi_map_lookup(phys, size); |
| if (map) |
| return map->virt + (phys - map->phys); |
| |
| return NULL; |
| } |
| |
| void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) |
| { |
| struct acpi_ioremap *map; |
| void __iomem *virt = NULL; |
| |
| mutex_lock(&acpi_ioremap_lock); |
| map = acpi_map_lookup(phys, size); |
| if (map) { |
| virt = map->virt + (phys - map->phys); |
| map->track.refcount++; |
| } |
| mutex_unlock(&acpi_ioremap_lock); |
| return virt; |
| } |
| EXPORT_SYMBOL_GPL(acpi_os_get_iomem); |
| |
| /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ |
| static struct acpi_ioremap * |
| acpi_map_lookup_virt(void __iomem *virt, acpi_size size) |
| { |
| struct acpi_ioremap *map; |
| |
| list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) |
| if (map->virt <= virt && |
| virt + size <= map->virt + map->size) |
| return map; |
| |
| return NULL; |
| } |
| |
| #if defined(CONFIG_IA64) || defined(CONFIG_ARM64) |
| /* ioremap will take care of cache attributes */ |
| #define should_use_kmap(pfn) 0 |
| #else |
| #define should_use_kmap(pfn) page_is_ram(pfn) |
| #endif |
| |
| static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz, |
| bool memory) |
| { |
| unsigned long pfn; |
| |
| pfn = pg_off >> PAGE_SHIFT; |
| if (should_use_kmap(pfn)) { |
| if (pg_sz > PAGE_SIZE) |
| return NULL; |
| return (void __iomem __force *)kmap(pfn_to_page(pfn)); |
| } else |
| return memory ? acpi_os_memmap(pg_off, pg_sz) : |
| acpi_os_ioremap(pg_off, pg_sz); |
| } |
| |
| static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) |
| { |
| unsigned long pfn; |
| |
| pfn = pg_off >> PAGE_SHIFT; |
| if (should_use_kmap(pfn)) |
| kunmap(pfn_to_page(pfn)); |
| else |
| iounmap(vaddr); |
| } |
| |
| /** |
| * __acpi_os_map_iomem - Get a virtual address for a given physical address range. |
| * @phys: Start of the physical address range to map. |
| * @size: Size of the physical address range to map. |
| * @memory: true if remapping memory, false if IO |
| * |
| * Look up the given physical address range in the list of existing ACPI memory |
| * mappings. If found, get a reference to it and return a pointer to it (its |
| * virtual address). If not found, map it, add it to that list and return a |
| * pointer to it. |
| * |
| * During early init (when acpi_permanent_mmap has not been set yet) this |
| * routine simply calls __acpi_map_table() to get the job done. |
| */ |
| static void __iomem __ref |
| *__acpi_os_map_iomem(acpi_physical_address phys, acpi_size size, bool memory) |
| { |
| struct acpi_ioremap *map; |
| void __iomem *virt; |
| acpi_physical_address pg_off; |
| acpi_size pg_sz; |
| |
| if (phys > ULONG_MAX) { |
| pr_err("Cannot map memory that high: 0x%llx\n", phys); |
| return NULL; |
| } |
| |
| if (!acpi_permanent_mmap) |
| return __acpi_map_table((unsigned long)phys, size); |
| |
| mutex_lock(&acpi_ioremap_lock); |
| /* Check if there's a suitable mapping already. */ |
| map = acpi_map_lookup(phys, size); |
| if (map) { |
| map->track.refcount++; |
| goto out; |
| } |
| |
| map = kzalloc(sizeof(*map), GFP_KERNEL); |
| if (!map) { |
| mutex_unlock(&acpi_ioremap_lock); |
| return NULL; |
| } |
| |
| pg_off = round_down(phys, PAGE_SIZE); |
| pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; |
| virt = acpi_map(phys, size, memory); |
| if (!virt) { |
| mutex_unlock(&acpi_ioremap_lock); |
| kfree(map); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&map->list); |
| map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK); |
| map->phys = pg_off; |
| map->size = pg_sz; |
| map->track.refcount = 1; |
| |
| list_add_tail_rcu(&map->list, &acpi_ioremaps); |
| |
| out: |
| mutex_unlock(&acpi_ioremap_lock); |
| return map->virt + (phys - map->phys); |
| } |
| |
| void __iomem *__ref |
| acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) |
| { |
| return __acpi_os_map_iomem(phys, size, false); |
| } |
| EXPORT_SYMBOL_GPL(acpi_os_map_iomem); |
| |
| void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size) |
| { |
| return (void *)__acpi_os_map_iomem(phys, size, true); |
| } |
| EXPORT_SYMBOL_GPL(acpi_os_map_memory); |
| |
| static void acpi_os_map_remove(struct work_struct *work) |
| { |
| struct acpi_ioremap *map = container_of(to_rcu_work(work), |
| struct acpi_ioremap, |
| track.rwork); |
| |
| acpi_unmap(map->phys, map->virt); |
| kfree(map); |
| } |
| |
| /* Must be called with mutex_lock(&acpi_ioremap_lock) */ |
| static void acpi_os_drop_map_ref(struct acpi_ioremap *map) |
| { |
| if (--map->track.refcount) |
| return; |
| |
| list_del_rcu(&map->list); |
| |
| INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove); |
| queue_rcu_work(system_wq, &map->track.rwork); |
| } |
| |
| /** |
| * acpi_os_unmap_iomem - Drop a memory mapping reference. |
| * @virt: Start of the address range to drop a reference to. |
| * @size: Size of the address range to drop a reference to. |
| * |
| * Look up the given virtual address range in the list of existing ACPI memory |
| * mappings, drop a reference to it and if there are no more active references |
| * to it, queue it up for later removal. |
| * |
| * During early init (when acpi_permanent_mmap has not been set yet) this |
| * routine simply calls __acpi_unmap_table() to get the job done. Since |
| * __acpi_unmap_table() is an __init function, the __ref annotation is needed |
| * here. |
| */ |
| void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) |
| { |
| struct acpi_ioremap *map; |
| |
| if (!acpi_permanent_mmap) { |
| __acpi_unmap_table(virt, size); |
| return; |
| } |
| |
| mutex_lock(&acpi_ioremap_lock); |
| |
| map = acpi_map_lookup_virt(virt, size); |
| if (!map) { |
| mutex_unlock(&acpi_ioremap_lock); |
| WARN(true, "ACPI: %s: bad address %p\n", __func__, virt); |
| return; |
| } |
| acpi_os_drop_map_ref(map); |
| |
| mutex_unlock(&acpi_ioremap_lock); |
| } |
| EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); |
| |
| /** |
| * acpi_os_unmap_memory - Drop a memory mapping reference. |
| * @virt: Start of the address range to drop a reference to. |
| * @size: Size of the address range to drop a reference to. |
| */ |
| void __ref acpi_os_unmap_memory(void *virt, acpi_size size) |
| { |
| acpi_os_unmap_iomem((void __iomem *)virt, size); |
| } |
| EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); |
| |
| void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas) |
| { |
| u64 addr; |
| |
| if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| return NULL; |
| |
| /* Handle possible alignment issues */ |
| memcpy(&addr, &gas->address, sizeof(addr)); |
| if (!addr || !gas->bit_width) |
| return NULL; |
| |
| return acpi_os_map_iomem(addr, gas->bit_width / 8); |
| } |
| EXPORT_SYMBOL(acpi_os_map_generic_address); |
| |
| void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) |
| { |
| u64 addr; |
| struct acpi_ioremap *map; |
| |
| if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| return; |
| |
| /* Handle possible alignment issues */ |
| memcpy(&addr, &gas->address, sizeof(addr)); |
| if (!addr || !gas->bit_width) |
| return; |
| |
| mutex_lock(&acpi_ioremap_lock); |
| |
| map = acpi_map_lookup(addr, gas->bit_width / 8); |
| if (!map) { |
| mutex_unlock(&acpi_ioremap_lock); |
| return; |
| } |
| acpi_os_drop_map_ref(map); |
| |
| mutex_unlock(&acpi_ioremap_lock); |
| } |
| EXPORT_SYMBOL(acpi_os_unmap_generic_address); |
| |
| #ifdef ACPI_FUTURE_USAGE |
| acpi_status |
| acpi_os_get_physical_address(void *virt, acpi_physical_address * phys) |
| { |
| if (!phys || !virt) |
| return AE_BAD_PARAMETER; |
| |
| *phys = virt_to_phys(virt); |
| |
| return AE_OK; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE |
| static bool acpi_rev_override; |
| |
| int __init acpi_rev_override_setup(char *str) |
| { |
| acpi_rev_override = true; |
| return 1; |
| } |
| __setup("acpi_rev_override", acpi_rev_override_setup); |
| #else |
| #define acpi_rev_override false |
| #endif |
| |
| #define ACPI_MAX_OVERRIDE_LEN 100 |
| |
| static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; |
| |
| acpi_status |
| acpi_os_predefined_override(const struct acpi_predefined_names *init_val, |
| acpi_string *new_val) |
| { |
| if (!init_val || !new_val) |
| return AE_BAD_PARAMETER; |
| |
| *new_val = NULL; |
| if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { |
| pr_info("Overriding _OS definition to '%s'\n", acpi_os_name); |
| *new_val = acpi_os_name; |
| } |
| |
| if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) { |
| pr_info("Overriding _REV return value to 5\n"); |
| *new_val = (char *)5; |
| } |
| |
| return AE_OK; |
| } |
| |
| static irqreturn_t acpi_irq(int irq, void *dev_id) |
| { |
| u32 handled; |
| |
| handled = (*acpi_irq_handler) (acpi_irq_context); |
| |
| if (handled) { |
| acpi_irq_handled++; |
| return IRQ_HANDLED; |
| } else { |
| acpi_irq_not_handled++; |
| return IRQ_NONE; |
| } |
| } |
| |
| acpi_status |
| acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, |
| void *context) |
| { |
| unsigned int irq; |
| |
| acpi_irq_stats_init(); |
| |
| /* |
| * ACPI interrupts different from the SCI in our copy of the FADT are |
| * not supported. |
| */ |
| if (gsi != acpi_gbl_FADT.sci_interrupt) |
| return AE_BAD_PARAMETER; |
| |
| if (acpi_irq_handler) |
| return AE_ALREADY_ACQUIRED; |
| |
| if (acpi_gsi_to_irq(gsi, &irq) < 0) { |
| pr_err("SCI (ACPI GSI %d) not registered\n", gsi); |
| return AE_OK; |
| } |
| |
| acpi_irq_handler = handler; |
| acpi_irq_context = context; |
| if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) { |
| pr_err("SCI (IRQ%d) allocation failed\n", irq); |
| acpi_irq_handler = NULL; |
| return AE_NOT_ACQUIRED; |
| } |
| acpi_sci_irq = irq; |
| |
| return AE_OK; |
| } |
| |
| acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler) |
| { |
| if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid()) |
| return AE_BAD_PARAMETER; |
| |
| free_irq(acpi_sci_irq, acpi_irq); |
| acpi_irq_handler = NULL; |
| acpi_sci_irq = INVALID_ACPI_IRQ; |
| |
| return AE_OK; |
| } |
| |
| /* |
| * Running in interpreter thread context, safe to sleep |
| */ |
| |
| void acpi_os_sleep(u64 ms) |
| { |
| msleep(ms); |
| } |
| |
| void acpi_os_stall(u32 us) |
| { |
| while (us) { |
| u32 delay = 1000; |
| |
| if (delay > us) |
| delay = us; |
| udelay(delay); |
| touch_nmi_watchdog(); |
| us -= delay; |
| } |
| } |
| |
| /* |
| * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running, |
| * monotonically increasing timer with 100ns granularity. Do not use |
| * ktime_get() to implement this function because this function may get |
| * called after timekeeping has been suspended. Note: calling this function |
| * after timekeeping has been suspended may lead to unexpected results |
| * because when timekeeping is suspended the jiffies counter is not |
| * incremented. See also timekeeping_suspend(). |
| */ |
| u64 acpi_os_get_timer(void) |
| { |
| return (get_jiffies_64() - INITIAL_JIFFIES) * |
| (ACPI_100NSEC_PER_SEC / HZ); |
| } |
| |
| acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width) |
| { |
| u32 dummy; |
| |
| if (!value) |
| value = &dummy; |
| |
| *value = 0; |
| if (width <= 8) { |
| *(u8 *) value = inb(port); |
| } else if (width <= 16) { |
| *(u16 *) value = inw(port); |
| } else if (width <= 32) { |
| *(u32 *) value = inl(port); |
| } else { |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| EXPORT_SYMBOL(acpi_os_read_port); |
| |
| acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) |
| { |
| if (width <= 8) { |
| outb(value, port); |
| } else if (width <= 16) { |
| outw(value, port); |
| } else if (width <= 32) { |
| outl(value, port); |
| } else { |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| |
| EXPORT_SYMBOL(acpi_os_write_port); |
| |
| int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width) |
| { |
| |
| switch (width) { |
| case 8: |
| *(u8 *) value = readb(virt_addr); |
| break; |
| case 16: |
| *(u16 *) value = readw(virt_addr); |
| break; |
| case 32: |
| *(u32 *) value = readl(virt_addr); |
| break; |
| case 64: |
| *(u64 *) value = readq(virt_addr); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| acpi_status |
| acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) |
| { |
| void __iomem *virt_addr; |
| unsigned int size = width / 8; |
| bool unmap = false; |
| u64 dummy; |
| int error; |
| |
| rcu_read_lock(); |
| virt_addr = acpi_map_vaddr_lookup(phys_addr, size); |
| if (!virt_addr) { |
| rcu_read_unlock(); |
| virt_addr = acpi_os_ioremap(phys_addr, size); |
| if (!virt_addr) |
| return AE_BAD_ADDRESS; |
| unmap = true; |
| } |
| |
| if (!value) |
| value = &dummy; |
| |
| error = acpi_os_read_iomem(virt_addr, value, width); |
| BUG_ON(error); |
| |
| if (unmap) |
| iounmap(virt_addr); |
| else |
| rcu_read_unlock(); |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) |
| { |
| void __iomem *virt_addr; |
| unsigned int size = width / 8; |
| bool unmap = false; |
| |
| rcu_read_lock(); |
| virt_addr = acpi_map_vaddr_lookup(phys_addr, size); |
| if (!virt_addr) { |
| rcu_read_unlock(); |
| virt_addr = acpi_os_ioremap(phys_addr, size); |
| if (!virt_addr) |
| return AE_BAD_ADDRESS; |
| unmap = true; |
| } |
| |
| switch (width) { |
| case 8: |
| writeb(value, virt_addr); |
| break; |
| case 16: |
| writew(value, virt_addr); |
| break; |
| case 32: |
| writel(value, virt_addr); |
| break; |
| case 64: |
| writeq(value, virt_addr); |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (unmap) |
| iounmap(virt_addr); |
| else |
| rcu_read_unlock(); |
| |
| return AE_OK; |
| } |
| |
| #ifdef CONFIG_PCI |
| acpi_status |
| acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, |
| u64 *value, u32 width) |
| { |
| int result, size; |
| u32 value32; |
| |
| if (!value) |
| return AE_BAD_PARAMETER; |
| |
| switch (width) { |
| case 8: |
| size = 1; |
| break; |
| case 16: |
| size = 2; |
| break; |
| case 32: |
| size = 4; |
| break; |
| default: |
| return AE_ERROR; |
| } |
| |
| result = raw_pci_read(pci_id->segment, pci_id->bus, |
| PCI_DEVFN(pci_id->device, pci_id->function), |
| reg, size, &value32); |
| *value = value32; |
| |
| return (result ? AE_ERROR : AE_OK); |
| } |
| |
| acpi_status |
| acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, |
| u64 value, u32 width) |
| { |
| int result, size; |
| |
| switch (width) { |
| case 8: |
| size = 1; |
| break; |
| case 16: |
| size = 2; |
| break; |
| case 32: |
| size = 4; |
| break; |
| default: |
| return AE_ERROR; |
| } |
| |
| result = raw_pci_write(pci_id->segment, pci_id->bus, |
| PCI_DEVFN(pci_id->device, pci_id->function), |
| reg, size, value); |
| |
| return (result ? AE_ERROR : AE_OK); |
| } |
| #endif |
| |
| static void acpi_os_execute_deferred(struct work_struct *work) |
| { |
| struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); |
| |
| dpc->function(dpc->context); |
| kfree(dpc); |
| } |
| |
| #ifdef CONFIG_ACPI_DEBUGGER |
| static struct acpi_debugger acpi_debugger; |
| static bool acpi_debugger_initialized; |
| |
| int acpi_register_debugger(struct module *owner, |
| const struct acpi_debugger_ops *ops) |
| { |
| int ret = 0; |
| |
| mutex_lock(&acpi_debugger.lock); |
| if (acpi_debugger.ops) { |
| ret = -EBUSY; |
| goto err_lock; |
| } |
| |
| acpi_debugger.owner = owner; |
| acpi_debugger.ops = ops; |
| |
| err_lock: |
| mutex_unlock(&acpi_debugger.lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(acpi_register_debugger); |
| |
| void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) |
| { |
| mutex_lock(&acpi_debugger.lock); |
| if (ops == acpi_debugger.ops) { |
| acpi_debugger.ops = NULL; |
| acpi_debugger.owner = NULL; |
| } |
| mutex_unlock(&acpi_debugger.lock); |
| } |
| EXPORT_SYMBOL(acpi_unregister_debugger); |
| |
| int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) |
| { |
| int ret; |
| int (*func)(acpi_osd_exec_callback, void *); |
| struct module *owner; |
| |
| if (!acpi_debugger_initialized) |
| return -ENODEV; |
| mutex_lock(&acpi_debugger.lock); |
| if (!acpi_debugger.ops) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| if (!try_module_get(acpi_debugger.owner)) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| func = acpi_debugger.ops->create_thread; |
| owner = acpi_debugger.owner; |
| mutex_unlock(&acpi_debugger.lock); |
| |
| ret = func(function, context); |
| |
| mutex_lock(&acpi_debugger.lock); |
| module_put(owner); |
| err_lock: |
| mutex_unlock(&acpi_debugger.lock); |
| return ret; |
| } |
| |
| ssize_t acpi_debugger_write_log(const char *msg) |
| { |
| ssize_t ret; |
| ssize_t (*func)(const char *); |
| struct module *owner; |
| |
| if (!acpi_debugger_initialized) |
| return -ENODEV; |
| mutex_lock(&acpi_debugger.lock); |
| if (!acpi_debugger.ops) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| if (!try_module_get(acpi_debugger.owner)) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| func = acpi_debugger.ops->write_log; |
| owner = acpi_debugger.owner; |
| mutex_unlock(&acpi_debugger.lock); |
| |
| ret = func(msg); |
| |
| mutex_lock(&acpi_debugger.lock); |
| module_put(owner); |
| err_lock: |
| mutex_unlock(&acpi_debugger.lock); |
| return ret; |
| } |
| |
| ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length) |
| { |
| ssize_t ret; |
| ssize_t (*func)(char *, size_t); |
| struct module *owner; |
| |
| if (!acpi_debugger_initialized) |
| return -ENODEV; |
| mutex_lock(&acpi_debugger.lock); |
| if (!acpi_debugger.ops) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| if (!try_module_get(acpi_debugger.owner)) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| func = acpi_debugger.ops->read_cmd; |
| owner = acpi_debugger.owner; |
| mutex_unlock(&acpi_debugger.lock); |
| |
| ret = func(buffer, buffer_length); |
| |
| mutex_lock(&acpi_debugger.lock); |
| module_put(owner); |
| err_lock: |
| mutex_unlock(&acpi_debugger.lock); |
| return ret; |
| } |
| |
| int acpi_debugger_wait_command_ready(void) |
| { |
| int ret; |
| int (*func)(bool, char *, size_t); |
| struct module *owner; |
| |
| if (!acpi_debugger_initialized) |
| return -ENODEV; |
| mutex_lock(&acpi_debugger.lock); |
| if (!acpi_debugger.ops) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| if (!try_module_get(acpi_debugger.owner)) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| func = acpi_debugger.ops->wait_command_ready; |
| owner = acpi_debugger.owner; |
| mutex_unlock(&acpi_debugger.lock); |
| |
| ret = func(acpi_gbl_method_executing, |
| acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE); |
| |
| mutex_lock(&acpi_debugger.lock); |
| module_put(owner); |
| err_lock: |
| mutex_unlock(&acpi_debugger.lock); |
| return ret; |
| } |
| |
| int acpi_debugger_notify_command_complete(void) |
| { |
| int ret; |
| int (*func)(void); |
| struct module *owner; |
| |
| if (!acpi_debugger_initialized) |
| return -ENODEV; |
| mutex_lock(&acpi_debugger.lock); |
| if (!acpi_debugger.ops) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| if (!try_module_get(acpi_debugger.owner)) { |
| ret = -ENODEV; |
| goto err_lock; |
| } |
| func = acpi_debugger.ops->notify_command_complete; |
| owner = acpi_debugger.owner; |
| mutex_unlock(&acpi_debugger.lock); |
| |
| ret = func(); |
| |
| mutex_lock(&acpi_debugger.lock); |
| module_put(owner); |
| err_lock: |
| mutex_unlock(&acpi_debugger.lock); |
| return ret; |
| } |
| |
| int __init acpi_debugger_init(void) |
| { |
| mutex_init(&acpi_debugger.lock); |
| acpi_debugger_initialized = true; |
| return 0; |
| } |
| #endif |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_os_execute |
| * |
| * PARAMETERS: Type - Type of the callback |
| * Function - Function to be executed |
| * Context - Function parameters |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Depending on type, either queues function for deferred execution or |
| * immediately executes function on a separate thread. |
| * |
| ******************************************************************************/ |
| |
| acpi_status acpi_os_execute(acpi_execute_type type, |
| acpi_osd_exec_callback function, void *context) |
| { |
| acpi_status status = AE_OK; |
| struct acpi_os_dpc *dpc; |
| struct workqueue_struct *queue; |
| int ret; |
| ACPI_DEBUG_PRINT((ACPI_DB_EXEC, |
| "Scheduling function [%p(%p)] for deferred execution.\n", |
| function, context)); |
| |
| if (type == OSL_DEBUGGER_MAIN_THREAD) { |
| ret = acpi_debugger_create_thread(function, context); |
| if (ret) { |
| pr_err("Kernel thread creation failed\n"); |
| status = AE_ERROR; |
| } |
| goto out_thread; |
| } |
| |
| /* |
| * Allocate/initialize DPC structure. Note that this memory will be |
| * freed by the callee. The kernel handles the work_struct list in a |
| * way that allows us to also free its memory inside the callee. |
| * Because we may want to schedule several tasks with different |
| * parameters we can't use the approach some kernel code uses of |
| * having a static work_struct. |
| */ |
| |
| dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); |
| if (!dpc) |
| return AE_NO_MEMORY; |
| |
| dpc->function = function; |
| dpc->context = context; |
| |
| /* |
| * To prevent lockdep from complaining unnecessarily, make sure that |
| * there is a different static lockdep key for each workqueue by using |
| * INIT_WORK() for each of them separately. |
| */ |
| if (type == OSL_NOTIFY_HANDLER) { |
| queue = kacpi_notify_wq; |
| INIT_WORK(&dpc->work, acpi_os_execute_deferred); |
| } else if (type == OSL_GPE_HANDLER) { |
| queue = kacpid_wq; |
| INIT_WORK(&dpc->work, acpi_os_execute_deferred); |
| } else { |
| pr_err("Unsupported os_execute type %d.\n", type); |
| status = AE_ERROR; |
| } |
| |
| if (ACPI_FAILURE(status)) |
| goto err_workqueue; |
| |
| /* |
| * On some machines, a software-initiated SMI causes corruption unless |
| * the SMI runs on CPU 0. An SMI can be initiated by any AML, but |
| * typically it's done in GPE-related methods that are run via |
| * workqueues, so we can avoid the known corruption cases by always |
| * queueing on CPU 0. |
| */ |
| ret = queue_work_on(0, queue, &dpc->work); |
| if (!ret) { |
| pr_err("Unable to queue work\n"); |
| status = AE_ERROR; |
| } |
| err_workqueue: |
| if (ACPI_FAILURE(status)) |
| kfree(dpc); |
| out_thread: |
| return status; |
| } |
| EXPORT_SYMBOL(acpi_os_execute); |
| |
| void acpi_os_wait_events_complete(void) |
| { |
| /* |
| * Make sure the GPE handler or the fixed event handler is not used |
| * on another CPU after removal. |
| */ |
| if (acpi_sci_irq_valid()) |
| synchronize_hardirq(acpi_sci_irq); |
| flush_workqueue(kacpid_wq); |
| flush_workqueue(kacpi_notify_wq); |
| } |
| EXPORT_SYMBOL(acpi_os_wait_events_complete); |
| |
| struct acpi_hp_work { |
| struct work_struct work; |
| struct acpi_device *adev; |
| u32 src; |
| }; |
| |
| static void acpi_hotplug_work_fn(struct work_struct *work) |
| { |
| struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); |
| |
| acpi_os_wait_events_complete(); |
| acpi_device_hotplug(hpw->adev, hpw->src); |
| kfree(hpw); |
| } |
| |
| acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) |
| { |
| struct acpi_hp_work *hpw; |
| |
| acpi_handle_debug(adev->handle, |
| "Scheduling hotplug event %u for deferred handling\n", |
| src); |
| |
| hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); |
| if (!hpw) |
| return AE_NO_MEMORY; |
| |
| INIT_WORK(&hpw->work, acpi_hotplug_work_fn); |
| hpw->adev = adev; |
| hpw->src = src; |
| /* |
| * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because |
| * the hotplug code may call driver .remove() functions, which may |
| * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush |
| * these workqueues. |
| */ |
| if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { |
| kfree(hpw); |
| return AE_ERROR; |
| } |
| return AE_OK; |
| } |
| |
| bool acpi_queue_hotplug_work(struct work_struct *work) |
| { |
| return queue_work(kacpi_hotplug_wq, work); |
| } |
| |
| acpi_status |
| acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle) |
| { |
| struct semaphore *sem = NULL; |
| |
| sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); |
| if (!sem) |
| return AE_NO_MEMORY; |
| |
| sema_init(sem, initial_units); |
| |
| *handle = (acpi_handle *) sem; |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", |
| *handle, initial_units)); |
| |
| return AE_OK; |
| } |
| |
| /* |
| * TODO: A better way to delete semaphores? Linux doesn't have a |
| * 'delete_semaphore()' function -- may result in an invalid |
| * pointer dereference for non-synchronized consumers. Should |
| * we at least check for blocked threads and signal/cancel them? |
| */ |
| |
| acpi_status acpi_os_delete_semaphore(acpi_handle handle) |
| { |
| struct semaphore *sem = (struct semaphore *)handle; |
| |
| if (!sem) |
| return AE_BAD_PARAMETER; |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); |
| |
| BUG_ON(!list_empty(&sem->wait_list)); |
| kfree(sem); |
| sem = NULL; |
| |
| return AE_OK; |
| } |
| |
| /* |
| * TODO: Support for units > 1? |
| */ |
| acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) |
| { |
| acpi_status status = AE_OK; |
| struct semaphore *sem = (struct semaphore *)handle; |
| long jiffies; |
| int ret = 0; |
| |
| if (!acpi_os_initialized) |
| return AE_OK; |
| |
| if (!sem || (units < 1)) |
| return AE_BAD_PARAMETER; |
| |
| if (units > 1) |
| return AE_SUPPORT; |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", |
| handle, units, timeout)); |
| |
| if (timeout == ACPI_WAIT_FOREVER) |
| jiffies = MAX_SCHEDULE_TIMEOUT; |
| else |
| jiffies = msecs_to_jiffies(timeout); |
| |
| ret = down_timeout(sem, jiffies); |
| if (ret) |
| status = AE_TIME; |
| |
| if (ACPI_FAILURE(status)) { |
| ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, |
| "Failed to acquire semaphore[%p|%d|%d], %s", |
| handle, units, timeout, |
| acpi_format_exception(status))); |
| } else { |
| ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, |
| "Acquired semaphore[%p|%d|%d]", handle, |
| units, timeout)); |
| } |
| |
| return status; |
| } |
| |
| /* |
| * TODO: Support for units > 1? |
| */ |
| acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) |
| { |
| struct semaphore *sem = (struct semaphore *)handle; |
| |
| if (!acpi_os_initialized) |
| return AE_OK; |
| |
| if (!sem || (units < 1)) |
| return AE_BAD_PARAMETER; |
| |
| if (units > 1) |
| return AE_SUPPORT; |
| |
| ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, |
| units)); |
| |
| up(sem); |
| |
| return AE_OK; |
| } |
| |
| acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read) |
| { |
| #ifdef ENABLE_DEBUGGER |
| if (acpi_in_debugger) { |
| u32 chars; |
| |
| kdb_read(buffer, buffer_length); |
| |
| /* remove the CR kdb includes */ |
| chars = strlen(buffer) - 1; |
| buffer[chars] = '\0'; |
| } |
| #else |
| int ret; |
| |
| ret = acpi_debugger_read_cmd(buffer, buffer_length); |
| if (ret < 0) |
| return AE_ERROR; |
| if (bytes_read) |
| *bytes_read = ret; |
| #endif |
| |
| return AE_OK; |
| } |
| EXPORT_SYMBOL(acpi_os_get_line); |
| |
| acpi_status acpi_os_wait_command_ready(void) |
| { |
| int ret; |
| |
| ret = acpi_debugger_wait_command_ready(); |
| if (ret < 0) |
| return AE_ERROR; |
| return AE_OK; |
| } |
| |
| acpi_status acpi_os_notify_command_complete(void) |
| { |
| int ret; |
| |
| ret = acpi_debugger_notify_command_complete(); |
| if (ret < 0) |
| return AE_ERROR; |
| return AE_OK; |
| } |
| |
| acpi_status acpi_os_signal(u32 function, void *info) |
| { |
| switch (function) { |
| case ACPI_SIGNAL_FATAL: |
| pr_err("Fatal opcode executed\n"); |
| break; |
| case ACPI_SIGNAL_BREAKPOINT: |
| /* |
| * AML Breakpoint |
| * ACPI spec. says to treat it as a NOP unless |
| * you are debugging. So if/when we integrate |
| * AML debugger into the kernel debugger its |
| * hook will go here. But until then it is |
| * not useful to print anything on breakpoints. |
| */ |
| break; |
| default: |
| break; |
| } |
| |
| return AE_OK; |
| } |
| |
| static int __init acpi_os_name_setup(char *str) |
| { |
| char *p = acpi_os_name; |
| int count = ACPI_MAX_OVERRIDE_LEN - 1; |
| |
| if (!str || !*str) |
| return 0; |
| |
| for (; count-- && *str; str++) { |
| if (isalnum(*str) || *str == ' ' || *str == ':') |
| *p++ = *str; |
| else if (*str == '\'' || *str == '"') |
| continue; |
| else |
| break; |
| } |
| *p = 0; |
| |
| return 1; |
| |
| } |
| |
| __setup("acpi_os_name=", acpi_os_name_setup); |
| |
| /* |
| * Disable the auto-serialization of named objects creation methods. |
| * |
| * This feature is enabled by default. It marks the AML control methods |
| * that contain the opcodes to create named objects as "Serialized". |
| */ |
| static int __init acpi_no_auto_serialize_setup(char *str) |
| { |
| acpi_gbl_auto_serialize_methods = FALSE; |
| pr_info("Auto-serialization disabled\n"); |
| |
| return 1; |
| } |
| |
| __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); |
| |
| /* Check of resource interference between native drivers and ACPI |
| * OperationRegions (SystemIO and System Memory only). |
| * IO ports and memory declared in ACPI might be used by the ACPI subsystem |
| * in arbitrary AML code and can interfere with legacy drivers. |
| * acpi_enforce_resources= can be set to: |
| * |
| * - strict (default) (2) |
| * -> further driver trying to access the resources will not load |
| * - lax (1) |
| * -> further driver trying to access the resources will load, but you |
| * get a system message that something might go wrong... |
| * |
| * - no (0) |
| * -> ACPI Operation Region resources will not be registered |
| * |
| */ |
| #define ENFORCE_RESOURCES_STRICT 2 |
| #define ENFORCE_RESOURCES_LAX 1 |
| #define ENFORCE_RESOURCES_NO 0 |
| |
| static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; |
| |
| static int __init acpi_enforce_resources_setup(char *str) |
| { |
| if (str == NULL || *str == '\0') |
| return 0; |
| |
| if (!strcmp("strict", str)) |
| acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; |
| else if (!strcmp("lax", str)) |
| acpi_enforce_resources = ENFORCE_RESOURCES_LAX; |
| else if (!strcmp("no", str)) |
| acpi_enforce_resources = ENFORCE_RESOURCES_NO; |
| |
| return 1; |
| } |
| |
| __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); |
| |
| /* Check for resource conflicts between ACPI OperationRegions and native |
| * drivers */ |
| int acpi_check_resource_conflict(const struct resource *res) |
| { |
| acpi_adr_space_type space_id; |
| |
| if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) |
| return 0; |
| |
| if (res->flags & IORESOURCE_IO) |
| space_id = ACPI_ADR_SPACE_SYSTEM_IO; |
| else if (res->flags & IORESOURCE_MEM) |
| space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; |
| else |
| return 0; |
| |
| if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1)) |
| return 0; |
| |
| pr_info("Resource conflict; ACPI support missing from driver?\n"); |
| |
| if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) |
| return -EBUSY; |
| |
| if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) |
| pr_notice("Resource conflict: System may be unstable or behave erratically\n"); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(acpi_check_resource_conflict); |
| |
| int acpi_check_region(resource_size_t start, resource_size_t n, |
| const char *name) |
| { |
| struct resource res = DEFINE_RES_IO_NAMED(start, n, name); |
| |
| return acpi_check_resource_conflict(&res); |
| } |
| EXPORT_SYMBOL(acpi_check_region); |
| |
| static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level, |
| void *_res, void **return_value) |
| { |
| struct acpi_mem_space_context **mem_ctx; |
| union acpi_operand_object *handler_obj; |
| union acpi_operand_object *region_obj2; |
| union acpi_operand_object *region_obj; |
| struct resource *res = _res; |
| acpi_status status; |
| |
| region_obj = acpi_ns_get_attached_object(handle); |
| if (!region_obj) |
| return AE_OK; |
| |
| handler_obj = region_obj->region.handler; |
| if (!handler_obj) |
| return AE_OK; |
| |
| if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| return AE_OK; |
| |
| if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE)) |
| return AE_OK; |
| |
| region_obj2 = acpi_ns_get_secondary_object(region_obj); |
| if (!region_obj2) |
| return AE_OK; |
| |
| mem_ctx = (void *)®ion_obj2->extra.region_context; |
| |
| if (!(mem_ctx[0]->address >= res->start && |
| mem_ctx[0]->address < res->end)) |
| return AE_OK; |
| |
| status = handler_obj->address_space.setup(region_obj, |
| ACPI_REGION_DEACTIVATE, |
| NULL, (void **)mem_ctx); |
| if (ACPI_SUCCESS(status)) |
| region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE); |
| |
| return status; |
| } |
| |
| /** |
| * acpi_release_memory - Release any mappings done to a memory region |
| * @handle: Handle to namespace node |
| * @res: Memory resource |
| * @level: A level that terminates the search |
| * |
| * Walks through @handle and unmaps all SystemMemory Operation Regions that |
| * overlap with @res and that have already been activated (mapped). |
| * |
| * This is a helper that allows drivers to place special requirements on memory |
| * region that may overlap with operation regions, primarily allowing them to |
| * safely map the region as non-cached memory. |
| * |
| * The unmapped Operation Regions will be automatically remapped next time they |
| * are called, so the drivers do not need to do anything else. |
| */ |
| acpi_status acpi_release_memory(acpi_handle handle, struct resource *res, |
| u32 level) |
| { |
| acpi_status status; |
| |
| if (!(res->flags & IORESOURCE_MEM)) |
| return AE_TYPE; |
| |
| status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level, |
| acpi_deactivate_mem_region, NULL, |
| res, NULL); |
| if (ACPI_FAILURE(status)) |
| return status; |
| |
| /* |
| * Wait for all of the mappings queued up for removal by |
| * acpi_deactivate_mem_region() to actually go away. |
| */ |
| synchronize_rcu(); |
| rcu_barrier(); |
| flush_scheduled_work(); |
| |
| return AE_OK; |
| } |
| EXPORT_SYMBOL_GPL(acpi_release_memory); |
| |
| /* |
| * Let drivers know whether the resource checks are effective |
| */ |
| int acpi_resources_are_enforced(void) |
| { |
| return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; |
| } |
| EXPORT_SYMBOL(acpi_resources_are_enforced); |
| |
| /* |
| * Deallocate the memory for a spinlock. |
| */ |
| void acpi_os_delete_lock(acpi_spinlock handle) |
| { |
| ACPI_FREE(handle); |
| } |
| |
| /* |
| * Acquire a spinlock. |
| * |
| * handle is a pointer to the spinlock_t. |
| */ |
| |
| acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) |
| __acquires(lockp) |
| { |
| acpi_cpu_flags flags; |
| spin_lock_irqsave(lockp, flags); |
| return flags; |
| } |
| |
| /* |
| * Release a spinlock. See above. |
| */ |
| |
| void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags) |
| __releases(lockp) |
| { |
| spin_unlock_irqrestore(lockp, flags); |
| } |
| |
| #ifndef ACPI_USE_LOCAL_CACHE |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_os_create_cache |
| * |
| * PARAMETERS: name - Ascii name for the cache |
| * size - Size of each cached object |
| * depth - Maximum depth of the cache (in objects) <ignored> |
| * cache - Where the new cache object is returned |
| * |
| * RETURN: status |
| * |
| * DESCRIPTION: Create a cache object |
| * |
| ******************************************************************************/ |
| |
| acpi_status |
| acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache) |
| { |
| *cache = kmem_cache_create(name, size, 0, 0, NULL); |
| if (*cache == NULL) |
| return AE_ERROR; |
| else |
| return AE_OK; |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_os_purge_cache |
| * |
| * PARAMETERS: Cache - Handle to cache object |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Free all objects within the requested cache. |
| * |
| ******************************************************************************/ |
| |
| acpi_status acpi_os_purge_cache(acpi_cache_t * cache) |
| { |
| kmem_cache_shrink(cache); |
| return (AE_OK); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_os_delete_cache |
| * |
| * PARAMETERS: Cache - Handle to cache object |
| * |
| * RETURN: Status |
| * |
| * DESCRIPTION: Free all objects within the requested cache and delete the |
| * cache object. |
| * |
| ******************************************************************************/ |
| |
| acpi_status acpi_os_delete_cache(acpi_cache_t * cache) |
| { |
| kmem_cache_destroy(cache); |
| return (AE_OK); |
| } |
| |
| /******************************************************************************* |
| * |
| * FUNCTION: acpi_os_release_object |
| * |
| * PARAMETERS: Cache - Handle to cache object |
| * Object - The object to be released |
| * |
| * RETURN: None |
| * |
| * DESCRIPTION: Release an object to the specified cache. If cache is full, |
| * the object is deleted. |
| * |
| ******************************************************************************/ |
| |
| acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object) |
| { |
| kmem_cache_free(cache, object); |
| return (AE_OK); |
| } |
| #endif |
| |
| static int __init acpi_no_static_ssdt_setup(char *s) |
| { |
| acpi_gbl_disable_ssdt_table_install = TRUE; |
| pr_info("Static SSDT installation disabled\n"); |
| |
| return 0; |
| } |
| |
| early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); |
| |
| static int __init acpi_disable_return_repair(char *s) |
| { |
| pr_notice("Predefined validation mechanism disabled\n"); |
| acpi_gbl_disable_auto_repair = TRUE; |
| |
| return 1; |
| } |
| |
| __setup("acpica_no_return_repair", acpi_disable_return_repair); |
| |
| acpi_status __init acpi_os_initialize(void) |
| { |
| acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); |
| acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); |
| |
| acpi_gbl_xgpe0_block_logical_address = |
| (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); |
| acpi_gbl_xgpe1_block_logical_address = |
| (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); |
| |
| if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { |
| /* |
| * Use acpi_os_map_generic_address to pre-map the reset |
| * register if it's in system memory. |
| */ |
| void *rv; |
| |
| rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); |
| pr_debug("%s: Reset register mapping %s\n", __func__, |
| rv ? "successful" : "failed"); |
| } |
| acpi_os_initialized = true; |
| |
| return AE_OK; |
| } |
| |
| acpi_status __init acpi_os_initialize1(void) |
| { |
| kacpid_wq = alloc_workqueue("kacpid", 0, 1); |
| kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1); |
| kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); |
| BUG_ON(!kacpid_wq); |
| BUG_ON(!kacpi_notify_wq); |
| BUG_ON(!kacpi_hotplug_wq); |
| acpi_osi_init(); |
| return AE_OK; |
| } |
| |
| acpi_status acpi_os_terminate(void) |
| { |
| if (acpi_irq_handler) { |
| acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, |
| acpi_irq_handler); |
| } |
| |
| acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); |
| acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); |
| acpi_gbl_xgpe0_block_logical_address = 0UL; |
| acpi_gbl_xgpe1_block_logical_address = 0UL; |
| |
| acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); |
| acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); |
| |
| if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) |
| acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); |
| |
| destroy_workqueue(kacpid_wq); |
| destroy_workqueue(kacpi_notify_wq); |
| destroy_workqueue(kacpi_hotplug_wq); |
| |
| return AE_OK; |
| } |
| |
| acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, |
| u32 pm1b_control) |
| { |
| int rc = 0; |
| if (__acpi_os_prepare_sleep) |
| rc = __acpi_os_prepare_sleep(sleep_state, |
| pm1a_control, pm1b_control); |
| if (rc < 0) |
| return AE_ERROR; |
| else if (rc > 0) |
| return AE_CTRL_TERMINATE; |
| |
| return AE_OK; |
| } |
| |
| void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, |
| u32 pm1a_ctrl, u32 pm1b_ctrl)) |
| { |
| __acpi_os_prepare_sleep = func; |
| } |
| |
| #if (ACPI_REDUCED_HARDWARE) |
| acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, |
| u32 val_b) |
| { |
| int rc = 0; |
| if (__acpi_os_prepare_extended_sleep) |
| rc = __acpi_os_prepare_extended_sleep(sleep_state, |
| val_a, val_b); |
| if (rc < 0) |
| return AE_ERROR; |
| else if (rc > 0) |
| return AE_CTRL_TERMINATE; |
| |
| return AE_OK; |
| } |
| #else |
| acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, |
| u32 val_b) |
| { |
| return AE_OK; |
| } |
| #endif |
| |
| void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, |
| u32 val_a, u32 val_b)) |
| { |
| __acpi_os_prepare_extended_sleep = func; |
| } |
| |
| acpi_status acpi_os_enter_sleep(u8 sleep_state, |
| u32 reg_a_value, u32 reg_b_value) |
| { |
| acpi_status status; |
| |
| if (acpi_gbl_reduced_hardware) |
| status = acpi_os_prepare_extended_sleep(sleep_state, |
| reg_a_value, |
| reg_b_value); |
| else |
| status = acpi_os_prepare_sleep(sleep_state, |
| reg_a_value, reg_b_value); |
| return status; |
| } |