| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/acpi_iort.h> |
| #include <linux/bitfield.h> |
| #include <linux/bitmap.h> |
| #include <linux/cpu.h> |
| #include <linux/crash_dump.h> |
| #include <linux/delay.h> |
| #include <linux/dma-iommu.h> |
| #include <linux/efi.h> |
| #include <linux/interrupt.h> |
| #include <linux/irqdomain.h> |
| #include <linux/list.h> |
| #include <linux/log2.h> |
| #include <linux/memblock.h> |
| #include <linux/mm.h> |
| #include <linux/msi.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_pci.h> |
| #include <linux/of_platform.h> |
| #include <linux/percpu.h> |
| #include <linux/slab.h> |
| #include <linux/syscore_ops.h> |
| |
| #include <linux/irqchip.h> |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/irqchip/arm-gic-v4.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/exception.h> |
| |
| #include "irq-gic-common.h" |
| |
| #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) |
| #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) |
| #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) |
| #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3) |
| |
| #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) |
| #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) |
| |
| static u32 lpi_id_bits; |
| |
| /* |
| * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to |
| * deal with (one configuration byte per interrupt). PENDBASE has to |
| * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). |
| */ |
| #define LPI_NRBITS lpi_id_bits |
| #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) |
| #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) |
| |
| #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI |
| |
| /* |
| * Collection structure - just an ID, and a redistributor address to |
| * ping. We use one per CPU as a bag of interrupts assigned to this |
| * CPU. |
| */ |
| struct its_collection { |
| u64 target_address; |
| u16 col_id; |
| }; |
| |
| /* |
| * The ITS_BASER structure - contains memory information, cached |
| * value of BASER register configuration and ITS page size. |
| */ |
| struct its_baser { |
| void *base; |
| u64 val; |
| u32 order; |
| u32 psz; |
| }; |
| |
| struct its_device; |
| |
| /* |
| * The ITS structure - contains most of the infrastructure, with the |
| * top-level MSI domain, the command queue, the collections, and the |
| * list of devices writing to it. |
| * |
| * dev_alloc_lock has to be taken for device allocations, while the |
| * spinlock must be taken to parse data structures such as the device |
| * list. |
| */ |
| struct its_node { |
| raw_spinlock_t lock; |
| struct mutex dev_alloc_lock; |
| struct list_head entry; |
| void __iomem *base; |
| phys_addr_t phys_base; |
| struct its_cmd_block *cmd_base; |
| struct its_cmd_block *cmd_write; |
| struct its_baser tables[GITS_BASER_NR_REGS]; |
| struct its_collection *collections; |
| struct fwnode_handle *fwnode_handle; |
| u64 (*get_msi_base)(struct its_device *its_dev); |
| u64 typer; |
| u64 cbaser_save; |
| u32 ctlr_save; |
| u32 mpidr; |
| struct list_head its_device_list; |
| u64 flags; |
| unsigned long list_nr; |
| int numa_node; |
| unsigned int msi_domain_flags; |
| u32 pre_its_base; /* for Socionext Synquacer */ |
| int vlpi_redist_offset; |
| }; |
| |
| #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) |
| #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) |
| #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) |
| |
| #define ITS_ITT_ALIGN SZ_256 |
| |
| /* The maximum number of VPEID bits supported by VLPI commands */ |
| #define ITS_MAX_VPEID_BITS \ |
| ({ \ |
| int nvpeid = 16; \ |
| if (gic_rdists->has_rvpeid && \ |
| gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ |
| nvpeid = 1 + (gic_rdists->gicd_typer2 & \ |
| GICD_TYPER2_VID); \ |
| \ |
| nvpeid; \ |
| }) |
| #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) |
| |
| /* Convert page order to size in bytes */ |
| #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) |
| |
| struct event_lpi_map { |
| unsigned long *lpi_map; |
| u16 *col_map; |
| irq_hw_number_t lpi_base; |
| int nr_lpis; |
| raw_spinlock_t vlpi_lock; |
| struct its_vm *vm; |
| struct its_vlpi_map *vlpi_maps; |
| int nr_vlpis; |
| }; |
| |
| /* |
| * The ITS view of a device - belongs to an ITS, owns an interrupt |
| * translation table, and a list of interrupts. If it some of its |
| * LPIs are injected into a guest (GICv4), the event_map.vm field |
| * indicates which one. |
| */ |
| struct its_device { |
| struct list_head entry; |
| struct its_node *its; |
| struct event_lpi_map event_map; |
| void *itt; |
| u32 nr_ites; |
| u32 device_id; |
| bool shared; |
| }; |
| |
| static struct { |
| raw_spinlock_t lock; |
| struct its_device *dev; |
| struct its_vpe **vpes; |
| int next_victim; |
| } vpe_proxy; |
| |
| static LIST_HEAD(its_nodes); |
| static DEFINE_RAW_SPINLOCK(its_lock); |
| static struct rdists *gic_rdists; |
| static struct irq_domain *its_parent; |
| |
| static unsigned long its_list_map; |
| static u16 vmovp_seq_num; |
| static DEFINE_RAW_SPINLOCK(vmovp_lock); |
| |
| static DEFINE_IDA(its_vpeid_ida); |
| |
| #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) |
| #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) |
| #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) |
| #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) |
| |
| static u16 get_its_list(struct its_vm *vm) |
| { |
| struct its_node *its; |
| unsigned long its_list = 0; |
| |
| list_for_each_entry(its, &its_nodes, entry) { |
| if (!is_v4(its)) |
| continue; |
| |
| if (vm->vlpi_count[its->list_nr]) |
| __set_bit(its->list_nr, &its_list); |
| } |
| |
| return (u16)its_list; |
| } |
| |
| static inline u32 its_get_event_id(struct irq_data *d) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| return d->hwirq - its_dev->event_map.lpi_base; |
| } |
| |
| static struct its_collection *dev_event_to_col(struct its_device *its_dev, |
| u32 event) |
| { |
| struct its_node *its = its_dev->its; |
| |
| return its->collections + its_dev->event_map.col_map[event]; |
| } |
| |
| static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, |
| u32 event) |
| { |
| if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) |
| return NULL; |
| |
| return &its_dev->event_map.vlpi_maps[event]; |
| } |
| |
| static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) |
| { |
| if (irqd_is_forwarded_to_vcpu(d)) { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| u32 event = its_get_event_id(d); |
| |
| return dev_event_to_vlpi_map(its_dev, event); |
| } |
| |
| return NULL; |
| } |
| |
| static int irq_to_cpuid(struct irq_data *d) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| struct its_vlpi_map *map = get_vlpi_map(d); |
| |
| if (map) |
| return map->vpe->col_idx; |
| |
| return its_dev->event_map.col_map[its_get_event_id(d)]; |
| } |
| |
| static struct its_collection *valid_col(struct its_collection *col) |
| { |
| if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) |
| return NULL; |
| |
| return col; |
| } |
| |
| static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) |
| { |
| if (valid_col(its->collections + vpe->col_idx)) |
| return vpe; |
| |
| return NULL; |
| } |
| |
| /* |
| * ITS command descriptors - parameters to be encoded in a command |
| * block. |
| */ |
| struct its_cmd_desc { |
| union { |
| struct { |
| struct its_device *dev; |
| u32 event_id; |
| } its_inv_cmd; |
| |
| struct { |
| struct its_device *dev; |
| u32 event_id; |
| } its_clear_cmd; |
| |
| struct { |
| struct its_device *dev; |
| u32 event_id; |
| } its_int_cmd; |
| |
| struct { |
| struct its_device *dev; |
| int valid; |
| } its_mapd_cmd; |
| |
| struct { |
| struct its_collection *col; |
| int valid; |
| } its_mapc_cmd; |
| |
| struct { |
| struct its_device *dev; |
| u32 phys_id; |
| u32 event_id; |
| } its_mapti_cmd; |
| |
| struct { |
| struct its_device *dev; |
| struct its_collection *col; |
| u32 event_id; |
| } its_movi_cmd; |
| |
| struct { |
| struct its_device *dev; |
| u32 event_id; |
| } its_discard_cmd; |
| |
| struct { |
| struct its_collection *col; |
| } its_invall_cmd; |
| |
| struct { |
| struct its_vpe *vpe; |
| } its_vinvall_cmd; |
| |
| struct { |
| struct its_vpe *vpe; |
| struct its_collection *col; |
| bool valid; |
| } its_vmapp_cmd; |
| |
| struct { |
| struct its_vpe *vpe; |
| struct its_device *dev; |
| u32 virt_id; |
| u32 event_id; |
| bool db_enabled; |
| } its_vmapti_cmd; |
| |
| struct { |
| struct its_vpe *vpe; |
| struct its_device *dev; |
| u32 event_id; |
| bool db_enabled; |
| } its_vmovi_cmd; |
| |
| struct { |
| struct its_vpe *vpe; |
| struct its_collection *col; |
| u16 seq_num; |
| u16 its_list; |
| } its_vmovp_cmd; |
| |
| struct { |
| struct its_vpe *vpe; |
| } its_invdb_cmd; |
| }; |
| }; |
| |
| /* |
| * The ITS command block, which is what the ITS actually parses. |
| */ |
| struct its_cmd_block { |
| union { |
| u64 raw_cmd[4]; |
| __le64 raw_cmd_le[4]; |
| }; |
| }; |
| |
| #define ITS_CMD_QUEUE_SZ SZ_64K |
| #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) |
| |
| typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, |
| struct its_cmd_block *, |
| struct its_cmd_desc *); |
| |
| typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, |
| struct its_cmd_block *, |
| struct its_cmd_desc *); |
| |
| static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) |
| { |
| u64 mask = GENMASK_ULL(h, l); |
| *raw_cmd &= ~mask; |
| *raw_cmd |= (val << l) & mask; |
| } |
| |
| static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) |
| { |
| its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); |
| } |
| |
| static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) |
| { |
| its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); |
| } |
| |
| static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) |
| { |
| its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); |
| } |
| |
| static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) |
| { |
| its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); |
| } |
| |
| static void its_encode_size(struct its_cmd_block *cmd, u8 size) |
| { |
| its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); |
| } |
| |
| static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); |
| } |
| |
| static void its_encode_valid(struct its_cmd_block *cmd, int valid) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); |
| } |
| |
| static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); |
| } |
| |
| static void its_encode_collection(struct its_cmd_block *cmd, u16 col) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); |
| } |
| |
| static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) |
| { |
| its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); |
| } |
| |
| static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); |
| } |
| |
| static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); |
| } |
| |
| static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); |
| } |
| |
| static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) |
| { |
| its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); |
| } |
| |
| static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) |
| { |
| its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); |
| } |
| |
| static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) |
| { |
| its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); |
| } |
| |
| static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) |
| { |
| its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); |
| } |
| |
| static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) |
| { |
| its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); |
| } |
| |
| static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) |
| { |
| its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); |
| } |
| |
| static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) |
| { |
| its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); |
| } |
| |
| static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, |
| u32 vpe_db_lpi) |
| { |
| its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); |
| } |
| |
| static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, |
| u32 vpe_db_lpi) |
| { |
| its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); |
| } |
| |
| static void its_encode_db(struct its_cmd_block *cmd, bool db) |
| { |
| its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); |
| } |
| |
| static inline void its_fixup_cmd(struct its_cmd_block *cmd) |
| { |
| /* Let's fixup BE commands */ |
| cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); |
| cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); |
| cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); |
| cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); |
| } |
| |
| static struct its_collection *its_build_mapd_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| unsigned long itt_addr; |
| u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); |
| |
| itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); |
| itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); |
| |
| its_encode_cmd(cmd, GITS_CMD_MAPD); |
| its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); |
| its_encode_size(cmd, size - 1); |
| its_encode_itt(cmd, itt_addr); |
| its_encode_valid(cmd, desc->its_mapd_cmd.valid); |
| |
| its_fixup_cmd(cmd); |
| |
| return NULL; |
| } |
| |
| static struct its_collection *its_build_mapc_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| its_encode_cmd(cmd, GITS_CMD_MAPC); |
| its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); |
| its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); |
| its_encode_valid(cmd, desc->its_mapc_cmd.valid); |
| |
| its_fixup_cmd(cmd); |
| |
| return desc->its_mapc_cmd.col; |
| } |
| |
| static struct its_collection *its_build_mapti_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_collection *col; |
| |
| col = dev_event_to_col(desc->its_mapti_cmd.dev, |
| desc->its_mapti_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_MAPTI); |
| its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); |
| its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); |
| its_encode_collection(cmd, col->col_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_col(col); |
| } |
| |
| static struct its_collection *its_build_movi_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_collection *col; |
| |
| col = dev_event_to_col(desc->its_movi_cmd.dev, |
| desc->its_movi_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_MOVI); |
| its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_movi_cmd.event_id); |
| its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_col(col); |
| } |
| |
| static struct its_collection *its_build_discard_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_collection *col; |
| |
| col = dev_event_to_col(desc->its_discard_cmd.dev, |
| desc->its_discard_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_DISCARD); |
| its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_discard_cmd.event_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_col(col); |
| } |
| |
| static struct its_collection *its_build_inv_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_collection *col; |
| |
| col = dev_event_to_col(desc->its_inv_cmd.dev, |
| desc->its_inv_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_INV); |
| its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_inv_cmd.event_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_col(col); |
| } |
| |
| static struct its_collection *its_build_int_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_collection *col; |
| |
| col = dev_event_to_col(desc->its_int_cmd.dev, |
| desc->its_int_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_INT); |
| its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_int_cmd.event_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_col(col); |
| } |
| |
| static struct its_collection *its_build_clear_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_collection *col; |
| |
| col = dev_event_to_col(desc->its_clear_cmd.dev, |
| desc->its_clear_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_CLEAR); |
| its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_clear_cmd.event_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_col(col); |
| } |
| |
| static struct its_collection *its_build_invall_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| its_encode_cmd(cmd, GITS_CMD_INVALL); |
| its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return NULL; |
| } |
| |
| static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| its_encode_cmd(cmd, GITS_CMD_VINVALL); |
| its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, desc->its_vinvall_cmd.vpe); |
| } |
| |
| static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| unsigned long vpt_addr, vconf_addr; |
| u64 target; |
| bool alloc; |
| |
| its_encode_cmd(cmd, GITS_CMD_VMAPP); |
| its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); |
| its_encode_valid(cmd, desc->its_vmapp_cmd.valid); |
| |
| if (!desc->its_vmapp_cmd.valid) { |
| if (is_v4_1(its)) { |
| alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); |
| its_encode_alloc(cmd, alloc); |
| } |
| |
| goto out; |
| } |
| |
| vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); |
| target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; |
| |
| its_encode_target(cmd, target); |
| its_encode_vpt_addr(cmd, vpt_addr); |
| its_encode_vpt_size(cmd, LPI_NRBITS - 1); |
| |
| if (!is_v4_1(its)) |
| goto out; |
| |
| vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); |
| |
| alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); |
| |
| its_encode_alloc(cmd, alloc); |
| |
| /* We can only signal PTZ when alloc==1. Why do we have two bits? */ |
| its_encode_ptz(cmd, alloc); |
| its_encode_vconf_addr(cmd, vconf_addr); |
| its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); |
| |
| out: |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, desc->its_vmapp_cmd.vpe); |
| } |
| |
| static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| u32 db; |
| |
| if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) |
| db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; |
| else |
| db = 1023; |
| |
| its_encode_cmd(cmd, GITS_CMD_VMAPTI); |
| its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); |
| its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); |
| its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); |
| its_encode_db_phys_id(cmd, db); |
| its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, desc->its_vmapti_cmd.vpe); |
| } |
| |
| static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| u32 db; |
| |
| if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) |
| db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; |
| else |
| db = 1023; |
| |
| its_encode_cmd(cmd, GITS_CMD_VMOVI); |
| its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); |
| its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); |
| its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); |
| its_encode_db_phys_id(cmd, db); |
| its_encode_db_valid(cmd, true); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, desc->its_vmovi_cmd.vpe); |
| } |
| |
| static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| u64 target; |
| |
| target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; |
| its_encode_cmd(cmd, GITS_CMD_VMOVP); |
| its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); |
| its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); |
| its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); |
| its_encode_target(cmd, target); |
| |
| if (is_v4_1(its)) { |
| its_encode_db(cmd, true); |
| its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); |
| } |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, desc->its_vmovp_cmd.vpe); |
| } |
| |
| static struct its_vpe *its_build_vinv_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_vlpi_map *map; |
| |
| map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, |
| desc->its_inv_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_INV); |
| its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_inv_cmd.event_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, map->vpe); |
| } |
| |
| static struct its_vpe *its_build_vint_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_vlpi_map *map; |
| |
| map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, |
| desc->its_int_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_INT); |
| its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_int_cmd.event_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, map->vpe); |
| } |
| |
| static struct its_vpe *its_build_vclear_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| struct its_vlpi_map *map; |
| |
| map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, |
| desc->its_clear_cmd.event_id); |
| |
| its_encode_cmd(cmd, GITS_CMD_CLEAR); |
| its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); |
| its_encode_event_id(cmd, desc->its_clear_cmd.event_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, map->vpe); |
| } |
| |
| static struct its_vpe *its_build_invdb_cmd(struct its_node *its, |
| struct its_cmd_block *cmd, |
| struct its_cmd_desc *desc) |
| { |
| if (WARN_ON(!is_v4_1(its))) |
| return NULL; |
| |
| its_encode_cmd(cmd, GITS_CMD_INVDB); |
| its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); |
| |
| its_fixup_cmd(cmd); |
| |
| return valid_vpe(its, desc->its_invdb_cmd.vpe); |
| } |
| |
| static u64 its_cmd_ptr_to_offset(struct its_node *its, |
| struct its_cmd_block *ptr) |
| { |
| return (ptr - its->cmd_base) * sizeof(*ptr); |
| } |
| |
| static int its_queue_full(struct its_node *its) |
| { |
| int widx; |
| int ridx; |
| |
| widx = its->cmd_write - its->cmd_base; |
| ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); |
| |
| /* This is incredibly unlikely to happen, unless the ITS locks up. */ |
| if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct its_cmd_block *its_allocate_entry(struct its_node *its) |
| { |
| struct its_cmd_block *cmd; |
| u32 count = 1000000; /* 1s! */ |
| |
| while (its_queue_full(its)) { |
| count--; |
| if (!count) { |
| pr_err_ratelimited("ITS queue not draining\n"); |
| return NULL; |
| } |
| cpu_relax(); |
| udelay(1); |
| } |
| |
| cmd = its->cmd_write++; |
| |
| /* Handle queue wrapping */ |
| if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) |
| its->cmd_write = its->cmd_base; |
| |
| /* Clear command */ |
| cmd->raw_cmd[0] = 0; |
| cmd->raw_cmd[1] = 0; |
| cmd->raw_cmd[2] = 0; |
| cmd->raw_cmd[3] = 0; |
| |
| return cmd; |
| } |
| |
| static struct its_cmd_block *its_post_commands(struct its_node *its) |
| { |
| u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); |
| |
| writel_relaxed(wr, its->base + GITS_CWRITER); |
| |
| return its->cmd_write; |
| } |
| |
| static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) |
| { |
| /* |
| * Make sure the commands written to memory are observable by |
| * the ITS. |
| */ |
| if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) |
| gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); |
| else |
| dsb(ishst); |
| } |
| |
| static int its_wait_for_range_completion(struct its_node *its, |
| u64 prev_idx, |
| struct its_cmd_block *to) |
| { |
| u64 rd_idx, to_idx, linear_idx; |
| u32 count = 1000000; /* 1s! */ |
| |
| /* Linearize to_idx if the command set has wrapped around */ |
| to_idx = its_cmd_ptr_to_offset(its, to); |
| if (to_idx < prev_idx) |
| to_idx += ITS_CMD_QUEUE_SZ; |
| |
| linear_idx = prev_idx; |
| |
| while (1) { |
| s64 delta; |
| |
| rd_idx = readl_relaxed(its->base + GITS_CREADR); |
| |
| /* |
| * Compute the read pointer progress, taking the |
| * potential wrap-around into account. |
| */ |
| delta = rd_idx - prev_idx; |
| if (rd_idx < prev_idx) |
| delta += ITS_CMD_QUEUE_SZ; |
| |
| linear_idx += delta; |
| if (linear_idx >= to_idx) |
| break; |
| |
| count--; |
| if (!count) { |
| pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", |
| to_idx, linear_idx); |
| return -1; |
| } |
| prev_idx = rd_idx; |
| cpu_relax(); |
| udelay(1); |
| } |
| |
| return 0; |
| } |
| |
| /* Warning, macro hell follows */ |
| #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ |
| void name(struct its_node *its, \ |
| buildtype builder, \ |
| struct its_cmd_desc *desc) \ |
| { \ |
| struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ |
| synctype *sync_obj; \ |
| unsigned long flags; \ |
| u64 rd_idx; \ |
| \ |
| raw_spin_lock_irqsave(&its->lock, flags); \ |
| \ |
| cmd = its_allocate_entry(its); \ |
| if (!cmd) { /* We're soooooo screewed... */ \ |
| raw_spin_unlock_irqrestore(&its->lock, flags); \ |
| return; \ |
| } \ |
| sync_obj = builder(its, cmd, desc); \ |
| its_flush_cmd(its, cmd); \ |
| \ |
| if (sync_obj) { \ |
| sync_cmd = its_allocate_entry(its); \ |
| if (!sync_cmd) \ |
| goto post; \ |
| \ |
| buildfn(its, sync_cmd, sync_obj); \ |
| its_flush_cmd(its, sync_cmd); \ |
| } \ |
| \ |
| post: \ |
| rd_idx = readl_relaxed(its->base + GITS_CREADR); \ |
| next_cmd = its_post_commands(its); \ |
| raw_spin_unlock_irqrestore(&its->lock, flags); \ |
| \ |
| if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ |
| pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ |
| } |
| |
| static void its_build_sync_cmd(struct its_node *its, |
| struct its_cmd_block *sync_cmd, |
| struct its_collection *sync_col) |
| { |
| its_encode_cmd(sync_cmd, GITS_CMD_SYNC); |
| its_encode_target(sync_cmd, sync_col->target_address); |
| |
| its_fixup_cmd(sync_cmd); |
| } |
| |
| static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, |
| struct its_collection, its_build_sync_cmd) |
| |
| static void its_build_vsync_cmd(struct its_node *its, |
| struct its_cmd_block *sync_cmd, |
| struct its_vpe *sync_vpe) |
| { |
| its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); |
| its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); |
| |
| its_fixup_cmd(sync_cmd); |
| } |
| |
| static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, |
| struct its_vpe, its_build_vsync_cmd) |
| |
| static void its_send_int(struct its_device *dev, u32 event_id) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_int_cmd.dev = dev; |
| desc.its_int_cmd.event_id = event_id; |
| |
| its_send_single_command(dev->its, its_build_int_cmd, &desc); |
| } |
| |
| static void its_send_clear(struct its_device *dev, u32 event_id) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_clear_cmd.dev = dev; |
| desc.its_clear_cmd.event_id = event_id; |
| |
| its_send_single_command(dev->its, its_build_clear_cmd, &desc); |
| } |
| |
| static void its_send_inv(struct its_device *dev, u32 event_id) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_inv_cmd.dev = dev; |
| desc.its_inv_cmd.event_id = event_id; |
| |
| its_send_single_command(dev->its, its_build_inv_cmd, &desc); |
| } |
| |
| static void its_send_mapd(struct its_device *dev, int valid) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_mapd_cmd.dev = dev; |
| desc.its_mapd_cmd.valid = !!valid; |
| |
| its_send_single_command(dev->its, its_build_mapd_cmd, &desc); |
| } |
| |
| static void its_send_mapc(struct its_node *its, struct its_collection *col, |
| int valid) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_mapc_cmd.col = col; |
| desc.its_mapc_cmd.valid = !!valid; |
| |
| its_send_single_command(its, its_build_mapc_cmd, &desc); |
| } |
| |
| static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_mapti_cmd.dev = dev; |
| desc.its_mapti_cmd.phys_id = irq_id; |
| desc.its_mapti_cmd.event_id = id; |
| |
| its_send_single_command(dev->its, its_build_mapti_cmd, &desc); |
| } |
| |
| static void its_send_movi(struct its_device *dev, |
| struct its_collection *col, u32 id) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_movi_cmd.dev = dev; |
| desc.its_movi_cmd.col = col; |
| desc.its_movi_cmd.event_id = id; |
| |
| its_send_single_command(dev->its, its_build_movi_cmd, &desc); |
| } |
| |
| static void its_send_discard(struct its_device *dev, u32 id) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_discard_cmd.dev = dev; |
| desc.its_discard_cmd.event_id = id; |
| |
| its_send_single_command(dev->its, its_build_discard_cmd, &desc); |
| } |
| |
| static void its_send_invall(struct its_node *its, struct its_collection *col) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_invall_cmd.col = col; |
| |
| its_send_single_command(its, its_build_invall_cmd, &desc); |
| } |
| |
| static void its_send_vmapti(struct its_device *dev, u32 id) |
| { |
| struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); |
| struct its_cmd_desc desc; |
| |
| desc.its_vmapti_cmd.vpe = map->vpe; |
| desc.its_vmapti_cmd.dev = dev; |
| desc.its_vmapti_cmd.virt_id = map->vintid; |
| desc.its_vmapti_cmd.event_id = id; |
| desc.its_vmapti_cmd.db_enabled = map->db_enabled; |
| |
| its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); |
| } |
| |
| static void its_send_vmovi(struct its_device *dev, u32 id) |
| { |
| struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); |
| struct its_cmd_desc desc; |
| |
| desc.its_vmovi_cmd.vpe = map->vpe; |
| desc.its_vmovi_cmd.dev = dev; |
| desc.its_vmovi_cmd.event_id = id; |
| desc.its_vmovi_cmd.db_enabled = map->db_enabled; |
| |
| its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); |
| } |
| |
| static void its_send_vmapp(struct its_node *its, |
| struct its_vpe *vpe, bool valid) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_vmapp_cmd.vpe = vpe; |
| desc.its_vmapp_cmd.valid = valid; |
| desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; |
| |
| its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); |
| } |
| |
| static void its_send_vmovp(struct its_vpe *vpe) |
| { |
| struct its_cmd_desc desc = {}; |
| struct its_node *its; |
| unsigned long flags; |
| int col_id = vpe->col_idx; |
| |
| desc.its_vmovp_cmd.vpe = vpe; |
| |
| if (!its_list_map) { |
| its = list_first_entry(&its_nodes, struct its_node, entry); |
| desc.its_vmovp_cmd.col = &its->collections[col_id]; |
| its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); |
| return; |
| } |
| |
| /* |
| * Yet another marvel of the architecture. If using the |
| * its_list "feature", we need to make sure that all ITSs |
| * receive all VMOVP commands in the same order. The only way |
| * to guarantee this is to make vmovp a serialization point. |
| * |
| * Wall <-- Head. |
| */ |
| raw_spin_lock_irqsave(&vmovp_lock, flags); |
| |
| desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; |
| desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); |
| |
| /* Emit VMOVPs */ |
| list_for_each_entry(its, &its_nodes, entry) { |
| if (!is_v4(its)) |
| continue; |
| |
| if (!vpe->its_vm->vlpi_count[its->list_nr]) |
| continue; |
| |
| desc.its_vmovp_cmd.col = &its->collections[col_id]; |
| its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); |
| } |
| |
| raw_spin_unlock_irqrestore(&vmovp_lock, flags); |
| } |
| |
| static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_vinvall_cmd.vpe = vpe; |
| its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); |
| } |
| |
| static void its_send_vinv(struct its_device *dev, u32 event_id) |
| { |
| struct its_cmd_desc desc; |
| |
| /* |
| * There is no real VINV command. This is just a normal INV, |
| * with a VSYNC instead of a SYNC. |
| */ |
| desc.its_inv_cmd.dev = dev; |
| desc.its_inv_cmd.event_id = event_id; |
| |
| its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); |
| } |
| |
| static void its_send_vint(struct its_device *dev, u32 event_id) |
| { |
| struct its_cmd_desc desc; |
| |
| /* |
| * There is no real VINT command. This is just a normal INT, |
| * with a VSYNC instead of a SYNC. |
| */ |
| desc.its_int_cmd.dev = dev; |
| desc.its_int_cmd.event_id = event_id; |
| |
| its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); |
| } |
| |
| static void its_send_vclear(struct its_device *dev, u32 event_id) |
| { |
| struct its_cmd_desc desc; |
| |
| /* |
| * There is no real VCLEAR command. This is just a normal CLEAR, |
| * with a VSYNC instead of a SYNC. |
| */ |
| desc.its_clear_cmd.dev = dev; |
| desc.its_clear_cmd.event_id = event_id; |
| |
| its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); |
| } |
| |
| static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) |
| { |
| struct its_cmd_desc desc; |
| |
| desc.its_invdb_cmd.vpe = vpe; |
| its_send_single_vcommand(its, its_build_invdb_cmd, &desc); |
| } |
| |
| /* |
| * irqchip functions - assumes MSI, mostly. |
| */ |
| static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) |
| { |
| struct its_vlpi_map *map = get_vlpi_map(d); |
| irq_hw_number_t hwirq; |
| void *va; |
| u8 *cfg; |
| |
| if (map) { |
| va = page_address(map->vm->vprop_page); |
| hwirq = map->vintid; |
| |
| /* Remember the updated property */ |
| map->properties &= ~clr; |
| map->properties |= set | LPI_PROP_GROUP1; |
| } else { |
| va = gic_rdists->prop_table_va; |
| hwirq = d->hwirq; |
| } |
| |
| cfg = va + hwirq - 8192; |
| *cfg &= ~clr; |
| *cfg |= set | LPI_PROP_GROUP1; |
| |
| /* |
| * Make the above write visible to the redistributors. |
| * And yes, we're flushing exactly: One. Single. Byte. |
| * Humpf... |
| */ |
| if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) |
| gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); |
| else |
| dsb(ishst); |
| } |
| |
| static void wait_for_syncr(void __iomem *rdbase) |
| { |
| while (gic_read_lpir(rdbase + GICR_SYNCR) & 1) |
| cpu_relax(); |
| } |
| |
| static void direct_lpi_inv(struct irq_data *d) |
| { |
| struct its_vlpi_map *map = get_vlpi_map(d); |
| void __iomem *rdbase; |
| u64 val; |
| |
| if (map) { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| |
| WARN_ON(!is_v4_1(its_dev->its)); |
| |
| val = GICR_INVLPIR_V; |
| val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); |
| val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); |
| } else { |
| val = d->hwirq; |
| } |
| |
| /* Target the redistributor this LPI is currently routed to */ |
| rdbase = per_cpu_ptr(gic_rdists->rdist, irq_to_cpuid(d))->rd_base; |
| gic_write_lpir(val, rdbase + GICR_INVLPIR); |
| |
| wait_for_syncr(rdbase); |
| } |
| |
| static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| |
| lpi_write_config(d, clr, set); |
| if (gic_rdists->has_direct_lpi && |
| (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) |
| direct_lpi_inv(d); |
| else if (!irqd_is_forwarded_to_vcpu(d)) |
| its_send_inv(its_dev, its_get_event_id(d)); |
| else |
| its_send_vinv(its_dev, its_get_event_id(d)); |
| } |
| |
| static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| u32 event = its_get_event_id(d); |
| struct its_vlpi_map *map; |
| |
| /* |
| * GICv4.1 does away with the per-LPI nonsense, nothing to do |
| * here. |
| */ |
| if (is_v4_1(its_dev->its)) |
| return; |
| |
| map = dev_event_to_vlpi_map(its_dev, event); |
| |
| if (map->db_enabled == enable) |
| return; |
| |
| map->db_enabled = enable; |
| |
| /* |
| * More fun with the architecture: |
| * |
| * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI |
| * value or to 1023, depending on the enable bit. But that |
| * would be issueing a mapping for an /existing/ DevID+EventID |
| * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI |
| * to the /same/ vPE, using this opportunity to adjust the |
| * doorbell. Mouahahahaha. We loves it, Precious. |
| */ |
| its_send_vmovi(its_dev, event); |
| } |
| |
| static void its_mask_irq(struct irq_data *d) |
| { |
| if (irqd_is_forwarded_to_vcpu(d)) |
| its_vlpi_set_doorbell(d, false); |
| |
| lpi_update_config(d, LPI_PROP_ENABLED, 0); |
| } |
| |
| static void its_unmask_irq(struct irq_data *d) |
| { |
| if (irqd_is_forwarded_to_vcpu(d)) |
| its_vlpi_set_doorbell(d, true); |
| |
| lpi_update_config(d, 0, LPI_PROP_ENABLED); |
| } |
| |
| static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, |
| bool force) |
| { |
| unsigned int cpu; |
| const struct cpumask *cpu_mask = cpu_online_mask; |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| struct its_collection *target_col; |
| u32 id = its_get_event_id(d); |
| |
| /* A forwarded interrupt should use irq_set_vcpu_affinity */ |
| if (irqd_is_forwarded_to_vcpu(d)) |
| return -EINVAL; |
| |
| /* lpi cannot be routed to a redistributor that is on a foreign node */ |
| if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { |
| if (its_dev->its->numa_node >= 0) { |
| cpu_mask = cpumask_of_node(its_dev->its->numa_node); |
| if (!cpumask_intersects(mask_val, cpu_mask)) |
| return -EINVAL; |
| } |
| } |
| |
| cpu = cpumask_any_and(mask_val, cpu_mask); |
| |
| if (cpu >= nr_cpu_ids) |
| return -EINVAL; |
| |
| /* don't set the affinity when the target cpu is same as current one */ |
| if (cpu != its_dev->event_map.col_map[id]) { |
| target_col = &its_dev->its->collections[cpu]; |
| its_send_movi(its_dev, target_col, id); |
| its_dev->event_map.col_map[id] = cpu; |
| irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| } |
| |
| return IRQ_SET_MASK_OK_DONE; |
| } |
| |
| static u64 its_irq_get_msi_base(struct its_device *its_dev) |
| { |
| struct its_node *its = its_dev->its; |
| |
| return its->phys_base + GITS_TRANSLATER; |
| } |
| |
| static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| struct its_node *its; |
| u64 addr; |
| |
| its = its_dev->its; |
| addr = its->get_msi_base(its_dev); |
| |
| msg->address_lo = lower_32_bits(addr); |
| msg->address_hi = upper_32_bits(addr); |
| msg->data = its_get_event_id(d); |
| |
| iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); |
| } |
| |
| static int its_irq_set_irqchip_state(struct irq_data *d, |
| enum irqchip_irq_state which, |
| bool state) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| u32 event = its_get_event_id(d); |
| |
| if (which != IRQCHIP_STATE_PENDING) |
| return -EINVAL; |
| |
| if (irqd_is_forwarded_to_vcpu(d)) { |
| if (state) |
| its_send_vint(its_dev, event); |
| else |
| its_send_vclear(its_dev, event); |
| } else { |
| if (state) |
| its_send_int(its_dev, event); |
| else |
| its_send_clear(its_dev, event); |
| } |
| |
| return 0; |
| } |
| |
| static void its_map_vm(struct its_node *its, struct its_vm *vm) |
| { |
| unsigned long flags; |
| |
| /* Not using the ITS list? Everything is always mapped. */ |
| if (!its_list_map) |
| return; |
| |
| raw_spin_lock_irqsave(&vmovp_lock, flags); |
| |
| /* |
| * If the VM wasn't mapped yet, iterate over the vpes and get |
| * them mapped now. |
| */ |
| vm->vlpi_count[its->list_nr]++; |
| |
| if (vm->vlpi_count[its->list_nr] == 1) { |
| int i; |
| |
| for (i = 0; i < vm->nr_vpes; i++) { |
| struct its_vpe *vpe = vm->vpes[i]; |
| struct irq_data *d = irq_get_irq_data(vpe->irq); |
| |
| /* Map the VPE to the first possible CPU */ |
| vpe->col_idx = cpumask_first(cpu_online_mask); |
| its_send_vmapp(its, vpe, true); |
| its_send_vinvall(its, vpe); |
| irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); |
| } |
| } |
| |
| raw_spin_unlock_irqrestore(&vmovp_lock, flags); |
| } |
| |
| static void its_unmap_vm(struct its_node *its, struct its_vm *vm) |
| { |
| unsigned long flags; |
| |
| /* Not using the ITS list? Everything is always mapped. */ |
| if (!its_list_map) |
| return; |
| |
| raw_spin_lock_irqsave(&vmovp_lock, flags); |
| |
| if (!--vm->vlpi_count[its->list_nr]) { |
| int i; |
| |
| for (i = 0; i < vm->nr_vpes; i++) |
| its_send_vmapp(its, vm->vpes[i], false); |
| } |
| |
| raw_spin_unlock_irqrestore(&vmovp_lock, flags); |
| } |
| |
| static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| u32 event = its_get_event_id(d); |
| int ret = 0; |
| |
| if (!info->map) |
| return -EINVAL; |
| |
| raw_spin_lock(&its_dev->event_map.vlpi_lock); |
| |
| if (!its_dev->event_map.vm) { |
| struct its_vlpi_map *maps; |
| |
| maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), |
| GFP_ATOMIC); |
| if (!maps) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| its_dev->event_map.vm = info->map->vm; |
| its_dev->event_map.vlpi_maps = maps; |
| } else if (its_dev->event_map.vm != info->map->vm) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Get our private copy of the mapping information */ |
| its_dev->event_map.vlpi_maps[event] = *info->map; |
| |
| if (irqd_is_forwarded_to_vcpu(d)) { |
| /* Already mapped, move it around */ |
| its_send_vmovi(its_dev, event); |
| } else { |
| /* Ensure all the VPEs are mapped on this ITS */ |
| its_map_vm(its_dev->its, info->map->vm); |
| |
| /* |
| * Flag the interrupt as forwarded so that we can |
| * start poking the virtual property table. |
| */ |
| irqd_set_forwarded_to_vcpu(d); |
| |
| /* Write out the property to the prop table */ |
| lpi_write_config(d, 0xff, info->map->properties); |
| |
| /* Drop the physical mapping */ |
| its_send_discard(its_dev, event); |
| |
| /* and install the virtual one */ |
| its_send_vmapti(its_dev, event); |
| |
| /* Increment the number of VLPIs */ |
| its_dev->event_map.nr_vlpis++; |
| } |
| |
| out: |
| raw_spin_unlock(&its_dev->event_map.vlpi_lock); |
| return ret; |
| } |
| |
| static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| struct its_vlpi_map *map; |
| int ret = 0; |
| |
| raw_spin_lock(&its_dev->event_map.vlpi_lock); |
| |
| map = get_vlpi_map(d); |
| |
| if (!its_dev->event_map.vm || !map) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Copy our mapping information to the incoming request */ |
| *info->map = *map; |
| |
| out: |
| raw_spin_unlock(&its_dev->event_map.vlpi_lock); |
| return ret; |
| } |
| |
| static int its_vlpi_unmap(struct irq_data *d) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| u32 event = its_get_event_id(d); |
| int ret = 0; |
| |
| raw_spin_lock(&its_dev->event_map.vlpi_lock); |
| |
| if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Drop the virtual mapping */ |
| its_send_discard(its_dev, event); |
| |
| /* and restore the physical one */ |
| irqd_clr_forwarded_to_vcpu(d); |
| its_send_mapti(its_dev, d->hwirq, event); |
| lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | |
| LPI_PROP_ENABLED | |
| LPI_PROP_GROUP1)); |
| |
| /* Potentially unmap the VM from this ITS */ |
| its_unmap_vm(its_dev->its, its_dev->event_map.vm); |
| |
| /* |
| * Drop the refcount and make the device available again if |
| * this was the last VLPI. |
| */ |
| if (!--its_dev->event_map.nr_vlpis) { |
| its_dev->event_map.vm = NULL; |
| kfree(its_dev->event_map.vlpi_maps); |
| } |
| |
| out: |
| raw_spin_unlock(&its_dev->event_map.vlpi_lock); |
| return ret; |
| } |
| |
| static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| |
| if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) |
| return -EINVAL; |
| |
| if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) |
| lpi_update_config(d, 0xff, info->config); |
| else |
| lpi_write_config(d, 0xff, info->config); |
| its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); |
| |
| return 0; |
| } |
| |
| static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| struct its_cmd_info *info = vcpu_info; |
| |
| /* Need a v4 ITS */ |
| if (!is_v4(its_dev->its)) |
| return -EINVAL; |
| |
| /* Unmap request? */ |
| if (!info) |
| return its_vlpi_unmap(d); |
| |
| switch (info->cmd_type) { |
| case MAP_VLPI: |
| return its_vlpi_map(d, info); |
| |
| case GET_VLPI: |
| return its_vlpi_get(d, info); |
| |
| case PROP_UPDATE_VLPI: |
| case PROP_UPDATE_AND_INV_VLPI: |
| return its_vlpi_prop_update(d, info); |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static struct irq_chip its_irq_chip = { |
| .name = "ITS", |
| .irq_mask = its_mask_irq, |
| .irq_unmask = its_unmask_irq, |
| .irq_eoi = irq_chip_eoi_parent, |
| .irq_set_affinity = its_set_affinity, |
| .irq_compose_msi_msg = its_irq_compose_msi_msg, |
| .irq_set_irqchip_state = its_irq_set_irqchip_state, |
| .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, |
| }; |
| |
| |
| /* |
| * How we allocate LPIs: |
| * |
| * lpi_range_list contains ranges of LPIs that are to available to |
| * allocate from. To allocate LPIs, just pick the first range that |
| * fits the required allocation, and reduce it by the required |
| * amount. Once empty, remove the range from the list. |
| * |
| * To free a range of LPIs, add a free range to the list, sort it and |
| * merge the result if the new range happens to be adjacent to an |
| * already free block. |
| * |
| * The consequence of the above is that allocation is cost is low, but |
| * freeing is expensive. We assumes that freeing rarely occurs. |
| */ |
| #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ |
| |
| static DEFINE_MUTEX(lpi_range_lock); |
| static LIST_HEAD(lpi_range_list); |
| |
| struct lpi_range { |
| struct list_head entry; |
| u32 base_id; |
| u32 span; |
| }; |
| |
| static struct lpi_range *mk_lpi_range(u32 base, u32 span) |
| { |
| struct lpi_range *range; |
| |
| range = kmalloc(sizeof(*range), GFP_KERNEL); |
| if (range) { |
| range->base_id = base; |
| range->span = span; |
| } |
| |
| return range; |
| } |
| |
| static int alloc_lpi_range(u32 nr_lpis, u32 *base) |
| { |
| struct lpi_range *range, *tmp; |
| int err = -ENOSPC; |
| |
| mutex_lock(&lpi_range_lock); |
| |
| list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { |
| if (range->span >= nr_lpis) { |
| *base = range->base_id; |
| range->base_id += nr_lpis; |
| range->span -= nr_lpis; |
| |
| if (range->span == 0) { |
| list_del(&range->entry); |
| kfree(range); |
| } |
| |
| err = 0; |
| break; |
| } |
| } |
| |
| mutex_unlock(&lpi_range_lock); |
| |
| pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); |
| return err; |
| } |
| |
| static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) |
| { |
| if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) |
| return; |
| if (a->base_id + a->span != b->base_id) |
| return; |
| b->base_id = a->base_id; |
| b->span += a->span; |
| list_del(&a->entry); |
| kfree(a); |
| } |
| |
| static int free_lpi_range(u32 base, u32 nr_lpis) |
| { |
| struct lpi_range *new, *old; |
| |
| new = mk_lpi_range(base, nr_lpis); |
| if (!new) |
| return -ENOMEM; |
| |
| mutex_lock(&lpi_range_lock); |
| |
| list_for_each_entry_reverse(old, &lpi_range_list, entry) { |
| if (old->base_id < base) |
| break; |
| } |
| /* |
| * old is the last element with ->base_id smaller than base, |
| * so new goes right after it. If there are no elements with |
| * ->base_id smaller than base, &old->entry ends up pointing |
| * at the head of the list, and inserting new it the start of |
| * the list is the right thing to do in that case as well. |
| */ |
| list_add(&new->entry, &old->entry); |
| /* |
| * Now check if we can merge with the preceding and/or |
| * following ranges. |
| */ |
| merge_lpi_ranges(old, new); |
| merge_lpi_ranges(new, list_next_entry(new, entry)); |
| |
| mutex_unlock(&lpi_range_lock); |
| return 0; |
| } |
| |
| static int __init its_lpi_init(u32 id_bits) |
| { |
| u32 lpis = (1UL << id_bits) - 8192; |
| u32 numlpis; |
| int err; |
| |
| numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); |
| |
| if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { |
| lpis = numlpis; |
| pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", |
| lpis); |
| } |
| |
| /* |
| * Initializing the allocator is just the same as freeing the |
| * full range of LPIs. |
| */ |
| err = free_lpi_range(8192, lpis); |
| pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); |
| return err; |
| } |
| |
| static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) |
| { |
| unsigned long *bitmap = NULL; |
| int err = 0; |
| |
| do { |
| err = alloc_lpi_range(nr_irqs, base); |
| if (!err) |
| break; |
| |
| nr_irqs /= 2; |
| } while (nr_irqs > 0); |
| |
| if (!nr_irqs) |
| err = -ENOSPC; |
| |
| if (err) |
| goto out; |
| |
| bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC); |
| if (!bitmap) |
| goto out; |
| |
| *nr_ids = nr_irqs; |
| |
| out: |
| if (!bitmap) |
| *base = *nr_ids = 0; |
| |
| return bitmap; |
| } |
| |
| static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) |
| { |
| WARN_ON(free_lpi_range(base, nr_ids)); |
| kfree(bitmap); |
| } |
| |
| static void gic_reset_prop_table(void *va) |
| { |
| /* Priority 0xa0, Group-1, disabled */ |
| memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); |
| |
| /* Make sure the GIC will observe the written configuration */ |
| gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); |
| } |
| |
| static struct page *its_allocate_prop_table(gfp_t gfp_flags) |
| { |
| struct page *prop_page; |
| |
| prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); |
| if (!prop_page) |
| return NULL; |
| |
| gic_reset_prop_table(page_address(prop_page)); |
| |
| return prop_page; |
| } |
| |
| static void its_free_prop_table(struct page *prop_page) |
| { |
| free_pages((unsigned long)page_address(prop_page), |
| get_order(LPI_PROPBASE_SZ)); |
| } |
| |
| static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) |
| { |
| phys_addr_t start, end, addr_end; |
| u64 i; |
| |
| /* |
| * We don't bother checking for a kdump kernel as by |
| * construction, the LPI tables are out of this kernel's |
| * memory map. |
| */ |
| if (is_kdump_kernel()) |
| return true; |
| |
| addr_end = addr + size - 1; |
| |
| for_each_reserved_mem_region(i, &start, &end) { |
| if (addr >= start && addr_end <= end) |
| return true; |
| } |
| |
| /* Not found, not a good sign... */ |
| pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", |
| &addr, &addr_end); |
| add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); |
| return false; |
| } |
| |
| static int gic_reserve_range(phys_addr_t addr, unsigned long size) |
| { |
| if (efi_enabled(EFI_CONFIG_TABLES)) |
| return efi_mem_reserve_persistent(addr, size); |
| |
| return 0; |
| } |
| |
| static int __init its_setup_lpi_prop_table(void) |
| { |
| if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { |
| u64 val; |
| |
| val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); |
| lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; |
| |
| gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); |
| gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, |
| LPI_PROPBASE_SZ, |
| MEMREMAP_WB); |
| gic_reset_prop_table(gic_rdists->prop_table_va); |
| } else { |
| struct page *page; |
| |
| lpi_id_bits = min_t(u32, |
| GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), |
| ITS_MAX_LPI_NRBITS); |
| page = its_allocate_prop_table(GFP_NOWAIT); |
| if (!page) { |
| pr_err("Failed to allocate PROPBASE\n"); |
| return -ENOMEM; |
| } |
| |
| gic_rdists->prop_table_pa = page_to_phys(page); |
| gic_rdists->prop_table_va = page_address(page); |
| WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, |
| LPI_PROPBASE_SZ)); |
| } |
| |
| pr_info("GICv3: using LPI property table @%pa\n", |
| &gic_rdists->prop_table_pa); |
| |
| return its_lpi_init(lpi_id_bits); |
| } |
| |
| static const char *its_base_type_string[] = { |
| [GITS_BASER_TYPE_DEVICE] = "Devices", |
| [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", |
| [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", |
| [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", |
| [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", |
| [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", |
| [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", |
| }; |
| |
| static u64 its_read_baser(struct its_node *its, struct its_baser *baser) |
| { |
| u32 idx = baser - its->tables; |
| |
| return gits_read_baser(its->base + GITS_BASER + (idx << 3)); |
| } |
| |
| static void its_write_baser(struct its_node *its, struct its_baser *baser, |
| u64 val) |
| { |
| u32 idx = baser - its->tables; |
| |
| gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); |
| baser->val = its_read_baser(its, baser); |
| } |
| |
| static int its_setup_baser(struct its_node *its, struct its_baser *baser, |
| u64 cache, u64 shr, u32 psz, u32 order, |
| bool indirect) |
| { |
| u64 val = its_read_baser(its, baser); |
| u64 esz = GITS_BASER_ENTRY_SIZE(val); |
| u64 type = GITS_BASER_TYPE(val); |
| u64 baser_phys, tmp; |
| u32 alloc_pages; |
| struct page *page; |
| void *base; |
| |
| retry_alloc_baser: |
| alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); |
| if (alloc_pages > GITS_BASER_PAGES_MAX) { |
| pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", |
| &its->phys_base, its_base_type_string[type], |
| alloc_pages, GITS_BASER_PAGES_MAX); |
| alloc_pages = GITS_BASER_PAGES_MAX; |
| order = get_order(GITS_BASER_PAGES_MAX * psz); |
| } |
| |
| page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); |
| if (!page) |
| return -ENOMEM; |
| |
| base = (void *)page_address(page); |
| baser_phys = virt_to_phys(base); |
| |
| /* Check if the physical address of the memory is above 48bits */ |
| if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { |
| |
| /* 52bit PA is supported only when PageSize=64K */ |
| if (psz != SZ_64K) { |
| pr_err("ITS: no 52bit PA support when psz=%d\n", psz); |
| free_pages((unsigned long)base, order); |
| return -ENXIO; |
| } |
| |
| /* Convert 52bit PA to 48bit field */ |
| baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); |
| } |
| |
| retry_baser: |
| val = (baser_phys | |
| (type << GITS_BASER_TYPE_SHIFT) | |
| ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | |
| ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | |
| cache | |
| shr | |
| GITS_BASER_VALID); |
| |
| val |= indirect ? GITS_BASER_INDIRECT : 0x0; |
| |
| switch (psz) { |
| case SZ_4K: |
| val |= GITS_BASER_PAGE_SIZE_4K; |
| break; |
| case SZ_16K: |
| val |= GITS_BASER_PAGE_SIZE_16K; |
| break; |
| case SZ_64K: |
| val |= GITS_BASER_PAGE_SIZE_64K; |
| break; |
| } |
| |
| its_write_baser(its, baser, val); |
| tmp = baser->val; |
| |
| if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { |
| /* |
| * Shareability didn't stick. Just use |
| * whatever the read reported, which is likely |
| * to be the only thing this redistributor |
| * supports. If that's zero, make it |
| * non-cacheable as well. |
| */ |
| shr = tmp & GITS_BASER_SHAREABILITY_MASK; |
| if (!shr) { |
| cache = GITS_BASER_nC; |
| gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); |
| } |
| goto retry_baser; |
| } |
| |
| if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { |
| /* |
| * Page size didn't stick. Let's try a smaller |
| * size and retry. If we reach 4K, then |
| * something is horribly wrong... |
| */ |
| free_pages((unsigned long)base, order); |
| baser->base = NULL; |
| |
| switch (psz) { |
| case SZ_16K: |
| psz = SZ_4K; |
| goto retry_alloc_baser; |
| case SZ_64K: |
| psz = SZ_16K; |
| goto retry_alloc_baser; |
| } |
| } |
| |
| if (val != tmp) { |
| pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", |
| &its->phys_base, its_base_type_string[type], |
| val, tmp); |
| free_pages((unsigned long)base, order); |
| return -ENXIO; |
| } |
| |
| baser->order = order; |
| baser->base = base; |
| baser->psz = psz; |
| tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; |
| |
| pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", |
| &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), |
| its_base_type_string[type], |
| (unsigned long)virt_to_phys(base), |
| indirect ? "indirect" : "flat", (int)esz, |
| psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); |
| |
| return 0; |
| } |
| |
| static bool its_parse_indirect_baser(struct its_node *its, |
| struct its_baser *baser, |
| u32 psz, u32 *order, u32 ids) |
| { |
| u64 tmp = its_read_baser(its, baser); |
| u64 type = GITS_BASER_TYPE(tmp); |
| u64 esz = GITS_BASER_ENTRY_SIZE(tmp); |
| u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; |
| u32 new_order = *order; |
| bool indirect = false; |
| |
| /* No need to enable Indirection if memory requirement < (psz*2)bytes */ |
| if ((esz << ids) > (psz * 2)) { |
| /* |
| * Find out whether hw supports a single or two-level table by |
| * table by reading bit at offset '62' after writing '1' to it. |
| */ |
| its_write_baser(its, baser, val | GITS_BASER_INDIRECT); |
| indirect = !!(baser->val & GITS_BASER_INDIRECT); |
| |
| if (indirect) { |
| /* |
| * The size of the lvl2 table is equal to ITS page size |
| * which is 'psz'. For computing lvl1 table size, |
| * subtract ID bits that sparse lvl2 table from 'ids' |
| * which is reported by ITS hardware times lvl1 table |
| * entry size. |
| */ |
| ids -= ilog2(psz / (int)esz); |
| esz = GITS_LVL1_ENTRY_SIZE; |
| } |
| } |
| |
| /* |
| * Allocate as many entries as required to fit the |
| * range of device IDs that the ITS can grok... The ID |
| * space being incredibly sparse, this results in a |
| * massive waste of memory if two-level device table |
| * feature is not supported by hardware. |
| */ |
| new_order = max_t(u32, get_order(esz << ids), new_order); |
| if (new_order >= MAX_ORDER) { |
| new_order = MAX_ORDER - 1; |
| ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); |
| pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", |
| &its->phys_base, its_base_type_string[type], |
| device_ids(its), ids); |
| } |
| |
| *order = new_order; |
| |
| return indirect; |
| } |
| |
| static u32 compute_common_aff(u64 val) |
| { |
| u32 aff, clpiaff; |
| |
| aff = FIELD_GET(GICR_TYPER_AFFINITY, val); |
| clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); |
| |
| return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); |
| } |
| |
| static u32 compute_its_aff(struct its_node *its) |
| { |
| u64 val; |
| u32 svpet; |
| |
| /* |
| * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute |
| * the resulting affinity. We then use that to see if this match |
| * our own affinity. |
| */ |
| svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); |
| val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); |
| val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); |
| return compute_common_aff(val); |
| } |
| |
| static struct its_node *find_sibling_its(struct its_node *cur_its) |
| { |
| struct its_node *its; |
| u32 aff; |
| |
| if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) |
| return NULL; |
| |
| aff = compute_its_aff(cur_its); |
| |
| list_for_each_entry(its, &its_nodes, entry) { |
| u64 baser; |
| |
| if (!is_v4_1(its) || its == cur_its) |
| continue; |
| |
| if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) |
| continue; |
| |
| if (aff != compute_its_aff(its)) |
| continue; |
| |
| /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ |
| baser = its->tables[2].val; |
| if (!(baser & GITS_BASER_VALID)) |
| continue; |
| |
| return its; |
| } |
| |
| return NULL; |
| } |
| |
| static void its_free_tables(struct its_node *its) |
| { |
| int i; |
| |
| for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| if (its->tables[i].base) { |
| free_pages((unsigned long)its->tables[i].base, |
| its->tables[i].order); |
| its->tables[i].base = NULL; |
| } |
| } |
| } |
| |
| static int its_alloc_tables(struct its_node *its) |
| { |
| u64 shr = GITS_BASER_InnerShareable; |
| u64 cache = GITS_BASER_RaWaWb; |
| u32 psz = SZ_64K; |
| int err, i; |
| |
| if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) |
| /* erratum 24313: ignore memory access type */ |
| cache = GITS_BASER_nCnB; |
| |
| for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| struct its_baser *baser = its->tables + i; |
| u64 val = its_read_baser(its, baser); |
| u64 type = GITS_BASER_TYPE(val); |
| u32 order = get_order(psz); |
| bool indirect = false; |
| |
| switch (type) { |
| case GITS_BASER_TYPE_NONE: |
| continue; |
| |
| case GITS_BASER_TYPE_DEVICE: |
| indirect = its_parse_indirect_baser(its, baser, |
| psz, &order, |
| device_ids(its)); |
| break; |
| |
| case GITS_BASER_TYPE_VCPU: |
| if (is_v4_1(its)) { |
| struct its_node *sibling; |
| |
| WARN_ON(i != 2); |
| if ((sibling = find_sibling_its(its))) { |
| *baser = sibling->tables[2]; |
| its_write_baser(its, baser, baser->val); |
| continue; |
| } |
| } |
| |
| indirect = its_parse_indirect_baser(its, baser, |
| psz, &order, |
| ITS_MAX_VPEID_BITS); |
| break; |
| } |
| |
| err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); |
| if (err < 0) { |
| its_free_tables(its); |
| return err; |
| } |
| |
| /* Update settings which will be used for next BASERn */ |
| psz = baser->psz; |
| cache = baser->val & GITS_BASER_CACHEABILITY_MASK; |
| shr = baser->val & GITS_BASER_SHAREABILITY_MASK; |
| } |
| |
| return 0; |
| } |
| |
| static u64 inherit_vpe_l1_table_from_its(void) |
| { |
| struct its_node *its; |
| u64 val; |
| u32 aff; |
| |
| val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); |
| aff = compute_common_aff(val); |
| |
| list_for_each_entry(its, &its_nodes, entry) { |
| u64 baser, addr; |
| |
| if (!is_v4_1(its)) |
| continue; |
| |
| if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) |
| continue; |
| |
| if (aff != compute_its_aff(its)) |
| continue; |
| |
| /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ |
| baser = its->tables[2].val; |
| if (!(baser & GITS_BASER_VALID)) |
| continue; |
| |
| /* We have a winner! */ |
| gic_data_rdist()->vpe_l1_base = its->tables[2].base; |
| |
| val = GICR_VPROPBASER_4_1_VALID; |
| if (baser & GITS_BASER_INDIRECT) |
| val |= GICR_VPROPBASER_4_1_INDIRECT; |
| val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, |
| FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); |
| switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { |
| case GIC_PAGE_SIZE_64K: |
| addr = GITS_BASER_ADDR_48_to_52(baser); |
| break; |
| default: |
| addr = baser & GENMASK_ULL(47, 12); |
| break; |
| } |
| val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); |
| val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, |
| FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); |
| val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, |
| FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); |
| val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); |
| |
| return val; |
| } |
| |
| return 0; |
| } |
| |
| static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) |
| { |
| u32 aff; |
| u64 val; |
| int cpu; |
| |
| val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); |
| aff = compute_common_aff(val); |
| |
| for_each_possible_cpu(cpu) { |
| void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; |
| |
| if (!base || cpu == smp_processor_id()) |
| continue; |
| |
| val = gic_read_typer(base + GICR_TYPER); |
| if (aff != compute_common_aff(val)) |
| continue; |
| |
| /* |
| * At this point, we have a victim. This particular CPU |
| * has already booted, and has an affinity that matches |
| * ours wrt CommonLPIAff. Let's use its own VPROPBASER. |
| * Make sure we don't write the Z bit in that case. |
| */ |
| val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); |
| val &= ~GICR_VPROPBASER_4_1_Z; |
| |
| gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; |
| *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; |
| |
| return val; |
| } |
| |
| return 0; |
| } |
| |
| static bool allocate_vpe_l2_table(int cpu, u32 id) |
| { |
| void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; |
| unsigned int psz, esz, idx, npg, gpsz; |
| u64 val; |
| struct page *page; |
| __le64 *table; |
| |
| if (!gic_rdists->has_rvpeid) |
| return true; |
| |
| val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); |
| |
| esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; |
| gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); |
| npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; |
| |
| switch (gpsz) { |
| default: |
| WARN_ON(1); |
| /* fall through */ |
| case GIC_PAGE_SIZE_4K: |
| psz = SZ_4K; |
| break; |
| case GIC_PAGE_SIZE_16K: |
| psz = SZ_16K; |
| break; |
| case GIC_PAGE_SIZE_64K: |
| psz = SZ_64K; |
| break; |
| } |
| |
| /* Don't allow vpe_id that exceeds single, flat table limit */ |
| if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) |
| return (id < (npg * psz / (esz * SZ_8))); |
| |
| /* Compute 1st level table index & check if that exceeds table limit */ |
| idx = id >> ilog2(psz / (esz * SZ_8)); |
| if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) |
| return false; |
| |
| table = gic_data_rdist_cpu(cpu)->vpe_l1_base; |
| |
| /* Allocate memory for 2nd level table */ |
| if (!table[idx]) { |
| page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); |
| if (!page) |
| return false; |
| |
| /* Flush Lvl2 table to PoC if hw doesn't support coherency */ |
| if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) |
| gic_flush_dcache_to_poc(page_address(page), psz); |
| |
| table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); |
| |
| /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ |
| if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) |
| gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); |
| |
| /* Ensure updated table contents are visible to RD hardware */ |
| dsb(sy); |
| } |
| |
| return true; |
| } |
| |
| static int allocate_vpe_l1_table(void) |
| { |
| void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| u64 val, gpsz, npg, pa; |
| unsigned int psz = SZ_64K; |
| unsigned int np, epp, esz; |
| struct page *page; |
| |
| if (!gic_rdists->has_rvpeid) |
| return 0; |
| |
| /* |
| * if VPENDBASER.Valid is set, disable any previously programmed |
| * VPE by setting PendingLast while clearing Valid. This has the |
| * effect of making sure no doorbell will be generated and we can |
| * then safely clear VPROPBASER.Valid. |
| */ |
| if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) |
| gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, |
| vlpi_base + GICR_VPENDBASER); |
| |
| /* |
| * If we can inherit the configuration from another RD, let's do |
| * so. Otherwise, we have to go through the allocation process. We |
| * assume that all RDs have the exact same requirements, as |
| * nothing will work otherwise. |
| */ |
| val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); |
| if (val & GICR_VPROPBASER_4_1_VALID) |
| goto out; |
| |
| gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_KERNEL); |
| if (!gic_data_rdist()->vpe_table_mask) |
| return -ENOMEM; |
| |
| val = inherit_vpe_l1_table_from_its(); |
| if (val & GICR_VPROPBASER_4_1_VALID) |
| goto out; |
| |
| /* First probe the page size */ |
| val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); |
| gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); |
| gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); |
| esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); |
| |
| switch (gpsz) { |
| default: |
| gpsz = GIC_PAGE_SIZE_4K; |
| /* fall through */ |
| case GIC_PAGE_SIZE_4K: |
| psz = SZ_4K; |
| break; |
| case GIC_PAGE_SIZE_16K: |
| psz = SZ_16K; |
| break; |
| case GIC_PAGE_SIZE_64K: |
| psz = SZ_64K; |
| break; |
| } |
| |
| /* |
| * Start populating the register from scratch, including RO fields |
| * (which we want to print in debug cases...) |
| */ |
| val = 0; |
| val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); |
| val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); |
| |
| /* How many entries per GIC page? */ |
| esz++; |
| epp = psz / (esz * SZ_8); |
| |
| /* |
| * If we need more than just a single L1 page, flag the table |
| * as indirect and compute the number of required L1 pages. |
| */ |
| if (epp < ITS_MAX_VPEID) { |
| int nl2; |
| |
| val |= GICR_VPROPBASER_4_1_INDIRECT; |
| |
| /* Number of L2 pages required to cover the VPEID space */ |
| nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); |
| |
| /* Number of L1 pages to point to the L2 pages */ |
| npg = DIV_ROUND_UP(nl2 * SZ_8, psz); |
| } else { |
| npg = 1; |
| } |
| |
| val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); |
| |
| /* Right, that's the number of CPU pages we need for L1 */ |
| np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); |
| |
| pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", |
| np, npg, psz, epp, esz); |
| page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(np * PAGE_SIZE)); |
| if (!page) |
| return -ENOMEM; |
| |
| gic_data_rdist()->vpe_l1_base = page_address(page); |
| pa = virt_to_phys(page_address(page)); |
| WARN_ON(!IS_ALIGNED(pa, psz)); |
| |
| val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); |
| val |= GICR_VPROPBASER_RaWb; |
| val |= GICR_VPROPBASER_InnerShareable; |
| val |= GICR_VPROPBASER_4_1_Z; |
| val |= GICR_VPROPBASER_4_1_VALID; |
| |
| out: |
| gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); |
| |
| pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", |
| smp_processor_id(), val, |
| cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); |
| |
| return 0; |
| } |
| |
| static int its_alloc_collections(struct its_node *its) |
| { |
| int i; |
| |
| its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), |
| GFP_KERNEL); |
| if (!its->collections) |
| return -ENOMEM; |
| |
| for (i = 0; i < nr_cpu_ids; i++) |
| its->collections[i].target_address = ~0ULL; |
| |
| return 0; |
| } |
| |
| static struct page *its_allocate_pending_table(gfp_t gfp_flags) |
| { |
| struct page *pend_page; |
| |
| pend_page = alloc_pages(gfp_flags | __GFP_ZERO, |
| get_order(LPI_PENDBASE_SZ)); |
| if (!pend_page) |
| return NULL; |
| |
| /* Make sure the GIC will observe the zero-ed page */ |
| gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); |
| |
| return pend_page; |
| } |
| |
| static void its_free_pending_table(struct page *pt) |
| { |
| free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); |
| } |
| |
| /* |
| * Booting with kdump and LPIs enabled is generally fine. Any other |
| * case is wrong in the absence of firmware/EFI support. |
| */ |
| static bool enabled_lpis_allowed(void) |
| { |
| phys_addr_t addr; |
| u64 val; |
| |
| /* Check whether the property table is in a reserved region */ |
| val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); |
| addr = val & GENMASK_ULL(51, 12); |
| |
| return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); |
| } |
| |
| static int __init allocate_lpi_tables(void) |
| { |
| u64 val; |
| int err, cpu; |
| |
| /* |
| * If LPIs are enabled while we run this from the boot CPU, |
| * flag the RD tables as pre-allocated if the stars do align. |
| */ |
| val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); |
| if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { |
| gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | |
| RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); |
| pr_info("GICv3: Using preallocated redistributor tables\n"); |
| } |
| |
| err = its_setup_lpi_prop_table(); |
| if (err) |
| return err; |
| |
| /* |
| * We allocate all the pending tables anyway, as we may have a |
| * mix of RDs that have had LPIs enabled, and some that |
| * don't. We'll free the unused ones as each CPU comes online. |
| */ |
| for_each_possible_cpu(cpu) { |
| struct page *pend_page; |
| |
| pend_page = its_allocate_pending_table(GFP_NOWAIT); |
| if (!pend_page) { |
| pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); |
| return -ENOMEM; |
| } |
| |
| gic_data_rdist_cpu(cpu)->pend_page = pend_page; |
| } |
| |
| return 0; |
| } |
| |
| static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) |
| { |
| u32 count = 1000000; /* 1s! */ |
| bool clean; |
| u64 val; |
| |
| val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); |
| val &= ~GICR_VPENDBASER_Valid; |
| val &= ~clr; |
| val |= set; |
| gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); |
| |
| do { |
| val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); |
| clean = !(val & GICR_VPENDBASER_Dirty); |
| if (!clean) { |
| count--; |
| cpu_relax(); |
| udelay(1); |
| } |
| } while (!clean && count); |
| |
| if (unlikely(val & GICR_VPENDBASER_Dirty)) { |
| pr_err_ratelimited("ITS virtual pending table not cleaning\n"); |
| val |= GICR_VPENDBASER_PendingLast; |
| } |
| |
| return val; |
| } |
| |
| static void its_cpu_init_lpis(void) |
| { |
| void __iomem *rbase = gic_data_rdist_rd_base(); |
| struct page *pend_page; |
| phys_addr_t paddr; |
| u64 val, tmp; |
| |
| if (gic_data_rdist()->lpi_enabled) |
| return; |
| |
| val = readl_relaxed(rbase + GICR_CTLR); |
| if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && |
| (val & GICR_CTLR_ENABLE_LPIS)) { |
| /* |
| * Check that we get the same property table on all |
| * RDs. If we don't, this is hopeless. |
| */ |
| paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); |
| paddr &= GENMASK_ULL(51, 12); |
| if (WARN_ON(gic_rdists->prop_table_pa != paddr)) |
| add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); |
| |
| paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); |
| paddr &= GENMASK_ULL(51, 16); |
| |
| WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); |
| its_free_pending_table(gic_data_rdist()->pend_page); |
| gic_data_rdist()->pend_page = NULL; |
| |
| goto out; |
| } |
| |
| pend_page = gic_data_rdist()->pend_page; |
| paddr = page_to_phys(pend_page); |
| WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); |
| |
| /* set PROPBASE */ |
| val = (gic_rdists->prop_table_pa | |
| GICR_PROPBASER_InnerShareable | |
| GICR_PROPBASER_RaWaWb | |
| ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); |
| |
| gicr_write_propbaser(val, rbase + GICR_PROPBASER); |
| tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); |
| |
| if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { |
| if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { |
| /* |
| * The HW reports non-shareable, we must |
| * remove the cacheability attributes as |
| * well. |
| */ |
| val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | |
| GICR_PROPBASER_CACHEABILITY_MASK); |
| val |= GICR_PROPBASER_nC; |
| gicr_write_propbaser(val, rbase + GICR_PROPBASER); |
| } |
| pr_info_once("GIC: using cache flushing for LPI property table\n"); |
| gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; |
| } |
| |
| /* set PENDBASE */ |
| val = (page_to_phys(pend_page) | |
| GICR_PENDBASER_InnerShareable | |
| GICR_PENDBASER_RaWaWb); |
| |
| gicr_write_pendbaser(val, rbase + GICR_PENDBASER); |
| tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); |
| |
| if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { |
| /* |
| * The HW reports non-shareable, we must remove the |
| * cacheability attributes as well. |
| */ |
| val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | |
| GICR_PENDBASER_CACHEABILITY_MASK); |
| val |= GICR_PENDBASER_nC; |
| gicr_write_pendbaser(val, rbase + GICR_PENDBASER); |
| } |
| |
| /* Enable LPIs */ |
| val = readl_relaxed(rbase + GICR_CTLR); |
| val |= GICR_CTLR_ENABLE_LPIS; |
| writel_relaxed(val, rbase + GICR_CTLR); |
| |
| if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { |
| void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| |
| /* |
| * It's possible for CPU to receive VLPIs before it is |
| * sheduled as a vPE, especially for the first CPU, and the |
| * VLPI with INTID larger than 2^(IDbits+1) will be considered |
| * as out of range and dropped by GIC. |
| * So we initialize IDbits to known value to avoid VLPI drop. |
| */ |
| val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; |
| pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", |
| smp_processor_id(), val); |
| gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| |
| /* |
| * Also clear Valid bit of GICR_VPENDBASER, in case some |
| * ancient programming gets left in and has possibility of |
| * corrupting memory. |
| */ |
| val = its_clear_vpend_valid(vlpi_base, 0, 0); |
| } |
| |
| if (allocate_vpe_l1_table()) { |
| /* |
| * If the allocation has failed, we're in massive trouble. |
| * Disable direct injection, and pray that no VM was |
| * already running... |
| */ |
| gic_rdists->has_rvpeid = false; |
| gic_rdists->has_vlpis = false; |
| } |
| |
| /* Make sure the GIC has seen the above */ |
| dsb(sy); |
| out: |
| gic_data_rdist()->lpi_enabled = true; |
| pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", |
| smp_processor_id(), |
| gic_data_rdist()->pend_page ? "allocated" : "reserved", |
| &paddr); |
| } |
| |
| static void its_cpu_init_collection(struct its_node *its) |
| { |
| int cpu = smp_processor_id(); |
| u64 target; |
| |
| /* avoid cross node collections and its mapping */ |
| if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { |
| struct device_node *cpu_node; |
| |
| cpu_node = of_get_cpu_node(cpu, NULL); |
| if (its->numa_node != NUMA_NO_NODE && |
| its->numa_node != of_node_to_nid(cpu_node)) |
| return; |
| } |
| |
| /* |
| * We now have to bind each collection to its target |
| * redistributor. |
| */ |
| if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { |
| /* |
| * This ITS wants the physical address of the |
| * redistributor. |
| */ |
| target = gic_data_rdist()->phys_base; |
| } else { |
| /* This ITS wants a linear CPU number. */ |
| target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); |
| target = GICR_TYPER_CPU_NUMBER(target) << 16; |
| } |
| |
| /* Perform collection mapping */ |
| its->collections[cpu].target_address = target; |
| its->collections[cpu].col_id = cpu; |
| |
| its_send_mapc(its, &its->collections[cpu], 1); |
| its_send_invall(its, &its->collections[cpu]); |
| } |
| |
| static void its_cpu_init_collections(void) |
| { |
| struct its_node *its; |
| |
| raw_spin_lock(&its_lock); |
| |
| list_for_each_entry(its, &its_nodes, entry) |
| its_cpu_init_collection(its); |
| |
| raw_spin_unlock(&its_lock); |
| } |
| |
| static struct its_device *its_find_device(struct its_node *its, u32 dev_id) |
| { |
| struct its_device *its_dev = NULL, *tmp; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&its->lock, flags); |
| |
| list_for_each_entry(tmp, &its->its_device_list, entry) { |
| if (tmp->device_id == dev_id) { |
| its_dev = tmp; |
| break; |
| } |
| } |
| |
| raw_spin_unlock_irqrestore(&its->lock, flags); |
| |
| return its_dev; |
| } |
| |
| static struct its_baser *its_get_baser(struct its_node *its, u32 type) |
| { |
| int i; |
| |
| for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| if (GITS_BASER_TYPE(its->tables[i].val) == type) |
| return &its->tables[i]; |
| } |
| |
| return NULL; |
| } |
| |
| static bool its_alloc_table_entry(struct its_node *its, |
| struct its_baser *baser, u32 id) |
| { |
| struct page *page; |
| u32 esz, idx; |
| __le64 *table; |
| |
| /* Don't allow device id that exceeds single, flat table limit */ |
| esz = GITS_BASER_ENTRY_SIZE(baser->val); |
| if (!(baser->val & GITS_BASER_INDIRECT)) |
| return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); |
| |
| /* Compute 1st level table index & check if that exceeds table limit */ |
| idx = id >> ilog2(baser->psz / esz); |
| if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) |
| return false; |
| |
| table = baser->base; |
| |
| /* Allocate memory for 2nd level table */ |
| if (!table[idx]) { |
| page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, |
| get_order(baser->psz)); |
| if (!page) |
| return false; |
| |
| /* Flush Lvl2 table to PoC if hw doesn't support coherency */ |
| if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) |
| gic_flush_dcache_to_poc(page_address(page), baser->psz); |
| |
| table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); |
| |
| /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ |
| if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) |
| gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); |
| |
| /* Ensure updated table contents are visible to ITS hardware */ |
| dsb(sy); |
| } |
| |
| return true; |
| } |
| |
| static bool its_alloc_device_table(struct its_node *its, u32 dev_id) |
| { |
| struct its_baser *baser; |
| |
| baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); |
| |
| /* Don't allow device id that exceeds ITS hardware limit */ |
| if (!baser) |
| return (ilog2(dev_id) < device_ids(its)); |
| |
| return its_alloc_table_entry(its, baser, dev_id); |
| } |
| |
| static bool its_alloc_vpe_table(u32 vpe_id) |
| { |
| struct its_node *its; |
| int cpu; |
| |
| /* |
| * Make sure the L2 tables are allocated on *all* v4 ITSs. We |
| * could try and only do it on ITSs corresponding to devices |
| * that have interrupts targeted at this VPE, but the |
| * complexity becomes crazy (and you have tons of memory |
| * anyway, right?). |
| */ |
| list_for_each_entry(its, &its_nodes, entry) { |
| struct its_baser *baser; |
| |
| if (!is_v4(its)) |
| continue; |
| |
| baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); |
| if (!baser) |
| return false; |
| |
| if (!its_alloc_table_entry(its, baser, vpe_id)) |
| return false; |
| } |
| |
| /* Non v4.1? No need to iterate RDs and go back early. */ |
| if (!gic_rdists->has_rvpeid) |
| return true; |
| |
| /* |
| * Make sure the L2 tables are allocated for all copies of |
| * the L1 table on *all* v4.1 RDs. |
| */ |
| for_each_possible_cpu(cpu) { |
| if (!allocate_vpe_l2_table(cpu, vpe_id)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static struct its_device *its_create_device(struct its_node *its, u32 dev_id, |
| int nvecs, bool alloc_lpis) |
| { |
| struct its_device *dev; |
| unsigned long *lpi_map = NULL; |
| unsigned long flags; |
| u16 *col_map = NULL; |
| void *itt; |
| int lpi_base; |
| int nr_lpis; |
| int nr_ites; |
| int sz; |
| |
| if (!its_alloc_device_table(its, dev_id)) |
| return NULL; |
| |
| if (WARN_ON(!is_power_of_2(nvecs))) |
| nvecs = roundup_pow_of_two(nvecs); |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| /* |
| * Even if the device wants a single LPI, the ITT must be |
| * sized as a power of two (and you need at least one bit...). |
| */ |
| nr_ites = max(2, nvecs); |
| sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); |
| sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; |
| itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); |
| if (alloc_lpis) { |
| lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); |
| if (lpi_map) |
| col_map = kcalloc(nr_lpis, sizeof(*col_map), |
| GFP_KERNEL); |
| } else { |
| col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); |
| nr_lpis = 0; |
| lpi_base = 0; |
| } |
| |
| if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { |
| kfree(dev); |
| kfree(itt); |
| kfree(lpi_map); |
| kfree(col_map); |
| return NULL; |
| } |
| |
| gic_flush_dcache_to_poc(itt, sz); |
| |
| dev->its = its; |
| dev->itt = itt; |
| dev->nr_ites = nr_ites; |
| dev->event_map.lpi_map = lpi_map; |
| dev->event_map.col_map = col_map; |
| dev->event_map.lpi_base = lpi_base; |
| dev->event_map.nr_lpis = nr_lpis; |
| raw_spin_lock_init(&dev->event_map.vlpi_lock); |
| dev->device_id = dev_id; |
| INIT_LIST_HEAD(&dev->entry); |
| |
| raw_spin_lock_irqsave(&its->lock, flags); |
| list_add(&dev->entry, &its->its_device_list); |
| raw_spin_unlock_irqrestore(&its->lock, flags); |
| |
| /* Map device to its ITT */ |
| its_send_mapd(dev, 1); |
| |
| return dev; |
| } |
| |
| static void its_free_device(struct its_device *its_dev) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&its_dev->its->lock, flags); |
| list_del(&its_dev->entry); |
| raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); |
| kfree(its_dev->event_map.col_map); |
| kfree(its_dev->itt); |
| kfree(its_dev); |
| } |
| |
| static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) |
| { |
| int idx; |
| |
| /* Find a free LPI region in lpi_map and allocate them. */ |
| idx = bitmap_find_free_region(dev->event_map.lpi_map, |
| dev->event_map.nr_lpis, |
| get_count_order(nvecs)); |
| if (idx < 0) |
| return -ENOSPC; |
| |
| *hwirq = dev->event_map.lpi_base + idx; |
| |
| return 0; |
| } |
| |
| static int its_msi_prepare(struct irq_domain *domain, struct device *dev, |
| int nvec, msi_alloc_info_t *info) |
| { |
| struct its_node *its; |
| struct its_device *its_dev; |
| struct msi_domain_info *msi_info; |
| u32 dev_id; |
| int err = 0; |
| |
| /* |
| * We ignore "dev" entirely, and rely on the dev_id that has |
| * been passed via the scratchpad. This limits this domain's |
| * usefulness to upper layers that definitely know that they |
| * are built on top of the ITS. |
| */ |
| dev_id = info->scratchpad[0].ul; |
| |
| msi_info = msi_get_domain_info(domain); |
| its = msi_info->data; |
| |
| if (!gic_rdists->has_direct_lpi && |
| vpe_proxy.dev && |
| vpe_proxy.dev->its == its && |
| dev_id == vpe_proxy.dev->device_id) { |
| /* Bad luck. Get yourself a better implementation */ |
| WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", |
| dev_id); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&its->dev_alloc_lock); |
| its_dev = its_find_device(its, dev_id); |
| if (its_dev) { |
| /* |
| * We already have seen this ID, probably through |
| * another alias (PCI bridge of some sort). No need to |
| * create the device. |
| */ |
| its_dev->shared = true; |
| pr_debug("Reusing ITT for devID %x\n", dev_id); |
| goto out; |
| } |
| |
| its_dev = its_create_device(its, dev_id, nvec, true); |
| if (!its_dev) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); |
| out: |
| mutex_unlock(&its->dev_alloc_lock); |
| info->scratchpad[0].ptr = its_dev; |
| return err; |
| } |
| |
| static struct msi_domain_ops its_msi_domain_ops = { |
| .msi_prepare = its_msi_prepare, |
| }; |
| |
| static int its_irq_gic_domain_alloc(struct irq_domain *domain, |
| unsigned int virq, |
| irq_hw_number_t hwirq) |
| { |
| struct irq_fwspec fwspec; |
| |
| if (irq_domain_get_of_node(domain->parent)) { |
| fwspec.fwnode = domain->parent->fwnode; |
| fwspec.param_count = 3; |
| fwspec.param[0] = GIC_IRQ_TYPE_LPI; |
| fwspec.param[1] = hwirq; |
| fwspec.param[2] = IRQ_TYPE_EDGE_RISING; |
| } else if (is_fwnode_irqchip(domain->parent->fwnode)) { |
| fwspec.fwnode = domain->parent->fwnode; |
| fwspec.param_count = 2; |
| fwspec.param[0] = hwirq; |
| fwspec.param[1] = IRQ_TYPE_EDGE_RISING; |
| } else { |
| return -EINVAL; |
| } |
| |
| return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); |
| } |
| |
| static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *args) |
| { |
| msi_alloc_info_t *info = args; |
| struct its_device *its_dev = info->scratchpad[0].ptr; |
| struct its_node *its = its_dev->its; |
| irq_hw_number_t hwirq; |
| int err; |
| int i; |
| |
| err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); |
| if (err) |
| return err; |
| |
| err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); |
| if (err) |
| return err; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); |
| if (err) |
| return err; |
| |
| irq_domain_set_hwirq_and_chip(domain, virq + i, |
| hwirq + i, &its_irq_chip, its_dev); |
| irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i))); |
| pr_debug("ID:%d pID:%d vID:%d\n", |
| (int)(hwirq + i - its_dev->event_map.lpi_base), |
| (int)(hwirq + i), virq + i); |
| } |
| |
| return 0; |
| } |
| |
| static int its_irq_domain_activate(struct irq_domain *domain, |
| struct irq_data *d, bool reserve) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| u32 event = its_get_event_id(d); |
| const struct cpumask *cpu_mask = cpu_online_mask; |
| int cpu; |
| |
| /* get the cpu_mask of local node */ |
| if (its_dev->its->numa_node >= 0) |
| cpu_mask = cpumask_of_node(its_dev->its->numa_node); |
| |
| /* Bind the LPI to the first possible CPU */ |
| cpu = cpumask_first_and(cpu_mask, cpu_online_mask); |
| if (cpu >= nr_cpu_ids) { |
| if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) |
| return -EINVAL; |
| |
| cpu = cpumask_first(cpu_online_mask); |
| } |
| |
| its_dev->event_map.col_map[event] = cpu; |
| irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| |
| /* Map the GIC IRQ and event to the device */ |
| its_send_mapti(its_dev, d->hwirq, event); |
| return 0; |
| } |
| |
| static void its_irq_domain_deactivate(struct irq_domain *domain, |
| struct irq_data *d) |
| { |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| u32 event = its_get_event_id(d); |
| |
| /* Stop the delivery of interrupts */ |
| its_send_discard(its_dev, event); |
| } |
| |
| static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| struct irq_data *d = irq_domain_get_irq_data(domain, virq); |
| struct its_device *its_dev = irq_data_get_irq_chip_data(d); |
| struct its_node *its = its_dev->its; |
| int i; |
| |
| bitmap_release_region(its_dev->event_map.lpi_map, |
| its_get_event_id(irq_domain_get_irq_data(domain, virq)), |
| get_count_order(nr_irqs)); |
| |
| for (i = 0; i < nr_irqs; i++) { |
| struct irq_data *data = irq_domain_get_irq_data(domain, |
| virq + i); |
| /* Nuke the entry in the domain */ |
| irq_domain_reset_irq_data(data); |
| } |
| |
| mutex_lock(&its->dev_alloc_lock); |
| |
| /* |
| * If all interrupts have been freed, start mopping the |
| * floor. This is conditionned on the device not being shared. |
| */ |
| if (!its_dev->shared && |
| bitmap_empty(its_dev->event_map.lpi_map, |
| its_dev->event_map.nr_lpis)) { |
| its_lpi_free(its_dev->event_map.lpi_map, |
| its_dev->event_map.lpi_base, |
| its_dev->event_map.nr_lpis); |
| |
| /* Unmap device/itt */ |
| its_send_mapd(its_dev, 0); |
| its_free_device(its_dev); |
| } |
| |
| mutex_unlock(&its->dev_alloc_lock); |
| |
| irq_domain_free_irqs_parent(domain, virq, nr_irqs); |
| } |
| |
| static const struct irq_domain_ops its_domain_ops = { |
| .alloc = its_irq_domain_alloc, |
| .free = its_irq_domain_free, |
| .activate = its_irq_domain_activate, |
| .deactivate = its_irq_domain_deactivate, |
| }; |
| |
| /* |
| * This is insane. |
| * |
| * If a GICv4.0 doesn't implement Direct LPIs (which is extremely |
| * likely), the only way to perform an invalidate is to use a fake |
| * device to issue an INV command, implying that the LPI has first |
| * been mapped to some event on that device. Since this is not exactly |
| * cheap, we try to keep that mapping around as long as possible, and |
| * only issue an UNMAP if we're short on available slots. |
| * |
| * Broken by design(tm). |
| * |
| * GICv4.1, on the other hand, mandates that we're able to invalidate |
| * by writing to a MMIO register. It doesn't implement the whole of |
| * DirectLPI, but that's good enough. And most of the time, we don't |
| * even have to invalidate anything, as the redistributor can be told |
| * whether to generate a doorbell or not (we thus leave it enabled, |
| * always). |
| */ |
| static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) |
| { |
| /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| if (gic_rdists->has_rvpeid) |
| return; |
| |
| /* Already unmapped? */ |
| if (vpe->vpe_proxy_event == -1) |
| return; |
| |
| its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); |
| vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; |
| |
| /* |
| * We don't track empty slots at all, so let's move the |
| * next_victim pointer if we can quickly reuse that slot |
| * instead of nuking an existing entry. Not clear that this is |
| * always a win though, and this might just generate a ripple |
| * effect... Let's just hope VPEs don't migrate too often. |
| */ |
| if (vpe_proxy.vpes[vpe_proxy.next_victim]) |
| vpe_proxy.next_victim = vpe->vpe_proxy_event; |
| |
| vpe->vpe_proxy_event = -1; |
| } |
| |
| static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) |
| { |
| /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| if (gic_rdists->has_rvpeid) |
| return; |
| |
| if (!gic_rdists->has_direct_lpi) { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&vpe_proxy.lock, flags); |
| its_vpe_db_proxy_unmap_locked(vpe); |
| raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); |
| } |
| } |
| |
| static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) |
| { |
| /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| if (gic_rdists->has_rvpeid) |
| return; |
| |
| /* Already mapped? */ |
| if (vpe->vpe_proxy_event != -1) |
| return; |
| |
| /* This slot was already allocated. Kick the other VPE out. */ |
| if (vpe_proxy.vpes[vpe_proxy.next_victim]) |
| its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); |
| |
| /* Map the new VPE instead */ |
| vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; |
| vpe->vpe_proxy_event = vpe_proxy.next_victim; |
| vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; |
| |
| vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; |
| its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); |
| } |
| |
| static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) |
| { |
| unsigned long flags; |
| struct its_collection *target_col; |
| |
| /* GICv4.1 doesn't use a proxy, so nothing to do here */ |
| if (gic_rdists->has_rvpeid) |
| return; |
| |
| if (gic_rdists->has_direct_lpi) { |
| void __iomem *rdbase; |
| |
| rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; |
| gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); |
| wait_for_syncr(rdbase); |
| |
| return; |
| } |
| |
| raw_spin_lock_irqsave(&vpe_proxy.lock, flags); |
| |
| its_vpe_db_proxy_map_locked(vpe); |
| |
| target_col = &vpe_proxy.dev->its->collections[to]; |
| its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); |
| vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; |
| |
| raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); |
| } |
| |
| static int its_vpe_set_affinity(struct irq_data *d, |
| const struct cpumask *mask_val, |
| bool force) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| int from, cpu = cpumask_first(mask_val); |
| |
| /* |
| * Changing affinity is mega expensive, so let's be as lazy as |
| * we can and only do it if we really have to. Also, if mapped |
| * into the proxy device, we need to move the doorbell |
| * interrupt to its new location. |
| */ |
| if (vpe->col_idx == cpu) |
| goto out; |
| |
| from = vpe->col_idx; |
| vpe->col_idx = cpu; |
| |
| /* |
| * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD |
| * is sharing its VPE table with the current one. |
| */ |
| if (gic_data_rdist_cpu(cpu)->vpe_table_mask && |
| cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) |
| goto out; |
| |
| its_send_vmovp(vpe); |
| its_vpe_db_proxy_move(vpe, from, cpu); |
| |
| out: |
| irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| |
| return IRQ_SET_MASK_OK_DONE; |
| } |
| |
| static void its_vpe_schedule(struct its_vpe *vpe) |
| { |
| void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| u64 val; |
| |
| /* Schedule the VPE */ |
| val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & |
| GENMASK_ULL(51, 12); |
| val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; |
| val |= GICR_VPROPBASER_RaWb; |
| val |= GICR_VPROPBASER_InnerShareable; |
| gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); |
| |
| val = virt_to_phys(page_address(vpe->vpt_page)) & |
| GENMASK_ULL(51, 16); |
| val |= GICR_VPENDBASER_RaWaWb; |
| val |= GICR_VPENDBASER_NonShareable; |
| /* |
| * There is no good way of finding out if the pending table is |
| * empty as we can race against the doorbell interrupt very |
| * easily. So in the end, vpe->pending_last is only an |
| * indication that the vcpu has something pending, not one |
| * that the pending table is empty. A good implementation |
| * would be able to read its coarse map pretty quickly anyway, |
| * making this a tolerable issue. |
| */ |
| val |= GICR_VPENDBASER_PendingLast; |
| val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; |
| val |= GICR_VPENDBASER_Valid; |
| gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); |
| } |
| |
| static void its_vpe_deschedule(struct its_vpe *vpe) |
| { |
| void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| u64 val; |
| |
| val = its_clear_vpend_valid(vlpi_base, 0, 0); |
| |
| vpe->idai = !!(val & GICR_VPENDBASER_IDAI); |
| vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); |
| } |
| |
| static void its_vpe_invall(struct its_vpe *vpe) |
| { |
| struct its_node *its; |
| |
| list_for_each_entry(its, &its_nodes, entry) { |
| if (!is_v4(its)) |
| continue; |
| |
| if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) |
| continue; |
| |
| /* |
| * Sending a VINVALL to a single ITS is enough, as all |
| * we need is to reach the redistributors. |
| */ |
| its_send_vinvall(its, vpe); |
| return; |
| } |
| } |
| |
| static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| struct its_cmd_info *info = vcpu_info; |
| |
| switch (info->cmd_type) { |
| case SCHEDULE_VPE: |
| its_vpe_schedule(vpe); |
| return 0; |
| |
| case DESCHEDULE_VPE: |
| its_vpe_deschedule(vpe); |
| return 0; |
| |
| case INVALL_VPE: |
| its_vpe_invall(vpe); |
| return 0; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void its_vpe_send_cmd(struct its_vpe *vpe, |
| void (*cmd)(struct its_device *, u32)) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&vpe_proxy.lock, flags); |
| |
| its_vpe_db_proxy_map_locked(vpe); |
| cmd(vpe_proxy.dev, vpe->vpe_proxy_event); |
| |
| raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); |
| } |
| |
| static void its_vpe_send_inv(struct irq_data *d) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| |
| if (gic_rdists->has_direct_lpi) { |
| void __iomem *rdbase; |
| |
| /* Target the redistributor this VPE is currently known on */ |
| rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; |
| gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); |
| wait_for_syncr(rdbase); |
| } else { |
| its_vpe_send_cmd(vpe, its_send_inv); |
| } |
| } |
| |
| static void its_vpe_mask_irq(struct irq_data *d) |
| { |
| /* |
| * We need to unmask the LPI, which is described by the parent |
| * irq_data. Instead of calling into the parent (which won't |
| * exactly do the right thing, let's simply use the |
| * parent_data pointer. Yes, I'm naughty. |
| */ |
| lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); |
| its_vpe_send_inv(d); |
| } |
| |
| static void its_vpe_unmask_irq(struct irq_data *d) |
| { |
| /* Same hack as above... */ |
| lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); |
| its_vpe_send_inv(d); |
| } |
| |
| static int its_vpe_set_irqchip_state(struct irq_data *d, |
| enum irqchip_irq_state which, |
| bool state) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| |
| if (which != IRQCHIP_STATE_PENDING) |
| return -EINVAL; |
| |
| if (gic_rdists->has_direct_lpi) { |
| void __iomem *rdbase; |
| |
| rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; |
| if (state) { |
| gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); |
| } else { |
| gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); |
| wait_for_syncr(rdbase); |
| } |
| } else { |
| if (state) |
| its_vpe_send_cmd(vpe, its_send_int); |
| else |
| its_vpe_send_cmd(vpe, its_send_clear); |
| } |
| |
| return 0; |
| } |
| |
| static struct irq_chip its_vpe_irq_chip = { |
| .name = "GICv4-vpe", |
| .irq_mask = its_vpe_mask_irq, |
| .irq_unmask = its_vpe_unmask_irq, |
| .irq_eoi = irq_chip_eoi_parent, |
| .irq_set_affinity = its_vpe_set_affinity, |
| .irq_set_irqchip_state = its_vpe_set_irqchip_state, |
| .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, |
| }; |
| |
| static struct its_node *find_4_1_its(void) |
| { |
| static struct its_node *its = NULL; |
| |
| if (!its) { |
| list_for_each_entry(its, &its_nodes, entry) { |
| if (is_v4_1(its)) |
| return its; |
| } |
| |
| /* Oops? */ |
| its = NULL; |
| } |
| |
| return its; |
| } |
| |
| static void its_vpe_4_1_send_inv(struct irq_data *d) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| struct its_node *its; |
| |
| /* |
| * GICv4.1 wants doorbells to be invalidated using the |
| * INVDB command in order to be broadcast to all RDs. Send |
| * it to the first valid ITS, and let the HW do its magic. |
| */ |
| its = find_4_1_its(); |
| if (its) |
| its_send_invdb(its, vpe); |
| } |
| |
| static void its_vpe_4_1_mask_irq(struct irq_data *d) |
| { |
| lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); |
| its_vpe_4_1_send_inv(d); |
| } |
| |
| static void its_vpe_4_1_unmask_irq(struct irq_data *d) |
| { |
| lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); |
| its_vpe_4_1_send_inv(d); |
| } |
| |
| static void its_vpe_4_1_schedule(struct its_vpe *vpe, |
| struct its_cmd_info *info) |
| { |
| void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| u64 val = 0; |
| |
| /* Schedule the VPE */ |
| val |= GICR_VPENDBASER_Valid; |
| val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; |
| val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; |
| val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); |
| |
| gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); |
| } |
| |
| static void its_vpe_4_1_deschedule(struct its_vpe *vpe, |
| struct its_cmd_info *info) |
| { |
| void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); |
| u64 val; |
| |
| if (info->req_db) { |
| /* |
| * vPE is going to block: make the vPE non-resident with |
| * PendingLast clear and DB set. The GIC guarantees that if |
| * we read-back PendingLast clear, then a doorbell will be |
| * delivered when an interrupt comes. |
| */ |
| val = its_clear_vpend_valid(vlpi_base, |
| GICR_VPENDBASER_PendingLast, |
| GICR_VPENDBASER_4_1_DB); |
| vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); |
| } else { |
| /* |
| * We're not blocking, so just make the vPE non-resident |
| * with PendingLast set, indicating that we'll be back. |
| */ |
| val = its_clear_vpend_valid(vlpi_base, |
| 0, |
| GICR_VPENDBASER_PendingLast); |
| vpe->pending_last = true; |
| } |
| } |
| |
| static void its_vpe_4_1_invall(struct its_vpe *vpe) |
| { |
| void __iomem *rdbase; |
| u64 val; |
| |
| val = GICR_INVALLR_V; |
| val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); |
| |
| /* Target the redistributor this vPE is currently known on */ |
| rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; |
| gic_write_lpir(val, rdbase + GICR_INVALLR); |
| } |
| |
| static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| struct its_cmd_info *info = vcpu_info; |
| |
| switch (info->cmd_type) { |
| case SCHEDULE_VPE: |
| its_vpe_4_1_schedule(vpe, info); |
| return 0; |
| |
| case DESCHEDULE_VPE: |
| its_vpe_4_1_deschedule(vpe, info); |
| return 0; |
| |
| case INVALL_VPE: |
| its_vpe_4_1_invall(vpe); |
| return 0; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static struct irq_chip its_vpe_4_1_irq_chip = { |
| .name = "GICv4.1-vpe", |
| .irq_mask = its_vpe_4_1_mask_irq, |
| .irq_unmask = its_vpe_4_1_unmask_irq, |
| .irq_eoi = irq_chip_eoi_parent, |
| .irq_set_affinity = its_vpe_set_affinity, |
| .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, |
| }; |
| |
| static int its_vpe_id_alloc(void) |
| { |
| return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); |
| } |
| |
| static void its_vpe_id_free(u16 id) |
| { |
| ida_simple_remove(&its_vpeid_ida, id); |
| } |
| |
| static int its_vpe_init(struct its_vpe *vpe) |
| { |
| struct page *vpt_page; |
| int vpe_id; |
| |
| /* Allocate vpe_id */ |
| vpe_id = its_vpe_id_alloc(); |
| if (vpe_id < 0) |
| return vpe_id; |
| |
| /* Allocate VPT */ |
| vpt_page = its_allocate_pending_table(GFP_KERNEL); |
| if (!vpt_page) { |
| its_vpe_id_free(vpe_id); |
| return -ENOMEM; |
| } |
| |
| if (!its_alloc_vpe_table(vpe_id)) { |
| its_vpe_id_free(vpe_id); |
| its_free_pending_table(vpt_page); |
| return -ENOMEM; |
| } |
| |
| vpe->vpe_id = vpe_id; |
| vpe->vpt_page = vpt_page; |
| if (gic_rdists->has_rvpeid) |
| atomic_set(&vpe->vmapp_count, 0); |
| else |
| vpe->vpe_proxy_event = -1; |
| |
| return 0; |
| } |
| |
| static void its_vpe_teardown(struct its_vpe *vpe) |
| { |
| its_vpe_db_proxy_unmap(vpe); |
| its_vpe_id_free(vpe->vpe_id); |
| its_free_pending_table(vpe->vpt_page); |
| } |
| |
| static void its_vpe_irq_domain_free(struct irq_domain *domain, |
| unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| struct its_vm *vm = domain->host_data; |
| int i; |
| |
| irq_domain_free_irqs_parent(domain, virq, nr_irqs); |
| |
| for (i = 0; i < nr_irqs; i++) { |
| struct irq_data *data = irq_domain_get_irq_data(domain, |
| virq + i); |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(data); |
| |
| BUG_ON(vm != vpe->its_vm); |
| |
| clear_bit(data->hwirq, vm->db_bitmap); |
| its_vpe_teardown(vpe); |
| irq_domain_reset_irq_data(data); |
| } |
| |
| if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { |
| its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); |
| its_free_prop_table(vm->vprop_page); |
| } |
| } |
| |
| static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *args) |
| { |
| struct irq_chip *irqchip = &its_vpe_irq_chip; |
| struct its_vm *vm = args; |
| unsigned long *bitmap; |
| struct page *vprop_page; |
| int base, nr_ids, i, err = 0; |
| |
| BUG_ON(!vm); |
| |
| bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); |
| if (!bitmap) |
| return -ENOMEM; |
| |
| if (nr_ids < nr_irqs) { |
| its_lpi_free(bitmap, base, nr_ids); |
| return -ENOMEM; |
| } |
| |
| vprop_page = its_allocate_prop_table(GFP_KERNEL); |
| if (!vprop_page) { |
| its_lpi_free(bitmap, base, nr_ids); |
| return -ENOMEM; |
| } |
| |
| vm->db_bitmap = bitmap; |
| vm->db_lpi_base = base; |
| vm->nr_db_lpis = nr_ids; |
| vm->vprop_page = vprop_page; |
| |
| if (gic_rdists->has_rvpeid) |
| irqchip = &its_vpe_4_1_irq_chip; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| vm->vpes[i]->vpe_db_lpi = base + i; |
| err = its_vpe_init(vm->vpes[i]); |
| if (err) |
| break; |
| err = its_irq_gic_domain_alloc(domain, virq + i, |
| vm->vpes[i]->vpe_db_lpi); |
| if (err) |
| break; |
| irq_domain_set_hwirq_and_chip(domain, virq + i, i, |
| irqchip, vm->vpes[i]); |
| set_bit(i, bitmap); |
| } |
| |
| if (err) { |
| if (i > 0) |
| its_vpe_irq_domain_free(domain, virq, i - 1); |
| |
| its_lpi_free(bitmap, base, nr_ids); |
| its_free_prop_table(vprop_page); |
| } |
| |
| return err; |
| } |
| |
| static int its_vpe_irq_domain_activate(struct irq_domain *domain, |
| struct irq_data *d, bool reserve) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| struct its_node *its; |
| |
| /* If we use the list map, we issue VMAPP on demand... */ |
| if (its_list_map) |
| return 0; |
| |
| /* Map the VPE to the first possible CPU */ |
| vpe->col_idx = cpumask_first(cpu_online_mask); |
| |
| list_for_each_entry(its, &its_nodes, entry) { |
| if (!is_v4(its)) |
| continue; |
| |
| its_send_vmapp(its, vpe, true); |
| its_send_vinvall(its, vpe); |
| } |
| |
| irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); |
| |
| return 0; |
| } |
| |
| static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, |
| struct irq_data *d) |
| { |
| struct its_vpe *vpe = irq_data_get_irq_chip_data(d); |
| struct its_node *its; |
| |
| /* |
| * If we use the list map, we unmap the VPE once no VLPIs are |
| * associated with the VM. |
| */ |
| if (its_list_map) |
| return; |
| |
| list_for_each_entry(its, &its_nodes, entry) { |
| if (!is_v4(its)) |
| continue; |
| |
| its_send_vmapp(its, vpe, false); |
| } |
| } |
| |
| static const struct irq_domain_ops its_vpe_domain_ops = { |
| .alloc = its_vpe_irq_domain_alloc, |
| .free = its_vpe_irq_domain_free, |
| .activate = its_vpe_irq_domain_activate, |
| .deactivate = its_vpe_irq_domain_deactivate, |
| }; |
| |
| static int its_force_quiescent(void __iomem *base) |
| { |
| u32 count = 1000000; /* 1s */ |
| u32 val; |
| |
| val = readl_relaxed(base + GITS_CTLR); |
| /* |
| * GIC architecture specification requires the ITS to be both |
| * disabled and quiescent for writes to GITS_BASER<n> or |
| * GITS_CBASER to not have UNPREDICTABLE results. |
| */ |
| if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) |
| return 0; |
| |
| /* Disable the generation of all interrupts to this ITS */ |
| val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); |
| writel_relaxed(val, base + GITS_CTLR); |
| |
| /* Poll GITS_CTLR and wait until ITS becomes quiescent */ |
| while (1) { |
| val = readl_relaxed(base + GITS_CTLR); |
| if (val & GITS_CTLR_QUIESCENT) |
| return 0; |
| |
| count--; |
| if (!count) |
| return -EBUSY; |
| |
| cpu_relax(); |
| udelay(1); |
| } |
| } |
| |
| static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) |
| { |
| struct its_node *its = data; |
| |
| /* erratum 22375: only alloc 8MB table size (20 bits) */ |
| its->typer &= ~GITS_TYPER_DEVBITS; |
| its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); |
| its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; |
| |
| return true; |
| } |
| |
| static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) |
| { |
| struct its_node *its = data; |
| |
| its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; |
| |
| return true; |
| } |
| |
| static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) |
| { |
| struct its_node *its = data; |
| |
| /* On QDF2400, the size of the ITE is 16Bytes */ |
| its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; |
| its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); |
| |
| return true; |
| } |
| |
| static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) |
| { |
| struct its_node *its = its_dev->its; |
| |
| /* |
| * The Socionext Synquacer SoC has a so-called 'pre-ITS', |
| * which maps 32-bit writes targeted at a separate window of |
| * size '4 << device_id_bits' onto writes to GITS_TRANSLATER |
| * with device ID taken from bits [device_id_bits + 1:2] of |
| * the window offset. |
| */ |
| return its->pre_its_base + (its_dev->device_id << 2); |
| } |
| |
| static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) |
| { |
| struct its_node *its = data; |
| u32 pre_its_window[2]; |
| u32 ids; |
| |
| if (!fwnode_property_read_u32_array(its->fwnode_handle, |
| "socionext,synquacer-pre-its", |
| pre_its_window, |
| ARRAY_SIZE(pre_its_window))) { |
| |
| its->pre_its_base = pre_its_window[0]; |
| its->get_msi_base = its_irq_get_msi_base_pre_its; |
| |
| ids = ilog2(pre_its_window[1]) - 2; |
| if (device_ids(its) > ids) { |
| its->typer &= ~GITS_TYPER_DEVBITS; |
| its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); |
| } |
| |
| /* the pre-ITS breaks isolation, so disable MSI remapping */ |
| its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; |
| return true; |
| } |
| return false; |
| } |
| |
| static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) |
| { |
| struct its_node *its = data; |
| |
| /* |
| * Hip07 insists on using the wrong address for the VLPI |
| * page. Trick it into doing the right thing... |
| */ |
| its->vlpi_redist_offset = SZ_128K; |
| return true; |
| } |
| |
| static const struct gic_quirk its_quirks[] = { |
| #ifdef CONFIG_CAVIUM_ERRATUM_22375 |
| { |
| .desc = "ITS: Cavium errata 22375, 24313", |
| .iidr = 0xa100034c, /* ThunderX pass 1.x */ |
| .mask = 0xffff0fff, |
| .init = its_enable_quirk_cavium_22375, |
| }, |
| #endif |
| #ifdef CONFIG_CAVIUM_ERRATUM_23144 |
| { |
| .desc = "ITS: Cavium erratum 23144", |
| .iidr = 0xa100034c, /* ThunderX pass 1.x */ |
| .mask = 0xffff0fff, |
| .init = its_enable_quirk_cavium_23144, |
| }, |
| #endif |
| #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 |
| { |
| .desc = "ITS: QDF2400 erratum 0065", |
| .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ |
| .mask = 0xffffffff, |
| .init = its_enable_quirk_qdf2400_e0065, |
| }, |
| #endif |
| #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS |
| { |
| /* |
| * The Socionext Synquacer SoC incorporates ARM's own GIC-500 |
| * implementation, but with a 'pre-ITS' added that requires |
| * special handling in software. |
| */ |
| .desc = "ITS: Socionext Synquacer pre-ITS", |
| .iidr = 0x0001143b, |
| .mask = 0xffffffff, |
| .init = its_enable_quirk_socionext_synquacer, |
| }, |
| #endif |
| #ifdef CONFIG_HISILICON_ERRATUM_161600802 |
| { |
| .desc = "ITS: Hip07 erratum 161600802", |
| .iidr = 0x00000004, |
| .mask = 0xffffffff, |
| .init = its_enable_quirk_hip07_161600802, |
| }, |
| #endif |
| { |
| } |
| }; |
| |
| static void its_enable_quirks(struct its_node *its) |
| { |
| u32 iidr = readl_relaxed(its->base + GITS_IIDR); |
| |
| gic_enable_quirks(iidr, its_quirks, its); |
| } |
| |
| static int its_save_disable(void) |
| { |
| struct its_node *its; |
| int err = 0; |
| |
| raw_spin_lock(&its_lock); |
| list_for_each_entry(its, &its_nodes, entry) { |
| void __iomem *base; |
| |
| if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) |
| continue; |
| |
| base = its->base; |
| its->ctlr_save = readl_relaxed(base + GITS_CTLR); |
| err = its_force_quiescent(base); |
| if (err) { |
| pr_err("ITS@%pa: failed to quiesce: %d\n", |
| &its->phys_base, err); |
| writel_relaxed(its->ctlr_save, base + GITS_CTLR); |
| goto err; |
| } |
| |
| its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); |
| } |
| |
| err: |
| if (err) { |
| list_for_each_entry_continue_reverse(its, &its_nodes, entry) { |
| void __iomem *base; |
| |
| if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) |
| continue; |
| |
| base = its->base; |
| writel_relaxed(its->ctlr_save, base + GITS_CTLR); |
| } |
| } |
| raw_spin_unlock(&its_lock); |
| |
| return err; |
| } |
| |
| static void its_restore_enable(void) |
| { |
| struct its_node *its; |
| int ret; |
| |
| raw_spin_lock(&its_lock); |
| list_for_each_entry(its, &its_nodes, entry) { |
| void __iomem *base; |
| int i; |
| |
| if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE)) |
| continue; |
| |
| base = its->base; |
| |
| /* |
| * Make sure that the ITS is disabled. If it fails to quiesce, |
| * don't restore it since writing to CBASER or BASER<n> |
| * registers is undefined according to the GIC v3 ITS |
| * Specification. |
| */ |
| ret = its_force_quiescent(base); |
| if (ret) { |
| pr_err("ITS@%pa: failed to quiesce on resume: %d\n", |
| &its->phys_base, ret); |
| continue; |
| } |
| |
| gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); |
| |
| /* |
| * Writing CBASER resets CREADR to 0, so make CWRITER and |
| * cmd_write line up with it. |
| */ |
| its->cmd_write = its->cmd_base; |
| gits_write_cwriter(0, base + GITS_CWRITER); |
| |
| /* Restore GITS_BASER from the value cache. */ |
| for (i = 0; i < GITS_BASER_NR_REGS; i++) { |
| struct its_baser *baser = &its->tables[i]; |
| |
| if (!(baser->val & GITS_BASER_VALID)) |
| continue; |
| |
| its_write_baser(its, baser, baser->val); |
| } |
| writel_relaxed(its->ctlr_save, base + GITS_CTLR); |
| |
| /* |
| * Reinit the collection if it's stored in the ITS. This is |
| * indicated by the col_id being less than the HCC field. |
| * CID < HCC as specified in the GIC v3 Documentation. |
| */ |
| if (its->collections[smp_processor_id()].col_id < |
| GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) |
| its_cpu_init_collection(its); |
| } |
| raw_spin_unlock(&its_lock); |
| } |
| |
| static struct syscore_ops its_syscore_ops = { |
| .suspend = its_save_disable, |
| .resume = its_restore_enable, |
| }; |
| |
| static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) |
| { |
| struct irq_domain *inner_domain; |
| struct msi_domain_info *info; |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); |
| if (!inner_domain) { |
| kfree(info); |
| return -ENOMEM; |
| } |
| |
| inner_domain->parent = its_parent; |
| irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); |
| inner_domain->flags |= its->msi_domain_flags; |
| info->ops = &its_msi_domain_ops; |
| info->data = its; |
| inner_domain->host_data = info; |
| |
| return 0; |
| } |
| |
| static int its_init_vpe_domain(void) |
| { |
| struct its_node *its; |
| u32 devid; |
| int entries; |
| |
| if (gic_rdists->has_direct_lpi) { |
| pr_info("ITS: Using DirectLPI for VPE invalidation\n"); |
| return 0; |
| } |
| |
| /* Any ITS will do, even if not v4 */ |
| its = list_first_entry(&its_nodes, struct its_node, entry); |
| |
| entries = roundup_pow_of_two(nr_cpu_ids); |
| vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), |
| GFP_KERNEL); |
| if (!vpe_proxy.vpes) { |
| pr_err("ITS: Can't allocate GICv4 proxy device array\n"); |
| return -ENOMEM; |
| } |
| |
| /* Use the last possible DevID */ |
| devid = GENMASK(device_ids(its) - 1, 0); |
| vpe_proxy.dev = its_create_device(its, devid, entries, false); |
| if (!vpe_proxy.dev) { |
| kfree(vpe_proxy.vpes); |
| pr_err("ITS: Can't allocate GICv4 proxy device\n"); |
| return -ENOMEM; |
| } |
| |
| BUG_ON(entries > vpe_proxy.dev->nr_ites); |
| |
| raw_spin_lock_init(&vpe_proxy.lock); |
| vpe_proxy.next_victim = 0; |
| pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", |
| devid, vpe_proxy.dev->nr_ites); |
| |
| return 0; |
| } |
| |
| static int __init its_compute_its_list_map(struct resource *res, |
| void __iomem *its_base) |
| { |
| int its_number; |
| u32 ctlr; |
| |
| /* |
| * This is assumed to be done early enough that we're |
| * guaranteed to be single-threaded, hence no |
| * locking. Should this change, we should address |
| * this. |
| */ |
| its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); |
| if (its_number >= GICv4_ITS_LIST_MAX) { |
| pr_err("ITS@%pa: No ITSList entry available!\n", |
| &res->start); |
| return -EINVAL; |
| } |
| |
| ctlr = readl_relaxed(its_base + GITS_CTLR); |
| ctlr &= ~GITS_CTLR_ITS_NUMBER; |
| ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; |
| writel_relaxed(ctlr, its_base + GITS_CTLR); |
| ctlr = readl_relaxed(its_base + GITS_CTLR); |
| if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { |
| its_number = ctlr & GITS_CTLR_ITS_NUMBER; |
| its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; |
| } |
| |
| if (test_and_set_bit(its_number, &its_list_map)) { |
| pr_err("ITS@%pa: Duplicate ITSList entry %d\n", |
| &res->start, its_number); |
| return -EINVAL; |
| } |
| |
| return its_number; |
| } |
| |
| static int __init its_probe_one(struct resource *res, |
| struct fwnode_handle *handle, int numa_node) |
| { |
| struct its_node *its; |
| void __iomem *its_base; |
| u32 val, ctlr; |
| u64 baser, tmp, typer; |
| struct page *page; |
| int err; |
| |
| its_base = ioremap(res->start, resource_size(res)); |
| if (!its_base) { |
| pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); |
| return -ENOMEM; |
| } |
| |
| val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| if (val != 0x30 && val != 0x40) { |
| pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); |
| err = -ENODEV; |
| goto out_unmap; |
| } |
| |
| err = its_force_quiescent(its_base); |
| if (err) { |
| pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); |
| goto out_unmap; |
| } |
| |
| pr_info("ITS %pR\n", res); |
| |
| its = kzalloc(sizeof(*its), GFP_KERNEL); |
| if (!its) { |
| err = -ENOMEM; |
| goto out_unmap; |
| } |
| |
| raw_spin_lock_init(&its->lock); |
| mutex_init(&its->dev_alloc_lock); |
| INIT_LIST_HEAD(&its->entry); |
| INIT_LIST_HEAD(&its->its_device_list); |
| typer = gic_read_typer(its_base + GITS_TYPER); |
| its->typer = typer; |
| its->base = its_base; |
| its->phys_base = res->start; |
| if (is_v4(its)) { |
| if (!(typer & GITS_TYPER_VMOVP)) { |
| err = its_compute_its_list_map(res, its_base); |
| if (err < 0) |
| goto out_free_its; |
| |
| its->list_nr = err; |
| |
| pr_info("ITS@%pa: Using ITS number %d\n", |
| &res->start, err); |
| } else { |
| pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); |
| } |
| |
| if (is_v4_1(its)) { |
| u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); |
| its->mpidr = readl_relaxed(its_base + GITS_MPIDR); |
| |
| pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", |
| &res->start, its->mpidr, svpet); |
| } |
| } |
| |
| its->numa_node = numa_node; |
| |
| page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, |
| get_order(ITS_CMD_QUEUE_SZ)); |
| if (!page) { |
| err = -ENOMEM; |
| goto out_free_its; |
| } |
| its->cmd_base = (void *)page_address(page); |
| its->cmd_write = its->cmd_base; |
| its->fwnode_handle = handle; |
| its->get_msi_base = its_irq_get_msi_base; |
| its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; |
| |
| its_enable_quirks(its); |
| |
| err = its_alloc_tables(its); |
| if (err) |
| goto out_free_cmd; |
| |
| err = its_alloc_collections(its); |
| if (err) |
| goto out_free_tables; |
| |
| baser = (virt_to_phys(its->cmd_base) | |
| GITS_CBASER_RaWaWb | |
| GITS_CBASER_InnerShareable | |
| (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | |
| GITS_CBASER_VALID); |
| |
| gits_write_cbaser(baser, its->base + GITS_CBASER); |
| tmp = gits_read_cbaser(its->base + GITS_CBASER); |
| |
| if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { |
| if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { |
| /* |
| * The HW reports non-shareable, we must |
| * remove the cacheability attributes as |
| * well. |
| */ |
| baser &= ~(GITS_CBASER_SHAREABILITY_MASK | |
| GITS_CBASER_CACHEABILITY_MASK); |
| baser |= GITS_CBASER_nC; |
| gits_write_cbaser(baser, its->base + GITS_CBASER); |
| } |
| pr_info("ITS: using cache flushing for cmd queue\n"); |
| its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; |
| } |
| |
| gits_write_cwriter(0, its->base + GITS_CWRITER); |
| ctlr = readl_relaxed(its->base + GITS_CTLR); |
| ctlr |= GITS_CTLR_ENABLE; |
| if (is_v4(its)) |
| ctlr |= GITS_CTLR_ImDe; |
| writel_relaxed(ctlr, its->base + GITS_CTLR); |
| |
| if (GITS_TYPER_HCC(typer)) |
| its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE; |
| |
| err = its_init_domain(handle, its); |
| if (err) |
| goto out_free_tables; |
| |
| raw_spin_lock(&its_lock); |
| list_add(&its->entry, &its_nodes); |
| raw_spin_unlock(&its_lock); |
| |
| return 0; |
| |
| out_free_tables: |
| its_free_tables(its); |
| out_free_cmd: |
| free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); |
| out_free_its: |
| kfree(its); |
| out_unmap: |
| iounmap(its_base); |
| pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); |
| return err; |
| } |
| |
| static bool gic_rdists_supports_plpis(void) |
| { |
| return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); |
| } |
| |
| static int redist_disable_lpis(void) |
| { |
| void __iomem *rbase = gic_data_rdist_rd_base(); |
| u64 timeout = USEC_PER_SEC; |
| u64 val; |
| |
| if (!gic_rdists_supports_plpis()) { |
| pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); |
| return -ENXIO; |
| } |
| |
| val = readl_relaxed(rbase + GICR_CTLR); |
| if (!(val & GICR_CTLR_ENABLE_LPIS)) |
| return 0; |
| |
| /* |
| * If coming via a CPU hotplug event, we don't need to disable |
| * LPIs before trying to re-enable them. They are already |
| * configured and all is well in the world. |
| * |
| * If running with preallocated tables, there is nothing to do. |
| */ |
| if (gic_data_rdist()->lpi_enabled || |
| (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) |
| return 0; |
| |
| /* |
| * From that point on, we only try to do some damage control. |
| */ |
| pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", |
| smp_processor_id()); |
| add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); |
| |
| /* Disable LPIs */ |
| val &= ~GICR_CTLR_ENABLE_LPIS; |
| writel_relaxed(val, rbase + GICR_CTLR); |
| |
| /* Make sure any change to GICR_CTLR is observable by the GIC */ |
| dsb(sy); |
| |
| /* |
| * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs |
| * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. |
| * Error out if we time out waiting for RWP to clear. |
| */ |
| while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { |
| if (!timeout) { |
| pr_err("CPU%d: Timeout while disabling LPIs\n", |
| smp_processor_id()); |
| return -ETIMEDOUT; |
| } |
| udelay(1); |
| timeout--; |
| } |
| |
| /* |
| * After it has been written to 1, it is IMPLEMENTATION |
| * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be |
| * cleared to 0. Error out if clearing the bit failed. |
| */ |
| if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { |
| pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| int its_cpu_init(void) |
| { |
| if (!list_empty(&its_nodes)) { |
| int ret; |
| |
| ret = redist_disable_lpis(); |
| if (ret) |
| return ret; |
| |
| its_cpu_init_lpis(); |
| its_cpu_init_collections(); |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id its_device_id[] = { |
| { .compatible = "arm,gic-v3-its", }, |
| {}, |
| }; |
| |
| static int __init its_of_probe(struct device_node *node) |
| { |
| struct device_node *np; |
| struct resource res; |
| |
| for (np = of_find_matching_node(node, its_device_id); np; |
| np = of_find_matching_node(np, its_device_id)) { |
| if (!of_device_is_available(np)) |
| continue; |
| if (!of_property_read_bool(np, "msi-controller")) { |
| pr_warn("%pOF: no msi-controller property, ITS ignored\n", |
| np); |
| continue; |
| } |
| |
| if (of_address_to_resource(np, 0, &res)) { |
| pr_warn("%pOF: no regs?\n", np); |
| continue; |
| } |
| |
| its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_ACPI |
| |
| #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) |
| |
| #ifdef CONFIG_ACPI_NUMA |
| struct its_srat_map { |
| /* numa node id */ |
| u32 numa_node; |
| /* GIC ITS ID */ |
| u32 its_id; |
| }; |
| |
| static struct its_srat_map *its_srat_maps __initdata; |
| static int its_in_srat __initdata; |
| |
| static int __init acpi_get_its_numa_node(u32 its_id) |
| { |
| int i; |
| |
| for (i = 0; i < its_in_srat; i++) { |
| if (its_id == its_srat_maps[i].its_id) |
| return its_srat_maps[i].numa_node; |
| } |
| return NUMA_NO_NODE; |
| } |
| |
| static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| return 0; |
| } |
| |
| static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| int node; |
| struct acpi_srat_gic_its_affinity *its_affinity; |
| |
| its_affinity = (struct acpi_srat_gic_its_affinity *)header; |
| if (!its_affinity) |
| return -EINVAL; |
| |
| if (its_affinity->header.length < sizeof(*its_affinity)) { |
| pr_err("SRAT: Invalid header length %d in ITS affinity\n", |
| its_affinity->header.length); |
| return -EINVAL; |
| } |
| |
| node = acpi_map_pxm_to_node(its_affinity->proximity_domain); |
| |
| if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { |
| pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); |
| return 0; |
| } |
| |
| its_srat_maps[its_in_srat].numa_node = node; |
| its_srat_maps[its_in_srat].its_id = its_affinity->its_id; |
| its_in_srat++; |
| pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", |
| its_affinity->proximity_domain, its_affinity->its_id, node); |
| |
| return 0; |
| } |
| |
| static void __init acpi_table_parse_srat_its(void) |
| { |
| int count; |
| |
| count = acpi_table_parse_entries(ACPI_SIG_SRAT, |
| sizeof(struct acpi_table_srat), |
| ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, |
| gic_acpi_match_srat_its, 0); |
| if (count <= 0) |
| return; |
| |
| its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), |
| GFP_KERNEL); |
| if (!its_srat_maps) { |
| pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n"); |
| return; |
| } |
| |
| acpi_table_parse_entries(ACPI_SIG_SRAT, |
| sizeof(struct acpi_table_srat), |
| ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, |
| gic_acpi_parse_srat_its, 0); |
| } |
| |
| /* free the its_srat_maps after ITS probing */ |
| static void __init acpi_its_srat_maps_free(void) |
| { |
| kfree(its_srat_maps); |
| } |
| #else |
| static void __init acpi_table_parse_srat_its(void) { } |
| static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } |
| static void __init acpi_its_srat_maps_free(void) { } |
| #endif |
| |
| static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| struct acpi_madt_generic_translator *its_entry; |
| struct fwnode_handle *dom_handle; |
| struct resource res; |
| int err; |
| |
| its_entry = (struct acpi_madt_generic_translator *)header; |
| memset(&res, 0, sizeof(res)); |
| res.start = its_entry->base_address; |
| res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; |
| res.flags = IORESOURCE_MEM; |
| |
| dom_handle = irq_domain_alloc_fwnode(&res.start); |
| if (!dom_handle) { |
| pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", |
| &res.start); |
| return -ENOMEM; |
| } |
| |
| err = iort_register_domain_token(its_entry->translation_id, res.start, |
| dom_handle); |
| if (err) { |
| pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", |
| &res.start, its_entry->translation_id); |
| goto dom_err; |
| } |
| |
| err = its_probe_one(&res, dom_handle, |
| acpi_get_its_numa_node(its_entry->translation_id)); |
| if (!err) |
| return 0; |
| |
| iort_deregister_domain_token(its_entry->translation_id); |
| dom_err: |
| irq_domain_free_fwnode(dom_handle); |
| return err; |
| } |
| |
| static void __init its_acpi_probe(void) |
| { |
| acpi_table_parse_srat_its(); |
| acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, |
| gic_acpi_parse_madt_its, 0); |
| acpi_its_srat_maps_free(); |
| } |
| #else |
| static void __init its_acpi_probe(void) { } |
| #endif |
| |
| int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, |
| struct irq_domain *parent_domain) |
| { |
| struct device_node *of_node; |
| struct its_node *its; |
| bool has_v4 = false; |
| int err; |
| |
| gic_rdists = rdists; |
| |
| its_parent = parent_domain; |
| of_node = to_of_node(handle); |
| if (of_node) |
| its_of_probe(of_node); |
| else |
| its_acpi_probe(); |
| |
| if (list_empty(&its_nodes)) { |
| pr_warn("ITS: No ITS available, not enabling LPIs\n"); |
| return -ENXIO; |
| } |
| |
| err = allocate_lpi_tables(); |
| if (err) |
| return err; |
| |
| list_for_each_entry(its, &its_nodes, entry) |
| has_v4 |= is_v4(its); |
| |
| if (has_v4 & rdists->has_vlpis) { |
| if (its_init_vpe_domain() || |
| its_init_v4(parent_domain, &its_vpe_domain_ops)) { |
| rdists->has_vlpis = false; |
| pr_err("ITS: Disabling GICv4 support\n"); |
| } |
| } |
| |
| register_syscore_ops(&its_syscore_ops); |
| |
| return 0; |
| } |