| /* $Id: system.h,v 1.69 2002/02/09 19:49:31 davem Exp $ */ |
| #ifndef __SPARC64_SYSTEM_H |
| #define __SPARC64_SYSTEM_H |
| |
| #include <linux/config.h> |
| #include <asm/ptrace.h> |
| #include <asm/processor.h> |
| #include <asm/visasm.h> |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * Sparc (general) CPU types |
| */ |
| enum sparc_cpu { |
| sun4 = 0x00, |
| sun4c = 0x01, |
| sun4m = 0x02, |
| sun4d = 0x03, |
| sun4e = 0x04, |
| sun4u = 0x05, /* V8 ploos ploos */ |
| sun_unknown = 0x06, |
| ap1000 = 0x07, /* almost a sun4m */ |
| }; |
| |
| #define sparc_cpu_model sun4u |
| |
| /* This cannot ever be a sun4c nor sun4 :) That's just history. */ |
| #define ARCH_SUN4C_SUN4 0 |
| #define ARCH_SUN4 0 |
| |
| /* These are here in an effort to more fully work around Spitfire Errata |
| * #51. Essentially, if a memory barrier occurs soon after a mispredicted |
| * branch, the chip can stop executing instructions until a trap occurs. |
| * Therefore, if interrupts are disabled, the chip can hang forever. |
| * |
| * It used to be believed that the memory barrier had to be right in the |
| * delay slot, but a case has been traced recently wherein the memory barrier |
| * was one instruction after the branch delay slot and the chip still hung. |
| * The offending sequence was the following in sym_wakeup_done() of the |
| * sym53c8xx_2 driver: |
| * |
| * call sym_ccb_from_dsa, 0 |
| * movge %icc, 0, %l0 |
| * brz,pn %o0, .LL1303 |
| * mov %o0, %l2 |
| * membar #LoadLoad |
| * |
| * The branch has to be mispredicted for the bug to occur. Therefore, we put |
| * the memory barrier explicitly into a "branch always, predicted taken" |
| * delay slot to avoid the problem case. |
| */ |
| #define membar_safe(type) \ |
| do { __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" \ |
| " membar " type "\n" \ |
| "1:\n" \ |
| : : : "memory"); \ |
| } while (0) |
| |
| #define mb() \ |
| membar_safe("#LoadLoad | #LoadStore | #StoreStore | #StoreLoad") |
| #define rmb() \ |
| membar_safe("#LoadLoad") |
| #define wmb() \ |
| membar_safe("#StoreStore") |
| #define membar_storeload() \ |
| membar_safe("#StoreLoad") |
| #define membar_storeload_storestore() \ |
| membar_safe("#StoreLoad | #StoreStore") |
| #define membar_storeload_loadload() \ |
| membar_safe("#StoreLoad | #LoadLoad") |
| #define membar_storestore_loadstore() \ |
| membar_safe("#StoreStore | #LoadStore") |
| |
| #endif |
| |
| #define setipl(__new_ipl) \ |
| __asm__ __volatile__("wrpr %0, %%pil" : : "r" (__new_ipl) : "memory") |
| |
| #define local_irq_disable() \ |
| __asm__ __volatile__("wrpr 15, %%pil" : : : "memory") |
| |
| #define local_irq_enable() \ |
| __asm__ __volatile__("wrpr 0, %%pil" : : : "memory") |
| |
| #define getipl() \ |
| ({ unsigned long retval; __asm__ __volatile__("rdpr %%pil, %0" : "=r" (retval)); retval; }) |
| |
| #define swap_pil(__new_pil) \ |
| ({ unsigned long retval; \ |
| __asm__ __volatile__("rdpr %%pil, %0\n\t" \ |
| "wrpr %1, %%pil" \ |
| : "=&r" (retval) \ |
| : "r" (__new_pil) \ |
| : "memory"); \ |
| retval; \ |
| }) |
| |
| #define read_pil_and_cli() \ |
| ({ unsigned long retval; \ |
| __asm__ __volatile__("rdpr %%pil, %0\n\t" \ |
| "wrpr 15, %%pil" \ |
| : "=r" (retval) \ |
| : : "memory"); \ |
| retval; \ |
| }) |
| |
| #define local_save_flags(flags) ((flags) = getipl()) |
| #define local_irq_save(flags) ((flags) = read_pil_and_cli()) |
| #define local_irq_restore(flags) setipl((flags)) |
| |
| /* On sparc64 IRQ flags are the PIL register. A value of zero |
| * means all interrupt levels are enabled, any other value means |
| * only IRQ levels greater than that value will be received. |
| * Consequently this means that the lowest IRQ level is one. |
| */ |
| #define irqs_disabled() \ |
| ({ unsigned long flags; \ |
| local_save_flags(flags);\ |
| (flags > 0); \ |
| }) |
| |
| #define nop() __asm__ __volatile__ ("nop") |
| |
| #define read_barrier_depends() do { } while(0) |
| #define set_mb(__var, __value) \ |
| do { __var = __value; membar_storeload_storestore(); } while(0) |
| #define set_wmb(__var, __value) \ |
| do { __var = __value; wmb(); } while(0) |
| |
| #ifdef CONFIG_SMP |
| #define smp_mb() mb() |
| #define smp_rmb() rmb() |
| #define smp_wmb() wmb() |
| #define smp_read_barrier_depends() read_barrier_depends() |
| #else |
| #define smp_mb() __asm__ __volatile__("":::"memory") |
| #define smp_rmb() __asm__ __volatile__("":::"memory") |
| #define smp_wmb() __asm__ __volatile__("":::"memory") |
| #define smp_read_barrier_depends() do { } while(0) |
| #endif |
| |
| #define flushi(addr) __asm__ __volatile__ ("flush %0" : : "r" (addr) : "memory") |
| |
| #define flushw_all() __asm__ __volatile__("flushw") |
| |
| /* Performance counter register access. */ |
| #define read_pcr(__p) __asm__ __volatile__("rd %%pcr, %0" : "=r" (__p)) |
| #define write_pcr(__p) __asm__ __volatile__("wr %0, 0x0, %%pcr" : : "r" (__p)) |
| #define read_pic(__p) __asm__ __volatile__("rd %%pic, %0" : "=r" (__p)) |
| |
| /* Blackbird errata workaround. See commentary in |
| * arch/sparc64/kernel/smp.c:smp_percpu_timer_interrupt() |
| * for more information. |
| */ |
| #define reset_pic() \ |
| __asm__ __volatile__("ba,pt %xcc, 99f\n\t" \ |
| ".align 64\n" \ |
| "99:wr %g0, 0x0, %pic\n\t" \ |
| "rd %pic, %g0") |
| |
| #ifndef __ASSEMBLY__ |
| |
| extern void sun_do_break(void); |
| extern int serial_console; |
| extern int stop_a_enabled; |
| |
| static __inline__ int con_is_present(void) |
| { |
| return serial_console ? 0 : 1; |
| } |
| |
| extern void synchronize_user_stack(void); |
| |
| extern void __flushw_user(void); |
| #define flushw_user() __flushw_user() |
| |
| #define flush_user_windows flushw_user |
| #define flush_register_windows flushw_all |
| |
| /* Don't hold the runqueue lock over context switch */ |
| #define __ARCH_WANT_UNLOCKED_CTXSW |
| #define prepare_arch_switch(next) \ |
| do { \ |
| flushw_all(); \ |
| } while (0) |
| |
| /* See what happens when you design the chip correctly? |
| * |
| * We tell gcc we clobber all non-fixed-usage registers except |
| * for l0/l1. It will use one for 'next' and the other to hold |
| * the output value of 'last'. 'next' is not referenced again |
| * past the invocation of switch_to in the scheduler, so we need |
| * not preserve it's value. Hairy, but it lets us remove 2 loads |
| * and 2 stores in this critical code path. -DaveM |
| */ |
| #define EXTRA_CLOBBER ,"%l1" |
| #define switch_to(prev, next, last) \ |
| do { if (test_thread_flag(TIF_PERFCTR)) { \ |
| unsigned long __tmp; \ |
| read_pcr(__tmp); \ |
| current_thread_info()->pcr_reg = __tmp; \ |
| read_pic(__tmp); \ |
| current_thread_info()->kernel_cntd0 += (unsigned int)(__tmp);\ |
| current_thread_info()->kernel_cntd1 += ((__tmp) >> 32); \ |
| } \ |
| flush_tlb_pending(); \ |
| save_and_clear_fpu(); \ |
| /* If you are tempted to conditionalize the following */ \ |
| /* so that ASI is only written if it changes, think again. */ \ |
| __asm__ __volatile__("wr %%g0, %0, %%asi" \ |
| : : "r" (__thread_flag_byte_ptr(task_thread_info(next))[TI_FLAG_BYTE_CURRENT_DS]));\ |
| trap_block[current_thread_info()->cpu].thread = \ |
| task_thread_info(next); \ |
| __asm__ __volatile__( \ |
| "mov %%g4, %%g7\n\t" \ |
| "wrpr %%g0, 0x95, %%pstate\n\t" \ |
| "stx %%i6, [%%sp + 2047 + 0x70]\n\t" \ |
| "stx %%i7, [%%sp + 2047 + 0x78]\n\t" \ |
| "rdpr %%wstate, %%o5\n\t" \ |
| "stx %%o6, [%%g6 + %3]\n\t" \ |
| "stb %%o5, [%%g6 + %2]\n\t" \ |
| "rdpr %%cwp, %%o5\n\t" \ |
| "stb %%o5, [%%g6 + %5]\n\t" \ |
| "mov %1, %%g6\n\t" \ |
| "ldub [%1 + %5], %%g1\n\t" \ |
| "wrpr %%g1, %%cwp\n\t" \ |
| "ldx [%%g6 + %3], %%o6\n\t" \ |
| "ldub [%%g6 + %2], %%o5\n\t" \ |
| "ldub [%%g6 + %4], %%o7\n\t" \ |
| "mov %%g6, %%l2\n\t" \ |
| "wrpr %%o5, 0x0, %%wstate\n\t" \ |
| "ldx [%%sp + 2047 + 0x70], %%i6\n\t" \ |
| "ldx [%%sp + 2047 + 0x78], %%i7\n\t" \ |
| "wrpr %%g0, 0x94, %%pstate\n\t" \ |
| "mov %%l2, %%g6\n\t" \ |
| "ldx [%%g6 + %6], %%g4\n\t" \ |
| "wrpr %%g0, 0x96, %%pstate\n\t" \ |
| "brz,pt %%o7, 1f\n\t" \ |
| " mov %%g7, %0\n\t" \ |
| "b,a ret_from_syscall\n\t" \ |
| "1:\n\t" \ |
| : "=&r" (last) \ |
| : "0" (task_thread_info(next)), \ |
| "i" (TI_WSTATE), "i" (TI_KSP), "i" (TI_NEW_CHILD), \ |
| "i" (TI_CWP), "i" (TI_TASK) \ |
| : "cc", \ |
| "g1", "g2", "g3", "g7", \ |
| "l2", "l3", "l4", "l5", "l6", "l7", \ |
| "i0", "i1", "i2", "i3", "i4", "i5", \ |
| "o0", "o1", "o2", "o3", "o4", "o5", "o7" EXTRA_CLOBBER);\ |
| /* If you fuck with this, update ret_from_syscall code too. */ \ |
| if (test_thread_flag(TIF_PERFCTR)) { \ |
| write_pcr(current_thread_info()->pcr_reg); \ |
| reset_pic(); \ |
| } \ |
| } while(0) |
| |
| /* |
| * On SMP systems, when the scheduler does migration-cost autodetection, |
| * it needs a way to flush as much of the CPU's caches as possible. |
| * |
| * TODO: fill this in! |
| */ |
| static inline void sched_cacheflush(void) |
| { |
| } |
| |
| static inline unsigned long xchg32(__volatile__ unsigned int *m, unsigned int val) |
| { |
| unsigned long tmp1, tmp2; |
| |
| __asm__ __volatile__( |
| " membar #StoreLoad | #LoadLoad\n" |
| " mov %0, %1\n" |
| "1: lduw [%4], %2\n" |
| " cas [%4], %2, %0\n" |
| " cmp %2, %0\n" |
| " bne,a,pn %%icc, 1b\n" |
| " mov %1, %0\n" |
| " membar #StoreLoad | #StoreStore\n" |
| : "=&r" (val), "=&r" (tmp1), "=&r" (tmp2) |
| : "0" (val), "r" (m) |
| : "cc", "memory"); |
| return val; |
| } |
| |
| static inline unsigned long xchg64(__volatile__ unsigned long *m, unsigned long val) |
| { |
| unsigned long tmp1, tmp2; |
| |
| __asm__ __volatile__( |
| " membar #StoreLoad | #LoadLoad\n" |
| " mov %0, %1\n" |
| "1: ldx [%4], %2\n" |
| " casx [%4], %2, %0\n" |
| " cmp %2, %0\n" |
| " bne,a,pn %%xcc, 1b\n" |
| " mov %1, %0\n" |
| " membar #StoreLoad | #StoreStore\n" |
| : "=&r" (val), "=&r" (tmp1), "=&r" (tmp2) |
| : "0" (val), "r" (m) |
| : "cc", "memory"); |
| return val; |
| } |
| |
| #define xchg(ptr,x) ((__typeof__(*(ptr)))__xchg((unsigned long)(x),(ptr),sizeof(*(ptr)))) |
| #define tas(ptr) (xchg((ptr),1)) |
| |
| extern void __xchg_called_with_bad_pointer(void); |
| |
| static __inline__ unsigned long __xchg(unsigned long x, __volatile__ void * ptr, |
| int size) |
| { |
| switch (size) { |
| case 4: |
| return xchg32(ptr, x); |
| case 8: |
| return xchg64(ptr, x); |
| }; |
| __xchg_called_with_bad_pointer(); |
| return x; |
| } |
| |
| extern void die_if_kernel(char *str, struct pt_regs *regs) __attribute__ ((noreturn)); |
| |
| /* |
| * Atomic compare and exchange. Compare OLD with MEM, if identical, |
| * store NEW in MEM. Return the initial value in MEM. Success is |
| * indicated by comparing RETURN with OLD. |
| */ |
| |
| #define __HAVE_ARCH_CMPXCHG 1 |
| |
| static __inline__ unsigned long |
| __cmpxchg_u32(volatile int *m, int old, int new) |
| { |
| __asm__ __volatile__("membar #StoreLoad | #LoadLoad\n" |
| "cas [%2], %3, %0\n\t" |
| "membar #StoreLoad | #StoreStore" |
| : "=&r" (new) |
| : "0" (new), "r" (m), "r" (old) |
| : "memory"); |
| |
| return new; |
| } |
| |
| static __inline__ unsigned long |
| __cmpxchg_u64(volatile long *m, unsigned long old, unsigned long new) |
| { |
| __asm__ __volatile__("membar #StoreLoad | #LoadLoad\n" |
| "casx [%2], %3, %0\n\t" |
| "membar #StoreLoad | #StoreStore" |
| : "=&r" (new) |
| : "0" (new), "r" (m), "r" (old) |
| : "memory"); |
| |
| return new; |
| } |
| |
| /* This function doesn't exist, so you'll get a linker error |
| if something tries to do an invalid cmpxchg(). */ |
| extern void __cmpxchg_called_with_bad_pointer(void); |
| |
| static __inline__ unsigned long |
| __cmpxchg(volatile void *ptr, unsigned long old, unsigned long new, int size) |
| { |
| switch (size) { |
| case 4: |
| return __cmpxchg_u32(ptr, old, new); |
| case 8: |
| return __cmpxchg_u64(ptr, old, new); |
| } |
| __cmpxchg_called_with_bad_pointer(); |
| return old; |
| } |
| |
| #define cmpxchg(ptr,o,n) \ |
| ({ \ |
| __typeof__(*(ptr)) _o_ = (o); \ |
| __typeof__(*(ptr)) _n_ = (n); \ |
| (__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \ |
| (unsigned long)_n_, sizeof(*(ptr))); \ |
| }) |
| |
| #endif /* !(__ASSEMBLY__) */ |
| |
| #define arch_align_stack(x) (x) |
| |
| #endif /* !(__SPARC64_SYSTEM_H) */ |