| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Contains CPU feature definitions |
| * |
| * Copyright (C) 2015 ARM Ltd. |
| */ |
| |
| #define pr_fmt(fmt) "CPU features: " fmt |
| |
| #include <linux/bsearch.h> |
| #include <linux/cpumask.h> |
| #include <linux/crash_dump.h> |
| #include <linux/sort.h> |
| #include <linux/stop_machine.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/cpu.h> |
| #include <asm/cpu.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_ops.h> |
| #include <asm/fpsimd.h> |
| #include <asm/mmu_context.h> |
| #include <asm/processor.h> |
| #include <asm/sysreg.h> |
| #include <asm/traps.h> |
| #include <asm/virt.h> |
| |
| /* Kernel representation of AT_HWCAP and AT_HWCAP2 */ |
| static unsigned long elf_hwcap __read_mostly; |
| |
| #ifdef CONFIG_COMPAT |
| #define COMPAT_ELF_HWCAP_DEFAULT \ |
| (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ |
| COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ |
| COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\ |
| COMPAT_HWCAP_LPAE) |
| unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; |
| unsigned int compat_elf_hwcap2 __read_mostly; |
| #endif |
| |
| DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); |
| EXPORT_SYMBOL(cpu_hwcaps); |
| static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS]; |
| |
| /* Need also bit for ARM64_CB_PATCH */ |
| DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); |
| |
| bool arm64_use_ng_mappings = false; |
| EXPORT_SYMBOL(arm64_use_ng_mappings); |
| |
| /* |
| * Flag to indicate if we have computed the system wide |
| * capabilities based on the boot time active CPUs. This |
| * will be used to determine if a new booting CPU should |
| * go through the verification process to make sure that it |
| * supports the system capabilities, without using a hotplug |
| * notifier. This is also used to decide if we could use |
| * the fast path for checking constant CPU caps. |
| */ |
| DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready); |
| EXPORT_SYMBOL(arm64_const_caps_ready); |
| static inline void finalize_system_capabilities(void) |
| { |
| static_branch_enable(&arm64_const_caps_ready); |
| } |
| |
| static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p) |
| { |
| /* file-wide pr_fmt adds "CPU features: " prefix */ |
| pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); |
| return 0; |
| } |
| |
| static struct notifier_block cpu_hwcaps_notifier = { |
| .notifier_call = dump_cpu_hwcaps |
| }; |
| |
| static int __init register_cpu_hwcaps_dumper(void) |
| { |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &cpu_hwcaps_notifier); |
| return 0; |
| } |
| __initcall(register_cpu_hwcaps_dumper); |
| |
| DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS); |
| EXPORT_SYMBOL(cpu_hwcap_keys); |
| |
| #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| { \ |
| .sign = SIGNED, \ |
| .visible = VISIBLE, \ |
| .strict = STRICT, \ |
| .type = TYPE, \ |
| .shift = SHIFT, \ |
| .width = WIDTH, \ |
| .safe_val = SAFE_VAL, \ |
| } |
| |
| /* Define a feature with unsigned values */ |
| #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) |
| |
| /* Define a feature with a signed value */ |
| #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ |
| __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) |
| |
| #define ARM64_FTR_END \ |
| { \ |
| .width = 0, \ |
| } |
| |
| /* meta feature for alternatives */ |
| static bool __maybe_unused |
| cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused); |
| |
| static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); |
| |
| static bool __system_matches_cap(unsigned int n); |
| |
| /* |
| * NOTE: Any changes to the visibility of features should be kept in |
| * sync with the documentation of the CPU feature register ABI. |
| */ |
| static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0), |
| S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), |
| S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), |
| /* Linux doesn't care about the EL3 */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), |
| FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { |
| /* |
| * We already refuse to boot CPUs that don't support our configured |
| * page size, so we can only detect mismatches for a page size other |
| * than the one we're currently using. Unfortunately, SoCs like this |
| * exist in the wild so, even though we don't like it, we'll have to go |
| * along with it and treat them as non-strict. |
| */ |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), |
| |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), |
| /* Linux shouldn't care about secure memory */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0), |
| /* |
| * Differing PARange is fine as long as all peripherals and memory are mapped |
| * within the minimum PARange of all CPUs |
| */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_ctr[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1), |
| /* |
| * Linux can handle differing I-cache policies. Userspace JITs will |
| * make use of *minLine. |
| * If we have differing I-cache policies, report it as the weakest - VIPT. |
| */ |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */ |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { |
| .name = "SYS_CTR_EL0", |
| .ftr_bits = ftr_ctr |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_mmfr0[] = { |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */ |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */ |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), |
| /* |
| * We can instantiate multiple PMU instances with different levels |
| * of support. |
| */ |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_mvfr2[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */ |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_dczid[] = { |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */ |
| ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */ |
| ARM64_FTR_END, |
| }; |
| |
| |
| static const struct arm64_ftr_bits ftr_id_isar5[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_mmfr4[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */ |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_isar6[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_pfr0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */ |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_id_dfr0[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), |
| S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */ |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_zcr[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, |
| ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */ |
| ARM64_FTR_END, |
| }; |
| |
| /* |
| * Common ftr bits for a 32bit register with all hidden, strict |
| * attributes, with 4bit feature fields and a default safe value of |
| * 0. Covers the following 32bit registers: |
| * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] |
| */ |
| static const struct arm64_ftr_bits ftr_generic_32bits[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), |
| ARM64_FTR_END, |
| }; |
| |
| /* Table for a single 32bit feature value */ |
| static const struct arm64_ftr_bits ftr_single32[] = { |
| ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), |
| ARM64_FTR_END, |
| }; |
| |
| static const struct arm64_ftr_bits ftr_raz[] = { |
| ARM64_FTR_END, |
| }; |
| |
| #define ARM64_FTR_REG(id, table) { \ |
| .sys_id = id, \ |
| .reg = &(struct arm64_ftr_reg){ \ |
| .name = #id, \ |
| .ftr_bits = &((table)[0]), \ |
| }} |
| |
| static const struct __ftr_reg_entry { |
| u32 sys_id; |
| struct arm64_ftr_reg *reg; |
| } arm64_ftr_regs[] = { |
| |
| /* Op1 = 0, CRn = 0, CRm = 1 */ |
| ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), |
| ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), |
| ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), |
| ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), |
| |
| /* Op1 = 0, CRn = 0, CRm = 2 */ |
| ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), |
| ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), |
| ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6), |
| |
| /* Op1 = 0, CRn = 0, CRm = 3 */ |
| ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), |
| ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), |
| |
| /* Op1 = 0, CRn = 0, CRm = 4 */ |
| ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), |
| ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1), |
| ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0), |
| |
| /* Op1 = 0, CRn = 0, CRm = 5 */ |
| ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), |
| ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), |
| |
| /* Op1 = 0, CRn = 0, CRm = 6 */ |
| ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), |
| ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1), |
| |
| /* Op1 = 0, CRn = 0, CRm = 7 */ |
| ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), |
| ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1), |
| ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), |
| |
| /* Op1 = 0, CRn = 1, CRm = 2 */ |
| ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), |
| |
| /* Op1 = 3, CRn = 0, CRm = 0 */ |
| { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, |
| ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), |
| |
| /* Op1 = 3, CRn = 14, CRm = 0 */ |
| ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), |
| }; |
| |
| static int search_cmp_ftr_reg(const void *id, const void *regp) |
| { |
| return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; |
| } |
| |
| /* |
| * get_arm64_ftr_reg - Lookup a feature register entry using its |
| * sys_reg() encoding. With the array arm64_ftr_regs sorted in the |
| * ascending order of sys_id , we use binary search to find a matching |
| * entry. |
| * |
| * returns - Upon success, matching ftr_reg entry for id. |
| * - NULL on failure. It is upto the caller to decide |
| * the impact of a failure. |
| */ |
| static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) |
| { |
| const struct __ftr_reg_entry *ret; |
| |
| ret = bsearch((const void *)(unsigned long)sys_id, |
| arm64_ftr_regs, |
| ARRAY_SIZE(arm64_ftr_regs), |
| sizeof(arm64_ftr_regs[0]), |
| search_cmp_ftr_reg); |
| if (ret) |
| return ret->reg; |
| return NULL; |
| } |
| |
| static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, |
| s64 ftr_val) |
| { |
| u64 mask = arm64_ftr_mask(ftrp); |
| |
| reg &= ~mask; |
| reg |= (ftr_val << ftrp->shift) & mask; |
| return reg; |
| } |
| |
| static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, |
| s64 cur) |
| { |
| s64 ret = 0; |
| |
| switch (ftrp->type) { |
| case FTR_EXACT: |
| ret = ftrp->safe_val; |
| break; |
| case FTR_LOWER_SAFE: |
| ret = new < cur ? new : cur; |
| break; |
| case FTR_HIGHER_OR_ZERO_SAFE: |
| if (!cur || !new) |
| break; |
| /* Fallthrough */ |
| case FTR_HIGHER_SAFE: |
| ret = new > cur ? new : cur; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return ret; |
| } |
| |
| static void __init sort_ftr_regs(void) |
| { |
| int i; |
| |
| /* Check that the array is sorted so that we can do the binary search */ |
| for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++) |
| BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id); |
| } |
| |
| /* |
| * Initialise the CPU feature register from Boot CPU values. |
| * Also initiliases the strict_mask for the register. |
| * Any bits that are not covered by an arm64_ftr_bits entry are considered |
| * RES0 for the system-wide value, and must strictly match. |
| */ |
| static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new) |
| { |
| u64 val = 0; |
| u64 strict_mask = ~0x0ULL; |
| u64 user_mask = 0; |
| u64 valid_mask = 0; |
| |
| const struct arm64_ftr_bits *ftrp; |
| struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); |
| |
| BUG_ON(!reg); |
| |
| for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { |
| u64 ftr_mask = arm64_ftr_mask(ftrp); |
| s64 ftr_new = arm64_ftr_value(ftrp, new); |
| |
| val = arm64_ftr_set_value(ftrp, val, ftr_new); |
| |
| valid_mask |= ftr_mask; |
| if (!ftrp->strict) |
| strict_mask &= ~ftr_mask; |
| if (ftrp->visible) |
| user_mask |= ftr_mask; |
| else |
| reg->user_val = arm64_ftr_set_value(ftrp, |
| reg->user_val, |
| ftrp->safe_val); |
| } |
| |
| val &= valid_mask; |
| |
| reg->sys_val = val; |
| reg->strict_mask = strict_mask; |
| reg->user_mask = user_mask; |
| } |
| |
| extern const struct arm64_cpu_capabilities arm64_errata[]; |
| static const struct arm64_cpu_capabilities arm64_features[]; |
| |
| static void __init |
| init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) |
| { |
| for (; caps->matches; caps++) { |
| if (WARN(caps->capability >= ARM64_NCAPS, |
| "Invalid capability %d\n", caps->capability)) |
| continue; |
| if (WARN(cpu_hwcaps_ptrs[caps->capability], |
| "Duplicate entry for capability %d\n", |
| caps->capability)) |
| continue; |
| cpu_hwcaps_ptrs[caps->capability] = caps; |
| } |
| } |
| |
| static void __init init_cpu_hwcaps_indirect_list(void) |
| { |
| init_cpu_hwcaps_indirect_list_from_array(arm64_features); |
| init_cpu_hwcaps_indirect_list_from_array(arm64_errata); |
| } |
| |
| static void __init setup_boot_cpu_capabilities(void); |
| |
| void __init init_cpu_features(struct cpuinfo_arm64 *info) |
| { |
| /* Before we start using the tables, make sure it is sorted */ |
| sort_ftr_regs(); |
| |
| init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); |
| init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); |
| init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); |
| init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); |
| init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); |
| init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); |
| init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); |
| init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); |
| |
| if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { |
| init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); |
| init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); |
| init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); |
| init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); |
| init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); |
| init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); |
| init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); |
| init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6); |
| init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); |
| init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); |
| init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); |
| init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); |
| init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); |
| init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); |
| init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); |
| init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); |
| init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); |
| } |
| |
| if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { |
| init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); |
| sve_init_vq_map(); |
| } |
| |
| /* |
| * Initialize the indirect array of CPU hwcaps capabilities pointers |
| * before we handle the boot CPU below. |
| */ |
| init_cpu_hwcaps_indirect_list(); |
| |
| /* |
| * Detect and enable early CPU capabilities based on the boot CPU, |
| * after we have initialised the CPU feature infrastructure. |
| */ |
| setup_boot_cpu_capabilities(); |
| } |
| |
| static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) |
| { |
| const struct arm64_ftr_bits *ftrp; |
| |
| for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { |
| s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); |
| s64 ftr_new = arm64_ftr_value(ftrp, new); |
| |
| if (ftr_cur == ftr_new) |
| continue; |
| /* Find a safe value */ |
| ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); |
| reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); |
| } |
| |
| } |
| |
| static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) |
| { |
| struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); |
| |
| BUG_ON(!regp); |
| update_cpu_ftr_reg(regp, val); |
| if ((boot & regp->strict_mask) == (val & regp->strict_mask)) |
| return 0; |
| pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", |
| regp->name, boot, cpu, val); |
| return 1; |
| } |
| |
| /* |
| * Update system wide CPU feature registers with the values from a |
| * non-boot CPU. Also performs SANITY checks to make sure that there |
| * aren't any insane variations from that of the boot CPU. |
| */ |
| void update_cpu_features(int cpu, |
| struct cpuinfo_arm64 *info, |
| struct cpuinfo_arm64 *boot) |
| { |
| int taint = 0; |
| |
| /* |
| * The kernel can handle differing I-cache policies, but otherwise |
| * caches should look identical. Userspace JITs will make use of |
| * *minLine. |
| */ |
| taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, |
| info->reg_ctr, boot->reg_ctr); |
| |
| /* |
| * Userspace may perform DC ZVA instructions. Mismatched block sizes |
| * could result in too much or too little memory being zeroed if a |
| * process is preempted and migrated between CPUs. |
| */ |
| taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, |
| info->reg_dczid, boot->reg_dczid); |
| |
| /* If different, timekeeping will be broken (especially with KVM) */ |
| taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, |
| info->reg_cntfrq, boot->reg_cntfrq); |
| |
| /* |
| * The kernel uses self-hosted debug features and expects CPUs to |
| * support identical debug features. We presently need CTX_CMPs, WRPs, |
| * and BRPs to be identical. |
| * ID_AA64DFR1 is currently RES0. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, |
| info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, |
| info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); |
| /* |
| * Even in big.LITTLE, processors should be identical instruction-set |
| * wise. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, |
| info->reg_id_aa64isar0, boot->reg_id_aa64isar0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, |
| info->reg_id_aa64isar1, boot->reg_id_aa64isar1); |
| |
| /* |
| * Differing PARange support is fine as long as all peripherals and |
| * memory are mapped within the minimum PARange of all CPUs. |
| * Linux should not care about secure memory. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, |
| info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, |
| info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); |
| taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, |
| info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); |
| |
| /* |
| * EL3 is not our concern. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, |
| info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); |
| taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, |
| info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); |
| |
| taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, |
| info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); |
| |
| /* |
| * If we have AArch32, we care about 32-bit features for compat. |
| * If the system doesn't support AArch32, don't update them. |
| */ |
| if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && |
| id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { |
| |
| taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, |
| info->reg_id_dfr0, boot->reg_id_dfr0); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, |
| info->reg_id_isar0, boot->reg_id_isar0); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, |
| info->reg_id_isar1, boot->reg_id_isar1); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, |
| info->reg_id_isar2, boot->reg_id_isar2); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, |
| info->reg_id_isar3, boot->reg_id_isar3); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, |
| info->reg_id_isar4, boot->reg_id_isar4); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, |
| info->reg_id_isar5, boot->reg_id_isar5); |
| taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu, |
| info->reg_id_isar6, boot->reg_id_isar6); |
| |
| /* |
| * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and |
| * ACTLR formats could differ across CPUs and therefore would have to |
| * be trapped for virtualization anyway. |
| */ |
| taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, |
| info->reg_id_mmfr0, boot->reg_id_mmfr0); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, |
| info->reg_id_mmfr1, boot->reg_id_mmfr1); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, |
| info->reg_id_mmfr2, boot->reg_id_mmfr2); |
| taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, |
| info->reg_id_mmfr3, boot->reg_id_mmfr3); |
| taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, |
| info->reg_id_pfr0, boot->reg_id_pfr0); |
| taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, |
| info->reg_id_pfr1, boot->reg_id_pfr1); |
| taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, |
| info->reg_mvfr0, boot->reg_mvfr0); |
| taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, |
| info->reg_mvfr1, boot->reg_mvfr1); |
| taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, |
| info->reg_mvfr2, boot->reg_mvfr2); |
| } |
| |
| if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { |
| taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, |
| info->reg_zcr, boot->reg_zcr); |
| |
| /* Probe vector lengths, unless we already gave up on SVE */ |
| if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && |
| !system_capabilities_finalized()) |
| sve_update_vq_map(); |
| } |
| |
| /* |
| * Mismatched CPU features are a recipe for disaster. Don't even |
| * pretend to support them. |
| */ |
| if (taint) { |
| pr_warn_once("Unsupported CPU feature variation detected.\n"); |
| add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); |
| } |
| } |
| |
| u64 read_sanitised_ftr_reg(u32 id) |
| { |
| struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); |
| |
| /* We shouldn't get a request for an unsupported register */ |
| BUG_ON(!regp); |
| return regp->sys_val; |
| } |
| |
| #define read_sysreg_case(r) \ |
| case r: return read_sysreg_s(r) |
| |
| /* |
| * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. |
| * Read the system register on the current CPU |
| */ |
| static u64 __read_sysreg_by_encoding(u32 sys_id) |
| { |
| switch (sys_id) { |
| read_sysreg_case(SYS_ID_PFR0_EL1); |
| read_sysreg_case(SYS_ID_PFR1_EL1); |
| read_sysreg_case(SYS_ID_DFR0_EL1); |
| read_sysreg_case(SYS_ID_MMFR0_EL1); |
| read_sysreg_case(SYS_ID_MMFR1_EL1); |
| read_sysreg_case(SYS_ID_MMFR2_EL1); |
| read_sysreg_case(SYS_ID_MMFR3_EL1); |
| read_sysreg_case(SYS_ID_ISAR0_EL1); |
| read_sysreg_case(SYS_ID_ISAR1_EL1); |
| read_sysreg_case(SYS_ID_ISAR2_EL1); |
| read_sysreg_case(SYS_ID_ISAR3_EL1); |
| read_sysreg_case(SYS_ID_ISAR4_EL1); |
| read_sysreg_case(SYS_ID_ISAR5_EL1); |
| read_sysreg_case(SYS_ID_ISAR6_EL1); |
| read_sysreg_case(SYS_MVFR0_EL1); |
| read_sysreg_case(SYS_MVFR1_EL1); |
| read_sysreg_case(SYS_MVFR2_EL1); |
| |
| read_sysreg_case(SYS_ID_AA64PFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64PFR1_EL1); |
| read_sysreg_case(SYS_ID_AA64ZFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64DFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64DFR1_EL1); |
| read_sysreg_case(SYS_ID_AA64MMFR0_EL1); |
| read_sysreg_case(SYS_ID_AA64MMFR1_EL1); |
| read_sysreg_case(SYS_ID_AA64MMFR2_EL1); |
| read_sysreg_case(SYS_ID_AA64ISAR0_EL1); |
| read_sysreg_case(SYS_ID_AA64ISAR1_EL1); |
| |
| read_sysreg_case(SYS_CNTFRQ_EL0); |
| read_sysreg_case(SYS_CTR_EL0); |
| read_sysreg_case(SYS_DCZID_EL0); |
| |
| default: |
| BUG(); |
| return 0; |
| } |
| } |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| |
| static bool |
| feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) |
| { |
| int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign); |
| |
| return val >= entry->min_field_value; |
| } |
| |
| static bool |
| has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| u64 val; |
| |
| WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); |
| if (scope == SCOPE_SYSTEM) |
| val = read_sanitised_ftr_reg(entry->sys_reg); |
| else |
| val = __read_sysreg_by_encoding(entry->sys_reg); |
| |
| return feature_matches(val, entry); |
| } |
| |
| static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| bool has_sre; |
| |
| if (!has_cpuid_feature(entry, scope)) |
| return false; |
| |
| has_sre = gic_enable_sre(); |
| if (!has_sre) |
| pr_warn_once("%s present but disabled by higher exception level\n", |
| entry->desc); |
| |
| return has_sre; |
| } |
| |
| static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| u32 midr = read_cpuid_id(); |
| |
| /* Cavium ThunderX pass 1.x and 2.x */ |
| return midr_is_cpu_model_range(midr, MIDR_THUNDERX, |
| MIDR_CPU_VAR_REV(0, 0), |
| MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); |
| } |
| |
| static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); |
| |
| return cpuid_feature_extract_signed_field(pfr0, |
| ID_AA64PFR0_FP_SHIFT) < 0; |
| } |
| |
| static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| u64 ctr; |
| |
| if (scope == SCOPE_SYSTEM) |
| ctr = arm64_ftr_reg_ctrel0.sys_val; |
| else |
| ctr = read_cpuid_effective_cachetype(); |
| |
| return ctr & BIT(CTR_IDC_SHIFT); |
| } |
| |
| static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* |
| * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively |
| * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses |
| * to the CTR_EL0 on this CPU and emulate it with the real/safe |
| * value. |
| */ |
| if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT))) |
| sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); |
| } |
| |
| static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| u64 ctr; |
| |
| if (scope == SCOPE_SYSTEM) |
| ctr = arm64_ftr_reg_ctrel0.sys_val; |
| else |
| ctr = read_cpuid_cachetype(); |
| |
| return ctr & BIT(CTR_DIC_SHIFT); |
| } |
| |
| static bool __maybe_unused |
| has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) |
| { |
| /* |
| * Kdump isn't guaranteed to power-off all secondary CPUs, CNP |
| * may share TLB entries with a CPU stuck in the crashed |
| * kernel. |
| */ |
| if (is_kdump_kernel()) |
| return false; |
| |
| return has_cpuid_feature(entry, scope); |
| } |
| |
| /* |
| * This check is triggered during the early boot before the cpufeature |
| * is initialised. Checking the status on the local CPU allows the boot |
| * CPU to detect the need for non-global mappings and thus avoiding a |
| * pagetable re-write after all the CPUs are booted. This check will be |
| * anyway run on individual CPUs, allowing us to get the consistent |
| * state once the SMP CPUs are up and thus make the switch to non-global |
| * mappings if required. |
| */ |
| bool kaslr_requires_kpti(void) |
| { |
| if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) |
| return false; |
| |
| /* |
| * E0PD does a similar job to KPTI so can be used instead |
| * where available. |
| */ |
| if (IS_ENABLED(CONFIG_ARM64_E0PD)) { |
| u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1); |
| if (cpuid_feature_extract_unsigned_field(mmfr2, |
| ID_AA64MMFR2_E0PD_SHIFT)) |
| return false; |
| } |
| |
| /* |
| * Systems affected by Cavium erratum 24756 are incompatible |
| * with KPTI. |
| */ |
| if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { |
| extern const struct midr_range cavium_erratum_27456_cpus[]; |
| |
| if (is_midr_in_range_list(read_cpuid_id(), |
| cavium_erratum_27456_cpus)) |
| return false; |
| } |
| |
| return kaslr_offset() > 0; |
| } |
| |
| static bool __meltdown_safe = true; |
| static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ |
| |
| static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| /* List of CPUs that are not vulnerable and don't need KPTI */ |
| static const struct midr_range kpti_safe_list[] = { |
| MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), |
| MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), |
| MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), |
| MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), |
| MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), |
| MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL), |
| { /* sentinel */ } |
| }; |
| char const *str = "kpti command line option"; |
| bool meltdown_safe; |
| |
| meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); |
| |
| /* Defer to CPU feature registers */ |
| if (has_cpuid_feature(entry, scope)) |
| meltdown_safe = true; |
| |
| if (!meltdown_safe) |
| __meltdown_safe = false; |
| |
| /* |
| * For reasons that aren't entirely clear, enabling KPTI on Cavium |
| * ThunderX leads to apparent I-cache corruption of kernel text, which |
| * ends as well as you might imagine. Don't even try. |
| */ |
| if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) { |
| str = "ARM64_WORKAROUND_CAVIUM_27456"; |
| __kpti_forced = -1; |
| } |
| |
| /* Useful for KASLR robustness */ |
| if (kaslr_requires_kpti()) { |
| if (!__kpti_forced) { |
| str = "KASLR"; |
| __kpti_forced = 1; |
| } |
| } |
| |
| if (cpu_mitigations_off() && !__kpti_forced) { |
| str = "mitigations=off"; |
| __kpti_forced = -1; |
| } |
| |
| if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { |
| pr_info_once("kernel page table isolation disabled by kernel configuration\n"); |
| return false; |
| } |
| |
| /* Forced? */ |
| if (__kpti_forced) { |
| pr_info_once("kernel page table isolation forced %s by %s\n", |
| __kpti_forced > 0 ? "ON" : "OFF", str); |
| return __kpti_forced > 0; |
| } |
| |
| return !meltdown_safe; |
| } |
| |
| #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 |
| static void |
| kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) |
| { |
| typedef void (kpti_remap_fn)(int, int, phys_addr_t); |
| extern kpti_remap_fn idmap_kpti_install_ng_mappings; |
| kpti_remap_fn *remap_fn; |
| |
| int cpu = smp_processor_id(); |
| |
| /* |
| * We don't need to rewrite the page-tables if either we've done |
| * it already or we have KASLR enabled and therefore have not |
| * created any global mappings at all. |
| */ |
| if (arm64_use_ng_mappings) |
| return; |
| |
| remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); |
| |
| cpu_install_idmap(); |
| remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir)); |
| cpu_uninstall_idmap(); |
| |
| if (!cpu) |
| arm64_use_ng_mappings = true; |
| |
| return; |
| } |
| #else |
| static void |
| kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) |
| { |
| } |
| #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ |
| |
| static int __init parse_kpti(char *str) |
| { |
| bool enabled; |
| int ret = strtobool(str, &enabled); |
| |
| if (ret) |
| return ret; |
| |
| __kpti_forced = enabled ? 1 : -1; |
| return 0; |
| } |
| early_param("kpti", parse_kpti); |
| |
| #ifdef CONFIG_ARM64_HW_AFDBM |
| static inline void __cpu_enable_hw_dbm(void) |
| { |
| u64 tcr = read_sysreg(tcr_el1) | TCR_HD; |
| |
| write_sysreg(tcr, tcr_el1); |
| isb(); |
| } |
| |
| static bool cpu_has_broken_dbm(void) |
| { |
| /* List of CPUs which have broken DBM support. */ |
| static const struct midr_range cpus[] = { |
| #ifdef CONFIG_ARM64_ERRATUM_1024718 |
| MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0 |
| #endif |
| {}, |
| }; |
| |
| return is_midr_in_range_list(read_cpuid_id(), cpus); |
| } |
| |
| static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) |
| { |
| return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && |
| !cpu_has_broken_dbm(); |
| } |
| |
| static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) |
| { |
| if (cpu_can_use_dbm(cap)) |
| __cpu_enable_hw_dbm(); |
| } |
| |
| static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, |
| int __unused) |
| { |
| static bool detected = false; |
| /* |
| * DBM is a non-conflicting feature. i.e, the kernel can safely |
| * run a mix of CPUs with and without the feature. So, we |
| * unconditionally enable the capability to allow any late CPU |
| * to use the feature. We only enable the control bits on the |
| * CPU, if it actually supports. |
| * |
| * We have to make sure we print the "feature" detection only |
| * when at least one CPU actually uses it. So check if this CPU |
| * can actually use it and print the message exactly once. |
| * |
| * This is safe as all CPUs (including secondary CPUs - due to the |
| * LOCAL_CPU scope - and the hotplugged CPUs - via verification) |
| * goes through the "matches" check exactly once. Also if a CPU |
| * matches the criteria, it is guaranteed that the CPU will turn |
| * the DBM on, as the capability is unconditionally enabled. |
| */ |
| if (!detected && cpu_can_use_dbm(cap)) { |
| detected = true; |
| pr_info("detected: Hardware dirty bit management\n"); |
| } |
| |
| return true; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_ARM64_AMU_EXTN |
| |
| /* |
| * The "amu_cpus" cpumask only signals that the CPU implementation for the |
| * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide |
| * information regarding all the events that it supports. When a CPU bit is |
| * set in the cpumask, the user of this feature can only rely on the presence |
| * of the 4 fixed counters for that CPU. But this does not guarantee that the |
| * counters are enabled or access to these counters is enabled by code |
| * executed at higher exception levels (firmware). |
| */ |
| static struct cpumask amu_cpus __read_mostly; |
| |
| bool cpu_has_amu_feat(int cpu) |
| { |
| return cpumask_test_cpu(cpu, &amu_cpus); |
| } |
| |
| /* Initialize the use of AMU counters for frequency invariance */ |
| extern void init_cpu_freq_invariance_counters(void); |
| |
| static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap) |
| { |
| if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) { |
| pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n", |
| smp_processor_id()); |
| cpumask_set_cpu(smp_processor_id(), &amu_cpus); |
| init_cpu_freq_invariance_counters(); |
| } |
| } |
| |
| static bool has_amu(const struct arm64_cpu_capabilities *cap, |
| int __unused) |
| { |
| /* |
| * The AMU extension is a non-conflicting feature: the kernel can |
| * safely run a mix of CPUs with and without support for the |
| * activity monitors extension. Therefore, unconditionally enable |
| * the capability to allow any late CPU to use the feature. |
| * |
| * With this feature unconditionally enabled, the cpu_enable |
| * function will be called for all CPUs that match the criteria, |
| * including secondary and hotplugged, marking this feature as |
| * present on that respective CPU. The enable function will also |
| * print a detection message. |
| */ |
| |
| return true; |
| } |
| #endif |
| |
| #ifdef CONFIG_ARM64_VHE |
| static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| return is_kernel_in_hyp_mode(); |
| } |
| |
| static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* |
| * Copy register values that aren't redirected by hardware. |
| * |
| * Before code patching, we only set tpidr_el1, all CPUs need to copy |
| * this value to tpidr_el2 before we patch the code. Once we've done |
| * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to |
| * do anything here. |
| */ |
| if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) |
| write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); |
| } |
| #endif |
| |
| static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused) |
| { |
| u64 val = read_sysreg_s(SYS_CLIDR_EL1); |
| |
| /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */ |
| WARN_ON(val & (7 << 27 | 7 << 21)); |
| } |
| |
| #ifdef CONFIG_ARM64_SSBD |
| static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr) |
| { |
| if (user_mode(regs)) |
| return 1; |
| |
| if (instr & BIT(PSTATE_Imm_shift)) |
| regs->pstate |= PSR_SSBS_BIT; |
| else |
| regs->pstate &= ~PSR_SSBS_BIT; |
| |
| arm64_skip_faulting_instruction(regs, 4); |
| return 0; |
| } |
| |
| static struct undef_hook ssbs_emulation_hook = { |
| .instr_mask = ~(1U << PSTATE_Imm_shift), |
| .instr_val = 0xd500401f | PSTATE_SSBS, |
| .fn = ssbs_emulation_handler, |
| }; |
| |
| static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused) |
| { |
| static bool undef_hook_registered = false; |
| static DEFINE_RAW_SPINLOCK(hook_lock); |
| |
| raw_spin_lock(&hook_lock); |
| if (!undef_hook_registered) { |
| register_undef_hook(&ssbs_emulation_hook); |
| undef_hook_registered = true; |
| } |
| raw_spin_unlock(&hook_lock); |
| |
| if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) { |
| sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS); |
| arm64_set_ssbd_mitigation(false); |
| } else { |
| arm64_set_ssbd_mitigation(true); |
| } |
| } |
| #endif /* CONFIG_ARM64_SSBD */ |
| |
| #ifdef CONFIG_ARM64_PAN |
| static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* |
| * We modify PSTATE. This won't work from irq context as the PSTATE |
| * is discarded once we return from the exception. |
| */ |
| WARN_ON_ONCE(in_interrupt()); |
| |
| sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); |
| asm(SET_PSTATE_PAN(1)); |
| } |
| #endif /* CONFIG_ARM64_PAN */ |
| |
| #ifdef CONFIG_ARM64_RAS_EXTN |
| static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) |
| { |
| /* Firmware may have left a deferred SError in this register. */ |
| write_sysreg_s(0, SYS_DISR_EL1); |
| } |
| #endif /* CONFIG_ARM64_RAS_EXTN */ |
| |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| static bool has_address_auth(const struct arm64_cpu_capabilities *entry, |
| int __unused) |
| { |
| return __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) || |
| __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF); |
| } |
| |
| static bool has_generic_auth(const struct arm64_cpu_capabilities *entry, |
| int __unused) |
| { |
| return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) || |
| __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF); |
| } |
| #endif /* CONFIG_ARM64_PTR_AUTH */ |
| |
| #ifdef CONFIG_ARM64_E0PD |
| static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap) |
| { |
| if (this_cpu_has_cap(ARM64_HAS_E0PD)) |
| sysreg_clear_set(tcr_el1, 0, TCR_E0PD1); |
| } |
| #endif /* CONFIG_ARM64_E0PD */ |
| |
| #ifdef CONFIG_ARM64_PSEUDO_NMI |
| static bool enable_pseudo_nmi; |
| |
| static int __init early_enable_pseudo_nmi(char *p) |
| { |
| return strtobool(p, &enable_pseudo_nmi); |
| } |
| early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); |
| |
| static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, |
| int scope) |
| { |
| return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope); |
| } |
| #endif |
| |
| /* Internal helper functions to match cpu capability type */ |
| static bool |
| cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) |
| { |
| return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); |
| } |
| |
| static bool |
| cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) |
| { |
| return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); |
| } |
| |
| static bool |
| cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap) |
| { |
| return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT); |
| } |
| |
| static const struct arm64_cpu_capabilities arm64_features[] = { |
| { |
| .desc = "GIC system register CPU interface", |
| .capability = ARM64_HAS_SYSREG_GIC_CPUIF, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = has_useable_gicv3_cpuif, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .field_pos = ID_AA64PFR0_GIC_SHIFT, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_PAN |
| { |
| .desc = "Privileged Access Never", |
| .capability = ARM64_HAS_PAN, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64MMFR1_EL1, |
| .field_pos = ID_AA64MMFR1_PAN_SHIFT, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| .cpu_enable = cpu_enable_pan, |
| }, |
| #endif /* CONFIG_ARM64_PAN */ |
| #ifdef CONFIG_ARM64_LSE_ATOMICS |
| { |
| .desc = "LSE atomic instructions", |
| .capability = ARM64_HAS_LSE_ATOMICS, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 2, |
| }, |
| #endif /* CONFIG_ARM64_LSE_ATOMICS */ |
| { |
| .desc = "Software prefetching using PRFM", |
| .capability = ARM64_HAS_NO_HW_PREFETCH, |
| .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, |
| .matches = has_no_hw_prefetch, |
| }, |
| #ifdef CONFIG_ARM64_UAO |
| { |
| .desc = "User Access Override", |
| .capability = ARM64_HAS_UAO, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .field_pos = ID_AA64MMFR2_UAO_SHIFT, |
| .min_field_value = 1, |
| /* |
| * We rely on stop_machine() calling uao_thread_switch() to set |
| * UAO immediately after patching. |
| */ |
| }, |
| #endif /* CONFIG_ARM64_UAO */ |
| #ifdef CONFIG_ARM64_PAN |
| { |
| .capability = ARM64_ALT_PAN_NOT_UAO, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = cpufeature_pan_not_uao, |
| }, |
| #endif /* CONFIG_ARM64_PAN */ |
| #ifdef CONFIG_ARM64_VHE |
| { |
| .desc = "Virtualization Host Extensions", |
| .capability = ARM64_HAS_VIRT_HOST_EXTN, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = runs_at_el2, |
| .cpu_enable = cpu_copy_el2regs, |
| }, |
| #endif /* CONFIG_ARM64_VHE */ |
| { |
| .desc = "32-bit EL0 Support", |
| .capability = ARM64_HAS_32BIT_EL0, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_EL0_SHIFT, |
| .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT, |
| }, |
| { |
| .desc = "Kernel page table isolation (KPTI)", |
| .capability = ARM64_UNMAP_KERNEL_AT_EL0, |
| .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, |
| /* |
| * The ID feature fields below are used to indicate that |
| * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for |
| * more details. |
| */ |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .field_pos = ID_AA64PFR0_CSV3_SHIFT, |
| .min_field_value = 1, |
| .matches = unmap_kernel_at_el0, |
| .cpu_enable = kpti_install_ng_mappings, |
| }, |
| { |
| /* FP/SIMD is not implemented */ |
| .capability = ARM64_HAS_NO_FPSIMD, |
| .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, |
| .min_field_value = 0, |
| .matches = has_no_fpsimd, |
| }, |
| #ifdef CONFIG_ARM64_PMEM |
| { |
| .desc = "Data cache clean to Point of Persistence", |
| .capability = ARM64_HAS_DCPOP, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .field_pos = ID_AA64ISAR1_DPB_SHIFT, |
| .min_field_value = 1, |
| }, |
| { |
| .desc = "Data cache clean to Point of Deep Persistence", |
| .capability = ARM64_HAS_DCPODP, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_DPB_SHIFT, |
| .min_field_value = 2, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_SVE |
| { |
| .desc = "Scalable Vector Extension", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_SVE, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_SVE_SHIFT, |
| .min_field_value = ID_AA64PFR0_SVE, |
| .matches = has_cpuid_feature, |
| .cpu_enable = sve_kernel_enable, |
| }, |
| #endif /* CONFIG_ARM64_SVE */ |
| #ifdef CONFIG_ARM64_RAS_EXTN |
| { |
| .desc = "RAS Extension Support", |
| .capability = ARM64_HAS_RAS_EXTN, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_RAS_SHIFT, |
| .min_field_value = ID_AA64PFR0_RAS_V1, |
| .cpu_enable = cpu_clear_disr, |
| }, |
| #endif /* CONFIG_ARM64_RAS_EXTN */ |
| #ifdef CONFIG_ARM64_AMU_EXTN |
| { |
| /* |
| * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y. |
| * Therefore, don't provide .desc as we don't want the detection |
| * message to be shown until at least one CPU is detected to |
| * support the feature. |
| */ |
| .capability = ARM64_HAS_AMU_EXTN, |
| .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, |
| .matches = has_amu, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64PFR0_AMU_SHIFT, |
| .min_field_value = ID_AA64PFR0_AMU, |
| .cpu_enable = cpu_amu_enable, |
| }, |
| #endif /* CONFIG_ARM64_AMU_EXTN */ |
| { |
| .desc = "Data cache clean to the PoU not required for I/D coherence", |
| .capability = ARM64_HAS_CACHE_IDC, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cache_idc, |
| .cpu_enable = cpu_emulate_effective_ctr, |
| }, |
| { |
| .desc = "Instruction cache invalidation not required for I/D coherence", |
| .capability = ARM64_HAS_CACHE_DIC, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cache_dic, |
| }, |
| { |
| .desc = "Stage-2 Force Write-Back", |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .capability = ARM64_HAS_STAGE2_FWB, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR2_FWB_SHIFT, |
| .min_field_value = 1, |
| .matches = has_cpuid_feature, |
| .cpu_enable = cpu_has_fwb, |
| }, |
| #ifdef CONFIG_ARM64_HW_AFDBM |
| { |
| /* |
| * Since we turn this on always, we don't want the user to |
| * think that the feature is available when it may not be. |
| * So hide the description. |
| * |
| * .desc = "Hardware pagetable Dirty Bit Management", |
| * |
| */ |
| .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, |
| .capability = ARM64_HW_DBM, |
| .sys_reg = SYS_ID_AA64MMFR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR1_HADBS_SHIFT, |
| .min_field_value = 2, |
| .matches = has_hw_dbm, |
| .cpu_enable = cpu_enable_hw_dbm, |
| }, |
| #endif |
| { |
| .desc = "CRC32 instructions", |
| .capability = ARM64_HAS_CRC32, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_CRC32_SHIFT, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_SSBD |
| { |
| .desc = "Speculative Store Bypassing Safe (SSBS)", |
| .capability = ARM64_SSBS, |
| .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64PFR1_EL1, |
| .field_pos = ID_AA64PFR1_SSBS_SHIFT, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY, |
| .cpu_enable = cpu_enable_ssbs, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_CNP |
| { |
| .desc = "Common not Private translations", |
| .capability = ARM64_HAS_CNP, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_useable_cnp, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR2_CNP_SHIFT, |
| .min_field_value = 1, |
| .cpu_enable = cpu_enable_cnp, |
| }, |
| #endif |
| { |
| .desc = "Speculation barrier (SB)", |
| .capability = ARM64_HAS_SB, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .field_pos = ID_AA64ISAR1_SB_SHIFT, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| { |
| .desc = "Address authentication (architected algorithm)", |
| .capability = ARM64_HAS_ADDRESS_AUTH_ARCH, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_APA_SHIFT, |
| .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .desc = "Address authentication (IMP DEF algorithm)", |
| .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_API_SHIFT, |
| .min_field_value = ID_AA64ISAR1_API_IMP_DEF, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .capability = ARM64_HAS_ADDRESS_AUTH, |
| .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, |
| .matches = has_address_auth, |
| }, |
| { |
| .desc = "Generic authentication (architected algorithm)", |
| .capability = ARM64_HAS_GENERIC_AUTH_ARCH, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_GPA_SHIFT, |
| .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .desc = "Generic authentication (IMP DEF algorithm)", |
| .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64ISAR1_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64ISAR1_GPI_SHIFT, |
| .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF, |
| .matches = has_cpuid_feature, |
| }, |
| { |
| .capability = ARM64_HAS_GENERIC_AUTH, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_generic_auth, |
| }, |
| #endif /* CONFIG_ARM64_PTR_AUTH */ |
| #ifdef CONFIG_ARM64_PSEUDO_NMI |
| { |
| /* |
| * Depends on having GICv3 |
| */ |
| .desc = "IRQ priority masking", |
| .capability = ARM64_HAS_IRQ_PRIO_MASKING, |
| .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, |
| .matches = can_use_gic_priorities, |
| .sys_reg = SYS_ID_AA64PFR0_EL1, |
| .field_pos = ID_AA64PFR0_GIC_SHIFT, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| #endif |
| #ifdef CONFIG_ARM64_E0PD |
| { |
| .desc = "E0PD", |
| .capability = ARM64_HAS_E0PD, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .sys_reg = SYS_ID_AA64MMFR2_EL1, |
| .sign = FTR_UNSIGNED, |
| .field_pos = ID_AA64MMFR2_E0PD_SHIFT, |
| .matches = has_cpuid_feature, |
| .min_field_value = 1, |
| .cpu_enable = cpu_enable_e0pd, |
| }, |
| #endif |
| #ifdef CONFIG_ARCH_RANDOM |
| { |
| .desc = "Random Number Generator", |
| .capability = ARM64_HAS_RNG, |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, |
| .matches = has_cpuid_feature, |
| .sys_reg = SYS_ID_AA64ISAR0_EL1, |
| .field_pos = ID_AA64ISAR0_RNDR_SHIFT, |
| .sign = FTR_UNSIGNED, |
| .min_field_value = 1, |
| }, |
| #endif |
| {}, |
| }; |
| |
| #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \ |
| .matches = has_cpuid_feature, \ |
| .sys_reg = reg, \ |
| .field_pos = field, \ |
| .sign = s, \ |
| .min_field_value = min_value, |
| |
| #define __HWCAP_CAP(name, cap_type, cap) \ |
| .desc = name, \ |
| .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ |
| .hwcap_type = cap_type, \ |
| .hwcap = cap, \ |
| |
| #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \ |
| { \ |
| __HWCAP_CAP(#cap, cap_type, cap) \ |
| HWCAP_CPUID_MATCH(reg, field, s, min_value) \ |
| } |
| |
| #define HWCAP_MULTI_CAP(list, cap_type, cap) \ |
| { \ |
| __HWCAP_CAP(#cap, cap_type, cap) \ |
| .matches = cpucap_multi_entry_cap_matches, \ |
| .match_list = list, \ |
| } |
| |
| #define HWCAP_CAP_MATCH(match, cap_type, cap) \ |
| { \ |
| __HWCAP_CAP(#cap, cap_type, cap) \ |
| .matches = match, \ |
| } |
| |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { |
| { |
| HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT, |
| FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED) |
| }, |
| { |
| HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT, |
| FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF) |
| }, |
| {}, |
| }; |
| |
| static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { |
| { |
| HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT, |
| FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED) |
| }, |
| { |
| HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT, |
| FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF) |
| }, |
| {}, |
| }; |
| #endif |
| |
| static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), |
| HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG), |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP), |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP), |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD), |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH), |
| HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM), |
| HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT), |
| #ifdef CONFIG_ARM64_SVE |
| HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM), |
| HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM), |
| #endif |
| HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS), |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), |
| HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), |
| #endif |
| {}, |
| }; |
| |
| #ifdef CONFIG_COMPAT |
| static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope) |
| { |
| /* |
| * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available, |
| * in line with that of arm32 as in vfp_init(). We make sure that the |
| * check is future proof, by making sure value is non-zero. |
| */ |
| u32 mvfr1; |
| |
| WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); |
| if (scope == SCOPE_SYSTEM) |
| mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1); |
| else |
| mvfr1 = read_sysreg_s(SYS_MVFR1_EL1); |
| |
| return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) && |
| cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) && |
| cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT); |
| } |
| #endif |
| |
| static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { |
| #ifdef CONFIG_COMPAT |
| HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON), |
| HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4), |
| /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */ |
| HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP), |
| HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), |
| HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), |
| #endif |
| {}, |
| }; |
| |
| static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) |
| { |
| switch (cap->hwcap_type) { |
| case CAP_HWCAP: |
| cpu_set_feature(cap->hwcap); |
| break; |
| #ifdef CONFIG_COMPAT |
| case CAP_COMPAT_HWCAP: |
| compat_elf_hwcap |= (u32)cap->hwcap; |
| break; |
| case CAP_COMPAT_HWCAP2: |
| compat_elf_hwcap2 |= (u32)cap->hwcap; |
| break; |
| #endif |
| default: |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| /* Check if we have a particular HWCAP enabled */ |
| static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) |
| { |
| bool rc; |
| |
| switch (cap->hwcap_type) { |
| case CAP_HWCAP: |
| rc = cpu_have_feature(cap->hwcap); |
| break; |
| #ifdef CONFIG_COMPAT |
| case CAP_COMPAT_HWCAP: |
| rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; |
| break; |
| case CAP_COMPAT_HWCAP2: |
| rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; |
| break; |
| #endif |
| default: |
| WARN_ON(1); |
| rc = false; |
| } |
| |
| return rc; |
| } |
| |
| static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) |
| { |
| /* We support emulation of accesses to CPU ID feature registers */ |
| cpu_set_named_feature(CPUID); |
| for (; hwcaps->matches; hwcaps++) |
| if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) |
| cap_set_elf_hwcap(hwcaps); |
| } |
| |
| static void update_cpu_capabilities(u16 scope_mask) |
| { |
| int i; |
| const struct arm64_cpu_capabilities *caps; |
| |
| scope_mask &= ARM64_CPUCAP_SCOPE_MASK; |
| for (i = 0; i < ARM64_NCAPS; i++) { |
| caps = cpu_hwcaps_ptrs[i]; |
| if (!caps || !(caps->type & scope_mask) || |
| cpus_have_cap(caps->capability) || |
| !caps->matches(caps, cpucap_default_scope(caps))) |
| continue; |
| |
| if (caps->desc) |
| pr_info("detected: %s\n", caps->desc); |
| cpus_set_cap(caps->capability); |
| |
| if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) |
| set_bit(caps->capability, boot_capabilities); |
| } |
| } |
| |
| /* |
| * Enable all the available capabilities on this CPU. The capabilities |
| * with BOOT_CPU scope are handled separately and hence skipped here. |
| */ |
| static int cpu_enable_non_boot_scope_capabilities(void *__unused) |
| { |
| int i; |
| u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; |
| |
| for_each_available_cap(i) { |
| const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i]; |
| |
| if (WARN_ON(!cap)) |
| continue; |
| |
| if (!(cap->type & non_boot_scope)) |
| continue; |
| |
| if (cap->cpu_enable) |
| cap->cpu_enable(cap); |
| } |
| return 0; |
| } |
| |
| /* |
| * Run through the enabled capabilities and enable() it on all active |
| * CPUs |
| */ |
| static void __init enable_cpu_capabilities(u16 scope_mask) |
| { |
| int i; |
| const struct arm64_cpu_capabilities *caps; |
| bool boot_scope; |
| |
| scope_mask &= ARM64_CPUCAP_SCOPE_MASK; |
| boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); |
| |
| for (i = 0; i < ARM64_NCAPS; i++) { |
| unsigned int num; |
| |
| caps = cpu_hwcaps_ptrs[i]; |
| if (!caps || !(caps->type & scope_mask)) |
| continue; |
| num = caps->capability; |
| if (!cpus_have_cap(num)) |
| continue; |
| |
| /* Ensure cpus_have_const_cap(num) works */ |
| static_branch_enable(&cpu_hwcap_keys[num]); |
| |
| if (boot_scope && caps->cpu_enable) |
| /* |
| * Capabilities with SCOPE_BOOT_CPU scope are finalised |
| * before any secondary CPU boots. Thus, each secondary |
| * will enable the capability as appropriate via |
| * check_local_cpu_capabilities(). The only exception is |
| * the boot CPU, for which the capability must be |
| * enabled here. This approach avoids costly |
| * stop_machine() calls for this case. |
| */ |
| caps->cpu_enable(caps); |
| } |
| |
| /* |
| * For all non-boot scope capabilities, use stop_machine() |
| * as it schedules the work allowing us to modify PSTATE, |
| * instead of on_each_cpu() which uses an IPI, giving us a |
| * PSTATE that disappears when we return. |
| */ |
| if (!boot_scope) |
| stop_machine(cpu_enable_non_boot_scope_capabilities, |
| NULL, cpu_online_mask); |
| } |
| |
| /* |
| * Run through the list of capabilities to check for conflicts. |
| * If the system has already detected a capability, take necessary |
| * action on this CPU. |
| */ |
| static void verify_local_cpu_caps(u16 scope_mask) |
| { |
| int i; |
| bool cpu_has_cap, system_has_cap; |
| const struct arm64_cpu_capabilities *caps; |
| |
| scope_mask &= ARM64_CPUCAP_SCOPE_MASK; |
| |
| for (i = 0; i < ARM64_NCAPS; i++) { |
| caps = cpu_hwcaps_ptrs[i]; |
| if (!caps || !(caps->type & scope_mask)) |
| continue; |
| |
| cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); |
| system_has_cap = cpus_have_cap(caps->capability); |
| |
| if (system_has_cap) { |
| /* |
| * Check if the new CPU misses an advertised feature, |
| * which is not safe to miss. |
| */ |
| if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) |
| break; |
| /* |
| * We have to issue cpu_enable() irrespective of |
| * whether the CPU has it or not, as it is enabeld |
| * system wide. It is upto the call back to take |
| * appropriate action on this CPU. |
| */ |
| if (caps->cpu_enable) |
| caps->cpu_enable(caps); |
| } else { |
| /* |
| * Check if the CPU has this capability if it isn't |
| * safe to have when the system doesn't. |
| */ |
| if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) |
| break; |
| } |
| } |
| |
| if (i < ARM64_NCAPS) { |
| pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", |
| smp_processor_id(), caps->capability, |
| caps->desc, system_has_cap, cpu_has_cap); |
| |
| if (cpucap_panic_on_conflict(caps)) |
| cpu_panic_kernel(); |
| else |
| cpu_die_early(); |
| } |
| } |
| |
| /* |
| * Check for CPU features that are used in early boot |
| * based on the Boot CPU value. |
| */ |
| static void check_early_cpu_features(void) |
| { |
| verify_cpu_asid_bits(); |
| |
| verify_local_cpu_caps(SCOPE_BOOT_CPU); |
| } |
| |
| static void |
| verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) |
| { |
| |
| for (; caps->matches; caps++) |
| if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { |
| pr_crit("CPU%d: missing HWCAP: %s\n", |
| smp_processor_id(), caps->desc); |
| cpu_die_early(); |
| } |
| } |
| |
| static void verify_sve_features(void) |
| { |
| u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); |
| u64 zcr = read_zcr_features(); |
| |
| unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; |
| unsigned int len = zcr & ZCR_ELx_LEN_MASK; |
| |
| if (len < safe_len || sve_verify_vq_map()) { |
| pr_crit("CPU%d: SVE: vector length support mismatch\n", |
| smp_processor_id()); |
| cpu_die_early(); |
| } |
| |
| /* Add checks on other ZCR bits here if necessary */ |
| } |
| |
| |
| /* |
| * Run through the enabled system capabilities and enable() it on this CPU. |
| * The capabilities were decided based on the available CPUs at the boot time. |
| * Any new CPU should match the system wide status of the capability. If the |
| * new CPU doesn't have a capability which the system now has enabled, we |
| * cannot do anything to fix it up and could cause unexpected failures. So |
| * we park the CPU. |
| */ |
| static void verify_local_cpu_capabilities(void) |
| { |
| /* |
| * The capabilities with SCOPE_BOOT_CPU are checked from |
| * check_early_cpu_features(), as they need to be verified |
| * on all secondary CPUs. |
| */ |
| verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU); |
| |
| verify_local_elf_hwcaps(arm64_elf_hwcaps); |
| |
| if (system_supports_32bit_el0()) |
| verify_local_elf_hwcaps(compat_elf_hwcaps); |
| |
| if (system_supports_sve()) |
| verify_sve_features(); |
| } |
| |
| void check_local_cpu_capabilities(void) |
| { |
| /* |
| * All secondary CPUs should conform to the early CPU features |
| * in use by the kernel based on boot CPU. |
| */ |
| check_early_cpu_features(); |
| |
| /* |
| * If we haven't finalised the system capabilities, this CPU gets |
| * a chance to update the errata work arounds and local features. |
| * Otherwise, this CPU should verify that it has all the system |
| * advertised capabilities. |
| */ |
| if (!system_capabilities_finalized()) |
| update_cpu_capabilities(SCOPE_LOCAL_CPU); |
| else |
| verify_local_cpu_capabilities(); |
| } |
| |
| static void __init setup_boot_cpu_capabilities(void) |
| { |
| /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ |
| update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); |
| /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ |
| enable_cpu_capabilities(SCOPE_BOOT_CPU); |
| } |
| |
| bool this_cpu_has_cap(unsigned int n) |
| { |
| if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { |
| const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; |
| |
| if (cap) |
| return cap->matches(cap, SCOPE_LOCAL_CPU); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * This helper function is used in a narrow window when, |
| * - The system wide safe registers are set with all the SMP CPUs and, |
| * - The SYSTEM_FEATURE cpu_hwcaps may not have been set. |
| * In all other cases cpus_have_{const_}cap() should be used. |
| */ |
| static bool __system_matches_cap(unsigned int n) |
| { |
| if (n < ARM64_NCAPS) { |
| const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; |
| |
| if (cap) |
| return cap->matches(cap, SCOPE_SYSTEM); |
| } |
| return false; |
| } |
| |
| void cpu_set_feature(unsigned int num) |
| { |
| WARN_ON(num >= MAX_CPU_FEATURES); |
| elf_hwcap |= BIT(num); |
| } |
| EXPORT_SYMBOL_GPL(cpu_set_feature); |
| |
| bool cpu_have_feature(unsigned int num) |
| { |
| WARN_ON(num >= MAX_CPU_FEATURES); |
| return elf_hwcap & BIT(num); |
| } |
| EXPORT_SYMBOL_GPL(cpu_have_feature); |
| |
| unsigned long cpu_get_elf_hwcap(void) |
| { |
| /* |
| * We currently only populate the first 32 bits of AT_HWCAP. Please |
| * note that for userspace compatibility we guarantee that bits 62 |
| * and 63 will always be returned as 0. |
| */ |
| return lower_32_bits(elf_hwcap); |
| } |
| |
| unsigned long cpu_get_elf_hwcap2(void) |
| { |
| return upper_32_bits(elf_hwcap); |
| } |
| |
| static void __init setup_system_capabilities(void) |
| { |
| /* |
| * We have finalised the system-wide safe feature |
| * registers, finalise the capabilities that depend |
| * on it. Also enable all the available capabilities, |
| * that are not enabled already. |
| */ |
| update_cpu_capabilities(SCOPE_SYSTEM); |
| enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); |
| } |
| |
| void __init setup_cpu_features(void) |
| { |
| u32 cwg; |
| |
| setup_system_capabilities(); |
| setup_elf_hwcaps(arm64_elf_hwcaps); |
| |
| if (system_supports_32bit_el0()) |
| setup_elf_hwcaps(compat_elf_hwcaps); |
| |
| if (system_uses_ttbr0_pan()) |
| pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); |
| |
| sve_setup(); |
| minsigstksz_setup(); |
| |
| /* Advertise that we have computed the system capabilities */ |
| finalize_system_capabilities(); |
| |
| /* |
| * Check for sane CTR_EL0.CWG value. |
| */ |
| cwg = cache_type_cwg(); |
| if (!cwg) |
| pr_warn("No Cache Writeback Granule information, assuming %d\n", |
| ARCH_DMA_MINALIGN); |
| } |
| |
| static bool __maybe_unused |
| cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused) |
| { |
| return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO)); |
| } |
| |
| static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) |
| { |
| cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); |
| } |
| |
| /* |
| * We emulate only the following system register space. |
| * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7] |
| * See Table C5-6 System instruction encodings for System register accesses, |
| * ARMv8 ARM(ARM DDI 0487A.f) for more details. |
| */ |
| static inline bool __attribute_const__ is_emulated(u32 id) |
| { |
| return (sys_reg_Op0(id) == 0x3 && |
| sys_reg_CRn(id) == 0x0 && |
| sys_reg_Op1(id) == 0x0 && |
| (sys_reg_CRm(id) == 0 || |
| ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7)))); |
| } |
| |
| /* |
| * With CRm == 0, reg should be one of : |
| * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. |
| */ |
| static inline int emulate_id_reg(u32 id, u64 *valp) |
| { |
| switch (id) { |
| case SYS_MIDR_EL1: |
| *valp = read_cpuid_id(); |
| break; |
| case SYS_MPIDR_EL1: |
| *valp = SYS_MPIDR_SAFE_VAL; |
| break; |
| case SYS_REVIDR_EL1: |
| /* IMPLEMENTATION DEFINED values are emulated with 0 */ |
| *valp = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int emulate_sys_reg(u32 id, u64 *valp) |
| { |
| struct arm64_ftr_reg *regp; |
| |
| if (!is_emulated(id)) |
| return -EINVAL; |
| |
| if (sys_reg_CRm(id) == 0) |
| return emulate_id_reg(id, valp); |
| |
| regp = get_arm64_ftr_reg(id); |
| if (regp) |
| *valp = arm64_ftr_reg_user_value(regp); |
| else |
| /* |
| * The untracked registers are either IMPLEMENTATION DEFINED |
| * (e.g, ID_AFR0_EL1) or reserved RAZ. |
| */ |
| *valp = 0; |
| return 0; |
| } |
| |
| int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) |
| { |
| int rc; |
| u64 val; |
| |
| rc = emulate_sys_reg(sys_reg, &val); |
| if (!rc) { |
| pt_regs_write_reg(regs, rt, val); |
| arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); |
| } |
| return rc; |
| } |
| |
| static int emulate_mrs(struct pt_regs *regs, u32 insn) |
| { |
| u32 sys_reg, rt; |
| |
| /* |
| * sys_reg values are defined as used in mrs/msr instruction. |
| * shift the imm value to get the encoding. |
| */ |
| sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; |
| rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); |
| return do_emulate_mrs(regs, sys_reg, rt); |
| } |
| |
| static struct undef_hook mrs_hook = { |
| .instr_mask = 0xfff00000, |
| .instr_val = 0xd5300000, |
| .pstate_mask = PSR_AA32_MODE_MASK, |
| .pstate_val = PSR_MODE_EL0t, |
| .fn = emulate_mrs, |
| }; |
| |
| static int __init enable_mrs_emulation(void) |
| { |
| register_undef_hook(&mrs_hook); |
| return 0; |
| } |
| |
| core_initcall(enable_mrs_emulation); |
| |
| ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| if (__meltdown_safe) |
| return sprintf(buf, "Not affected\n"); |
| |
| if (arm64_kernel_unmapped_at_el0()) |
| return sprintf(buf, "Mitigation: PTI\n"); |
| |
| return sprintf(buf, "Vulnerable\n"); |
| } |