blob: 482a1a451e437169c140361f03b3a1843350dbdd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Texas Instruments Ethernet Switch Driver
*
* Copyright (C) 2019 Texas Instruments
*/
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/kmemleak.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/net_tstamp.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/skbuff.h>
#include <net/page_pool.h>
#include <net/pkt_cls.h>
#include "cpsw.h"
#include "cpts.h"
#include "cpsw_ale.h"
#include "cpsw_priv.h"
#include "cpsw_sl.h"
#include "davinci_cpdma.h"
#define CPTS_N_ETX_TS 4
int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv);
void cpsw_intr_enable(struct cpsw_common *cpsw)
{
writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
cpdma_ctlr_int_ctrl(cpsw->dma, true);
}
void cpsw_intr_disable(struct cpsw_common *cpsw)
{
writel_relaxed(0, &cpsw->wr_regs->tx_en);
writel_relaxed(0, &cpsw->wr_regs->rx_en);
cpdma_ctlr_int_ctrl(cpsw->dma, false);
}
void cpsw_tx_handler(void *token, int len, int status)
{
struct cpsw_meta_xdp *xmeta;
struct xdp_frame *xdpf;
struct net_device *ndev;
struct netdev_queue *txq;
struct sk_buff *skb;
int ch;
if (cpsw_is_xdpf_handle(token)) {
xdpf = cpsw_handle_to_xdpf(token);
xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
ndev = xmeta->ndev;
ch = xmeta->ch;
xdp_return_frame(xdpf);
} else {
skb = token;
ndev = skb->dev;
ch = skb_get_queue_mapping(skb);
cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb);
dev_kfree_skb_any(skb);
}
/* Check whether the queue is stopped due to stalled tx dma, if the
* queue is stopped then start the queue as we have free desc for tx
*/
txq = netdev_get_tx_queue(ndev, ch);
if (unlikely(netif_tx_queue_stopped(txq)))
netif_tx_wake_queue(txq);
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += len;
}
irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
{
struct cpsw_common *cpsw = dev_id;
writel(0, &cpsw->wr_regs->tx_en);
cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
if (cpsw->quirk_irq) {
disable_irq_nosync(cpsw->irqs_table[1]);
cpsw->tx_irq_disabled = true;
}
napi_schedule(&cpsw->napi_tx);
return IRQ_HANDLED;
}
irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
struct cpsw_common *cpsw = dev_id;
writel(0, &cpsw->wr_regs->rx_en);
cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
if (cpsw->quirk_irq) {
disable_irq_nosync(cpsw->irqs_table[0]);
cpsw->rx_irq_disabled = true;
}
napi_schedule(&cpsw->napi_rx);
return IRQ_HANDLED;
}
irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id)
{
struct cpsw_common *cpsw = dev_id;
writel(0, &cpsw->wr_regs->misc_en);
cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC);
cpts_misc_interrupt(cpsw->cpts);
writel(0x10, &cpsw->wr_regs->misc_en);
return IRQ_HANDLED;
}
int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
{
struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
int num_tx, cur_budget, ch;
u32 ch_map;
struct cpsw_vector *txv;
/* process every unprocessed channel */
ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
if (!(ch_map & 0x80))
continue;
txv = &cpsw->txv[ch];
if (unlikely(txv->budget > budget - num_tx))
cur_budget = budget - num_tx;
else
cur_budget = txv->budget;
num_tx += cpdma_chan_process(txv->ch, cur_budget);
if (num_tx >= budget)
break;
}
if (num_tx < budget) {
napi_complete(napi_tx);
writel(0xff, &cpsw->wr_regs->tx_en);
}
return num_tx;
}
int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
int num_tx;
num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
if (num_tx < budget) {
napi_complete(napi_tx);
writel(0xff, &cpsw->wr_regs->tx_en);
if (cpsw->tx_irq_disabled) {
cpsw->tx_irq_disabled = false;
enable_irq(cpsw->irqs_table[1]);
}
}
return num_tx;
}
int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
{
struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
int num_rx, cur_budget, ch;
u32 ch_map;
struct cpsw_vector *rxv;
/* process every unprocessed channel */
ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
if (!(ch_map & 0x01))
continue;
rxv = &cpsw->rxv[ch];
if (unlikely(rxv->budget > budget - num_rx))
cur_budget = budget - num_rx;
else
cur_budget = rxv->budget;
num_rx += cpdma_chan_process(rxv->ch, cur_budget);
if (num_rx >= budget)
break;
}
if (num_rx < budget) {
napi_complete_done(napi_rx, num_rx);
writel(0xff, &cpsw->wr_regs->rx_en);
}
return num_rx;
}
int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
int num_rx;
num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
if (num_rx < budget) {
napi_complete_done(napi_rx, num_rx);
writel(0xff, &cpsw->wr_regs->rx_en);
if (cpsw->rx_irq_disabled) {
cpsw->rx_irq_disabled = false;
enable_irq(cpsw->irqs_table[0]);
}
}
return num_rx;
}
void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
struct cpsw_priv *priv = netdev_priv(skb->dev);
u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
struct cpsw_common *cpsw = priv->cpsw;
u16 vtag, vid, prio, pkt_type;
/* Remove VLAN header encapsulation word */
skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
pkt_type = (rx_vlan_encap_hdr >>
CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
/* Ignore unknown & Priority-tagged packets*/
if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
return;
vid = (rx_vlan_encap_hdr >>
CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
VLAN_VID_MASK;
/* Ignore vid 0 and pass packet as is */
if (!vid)
return;
/* Untag P0 packets if set for vlan */
if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) {
prio = (rx_vlan_encap_hdr >>
CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
vtag = (prio << VLAN_PRIO_SHIFT) | vid;
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
}
/* strip vlan tag for VLAN-tagged packet */
if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
skb_pull(skb, VLAN_HLEN);
}
}
void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
}
void soft_reset(const char *module, void __iomem *reg)
{
unsigned long timeout = jiffies + HZ;
writel_relaxed(1, reg);
do {
cpu_relax();
} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
}
void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ch;
cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
ndev->stats.tx_errors++;
cpsw_intr_disable(cpsw);
for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
cpdma_chan_stop(cpsw->txv[ch].ch);
cpdma_chan_start(cpsw->txv[ch].ch);
}
cpsw_intr_enable(cpsw);
netif_trans_update(ndev);
netif_tx_wake_all_queues(ndev);
}
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
int i, speed;
for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
speed += cpsw->slaves[i].phy->speed;
return speed;
}
int cpsw_need_resplit(struct cpsw_common *cpsw)
{
int i, rlim_ch_num;
int speed, ch_rate;
/* re-split resources only in case speed was changed */
speed = cpsw_get_common_speed(cpsw);
if (speed == cpsw->speed || !speed)
return 0;
cpsw->speed = speed;
for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
if (!ch_rate)
break;
rlim_ch_num++;
}
/* cases not dependent on speed */
if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
return 0;
return 1;
}
void cpsw_split_res(struct cpsw_common *cpsw)
{
u32 consumed_rate = 0, bigest_rate = 0;
struct cpsw_vector *txv = cpsw->txv;
int i, ch_weight, rlim_ch_num = 0;
int budget, bigest_rate_ch = 0;
u32 ch_rate, max_rate;
int ch_budget = 0;
for (i = 0; i < cpsw->tx_ch_num; i++) {
ch_rate = cpdma_chan_get_rate(txv[i].ch);
if (!ch_rate)
continue;
rlim_ch_num++;
consumed_rate += ch_rate;
}
if (cpsw->tx_ch_num == rlim_ch_num) {
max_rate = consumed_rate;
} else if (!rlim_ch_num) {
ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
bigest_rate = 0;
max_rate = consumed_rate;
} else {
max_rate = cpsw->speed * 1000;
/* if max_rate is less then expected due to reduced link speed,
* split proportionally according next potential max speed
*/
if (max_rate < consumed_rate)
max_rate *= 10;
if (max_rate < consumed_rate)
max_rate *= 10;
ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
(cpsw->tx_ch_num - rlim_ch_num);
bigest_rate = (max_rate - consumed_rate) /
(cpsw->tx_ch_num - rlim_ch_num);
}
/* split tx weight/budget */
budget = CPSW_POLL_WEIGHT;
for (i = 0; i < cpsw->tx_ch_num; i++) {
ch_rate = cpdma_chan_get_rate(txv[i].ch);
if (ch_rate) {
txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
if (!txv[i].budget)
txv[i].budget++;
if (ch_rate > bigest_rate) {
bigest_rate_ch = i;
bigest_rate = ch_rate;
}
ch_weight = (ch_rate * 100) / max_rate;
if (!ch_weight)
ch_weight++;
cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
} else {
txv[i].budget = ch_budget;
if (!bigest_rate_ch)
bigest_rate_ch = i;
cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
}
budget -= txv[i].budget;
}
if (budget)
txv[bigest_rate_ch].budget += budget;
/* split rx budget */
budget = CPSW_POLL_WEIGHT;
ch_budget = budget / cpsw->rx_ch_num;
for (i = 0; i < cpsw->rx_ch_num; i++) {
cpsw->rxv[i].budget = ch_budget;
budget -= ch_budget;
}
if (budget)
cpsw->rxv[0].budget += budget;
}
int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs,
int ale_ageout, phys_addr_t desc_mem_phys,
int descs_pool_size)
{
u32 slave_offset, sliver_offset, slave_size;
struct cpsw_ale_params ale_params;
struct cpsw_platform_data *data;
struct cpdma_params dma_params;
struct device *dev = cpsw->dev;
struct device_node *cpts_node;
void __iomem *cpts_regs;
int ret = 0, i;
data = &cpsw->data;
cpsw->rx_ch_num = 1;
cpsw->tx_ch_num = 1;
cpsw->version = readl(&cpsw->regs->id_ver);
memset(&dma_params, 0, sizeof(dma_params));
memset(&ale_params, 0, sizeof(ale_params));
switch (cpsw->version) {
case CPSW_VERSION_1:
cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
slave_offset = CPSW1_SLAVE_OFFSET;
slave_size = CPSW1_SLAVE_SIZE;
sliver_offset = CPSW1_SLIVER_OFFSET;
dma_params.desc_mem_phys = 0;
break;
case CPSW_VERSION_2:
case CPSW_VERSION_3:
case CPSW_VERSION_4:
cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
slave_offset = CPSW2_SLAVE_OFFSET;
slave_size = CPSW2_SLAVE_SIZE;
sliver_offset = CPSW2_SLIVER_OFFSET;
dma_params.desc_mem_phys = desc_mem_phys;
break;
default:
dev_err(dev, "unknown version 0x%08x\n", cpsw->version);
return -ENODEV;
}
for (i = 0; i < cpsw->data.slaves; i++) {
struct cpsw_slave *slave = &cpsw->slaves[i];
void __iomem *regs = cpsw->regs;
slave->slave_num = i;
slave->data = &cpsw->data.slave_data[i];
slave->regs = regs + slave_offset;
slave->port_vlan = slave->data->dual_emac_res_vlan;
slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset);
if (IS_ERR(slave->mac_sl))
return PTR_ERR(slave->mac_sl);
slave_offset += slave_size;
sliver_offset += SLIVER_SIZE;
}
ale_params.dev = dev;
ale_params.ale_ageout = ale_ageout;
ale_params.ale_entries = data->ale_entries;
ale_params.ale_ports = CPSW_ALE_PORTS_NUM;
cpsw->ale = cpsw_ale_create(&ale_params);
if (IS_ERR(cpsw->ale)) {
dev_err(dev, "error initializing ale engine\n");
return PTR_ERR(cpsw->ale);
}
dma_params.dev = dev;
dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
dma_params.num_chan = data->channels;
dma_params.has_soft_reset = true;
dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
dma_params.desc_mem_size = data->bd_ram_size;
dma_params.desc_align = 16;
dma_params.has_ext_regs = true;
dma_params.desc_hw_addr = dma_params.desc_mem_phys;
dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
dma_params.descs_pool_size = descs_pool_size;
cpsw->dma = cpdma_ctlr_create(&dma_params);
if (!cpsw->dma) {
dev_err(dev, "error initializing dma\n");
return -ENOMEM;
}
cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts");
if (!cpts_node)
cpts_node = cpsw->dev->of_node;
cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node,
CPTS_N_ETX_TS);
if (IS_ERR(cpsw->cpts)) {
ret = PTR_ERR(cpsw->cpts);
cpdma_ctlr_destroy(cpsw->dma);
}
of_node_put(cpts_node);
return ret;
}
#if IS_ENABLED(CONFIG_TI_CPTS)
static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
u32 ts_en, seq_id;
if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
slave_write(slave, 0, CPSW1_TS_CTL);
return;
}
seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
if (priv->tx_ts_enabled)
ts_en |= CPSW_V1_TS_TX_EN;
if (priv->rx_ts_enabled)
ts_en |= CPSW_V1_TS_RX_EN;
slave_write(slave, ts_en, CPSW1_TS_CTL);
slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}
static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
u32 ctrl, mtype;
slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
ctrl = slave_read(slave, CPSW2_CONTROL);
switch (cpsw->version) {
case CPSW_VERSION_2:
ctrl &= ~CTRL_V2_ALL_TS_MASK;
if (priv->tx_ts_enabled)
ctrl |= CTRL_V2_TX_TS_BITS;
if (priv->rx_ts_enabled)
ctrl |= CTRL_V2_RX_TS_BITS;
break;
case CPSW_VERSION_3:
default:
ctrl &= ~CTRL_V3_ALL_TS_MASK;
if (priv->tx_ts_enabled)
ctrl |= CTRL_V3_TX_TS_BITS;
if (priv->rx_ts_enabled)
ctrl |= CTRL_V3_RX_TS_BITS;
break;
}
mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
slave_write(slave, ctrl, CPSW2_CONTROL);
writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
}
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
struct cpsw_priv *priv = netdev_priv(dev);
struct cpsw_common *cpsw = priv->cpsw;
struct hwtstamp_config cfg;
if (cpsw->version != CPSW_VERSION_1 &&
cpsw->version != CPSW_VERSION_2 &&
cpsw->version != CPSW_VERSION_3)
return -EOPNOTSUPP;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
/* reserved for future extensions */
if (cfg.flags)
return -EINVAL;
if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
return -ERANGE;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
priv->rx_ts_enabled = 0;
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_NTP_ALL:
return -ERANGE;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
break;
default:
return -ERANGE;
}
priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;
switch (cpsw->version) {
case CPSW_VERSION_1:
cpsw_hwtstamp_v1(priv);
break;
case CPSW_VERSION_2:
case CPSW_VERSION_3:
cpsw_hwtstamp_v2(priv);
break;
default:
WARN_ON(1);
}
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
struct cpsw_common *cpsw = ndev_to_cpsw(dev);
struct cpsw_priv *priv = netdev_priv(dev);
struct hwtstamp_config cfg;
if (cpsw->version != CPSW_VERSION_1 &&
cpsw->version != CPSW_VERSION_2 &&
cpsw->version != CPSW_VERSION_3)
return -EOPNOTSUPP;
cfg.flags = 0;
cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
cfg.rx_filter = priv->rx_ts_enabled;
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
return -EOPNOTSUPP;
}
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
return -EOPNOTSUPP;
}
#endif /*CONFIG_TI_CPTS*/
int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct cpsw_priv *priv = netdev_priv(dev);
struct cpsw_common *cpsw = priv->cpsw;
int slave_no = cpsw_slave_index(cpsw, priv);
if (!netif_running(dev))
return -EINVAL;
switch (cmd) {
case SIOCSHWTSTAMP:
return cpsw_hwtstamp_set(dev, req);
case SIOCGHWTSTAMP:
return cpsw_hwtstamp_get(dev, req);
}
if (!cpsw->slaves[slave_no].phy)
return -EOPNOTSUPP;
return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
}
int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
u32 min_rate;
u32 ch_rate;
int i, ret;
ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
if (ch_rate == rate)
return 0;
ch_rate = rate * 1000;
min_rate = cpdma_chan_get_min_rate(cpsw->dma);
if ((ch_rate < min_rate && ch_rate)) {
dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
min_rate);
return -EINVAL;
}
if (rate > cpsw->speed) {
dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
return -EINVAL;
}
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
pm_runtime_put(cpsw->dev);
if (ret)
return ret;
/* update rates for slaves tx queues */
for (i = 0; i < cpsw->data.slaves; i++) {
slave = &cpsw->slaves[i];
if (!slave->ndev)
continue;
netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
}
cpsw_split_res(cpsw);
return ret;
}
static int cpsw_tc_to_fifo(int tc, int num_tc)
{
if (tc == num_tc - 1)
return 0;
return CPSW_FIFO_SHAPERS_NUM - tc;
}
bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
u32 shift, mask, val;
val = readl_relaxed(&cpsw->regs->ptype);
slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
mask = 7 << shift;
val = val & mask;
return !val;
}
static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
u32 shift, mask, val;
val = readl_relaxed(&cpsw->regs->ptype);
slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
mask = (1 << --fifo) << shift;
val = on ? val | mask : val & ~mask;
writel_relaxed(val, &cpsw->regs->ptype);
}
static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
struct cpsw_common *cpsw = priv->cpsw;
u32 val = 0, send_pct, shift;
struct cpsw_slave *slave;
int pct = 0, i;
if (bw > priv->shp_cfg_speed * 1000)
goto err;
/* shaping has to stay enabled for highest fifos linearly
* and fifo bw no more then interface can allow
*/
slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
send_pct = slave_read(slave, SEND_PERCENT);
for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
if (!bw) {
if (i >= fifo || !priv->fifo_bw[i])
continue;
dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
continue;
}
if (!priv->fifo_bw[i] && i > fifo) {
dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
return -EINVAL;
}
shift = (i - 1) * 8;
if (i == fifo) {
send_pct &= ~(CPSW_PCT_MASK << shift);
val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
if (!val)
val = 1;
send_pct |= val << shift;
pct += val;
continue;
}
if (priv->fifo_bw[i])
pct += (send_pct >> shift) & CPSW_PCT_MASK;
}
if (pct >= 100)
goto err;
slave_write(slave, send_pct, SEND_PERCENT);
priv->fifo_bw[fifo] = bw;
dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
return 0;
err:
dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
return -EINVAL;
}
static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
u32 tx_in_ctl_rg, val;
int ret;
ret = cpsw_set_fifo_bw(priv, fifo, bw);
if (ret)
return ret;
slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
if (!bw)
cpsw_fifo_shp_on(priv, fifo, bw);
val = slave_read(slave, tx_in_ctl_rg);
if (cpsw_shp_is_off(priv)) {
/* disable FIFOs rate limited queues */
val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
/* set type of FIFO queues to normal priority mode */
val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
/* set type of FIFO queues to be rate limited */
if (bw)
val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
else
priv->shp_cfg_speed = 0;
}
/* toggle a FIFO rate limited queue */
if (bw)
val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
else
val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
slave_write(slave, val, tx_in_ctl_rg);
/* FIFO transmit shape enable */
cpsw_fifo_shp_on(priv, fifo, bw);
return 0;
}
/* Defaults:
* class A - prio 3
* class B - prio 2
* shaping for class A should be set first
*/
static int cpsw_set_cbs(struct net_device *ndev,
struct tc_cbs_qopt_offload *qopt)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_slave *slave;
int prev_speed = 0;
int tc, ret, fifo;
u32 bw = 0;
tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
/* enable channels in backward order, as highest FIFOs must be rate
* limited first and for compliance with CPDMA rate limited channels
* that also used in bacward order. FIFO0 cannot be rate limited.
*/
fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
if (!fifo) {
dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
return -EINVAL;
}
/* do nothing, it's disabled anyway */
if (!qopt->enable && !priv->fifo_bw[fifo])
return 0;
/* shapers can be set if link speed is known */
slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
if (slave->phy && slave->phy->link) {
if (priv->shp_cfg_speed &&
priv->shp_cfg_speed != slave->phy->speed)
prev_speed = priv->shp_cfg_speed;
priv->shp_cfg_speed = slave->phy->speed;
}
if (!priv->shp_cfg_speed) {
dev_err(priv->dev, "Link speed is not known");
return -1;
}
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
bw = qopt->enable ? qopt->idleslope : 0;
ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
if (ret) {
priv->shp_cfg_speed = prev_speed;
prev_speed = 0;
}
if (bw && prev_speed)
dev_warn(priv->dev,
"Speed was changed, CBS shaper speeds are changed!");
pm_runtime_put_sync(cpsw->dev);
return ret;
}
static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
struct tc_mqprio_qopt_offload *mqprio = type_data;
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int fifo, num_tc, count, offset;
struct cpsw_slave *slave;
u32 tx_prio_map = 0;
int i, tc, ret;
num_tc = mqprio->qopt.num_tc;
if (num_tc > CPSW_TC_NUM)
return -EINVAL;
if (mqprio->mode != TC_MQPRIO_MODE_DCB)
return -EINVAL;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
if (num_tc) {
for (i = 0; i < 8; i++) {
tc = mqprio->qopt.prio_tc_map[i];
fifo = cpsw_tc_to_fifo(tc, num_tc);
tx_prio_map |= fifo << (4 * i);
}
netdev_set_num_tc(ndev, num_tc);
for (i = 0; i < num_tc; i++) {
count = mqprio->qopt.count[i];
offset = mqprio->qopt.offset[i];
netdev_set_tc_queue(ndev, i, count, offset);
}
}
if (!mqprio->qopt.hw) {
/* restore default configuration */
netdev_reset_tc(ndev);
tx_prio_map = TX_PRIORITY_MAPPING;
}
priv->mqprio_hw = mqprio->qopt.hw;
offset = cpsw->version == CPSW_VERSION_1 ?
CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
slave_write(slave, tx_prio_map, offset);
pm_runtime_put_sync(cpsw->dev);
return 0;
}
int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_SETUP_QDISC_CBS:
return cpsw_set_cbs(ndev, type_data);
case TC_SETUP_QDISC_MQPRIO:
return cpsw_set_mqprio(ndev, type_data);
default:
return -EOPNOTSUPP;
}
}
void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
int fifo, bw;
for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
bw = priv->fifo_bw[fifo];
if (!bw)
continue;
cpsw_set_fifo_rlimit(priv, fifo, bw);
}
}
void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
u32 tx_prio_map = 0;
int i, tc, fifo;
u32 tx_prio_rg;
if (!priv->mqprio_hw)
return;
for (i = 0; i < 8; i++) {
tc = netdev_get_prio_tc_map(priv->ndev, i);
fifo = CPSW_FIFO_SHAPERS_NUM - tc;
tx_prio_map |= fifo << (4 * i);
}
tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
slave_write(slave, tx_prio_map, tx_prio_rg);
}
int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_meta_xdp *xmeta;
struct page_pool *pool;
struct page *page;
int ch_buf_num;
int ch, i, ret;
dma_addr_t dma;
for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
pool = cpsw->page_pool[ch];
ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
for (i = 0; i < ch_buf_num; i++) {
page = page_pool_dev_alloc_pages(pool);
if (!page) {
cpsw_err(priv, ifup, "allocate rx page err\n");
return -ENOMEM;
}
xmeta = page_address(page) + CPSW_XMETA_OFFSET;
xmeta->ndev = priv->ndev;
xmeta->ch = ch;
dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM;
ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch,
page, dma,
cpsw->rx_packet_max,
0);
if (ret < 0) {
cpsw_err(priv, ifup,
"cannot submit page to channel %d rx, error %d\n",
ch, ret);
page_pool_recycle_direct(pool, page);
return ret;
}
}
cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
ch, ch_buf_num);
}
return 0;
}
static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw,
int size)
{
struct page_pool_params pp_params;
struct page_pool *pool;
pp_params.order = 0;
pp_params.flags = PP_FLAG_DMA_MAP;
pp_params.pool_size = size;
pp_params.nid = NUMA_NO_NODE;
pp_params.dma_dir = DMA_BIDIRECTIONAL;
pp_params.dev = cpsw->dev;
pool = page_pool_create(&pp_params);
if (IS_ERR(pool))
dev_err(cpsw->dev, "cannot create rx page pool\n");
return pool;
}
static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch)
{
struct page_pool *pool;
int ret = 0, pool_size;
pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
pool = cpsw_create_page_pool(cpsw, pool_size);
if (IS_ERR(pool))
ret = PTR_ERR(pool);
else
cpsw->page_pool[ch] = pool;
return ret;
}
static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch)
{
struct cpsw_common *cpsw = priv->cpsw;
struct xdp_rxq_info *rxq;
struct page_pool *pool;
int ret;
pool = cpsw->page_pool[ch];
rxq = &priv->xdp_rxq[ch];
ret = xdp_rxq_info_reg(rxq, priv->ndev, ch);
if (ret)
return ret;
ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool);
if (ret)
xdp_rxq_info_unreg(rxq);
return ret;
}
static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch)
{
struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch];
if (!xdp_rxq_info_is_reg(rxq))
return;
xdp_rxq_info_unreg(rxq);
}
void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw)
{
struct net_device *ndev;
int i, ch;
for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
for (i = 0; i < cpsw->data.slaves; i++) {
ndev = cpsw->slaves[i].ndev;
if (!ndev)
continue;
cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch);
}
page_pool_destroy(cpsw->page_pool[ch]);
cpsw->page_pool[ch] = NULL;
}
}
int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw)
{
struct net_device *ndev;
int i, ch, ret;
for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
ret = cpsw_create_rx_pool(cpsw, ch);
if (ret)
goto err_cleanup;
/* using same page pool is allowed as no running rx handlers
* simultaneously for both ndevs
*/
for (i = 0; i < cpsw->data.slaves; i++) {
ndev = cpsw->slaves[i].ndev;
if (!ndev)
continue;
ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch);
if (ret)
goto err_cleanup;
}
}
return 0;
err_cleanup:
cpsw_destroy_xdp_rxqs(cpsw);
return ret;
}
static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf)
{
struct bpf_prog *prog = bpf->prog;
if (!priv->xdpi.prog && !prog)
return 0;
if (!xdp_attachment_flags_ok(&priv->xdpi, bpf))
return -EBUSY;
WRITE_ONCE(priv->xdp_prog, prog);
xdp_attachment_setup(&priv->xdpi, bpf);
return 0;
}
int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
{
struct cpsw_priv *priv = netdev_priv(ndev);
switch (bpf->command) {
case XDP_SETUP_PROG:
return cpsw_xdp_prog_setup(priv, bpf);
default:
return -EINVAL;
}
}
int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf,
struct page *page, int port)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_meta_xdp *xmeta;
struct cpdma_chan *txch;
dma_addr_t dma;
int ret;
xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
xmeta->ndev = priv->ndev;
xmeta->ch = 0;
txch = cpsw->txv[0].ch;
if (page) {
dma = page_pool_get_dma_addr(page);
dma += xdpf->headroom + sizeof(struct xdp_frame);
ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf),
dma, xdpf->len, port);
} else {
if (sizeof(*xmeta) > xdpf->headroom) {
xdp_return_frame_rx_napi(xdpf);
return -EINVAL;
}
ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf),
xdpf->data, xdpf->len, port);
}
if (ret) {
priv->ndev->stats.tx_dropped++;
xdp_return_frame_rx_napi(xdpf);
}
return ret;
}
int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp,
struct page *page, int port)
{
struct cpsw_common *cpsw = priv->cpsw;
struct net_device *ndev = priv->ndev;
int ret = CPSW_XDP_CONSUMED;
struct xdp_frame *xdpf;
struct bpf_prog *prog;
u32 act;
rcu_read_lock();
prog = READ_ONCE(priv->xdp_prog);
if (!prog) {
ret = CPSW_XDP_PASS;
goto out;
}
act = bpf_prog_run_xdp(prog, xdp);
switch (act) {
case XDP_PASS:
ret = CPSW_XDP_PASS;
break;
case XDP_TX:
xdpf = xdp_convert_buff_to_frame(xdp);
if (unlikely(!xdpf))
goto drop;
cpsw_xdp_tx_frame(priv, xdpf, page, port);
break;
case XDP_REDIRECT:
if (xdp_do_redirect(ndev, xdp, prog))
goto drop;
/* Have to flush here, per packet, instead of doing it in bulk
* at the end of the napi handler. The RX devices on this
* particular hardware is sharing a common queue, so the
* incoming device might change per packet.
*/
xdp_do_flush_map();
break;
default:
bpf_warn_invalid_xdp_action(act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(ndev, prog, act);
fallthrough; /* handle aborts by dropping packet */
case XDP_DROP:
goto drop;
}
out:
rcu_read_unlock();
return ret;
drop:
rcu_read_unlock();
page_pool_recycle_direct(cpsw->page_pool[ch], page);
return ret;
}